forked from Github/frigate
Compare commits
4 Commits
odroid
...
person_fil
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a7d68a4998 | ||
|
|
03e46efcdd | ||
|
|
27e39edd65 | ||
|
|
4f829e818e |
122
Dockerfile
122
Dockerfile
@@ -1,59 +1,70 @@
|
||||
FROM ubuntu:18.04
|
||||
FROM ubuntu:16.04
|
||||
|
||||
# Install packages for apt repo
|
||||
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
|
||||
apt-transport-https \
|
||||
ca-certificates \
|
||||
curl \
|
||||
wget \
|
||||
gnupg-agent \
|
||||
dirmngr \
|
||||
software-properties-common
|
||||
|
||||
RUN apt-key adv --keyserver keyserver.ubuntu.com --recv-keys D986B59D
|
||||
|
||||
RUN echo "deb http://deb.odroid.in/5422-s bionic main" > /etc/apt/sources.list.d/odroid.list
|
||||
|
||||
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
|
||||
python3 \
|
||||
# OpenCV dependencies
|
||||
ffmpeg \
|
||||
# Install system packages
|
||||
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y python3 \
|
||||
python3-dev \
|
||||
python-pil \
|
||||
python-lxml \
|
||||
python-tk \
|
||||
build-essential \
|
||||
cmake \
|
||||
unzip \
|
||||
pkg-config \
|
||||
cmake \
|
||||
git \
|
||||
libgtk2.0-dev \
|
||||
pkg-config \
|
||||
libavcodec-dev \
|
||||
libavformat-dev \
|
||||
libswscale-dev \
|
||||
libtbb2 \
|
||||
libtbb-dev \
|
||||
libjpeg-dev \
|
||||
libpng-dev \
|
||||
libtiff-dev \
|
||||
libavcodec-dev \
|
||||
libavformat-dev \
|
||||
libswscale-dev \
|
||||
libv4l-dev \
|
||||
libxvidcore-dev \
|
||||
libx264-dev \
|
||||
libgtk-3-dev \
|
||||
libatlas-base-dev \
|
||||
gfortran \
|
||||
python3-dev \
|
||||
# Coral USB Python API Dependencies
|
||||
libusb-1.0-0 \
|
||||
python3-pip \
|
||||
python3-pil \
|
||||
libjasper-dev \
|
||||
libdc1394-22-dev \
|
||||
x11-apps \
|
||||
wget \
|
||||
vim \
|
||||
ffmpeg \
|
||||
unzip \
|
||||
libusb-1.0-0-dev \
|
||||
python3-setuptools \
|
||||
python3-numpy \
|
||||
libc++1 \
|
||||
libc++abi1 \
|
||||
libunwind8 \
|
||||
libgcc1 \
|
||||
zlib1g-dev \
|
||||
libgoogle-glog-dev \
|
||||
swig \
|
||||
libunwind-dev \
|
||||
libc++-dev \
|
||||
libc++abi-dev \
|
||||
build-essential \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install core packages
|
||||
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
|
||||
RUN pip install -U pip \
|
||||
numpy \
|
||||
pillow \
|
||||
matplotlib \
|
||||
notebook \
|
||||
Flask \
|
||||
imutils \
|
||||
paho-mqtt \
|
||||
PyYAML
|
||||
|
||||
# Install tensorflow models object detection
|
||||
RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models
|
||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/google/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.tar.gz
|
||||
|
||||
# Download & build protobuf-python
|
||||
RUN cd /usr/local/src/ \
|
||||
&& tar xf protobuf-python-3.5.1.tar.gz \
|
||||
&& rm protobuf-python-3.5.1.tar.gz \
|
||||
&& cd /usr/local/src/protobuf-3.5.1/ \
|
||||
&& ./configure \
|
||||
&& make \
|
||||
&& make install \
|
||||
&& ldconfig \
|
||||
&& rm -rf /usr/local/src/protobuf-3.5.1/
|
||||
|
||||
# Download & build OpenCV
|
||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
||||
RUN cd /usr/local/src/ \
|
||||
@@ -65,31 +76,30 @@ RUN cd /usr/local/src/ \
|
||||
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
|
||||
&& make -j4 \
|
||||
&& make install \
|
||||
&& ldconfig \
|
||||
&& rm -rf /usr/local/src/opencv-4.0.1
|
||||
|
||||
# Download and install EdgeTPU libraries for Coral
|
||||
RUN wget https://dl.google.com/coral/edgetpu_api/edgetpu_api_latest.tar.gz -O edgetpu_api.tar.gz --trust-server-names
|
||||
# Download and install EdgeTPU libraries
|
||||
RUN wget -q -O edgetpu_api.tar.gz --no-check-certificate http://storage.googleapis.com/cloud-iot-edge-pretrained-models/edgetpu_api.tar.gz
|
||||
|
||||
RUN tar xzf edgetpu_api.tar.gz \
|
||||
&& cd edgetpu_api \
|
||||
&& cp -p libedgetpu/libedgetpu_arm32.so /usr/lib/arm-linux-gnueabihf/libedgetpu.so.1.0 \
|
||||
&& ldconfig \
|
||||
&& python3 -m pip install --no-deps "$(ls edgetpu-*-py3-none-any.whl 2>/dev/null)"
|
||||
|
||||
RUN cd /usr/local/lib/python3.6/dist-packages/edgetpu/swig/ \
|
||||
&& ln -s _edgetpu_cpp_wrapper.cpython-35m-arm-linux-gnueabihf.so _edgetpu_cpp_wrapper.cpython-36m-arm-linux-gnueabihf.so
|
||||
|
||||
# symlink the model and labels
|
||||
RUN wget https://dl.google.com/coral/canned_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
|
||||
RUN wget https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
|
||||
RUN ln -s mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
|
||||
RUN ln -s /coco_labels.txt /label_map.pbtext
|
||||
&& cd python-tflite-source \
|
||||
&& cp -p libedgetpu/libedgetpu_x86_64.so /lib/x86_64-linux-gnu/libedgetpu.so \
|
||||
&& cp edgetpu/swig/compiled_so/_edgetpu_cpp_wrapper_x86_64.so edgetpu/swig/_edgetpu_cpp_wrapper.so \
|
||||
&& cp edgetpu/swig/compiled_so/edgetpu_cpp_wrapper.py edgetpu/swig/ \
|
||||
&& python3 setup.py develop --user
|
||||
|
||||
# Minimize image size
|
||||
RUN (apt-get autoremove -y; \
|
||||
apt-get autoclean -y)
|
||||
|
||||
# symlink the model and labels
|
||||
RUN ln -s /python-tflite-source/edgetpu/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
|
||||
RUN ln -s /python-tflite-source/edgetpu/test_data/coco_labels.txt /label_map.pbtext
|
||||
|
||||
# Set TF object detection available
|
||||
ENV PYTHONPATH "$PYTHONPATH:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research/slim"
|
||||
RUN cd /usr/local/lib/python3.5/dist-packages/tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=.
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
COPY detect_objects.py .
|
||||
|
||||
@@ -62,12 +62,12 @@ camera:
|
||||
platform: generic
|
||||
still_image_url: http://<ip>:5000/<camera_name>/best_person.jpg
|
||||
|
||||
binary_sensor:
|
||||
sensor:
|
||||
- name: Camera Person
|
||||
platform: mqtt
|
||||
state_topic: "frigate/<camera_name>/objects"
|
||||
value_template: '{{ value_json.person }}'
|
||||
device_class: motion
|
||||
device_class: moving
|
||||
availability_topic: "frigate/available"
|
||||
```
|
||||
|
||||
|
||||
@@ -3,8 +3,6 @@ web_port: 5000
|
||||
mqtt:
|
||||
host: mqtt.server.com
|
||||
topic_prefix: frigate
|
||||
# user: username # Optional -- Uncomment for use
|
||||
# password: password # Optional -- Uncomment for use
|
||||
|
||||
cameras:
|
||||
back:
|
||||
@@ -15,20 +13,30 @@ cameras:
|
||||
# values that begin with a "$" will be replaced with environment variable
|
||||
password: $RTSP_PASSWORD
|
||||
path: /cam/realmonitor?channel=1&subtype=2
|
||||
mask: back-mask.bmp
|
||||
regions:
|
||||
- size: 350
|
||||
x_offset: 0
|
||||
y_offset: 300
|
||||
min_person_area: 5000
|
||||
threshold: 0.5
|
||||
- size: 400
|
||||
x_offset: 350
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
threshold: 0.5
|
||||
- size: 400
|
||||
x_offset: 750
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
threshold: 0.5
|
||||
mask: back-mask.bmp
|
||||
known_sizes:
|
||||
- y: 300
|
||||
min: 700
|
||||
max: 1800
|
||||
- y: 400
|
||||
min: 3000
|
||||
max: 7200
|
||||
- y: 500
|
||||
min: 8500
|
||||
max: 20400
|
||||
- y: 600
|
||||
min: 10000
|
||||
max: 50000
|
||||
- y: 700
|
||||
min: 10000
|
||||
max: 125000
|
||||
@@ -36,12 +36,12 @@ def main():
|
||||
client.loop_start()
|
||||
|
||||
# Queue for prepped frames, max size set to (number of cameras * 5)
|
||||
max_queue_size = len(CONFIG['cameras'].items())*5
|
||||
max_queue_size = len(CONFIG['cameras'].items())*10
|
||||
prepped_frame_queue = queue.Queue(max_queue_size)
|
||||
|
||||
cameras = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX, DEBUG)
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
cameras,
|
||||
|
||||
@@ -38,7 +38,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=frame['region_threshold'], top_k=3)
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
|
||||
# parse and pass detected objects back to the camera
|
||||
parsed_objects = []
|
||||
for obj in objects:
|
||||
@@ -59,7 +59,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
class FramePrepper(threading.Thread):
|
||||
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
||||
frame_lock,
|
||||
region_size, region_x_offset, region_y_offset, region_threshold,
|
||||
region_size, region_x_offset, region_y_offset,
|
||||
prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
@@ -71,7 +71,6 @@ class FramePrepper(threading.Thread):
|
||||
self.region_size = region_size
|
||||
self.region_x_offset = region_x_offset
|
||||
self.region_y_offset = region_y_offset
|
||||
self.region_threshold = region_threshold
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
@@ -104,7 +103,6 @@ class FramePrepper(threading.Thread):
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
'region_threshold': self.region_threshold,
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
|
||||
@@ -2,6 +2,7 @@ import time
|
||||
import datetime
|
||||
import threading
|
||||
import cv2
|
||||
from object_detection.utils import visualization_utils as vis_util
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, objects_parsed, detected_objects):
|
||||
@@ -81,10 +82,15 @@ class BestPersonFrame(threading.Thread):
|
||||
best_frame = recent_frames[self.best_person['frame_time']]
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding box on the frame
|
||||
color = (255,0,0)
|
||||
cv2.rectangle(best_frame, (self.best_person['xmin'], self.best_person['ymin']),
|
||||
(self.best_person['xmax'], self.best_person['ymax']),
|
||||
color, 2)
|
||||
vis_util.draw_bounding_box_on_image_array(best_frame,
|
||||
self.best_person['ymin'],
|
||||
self.best_person['xmin'],
|
||||
self.best_person['ymax'],
|
||||
self.best_person['xmax'],
|
||||
color='red',
|
||||
thickness=2,
|
||||
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
|
||||
use_normalized_coordinates=False)
|
||||
|
||||
# convert back to BGR
|
||||
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
168
frigate/video.py
168
frigate/video.py
@@ -6,24 +6,25 @@ import threading
|
||||
import ctypes
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
from object_detection.utils import visualization_utils as vis_util
|
||||
from . util import tonumpyarray
|
||||
from . object_detection import FramePrepper
|
||||
from . objects import ObjectCleaner, BestPersonFrame
|
||||
from . mqtt import MqttObjectPublisher
|
||||
|
||||
# fetch the frames as fast a possible and store current frame in a shared memory array
|
||||
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url):
|
||||
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url, take_frame=1):
|
||||
# convert shared memory array into numpy and shape into image array
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
# start the video capture
|
||||
video = cv2.VideoCapture()
|
||||
video.open(rtsp_url)
|
||||
print("Opening the RTSP Url...")
|
||||
# keep the buffer small so we minimize old data
|
||||
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
||||
|
||||
bad_frame_counter = 0
|
||||
frame_num = 0
|
||||
while True:
|
||||
# check if the video stream is still open, and reopen if needed
|
||||
if not video.isOpened():
|
||||
@@ -36,6 +37,9 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
||||
# snapshot the time the frame was grabbed
|
||||
frame_time = datetime.datetime.now()
|
||||
if ret:
|
||||
frame_num += 1
|
||||
if (frame_num % take_frame) != 0:
|
||||
continue
|
||||
# go ahead and decode the current frame
|
||||
ret, frame = video.retrieve()
|
||||
if ret:
|
||||
@@ -109,33 +113,70 @@ def get_rtsp_url(rtsp_config):
|
||||
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
|
||||
rtsp_config['path'])
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
def compute_sizes(frame_shape, known_sizes, mask):
|
||||
# create a 3 dimensional numpy array to store estimated sizes
|
||||
estimated_sizes = np.zeros((frame_shape[0], frame_shape[1], 2), np.uint32)
|
||||
|
||||
def run(self):
|
||||
sorted_positions = sorted(known_sizes, key=lambda s: s['y'])
|
||||
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(60)
|
||||
last_position = {'y': 0, 'min': 0, 'max': 0}
|
||||
next_position = sorted_positions.pop(0)
|
||||
# if the next position has the same y coordinate, skip
|
||||
while next_position['y'] == last_position['y']:
|
||||
next_position = sorted_positions.pop(0)
|
||||
y_change = next_position['y']-last_position['y']
|
||||
min_size_change = next_position['min']-last_position['min']
|
||||
max_size_change = next_position['max']-last_position['max']
|
||||
min_step_size = min_size_change/y_change
|
||||
max_step_size = max_size_change/y_change
|
||||
|
||||
if (datetime.datetime.now().timestamp() - self.camera.shared_frame_time.value) > 2:
|
||||
print("last frame is more than 2 seconds old, restarting camera capture...")
|
||||
self.camera.start_or_restart_capture()
|
||||
time.sleep(5)
|
||||
min_current_size = 0
|
||||
max_current_size = 0
|
||||
|
||||
for y_position in range(frame_shape[0]):
|
||||
# fill the row with the estimated size
|
||||
estimated_sizes[y_position,:] = [min_current_size, max_current_size]
|
||||
|
||||
# if you have reached the next size
|
||||
if y_position == next_position['y']:
|
||||
last_position = next_position
|
||||
# if there are still positions left
|
||||
if len(sorted_positions) > 0:
|
||||
next_position = sorted_positions.pop(0)
|
||||
# if the next position has the same y coordinate, skip
|
||||
while next_position['y'] == last_position['y']:
|
||||
next_position = sorted_positions.pop(0)
|
||||
y_change = next_position['y']-last_position['y']
|
||||
min_size_change = next_position['min']-last_position['min']
|
||||
max_size_change = next_position['max']-last_position['max']
|
||||
min_step_size = min_size_change/y_change
|
||||
max_step_size = max_size_change/y_change
|
||||
else:
|
||||
min_step_size = 0
|
||||
max_step_size = 0
|
||||
|
||||
min_current_size += min_step_size
|
||||
max_current_size += max_step_size
|
||||
|
||||
# apply mask by filling 0s for all locations a person could not be standing
|
||||
if mask is not None:
|
||||
pass
|
||||
|
||||
return estimated_sizes
|
||||
|
||||
class Camera:
|
||||
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix, debug=False):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.detected_objects = []
|
||||
self.recent_frames = {}
|
||||
self.rtsp_url = get_rtsp_url(self.config['rtsp'])
|
||||
self.take_frame = self.config.get('take_frame', 1)
|
||||
self.regions = self.config['regions']
|
||||
self.frame_shape = get_frame_shape(self.rtsp_url)
|
||||
self.mqtt_client = mqtt_client
|
||||
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
||||
self.debug = debug
|
||||
|
||||
# compute the flattened array length from the shape of the frame
|
||||
flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
|
||||
@@ -153,24 +194,22 @@ class Camera:
|
||||
# shape current frame so it can be treated as a numpy image
|
||||
self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
|
||||
|
||||
self.capture_process = None
|
||||
# create the process to capture frames from the RTSP stream and store in a shared array
|
||||
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
|
||||
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape,
|
||||
self.rtsp_url, self.take_frame))
|
||||
self.capture_process.daemon = True
|
||||
|
||||
# for each region, create a separate thread to resize the region and prep for detection
|
||||
self.detection_prep_threads = []
|
||||
for region in self.config['regions']:
|
||||
# set a default threshold of 0.5 if not defined
|
||||
if not 'threshold' in region:
|
||||
region['threshold'] = 0.5
|
||||
if not isinstance(region['threshold'], float):
|
||||
print('Threshold is not a float. Setting to 0.5 default.')
|
||||
region['threshold'] = 0.5
|
||||
self.detection_prep_threads.append(FramePrepper(
|
||||
self.name,
|
||||
self.shared_frame_np,
|
||||
self.shared_frame_time,
|
||||
self.frame_ready,
|
||||
self.frame_lock,
|
||||
region['size'], region['x_offset'], region['y_offset'], region['threshold'],
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
prepped_frame_queue
|
||||
))
|
||||
|
||||
@@ -191,9 +230,6 @@ class Camera:
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# create a watchdog thread for capture process
|
||||
self.watchdog = CameraWatchdog(self)
|
||||
|
||||
# load in the mask for person detection
|
||||
if 'mask' in self.config:
|
||||
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
@@ -201,28 +237,18 @@ class Camera:
|
||||
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
self.mask[:] = 255
|
||||
|
||||
|
||||
def start_or_restart_capture(self):
|
||||
if not self.capture_process is None:
|
||||
print("Terminating the existing capture process...")
|
||||
self.capture_process.terminate()
|
||||
del self.capture_process
|
||||
self.capture_process = None
|
||||
|
||||
# create the process to capture frames from the RTSP stream and store in a shared array
|
||||
print("Creating a new capture process...")
|
||||
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
|
||||
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
|
||||
self.capture_process.daemon = True
|
||||
print("Starting a new capture process...")
|
||||
self.capture_process.start()
|
||||
# pre-compute estimated person size for every pixel in the image
|
||||
if 'known_sizes' in self.config:
|
||||
self.calculated_person_sizes = compute_sizes((self.frame_shape[0], self.frame_shape[1]),
|
||||
self.config['known_sizes'], None)
|
||||
else:
|
||||
self.calculated_person_sizes = None
|
||||
|
||||
def start(self):
|
||||
self.start_or_restart_capture()
|
||||
self.capture_process.start()
|
||||
# start the object detection prep threads
|
||||
for detection_prep_thread in self.detection_prep_threads:
|
||||
detection_prep_thread.start()
|
||||
self.watchdog.start()
|
||||
|
||||
def join(self):
|
||||
self.capture_process.join()
|
||||
@@ -235,32 +261,27 @@ class Camera:
|
||||
return
|
||||
|
||||
for obj in objects:
|
||||
if obj['name'] == 'person':
|
||||
person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
# find the matching region
|
||||
region = None
|
||||
for r in self.regions:
|
||||
if (
|
||||
obj['xmin'] >= r['x_offset'] and
|
||||
obj['ymin'] >= r['y_offset'] and
|
||||
obj['xmax'] <= r['x_offset']+r['size'] and
|
||||
obj['ymax'] <= r['y_offset']+r['size']
|
||||
):
|
||||
region = r
|
||||
break
|
||||
|
||||
# if the min person area is larger than the
|
||||
# detected person, don't add it to detected objects
|
||||
if region and region['min_person_area'] > person_area:
|
||||
continue
|
||||
if self.debug:
|
||||
# print out the detected objects, scores and locations
|
||||
print(self.name, obj['name'], obj['score'], obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
|
||||
|
||||
# compute the coordinates of the person and make sure
|
||||
# the location isnt outide the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj['ymax']), len(self.mask)-1)
|
||||
x_location = min(int((obj['xmax']-obj['xmin'])/2.0), len(self.mask[0])-1)
|
||||
location = (int(obj['ymax']), int((obj['xmax']-obj['xmin'])/2))
|
||||
|
||||
# if the person is in a masked location, continue
|
||||
if self.mask[y_location][x_location] == [0]:
|
||||
# if the person is in a masked location, continue
|
||||
if self.mask[location[0]][location[1]] == [0]:
|
||||
continue
|
||||
|
||||
if self.calculated_person_sizes is not None and obj['name'] == 'person':
|
||||
person_size_range = self.calculated_person_sizes[location[0]][location[1]]
|
||||
|
||||
# if the person isnt on the ground, continue
|
||||
if(person_size_range[0] == 0 and person_size_range[1] == 0):
|
||||
continue
|
||||
|
||||
person_size = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
|
||||
# if the person is not within 20% of the estimated size for that location, continue
|
||||
if person_size < person_size_range[0] or person_size > person_size_range[1]:
|
||||
continue
|
||||
|
||||
self.detected_objects.append(obj)
|
||||
@@ -282,10 +303,15 @@ class Camera:
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in detected_objects:
|
||||
color = (255,0,0)
|
||||
cv2.rectangle(frame, (obj['xmin'], obj['ymin']),
|
||||
(obj['xmax'], obj['ymax']),
|
||||
color, 2)
|
||||
vis_util.draw_bounding_box_on_image_array(frame,
|
||||
obj['ymin'],
|
||||
obj['xmin'],
|
||||
obj['ymax'],
|
||||
obj['xmax'],
|
||||
color='red',
|
||||
thickness=2,
|
||||
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
||||
use_normalized_coordinates=False)
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
|
||||
Reference in New Issue
Block a user