Compare commits

..

4 Commits

Author SHA1 Message Date
blakeblackshear
a7d68a4998 increase queue size and add ability to take every nth frame 2019-04-19 08:23:07 -05:00
blakeblackshear
03e46efcdd add back queue full message 2019-04-19 06:37:29 -05:00
blakeblackshear
27e39edd65 add location masking for detected objects 2019-04-14 11:58:33 -05:00
blakeblackshear
4f829e818e implement person filtering with min/max by y position 2019-04-14 11:28:50 -05:00
17 changed files with 380 additions and 728 deletions

View File

@@ -1,6 +1 @@
README.md
diagram.png
.gitignore
debug
config/
*.pyc
README.md

1
.github/FUNDING.yml vendored
View File

@@ -1 +0,0 @@
github: blakeblackshear

2
.gitignore vendored
View File

@@ -1,4 +1,2 @@
*.pyc
debug
.vscode
config/config.yml

View File

@@ -1,70 +1,71 @@
FROM ubuntu:18.04
FROM ubuntu:16.04
ARG DEVICE
# Install packages for apt repo
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
apt-transport-https \
ca-certificates \
curl \
wget \
gnupg-agent \
dirmngr \
software-properties-common \
&& rm -rf /var/lib/apt/lists/*
COPY scripts/install_odroid_repo.sh .
RUN if [ "$DEVICE" = "odroid" ]; then \
sh /install_odroid_repo.sh; \
fi
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
python3 \
# OpenCV dependencies
ffmpeg \
# Install system packages
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y python3 \
python3-dev \
python-pil \
python-lxml \
python-tk \
build-essential \
cmake \
unzip \
pkg-config \
cmake \
git \
libgtk2.0-dev \
pkg-config \
libavcodec-dev \
libavformat-dev \
libswscale-dev \
libtbb2 \
libtbb-dev \
libjpeg-dev \
libpng-dev \
libtiff-dev \
libavcodec-dev \
libavformat-dev \
libswscale-dev \
libv4l-dev \
libxvidcore-dev \
libx264-dev \
libgtk-3-dev \
libatlas-base-dev \
gfortran \
python3-dev \
# Coral USB Python API Dependencies
libusb-1.0-0 \
python3-pip \
python3-pil \
libjasper-dev \
libdc1394-22-dev \
x11-apps \
wget \
vim \
ffmpeg \
unzip \
libusb-1.0-0-dev \
python3-setuptools \
python3-numpy \
libc++1 \
libc++abi1 \
libunwind8 \
libgcc1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
zlib1g-dev \
libgoogle-glog-dev \
swig \
libunwind-dev \
libc++-dev \
libc++abi-dev \
build-essential \
&& rm -rf /var/lib/apt/lists/*
# Install core packages
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
RUN pip install -U pip \
numpy \
pillow \
matplotlib \
notebook \
Flask \
imutils \
paho-mqtt \
PyYAML
# Install tensorflow models object detection
RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/google/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.tar.gz
# Download & build protobuf-python
RUN cd /usr/local/src/ \
&& tar xf protobuf-python-3.5.1.tar.gz \
&& rm protobuf-python-3.5.1.tar.gz \
&& cd /usr/local/src/protobuf-3.5.1/ \
&& ./configure \
&& make \
&& make install \
&& ldconfig \
&& rm -rf /usr/local/src/protobuf-3.5.1/
# Download & build OpenCV
# TODO: use multistage build to reduce image size:
# https://medium.com/@denismakogon/pain-and-gain-running-opencv-application-with-golang-and-docker-on-alpine-3-7-435aa11c7aec
# https://www.merixstudio.com/blog/docker-multi-stage-builds-python-development/
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
RUN cd /usr/local/src/ \
&& unzip 4.0.1.zip \
@@ -75,35 +76,32 @@ RUN cd /usr/local/src/ \
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
&& make -j4 \
&& make install \
&& ldconfig \
&& rm -rf /usr/local/src/opencv-4.0.1
# Download and install EdgeTPU libraries for Coral
RUN wget https://dl.google.com/coral/edgetpu_api/edgetpu_api_latest.tar.gz -O edgetpu_api.tar.gz --trust-server-names \
&& tar xzf edgetpu_api.tar.gz
# Download and install EdgeTPU libraries
RUN wget -q -O edgetpu_api.tar.gz --no-check-certificate http://storage.googleapis.com/cloud-iot-edge-pretrained-models/edgetpu_api.tar.gz
COPY scripts/install_edgetpu_api.sh edgetpu_api/install.sh
RUN cd edgetpu_api \
&& /bin/bash install.sh
# Copy a python 3.6 version
RUN cd /usr/local/lib/python3.6/dist-packages/edgetpu/swig/ \
&& ln -s _edgetpu_cpp_wrapper.cpython-35m-arm-linux-gnueabihf.so _edgetpu_cpp_wrapper.cpython-36m-arm-linux-gnueabihf.so
# symlink the model and labels
RUN wget https://dl.google.com/coral/canned_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
RUN wget https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
RUN ln -s mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
RUN ln -s /coco_labels.txt /label_map.pbtext
RUN tar xzf edgetpu_api.tar.gz \
&& cd python-tflite-source \
&& cp -p libedgetpu/libedgetpu_x86_64.so /lib/x86_64-linux-gnu/libedgetpu.so \
&& cp edgetpu/swig/compiled_so/_edgetpu_cpp_wrapper_x86_64.so edgetpu/swig/_edgetpu_cpp_wrapper.so \
&& cp edgetpu/swig/compiled_so/edgetpu_cpp_wrapper.py edgetpu/swig/ \
&& python3 setup.py develop --user
# Minimize image size
RUN (apt-get autoremove -y; \
apt-get autoclean -y)
# symlink the model and labels
RUN ln -s /python-tflite-source/edgetpu/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
RUN ln -s /python-tflite-source/edgetpu/test_data/coco_labels.txt /label_map.pbtext
# Set TF object detection available
ENV PYTHONPATH "$PYTHONPATH:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research/slim"
RUN cd /usr/local/lib/python3.5/dist-packages/tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=.
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
CMD ["python3", "-u", "detect_objects.py"]

View File

@@ -1,7 +1,7 @@
# Frigate - Realtime Object Detection for IP Cameras
# Frigate - Realtime Object Detection for RTSP Cameras
**Note:** This version requires the use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/)
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
Uses OpenCV and Tensorflow to perform realtime object detection locally for RTSP cameras. Designed for integration with HomeAssistant or others via MQTT.
- Leverages multiprocessing and threads heavily with an emphasis on realtime over processing every frame
- Allows you to define specific regions (squares) in the image to look for objects
@@ -30,9 +30,8 @@ docker run --rm \
--privileged \
-v /dev/bus/usb:/dev/bus/usb \
-v <path_to_config_dir>:/config:ro \
-v /etc/localtime:/etc/localtime:ro \
-p 5000:5000 \
-e FRIGATE_RTSP_PASSWORD='password' \
-e RTSP_PASSWORD='password' \
frigate:latest
```
@@ -45,58 +44,35 @@ Example docker-compose:
image: frigate:latest
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
- <path_to_config>:/config
ports:
- "5000:5000"
environment:
FRIGATE_RTSP_PASSWORD: "password"
RTSP_PASSWORD: "password"
```
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
A `config.yml` file must exist in the `config` directory. See example [here](config/config.yml).
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best person snapshot at `http://localhost:5000/<camera_name>/best_person.jpg`
## Integration with HomeAssistant
```
camera:
- name: Camera Last Person
platform: mqtt
topic: frigate/<camera_name>/person/snapshot
- name: Camera Last Car
platform: mqtt
topic: frigate/<camera_name>/car/snapshot
platform: generic
still_image_url: http://<ip>:5000/<camera_name>/best_person.jpg
binary_sensor:
sensor:
- name: Camera Person
platform: mqtt
state_topic: "frigate/<camera_name>/person"
device_class: motion
state_topic: "frigate/<camera_name>/objects"
value_template: '{{ value_json.person }}'
device_class: moving
availability_topic: "frigate/available"
automation:
- alias: Alert me if a person is detected while armed away
trigger:
platform: state
entity_id: binary_sensor.camera_person
from: 'off'
to: 'on'
condition:
- condition: state
entity_id: alarm_control_panel.home_alarm
state: armed_away
action:
- service: notify.user_telegram
data:
message: "A person was detected."
data:
photo:
- url: http://<ip>:5000/<camera_name>/person/best.jpg
caption: A person was detected.
```
## Tips
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
- Lower the framerate of the RTSP feed on the camera to reduce the CPU usage for capturing the feed
## Future improvements
- [x] Remove motion detection for now

View File

@@ -1,20 +0,0 @@
import statistics
import numpy as np
from edgetpu.detection.engine import DetectionEngine
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# Load the edgetpu engine and labels
engine = DetectionEngine(PATH_TO_CKPT)
frame = np.zeros((300,300,3), np.uint8)
flattened_frame = np.expand_dims(frame, axis=0).flatten()
detection_times = []
for x in range(0, 1000):
objects = engine.DetectWithInputTensor(flattened_frame, threshold=0.1, top_k=3)
detection_times.append(engine.get_inference_time())
print("Average inference time: " + str(statistics.mean(detection_times)))

View File

@@ -1,128 +0,0 @@
web_port: 5000
mqtt:
host: mqtt.server.com
topic_prefix: frigate
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
# user: username # Optional -- Uncomment for use
# password: password # Optional -- Uncomment for use
#################
# Default ffmpeg args. Optional and can be overwritten per camera.
# Should work with most RTSP cameras that send h264 video
# Built from the properties below with:
# "ffmpeg" + global_args + input_args + "-i" + input + output_args
#################
# ffmpeg:
# global_args:
# - -hide_banner
# - -loglevel
# - panic
# hwaccel_args: []
# input_args:
# - -avoid_negative_ts
# - make_zero
# - -fflags
# - nobuffer
# - -flags
# - low_delay
# - -strict
# - experimental
# - -fflags
# - +genpts+discardcorrupt
# - -vsync
# - drop
# - -rtsp_transport
# - tcp
# - -stimeout
# - '5000000'
# - -use_wallclock_as_timestamps
# - '1'
# output_args:
# - -vf
# - mpdecimate
# - -f
# - rawvideo
# - -pix_fmt
# - rgb24
####################
# Global object configuration. Applies to all cameras and regions
# unless overridden at the camera/region levels.
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
####################
objects:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
cameras:
back:
ffmpeg:
################
# Source passed to ffmpeg after the -i parameter. Supports anything compatible with OpenCV and FFmpeg.
# Environment variables that begin with 'FRIGATE_' may be referenced in {}
################
input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
#################
# These values will override default values for just this camera
#################
# global_args: []
# hwaccel_args: []
# input_args: []
# output_args: []
################
## Optional mask. Must be the same dimensions as your video feed.
## The mask works by looking at the bottom center of the bounding box for the detected
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
## false positive. In my mask, the grass and driveway visible from my backdoor camera
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
## person to stand) are black.
################
# mask: back-mask.bmp
################
# Allows you to limit the framerate within frigate for cameras that do not support
# custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,
# 3 every 3rd frame, etc.
################
take_frame: 1
objects:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
################
# size: size of the region in pixels
# x_offset/y_offset: position of the upper left corner of your region (top left of image is 0,0)
# min_person_area (optional): minimum width*height of the bounding box for the detected person
# max_person_area (optional): maximum width*height of the bounding box for the detected person
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
# Tips: All regions are resized to 300x300 before detection because the model is trained on that size.
# Resizing regions takes CPU power. Ideally, all regions should be as close to 300x300 as possible.
# Defining a region that goes outside the bounds of the image will result in errors.
################
regions:
- size: 350
x_offset: 0
y_offset: 300
objects:
car:
threshold: 0.2
- size: 400
x_offset: 350
y_offset: 250
objects:
person:
min_area: 2000
- size: 400
x_offset: 750
y_offset: 250
objects:
person:
min_area: 2000

42
config/config.yml Normal file
View File

@@ -0,0 +1,42 @@
web_port: 5000
mqtt:
host: mqtt.server.com
topic_prefix: frigate
cameras:
back:
rtsp:
user: viewer
host: 10.0.10.10
port: 554
# values that begin with a "$" will be replaced with environment variable
password: $RTSP_PASSWORD
path: /cam/realmonitor?channel=1&subtype=2
regions:
- size: 350
x_offset: 0
y_offset: 300
- size: 400
x_offset: 350
y_offset: 250
- size: 400
x_offset: 750
y_offset: 250
mask: back-mask.bmp
known_sizes:
- y: 300
min: 700
max: 1800
- y: 400
min: 3000
max: 7200
- y: 500
min: 8500
max: 20400
- y: 600
min: 10000
max: 50000
- y: 700
min: 10000
max: 125000

View File

@@ -17,32 +17,6 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
# Set the default FFmpeg config
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
FFMPEG_DEFAULT_CONFIG = {
'global_args': FFMPEG_CONFIG.get('global_args',
['-hide_banner','-loglevel','panic']),
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
[]),
'input_args': FFMPEG_CONFIG.get('input_args',
['-avoid_negative_ts', 'make_zero',
'-fflags', 'nobuffer',
'-flags', 'low_delay',
'-strict', 'experimental',
'-fflags', '+genpts+discardcorrupt',
'-vsync', 'drop',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
'output_args': FFMPEG_CONFIG.get('output_args',
['-vf', 'mpdecimate',
'-f', 'rawvideo',
'-pix_fmt', 'rgb24'])
}
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
@@ -51,18 +25,9 @@ def main():
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
if rc != 0:
if rc == 3:
print ("MQTT Server unavailable")
elif rc == 4:
print ("MQTT Bad username or password")
elif rc == 5:
print ("MQTT Not authorized")
else:
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
client = mqtt.Client()
client.on_connect = on_connect
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
if not MQTT_USER is None:
@@ -71,12 +36,12 @@ def main():
client.loop_start()
# Queue for prepped frames, max size set to (number of cameras * 5)
max_queue_size = len(CONFIG['cameras'].items())*5
max_queue_size = len(CONFIG['cameras'].items())*10
prepped_frame_queue = queue.Queue(max_queue_size)
cameras = {}
for name, config in CONFIG['cameras'].items():
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX, DEBUG)
prepped_queue_processor = PreppedQueueProcessor(
cameras,
@@ -91,32 +56,21 @@ def main():
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@app.route('/')
def ishealthy():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in cameras:
best_frame = cameras[camera_name].get_best(label)
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return f'Camera named {camera_name} not found', 404
@app.route('/<camera_name>/best_person.jpg')
def best_person(camera_name):
best_person_frame = cameras[camera_name].get_best_person()
if best_person_frame is None:
best_person_frame = np.zeros((720,1280,3), np.uint8)
ret, jpg = cv2.imencode('.jpg', best_person_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
if camera_name in cameras:
# return a multipart response
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return f'Camera named {camera_name} not found', 404
# return a multipart response
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream(camera_name):
while True:
@@ -133,4 +87,4 @@ def main():
camera.join()
if __name__ == '__main__':
main()
main()

View File

@@ -1,74 +0,0 @@
# Configuration Examples
### Default (most RTSP cameras)
This is the default ffmpeg command and should work with most RTSP cameras that send h264 video
```yaml
ffmpeg:
global_args:
- -hide_banner
- -loglevel
- panic
hwaccel_args: []
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -rtsp_transport
- tcp
- -stimeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
output_args:
- -vf
- mpdecimate
- -f
- rawvideo
- -pix_fmt
- rgb24
```
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -use_wallclock_as_timestamps
- '1'
```
### Hardware Acceleration
Intel Quicksync
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```

View File

@@ -1,46 +1,33 @@
import json
import cv2
import threading
from collections import Counter, defaultdict
class MqttObjectPublisher(threading.Thread):
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
def __init__(self, client, topic_prefix, objects_parsed, detected_objects):
threading.Thread.__init__(self)
self.client = client
self.topic_prefix = topic_prefix
self.objects_parsed = objects_parsed
self._detected_objects = detected_objects
self.best_frames = best_frames
def run(self):
current_object_status = defaultdict(lambda: 'OFF')
last_sent_payload = ""
while True:
# initialize the payload
payload = {}
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# make a copy of detected objects
# add all the person scores in detected objects
detected_objects = self._detected_objects.copy()
person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])
# if the person score is more than 100, set person to ON
payload['person'] = 'ON' if int(person_score*100) > 100 else 'OFF'
# total up all scores by object type
obj_counter = Counter()
for obj in detected_objects:
obj_counter[obj['name']] += obj['score']
# report on detected objects
for obj_name, total_score in obj_counter.items():
new_status = 'ON' if int(total_score*100) > 100 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
# send the snapshot over mqtt as well
if not self.best_frames.best_frames[obj_name] is None:
ret, jpg = cv2.imencode('.jpg', self.best_frames.best_frames[obj_name])
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
# send message for objects if different
new_payload = json.dumps(payload, sort_keys=True)
if new_payload != last_sent_payload:
last_sent_payload = new_payload
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)

View File

@@ -38,18 +38,19 @@ class PreppedQueueProcessor(threading.Thread):
frame = self.prepped_frame_queue.get()
# Actual detection.
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
# print(self.engine.get_inference_time())
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
# parse and pass detected objects back to the camera
parsed_objects = []
for obj in objects:
box = obj.bounding_box.flatten().tolist()
parsed_objects.append({
'region_id': frame['region_id'],
'frame_time': frame['frame_time'],
'name': str(self.labels[obj.label_id]),
'score': float(obj.score),
'box': obj.bounding_box.flatten().tolist()
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
})
self.cameras[frame['camera_name']].add_objects(parsed_objects)
@@ -58,7 +59,7 @@ class PreppedQueueProcessor(threading.Thread):
class FramePrepper(threading.Thread):
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
frame_lock,
region_size, region_x_offset, region_y_offset, region_id,
region_size, region_x_offset, region_y_offset,
prepped_frame_queue):
threading.Thread.__init__(self)
@@ -70,7 +71,6 @@ class FramePrepper(threading.Thread):
self.region_size = region_size
self.region_x_offset = region_x_offset
self.region_y_offset = region_y_offset
self.region_id = region_id
self.prepped_frame_queue = prepped_frame_queue
def run(self):
@@ -88,11 +88,13 @@ class FramePrepper(threading.Thread):
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
frame_time = self.frame_time.value
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
if cropped_frame_rgb.shape != (300, 300, 3):
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame, axis=0)
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
# add the frame to the queue
if not self.prepped_frame_queue.full():
@@ -101,7 +103,6 @@ class FramePrepper(threading.Thread):
'frame_time': frame_time,
'frame': frame_expanded.flatten().copy(),
'region_size': self.region_size,
'region_id': self.region_id,
'region_x_offset': self.region_x_offset,
'region_y_offset': self.region_y_offset
})

View File

@@ -2,8 +2,7 @@ import time
import datetime
import threading
import cv2
import numpy as np
from . util import draw_box_with_label
from object_detection.utils import visualization_utils as vis_util
class ObjectCleaner(threading.Thread):
def __init__(self, objects_parsed, detected_objects):
@@ -36,15 +35,16 @@ class ObjectCleaner(threading.Thread):
self._objects_parsed.notify_all()
# Maintains the frame and object with the highest score
class BestFrames(threading.Thread):
# Maintains the frame and person with the highest score from the most recent
# motion event
class BestPersonFrame(threading.Thread):
def __init__(self, objects_parsed, recent_frames, detected_objects):
threading.Thread.__init__(self)
self.objects_parsed = objects_parsed
self.recent_frames = recent_frames
self.detected_objects = detected_objects
self.best_objects = {}
self.best_frames = {}
self.best_person = None
self.best_frame = None
def run(self):
while True:
@@ -55,30 +55,42 @@ class BestFrames(threading.Thread):
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
for obj in detected_objects:
if obj['name'] in self.best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
self.best_objects[obj['name']] = obj
else:
self.best_objects[obj['name']] = obj
# get the highest scoring person
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
# if there isnt a person, continue
if new_best_person is None:
continue
# if there is no current best_person
if self.best_person is None:
self.best_person = new_best_person
# if there is already a best_person
else:
now = datetime.datetime.now().timestamp()
# if the new best person is a higher score than the current best person
# or the current person is more than 1 minute old, use the new best person
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
self.best_person = new_best_person
# make a copy of the recent frames
recent_frames = self.recent_frames.copy()
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
best_frame = recent_frames[self.best_person['frame_time']]
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
# draw the bounding box on the frame
vis_util.draw_bounding_box_on_image_array(best_frame,
self.best_person['ymin'],
self.best_person['xmin'],
self.best_person['ymax'],
self.best_person['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
use_normalized_coordinates=False)
for name, obj in self.best_objects.items():
if obj['frame_time'] in recent_frames:
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
label = "{}: {}% {}".format(name,int(obj['score']*100),int(obj['area']))
draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
obj['xmax'], obj['ymax'], label)
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
self.best_frames[name] = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
# convert back to BGR
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)

View File

@@ -1,26 +1,5 @@
import numpy as np
import cv2
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label):
color = (255,0,0)
cv2.rectangle(frame, (x_min, y_min),
(x_max, y_max),
color, 2)
font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box
size = cv2.getTextSize(label, font, fontScale=font_scale, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
# make the coords of the box with a small padding of two pixels
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(frame, label, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)

View File

@@ -5,14 +5,64 @@ import cv2
import threading
import ctypes
import multiprocessing as mp
import subprocess as sp
import numpy as np
from collections import defaultdict
from . util import tonumpyarray, draw_box_with_label
from object_detection.utils import visualization_utils as vis_util
from . util import tonumpyarray
from . object_detection import FramePrepper
from . objects import ObjectCleaner, BestFrames
from . objects import ObjectCleaner, BestPersonFrame
from . mqtt import MqttObjectPublisher
# fetch the frames as fast a possible and store current frame in a shared memory array
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url, take_frame=1):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the video capture
video = cv2.VideoCapture()
video.open(rtsp_url)
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
bad_frame_counter = 0
frame_num = 0
while True:
# check if the video stream is still open, and reopen if needed
if not video.isOpened():
success = video.open(rtsp_url)
if not success:
time.sleep(1)
continue
# grab the frame, but dont decode it yet
ret = video.grab()
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
frame_num += 1
if (frame_num % take_frame) != 0:
continue
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# Lock access and update frame
with frame_lock:
arr[:] = frame
shared_frame_time.value = frame_time.timestamp()
# Notify with the condition that a new frame is ready
with frame_ready:
frame_ready.notify_all()
bad_frame_counter = 0
else:
print("Unable to decode frame")
bad_frame_counter += 1
else:
print("Unable to grab a frame")
bad_frame_counter += 1
if bad_frame_counter > 100:
video.release()
video.release()
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
class FrameTracker(threading.Thread):
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
@@ -47,97 +97,93 @@ class FrameTracker(threading.Thread):
if (now - k) > 2:
del self.recent_frames[k]
def get_frame_shape(source):
def get_frame_shape(rtsp_url):
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(source)
video = cv2.VideoCapture(rtsp_url)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
def get_rtsp_url(rtsp_config):
if (rtsp_config['password'].startswith('$')):
rtsp_config['password'] = os.getenv(rtsp_config['password'][1:])
return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'],
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
rtsp_config['path'])
class CameraWatchdog(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def compute_sizes(frame_shape, known_sizes, mask):
# create a 3 dimensional numpy array to store estimated sizes
estimated_sizes = np.zeros((frame_shape[0], frame_shape[1], 2), np.uint32)
def run(self):
sorted_positions = sorted(known_sizes, key=lambda s: s['y'])
while True:
# wait a bit before checking
time.sleep(10)
last_position = {'y': 0, 'min': 0, 'max': 0}
next_position = sorted_positions.pop(0)
# if the next position has the same y coordinate, skip
while next_position['y'] == last_position['y']:
next_position = sorted_positions.pop(0)
y_change = next_position['y']-last_position['y']
min_size_change = next_position['min']-last_position['min']
max_size_change = next_position['max']-last_position['max']
min_step_size = min_size_change/y_change
max_step_size = max_size_change/y_change
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
print("last frame is more than 5 minutes old, restarting camera capture...")
self.camera.start_or_restart_capture()
time.sleep(5)
min_current_size = 0
max_current_size = 0
# Thread to read the stdout of the ffmpeg process and update the current frame
class CameraCapture(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
for y_position in range(frame_shape[0]):
# fill the row with the estimated size
estimated_sizes[y_position,:] = [min_current_size, max_current_size]
def run(self):
frame_num = 0
while True:
if self.camera.ffmpeg_process.poll() != None:
print("ffmpeg process is not running. exiting capture thread...")
break
# if you have reached the next size
if y_position == next_position['y']:
last_position = next_position
# if there are still positions left
if len(sorted_positions) > 0:
next_position = sorted_positions.pop(0)
# if the next position has the same y coordinate, skip
while next_position['y'] == last_position['y']:
next_position = sorted_positions.pop(0)
y_change = next_position['y']-last_position['y']
min_size_change = next_position['min']-last_position['min']
max_size_change = next_position['max']-last_position['max']
min_step_size = min_size_change/y_change
max_step_size = max_size_change/y_change
else:
min_step_size = 0
max_step_size = 0
min_current_size += min_step_size
max_current_size += max_step_size
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
# apply mask by filling 0s for all locations a person could not be standing
if mask is not None:
pass
if len(raw_image) == 0:
print("ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
break
frame_num += 1
if (frame_num % self.camera.take_frame) != 0:
continue
with self.camera.frame_lock:
self.camera.frame_time.value = datetime.datetime.now().timestamp()
self.camera.current_frame[:] = (
np
.frombuffer(raw_image, np.uint8)
.reshape(self.camera.frame_shape)
)
# Notify with the condition that a new frame is ready
with self.camera.frame_ready:
self.camera.frame_ready.notify_all()
return estimated_sizes
class Camera:
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix, debug=False):
self.name = name
self.config = config
self.detected_objects = []
self.recent_frames = {}
self.ffmpeg = config.get('ffmpeg', {})
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
camera_objects_config = config.get('objects', {})
self.rtsp_url = get_rtsp_url(self.config['rtsp'])
self.take_frame = self.config.get('take_frame', 1)
self.regions = self.config['regions']
self.frame_shape = get_frame_shape(self.ffmpeg_input)
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
self.frame_shape = get_frame_shape(self.rtsp_url)
self.mqtt_client = mqtt_client
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
self.debug = debug
# create a numpy array for the current frame in initialize to zeros
self.current_frame = np.zeros(self.frame_shape, np.uint8)
# compute the flattened array length from the shape of the frame
flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
# create shared array for storing the full frame image data
self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length)
# create shared value for storing the frame_time
self.frame_time = mp.Value('d', 0.0)
self.shared_frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame
self.frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
@@ -145,197 +191,139 @@ class Camera:
# Condition for notifying that objects were parsed
self.objects_parsed = mp.Condition()
self.ffmpeg_process = None
self.capture_thread = None
# shape current frame so it can be treated as a numpy image
self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
# create the process to capture frames from the RTSP stream and store in a shared array
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape,
self.rtsp_url, self.take_frame))
self.capture_process.daemon = True
# for each region, create a separate thread to resize the region and prep for detection
self.detection_prep_threads = []
for index, region in enumerate(self.config['regions']):
region_objects = region.get('objects', {})
# build objects config for region
objects_with_config = set().union(global_objects_config.keys(), camera_objects_config.keys(), region_objects.keys())
merged_objects_config = defaultdict(lambda: {})
for obj in objects_with_config:
merged_objects_config[obj] = {**global_objects_config.get(obj,{}), **camera_objects_config.get(obj, {}), **region_objects.get(obj, {})}
region['objects'] = merged_objects_config
for region in self.config['regions']:
self.detection_prep_threads.append(FramePrepper(
self.name,
self.current_frame,
self.frame_time,
self.shared_frame_np,
self.shared_frame_time,
self.frame_ready,
self.frame_lock,
region['size'], region['x_offset'], region['y_offset'], index,
region['size'], region['x_offset'], region['y_offset'],
prepped_frame_queue
))
# start a thread to store recent motion frames for processing
self.frame_tracker = FrameTracker(self.current_frame, self.frame_time,
self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time,
self.frame_ready, self.frame_lock, self.recent_frames)
self.frame_tracker.start()
# start a thread to store the highest scoring recent frames for monitored object types
self.best_frames = BestFrames(self.objects_parsed, self.recent_frames, self.detected_objects)
self.best_frames.start()
# start a thread to store the highest scoring recent person frame
self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
self.best_person_frame.start()
# start a thread to expire objects from the detected objects list
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
self.object_cleaner.start()
# start a thread to publish object scores
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
# start a thread to publish object scores (currently only person)
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
mqtt_publisher.start()
# create a watchdog thread for capture process
self.watchdog = CameraWatchdog(self)
# load in the mask for object detection
# load in the mask for person detection
if 'mask' in self.config:
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
else:
self.mask = None
if self.mask is None:
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
self.mask[:] = 255
def start_or_restart_capture(self):
if not self.ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
self.ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_process.wait(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
self.ffmpeg_process.kill()
self.ffmpeg_process.wait()
print("Waiting for the capture thread to exit...")
self.capture_thread.join()
self.ffmpeg_process = None
self.capture_thread = None
# create the process to capture frames from the input stream and store in a shared array
print("Creating a new ffmpeg process...")
self.start_ffmpeg()
print("Creating a new capture thread...")
self.capture_thread = CameraCapture(self)
print("Starting a new capture thread...")
self.capture_thread.start()
def start_ffmpeg(self):
ffmpeg_cmd = (['ffmpeg'] +
self.ffmpeg_global_args +
self.ffmpeg_hwaccel_args +
self.ffmpeg_input_args +
['-i', self.ffmpeg_input] +
self.ffmpeg_output_args +
['pipe:'])
print(" ".join(ffmpeg_cmd))
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
# pre-compute estimated person size for every pixel in the image
if 'known_sizes' in self.config:
self.calculated_person_sizes = compute_sizes((self.frame_shape[0], self.frame_shape[1]),
self.config['known_sizes'], None)
else:
self.calculated_person_sizes = None
def start(self):
self.start_or_restart_capture()
self.capture_process.start()
# start the object detection prep threads
for detection_prep_thread in self.detection_prep_threads:
detection_prep_thread.start()
self.watchdog.start()
def join(self):
self.capture_thread.join()
self.capture_process.join()
def get_capture_pid(self):
return self.ffmpeg_process.pid
return self.capture_process.pid
def add_objects(self, objects):
if len(objects) == 0:
return
for obj in objects:
# find the matching region
region = self.regions[obj['region_id']]
# Compute some extra properties
obj.update({
'xmin': int((obj['box'][0] * region['size']) + region['x_offset']),
'ymin': int((obj['box'][1] * region['size']) + region['y_offset']),
'xmax': int((obj['box'][2] * region['size']) + region['x_offset']),
'ymax': int((obj['box'][3] * region['size']) + region['y_offset'])
})
if self.debug:
# print out the detected objects, scores and locations
print(self.name, obj['name'], obj['score'], obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
# Compute the area
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
location = (int(obj['ymax']), int((obj['xmax']-obj['xmin'])/2))
object_name = obj['name']
# if the person is in a masked location, continue
if self.mask[location[0]][location[1]] == [0]:
continue
if object_name in region['objects']:
obj_settings = region['objects'][object_name]
if self.calculated_person_sizes is not None and obj['name'] == 'person':
person_size_range = self.calculated_person_sizes[location[0]][location[1]]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
continue
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', region['size']**2) < obj['area']:
# if the person isnt on the ground, continue
if(person_size_range[0] == 0 and person_size_range[1] == 0):
continue
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
continue
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['ymax']), len(self.mask)-1)
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
person_size = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
# if the object is in a masked location, don't add it to detected objects
if self.mask[y_location][x_location] == [0]:
# if the person is not within 20% of the estimated size for that location, continue
if person_size < person_size_range[0] or person_size > person_size_range[1]:
continue
self.detected_objects.append(obj)
with self.objects_parsed:
self.objects_parsed.notify_all()
def get_best(self, label):
return self.best_frames.best_frames.get(label)
def get_best_person(self):
return self.best_person_frame.best_frame
def get_current_frame_with_objects(self):
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# lock and make a copy of the current frame
with self.frame_lock:
frame = self.current_frame.copy()
frame_time = self.frame_time.value
frame = self.shared_frame_np.copy()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in detected_objects:
label = "{}: {}% {}".format(obj['name'],int(obj['score']*100),int(obj['area']))
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], label)
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
for region in self.regions:
color = (255,255,255)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# convert to BGR
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
return frame

View File

@@ -1,50 +0,0 @@
#!/bin/bash
set -e
CPU_ARCH=$(uname -m)
OS_VERSION=$(uname -v)
echo "CPU_ARCH ${CPU_ARCH}"
echo "OS_VERSION ${OS_VERSION}"
if [[ "${CPU_ARCH}" == "x86_64" ]]; then
echo "Recognized as Linux on x86_64."
LIBEDGETPU_SUFFIX=x86_64
HOST_GNU_TYPE=x86_64-linux-gnu
elif [[ "${CPU_ARCH}" == "armv7l" ]]; then
echo "Recognized as Linux on ARM32 platform."
LIBEDGETPU_SUFFIX=arm32
HOST_GNU_TYPE=arm-linux-gnueabihf
elif [[ "${CPU_ARCH}" == "aarch64" ]]; then
echo "Recognized as generic ARM64 platform."
LIBEDGETPU_SUFFIX=arm64
HOST_GNU_TYPE=aarch64-linux-gnu
fi
if [[ -z "${HOST_GNU_TYPE}" ]]; then
echo "Your platform is not supported."
exit 1
fi
echo "Using maximum operating frequency."
LIBEDGETPU_SRC="libedgetpu/libedgetpu_${LIBEDGETPU_SUFFIX}.so"
LIBEDGETPU_DST="/usr/lib/${HOST_GNU_TYPE}/libedgetpu.so.1.0"
# Runtime library.
echo "Installing Edge TPU runtime library [${LIBEDGETPU_DST}]..."
if [[ -f "${LIBEDGETPU_DST}" ]]; then
echo "File already exists. Replacing it..."
rm -f "${LIBEDGETPU_DST}"
fi
cp -p "${LIBEDGETPU_SRC}" "${LIBEDGETPU_DST}"
ldconfig
echo "Done."
# Python API.
WHEEL=$(ls edgetpu-*-py3-none-any.whl 2>/dev/null)
if [[ $? == 0 ]]; then
echo "Installing Edge TPU Python API..."
python3 -m pip install --no-deps "${WHEEL}"
echo "Done."
fi

View File

@@ -1,5 +0,0 @@
#!/bin/bash
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys D986B59D
echo "deb http://deb.odroid.in/5422-s bionic main" > /etc/apt/sources.list.d/odroid.list