Compare commits

...

112 Commits

Author SHA1 Message Date
Blake Blackshear
b912851e49 fix default motion comment 2021-11-15 06:54:03 -06:00
Blake Blackshear
14c74e4361 more robust cache management 2021-11-10 21:12:41 -06:00
Blake Blackshear
51fb532e1a set retain when setting switches from frontend 2021-11-09 07:40:23 -06:00
Blake Blackshear
3541f966e3 error handling for the recording maintainer 2021-11-09 07:05:21 -06:00
Blake Blackshear
c7faef8faa don't modify ffmpeg_cmd object 2021-11-08 19:05:39 -06:00
Blake Blackshear
cdd3000315 fix ffmpeg config for env vars 2021-11-08 18:20:47 -06:00
Blake Blackshear
1c1c28d0e5 create ffmpeg commands on startup 2021-11-08 07:36:21 -06:00
Blake Blackshear
4422e86907 clarify shm in docs 2021-11-08 07:36:21 -06:00
Blake Blackshear
8f43a2d109 use resolution of clip 2021-11-08 07:36:21 -06:00
Blake Blackshear
bd7755fdd3 revamp process clip 2021-11-08 07:36:21 -06:00
Blake Blackshear
d554175631 no longer make motion settings dynamic 2021-11-08 07:36:21 -06:00
Blake Blackshear
ff667b019a remove min frame height of 180 and increase contour area 2021-11-08 07:36:21 -06:00
Blake Blackshear
57dcb29f8b consolidate regions 2021-11-08 07:36:21 -06:00
Blake Blackshear
9dc6c423b7 improve contrast 2021-11-08 07:36:21 -06:00
Blake Blackshear
58117e2a3e check for overlapping motion boxes 2021-11-08 07:36:21 -06:00
Blake Blackshear
5bec438f9c config option for stationary detection interval 2021-11-01 07:58:30 -05:00
Blake Blackshear
24cc63d6d3 drop high overlap detections 2021-11-01 07:58:30 -05:00
Blake Blackshear
d17bd74c9a reduce detection rate for stationary objects 2021-11-01 07:58:30 -05:00
Blake Blackshear
8f101ccca8 improve box merging and keep tracking 2021-11-01 07:58:30 -05:00
Blake Blackshear
b63c56d810 only save recordings when an event is in progress 2021-10-25 06:40:36 -05:00
Blake Blackshear
61c62d4685 version tick 2021-10-25 06:40:02 -05:00
Blake Blackshear
26ae6084ea fix rtmp again 2021-10-24 13:53:43 -05:00
Blake Blackshear
76142e9699 version tick 2021-10-24 13:53:43 -05:00
Blake Blackshear
5e692acfbb add links in docs to other sites 2021-10-23 09:41:32 -05:00
Blake Blackshear
a67b8ab84d validate with runtime config (fixes #2055) 2021-10-23 08:21:15 -05:00
Blake Blackshear
4cf55ad8e2 Revert switch to mpegts format and audio default 2021-10-23 08:21:15 -05:00
Blake Blackshear
c1132e6897 update ignore files 2021-10-23 08:21:15 -05:00
Blake Blackshear
d6104f2eb2 add storage info to docs 2021-10-23 08:21:15 -05:00
Blake Blackshear
b0e0abe385 improve performance of cache loop 2021-10-23 08:21:15 -05:00
Blake Blackshear
4916e1cd1d hide banner for ffmpeg conversion 2021-10-23 08:21:15 -05:00
Blake Blackshear
cd87f3e6f4 fix old style recording cleanup 2021-10-23 08:21:15 -05:00
Blake Blackshear
18f4ab2644 version tick 2021-10-23 08:21:15 -05:00
Lindsay Ward
0bd3be94ec Clarify environment variables
Based on issue #1976 - specify explicitly that these fields can include environment variables to avoid interpretation that environment variables could be used anywhere.
I am participating in #hacktoberfest, so I would appreciate if you could add the 'hacktoberfest-accepted' label (or add #hacktoberfest topic to your repo). Thanks!
2021-10-23 06:42:53 -05:00
Blake Blackshear
25bb515afc Merge pull request #2026 from blakeblackshear/recording_fix
0.9.2
2021-10-19 20:43:25 -05:00
Blake Blackshear
7ab6961ee1 use live dimensions 2021-10-17 08:48:59 -05:00
Blake Blackshear
ae24cf3bb2 set max width/height for live view 2021-10-17 07:48:56 -05:00
Blake Blackshear
2e494477a6 backwards compatibility for segment_type 2021-10-16 10:36:13 -05:00
Blake Blackshear
80b72c75d9 revert jest update 2021-10-16 08:12:22 -05:00
Blake Blackshear
9494bb7f5f frontend dependency updates 2021-10-16 07:57:59 -05:00
Blake Blackshear
86a741b6e6 assign roles when single input and consolidate validation 2021-10-16 07:46:39 -05:00
Blake Blackshear
f738275d21 yell about config validation errors
for the people in the back
2021-10-16 07:17:36 -05:00
Blake Blackshear
e297e02800 store audio by default 2021-10-16 06:06:49 -05:00
Blake Blackshear
b2e05afff2 prevent oldest recording from being deleted 2021-10-15 21:56:03 -05:00
Blake Blackshear
05fc35fc3d update hardware docs 2021-10-15 21:29:36 -05:00
Blake Blackshear
c809494c98 switch to mpegts format for cache and create mp4 with faststart 2021-10-15 21:08:43 -05:00
Blake Blackshear
ef82c5c691 fix expiration when event spans the exire date 2021-10-15 07:30:55 -05:00
Blake Blackshear
c0e2a75715 version tick 2021-10-15 07:30:35 -05:00
Blake Blackshear
01ddd00bc5 Merge pull request #1975 from blakeblackshear/hassos_docs
update hassos warning
2021-10-10 07:39:11 -05:00
Blake Blackshear
d150f01a2c update hassos warning 2021-10-10 07:32:55 -05:00
Blake Blackshear
f9e159deaf Merge pull request #1968 from FM-17/patch-1
warning for dev board incompatibility post-0.9.x
2021-10-09 11:57:46 -05:00
FM-17
381b00157e warning for dev board incompatibility post-0.9.x
Hoped to investigate this with my dev board at some point. In the meantime, added a warning for others who may experience it when upgrading to the new stable release.
2021-10-09 11:23:51 -03:00
Blake Blackshear
800f33e7be version tick 2021-10-05 19:02:38 -05:00
Blake Blackshear
b8218876be Merge pull request #1922 from blakeblackshear/fix_logo
fix logo used for birdseye
2021-10-05 18:57:07 -05:00
Blake Blackshear
5669f4c161 fix logo used for birdseye 2021-10-05 18:40:46 -05:00
Blake Blackshear
c492b30adb Merge pull request #825 from blakeblackshear/release-0.9.0
Release 0.9.0
2021-10-05 17:59:25 -05:00
Kevin Pelzel
eb48722126 added white background to apple-touch-icon 2021-10-05 17:37:18 -05:00
Blake Blackshear
8e881b60f0 update hardware recommendations 2021-10-05 07:13:13 -05:00
Blake Blackshear
0260d824a6 further doc clarifications 2021-10-05 06:57:17 -05:00
Blake Blackshear
0877a7dec7 Create config.yml 2021-10-04 17:20:58 -05:00
Blake Blackshear
4c7919ad69 updated links 2021-10-04 08:54:35 -05:00
Blake Blackshear
4e997124b3 update latest recommendations for reolink 2021-10-04 07:18:53 -05:00
Blake Blackshear
8b040f5c95 optimize images for web 2021-10-04 07:00:30 -05:00
Blake Blackshear
96156805ed Delete bug_report.md 2021-10-03 08:53:19 -05:00
Blake Blackshear
b8d48d7e62 Create support_request.yml 2021-10-03 08:51:53 -05:00
Blake Blackshear
8ca12806ca revert rockchip support for aarch64 2021-10-03 07:43:55 -05:00
Blake Blackshear
de811b7018 delete clean snapshot when duplicate 2021-10-02 06:59:02 -05:00
Blake Blackshear
7bf7365f6c better log message when corrupt segment detected 2021-10-02 06:58:29 -05:00
Blake Blackshear
1daffd92fd docs updates 2021-10-01 07:37:47 -05:00
Blake Blackshear
74986982a0 update docs url 2021-09-26 16:43:26 -05:00
Blake Blackshear
aa807d25ed add affiliate links 2021-09-26 13:37:42 -05:00
Blake Blackshear
cd28869649 fix path 2021-09-26 12:32:41 -05:00
Blake Blackshear
ae97692883 docs config update for netlify 2021-09-26 12:27:01 -05:00
Blake Blackshear
e8e778c6d4 instantiate area field 2021-09-26 09:43:31 -05:00
Kevin Pelzel
5c552a0d71 change theme color from red 2021-09-25 11:11:49 -05:00
Blake Blackshear
0f5dfea9de add support for rockchip hwaccel 2021-09-25 08:25:00 -05:00
Blake Blackshear
e6cdb6a7a2 install docs clarification 2021-09-24 06:45:15 -05:00
Blake Blackshear
1d25936f31 add region/bbox/area to event table 2021-09-23 07:31:48 -05:00
Blake Blackshear
1049673413 run nginx as root
this addresses an issue many have had when using network shares
2021-09-20 19:02:59 -05:00
Blake Blackshear
c3109f808c allow partial days in retention settings 2021-09-20 18:59:16 -05:00
Blake Blackshear
a943ac1308 use s6 to shutdown frigate 2021-09-18 07:40:27 -05:00
Blake Blackshear
96319e795c docs clarification for masks 2021-09-17 19:21:03 -05:00
Blake Blackshear
5a8016de87 simplify logic and fix wrong segments expiring (fixes #1779) 2021-09-17 17:15:16 -05:00
Blake Blackshear
bc350644bd make expiration of deleted camera footage faster 2021-09-17 17:12:03 -05:00
Blake Blackshear
c793500ad2 add udp camera example to docs 2021-09-15 07:33:50 -05:00
Blake Blackshear
1b2134c49e remove clip_ready event type
this doesnt really mean anything more than "end" anymore. new has_clip property added
2021-09-15 07:16:52 -05:00
Blake Blackshear
86a5b46c68 more docs updates 2021-09-14 08:07:36 -05:00
Blake Blackshear
f83d4a58dd add version to the logs on startup 2021-09-13 22:02:23 -05:00
Blake Blackshear
a5f241d5bd cleanup ha notification docs 2021-09-13 22:02:12 -05:00
Blake Blackshear
661f7baa21 fix global live config 2021-09-13 20:33:00 -05:00
Blake Blackshear
7b063a19dc remove fps arg for mjpeg 2021-09-12 14:51:59 -05:00
Blake Blackshear
0320d94ea6 docs updates 2021-09-12 14:48:21 -05:00
Jason Hunter
a7b7a45b23 allow for custom object detection model via configuration 2021-09-12 07:17:26 -05:00
Blake Blackshear
89e317a6bb store start/end event with pre/post capture to avoid expiring wanted recordings 2021-09-11 08:34:27 -05:00
Blake Blackshear
5a209caed3 Merge remote-tracking branch 'origin/master' into release-0.9.0 2021-09-08 09:03:14 -04:00
Blake Blackshear
288b1a0562 remove nested enabled config setting on events 2021-09-08 08:02:26 -05:00
Dermot Duffy
d35b09b18f Refresh the HA installation instructions. 2021-09-05 11:14:28 -05:00
Blake Blackshear
e8eb3125a5 disallow extra keys in config 2021-09-04 16:56:01 -05:00
Blake Blackshear
8109445fdd fix color config for ts (fixes #1679) 2021-09-04 16:40:10 -05:00
Blake Blackshear
f63a7cb6c0 remove font_scale in timestamp_style and calculate dynamically again 2021-09-04 16:34:48 -05:00
Blake Blackshear
7fc5297f60 aarch64 makefile fix 2021-09-03 07:13:05 -05:00
Bernt Christian Egeland
00ff76a0b9 Events performance (#1645)
* rearrange event route and splitted into several components

* useIntersectionObserver

* re-arrange

* searchstring improvement

* added xs tailwind breakpoint

* useOuterClick hook

* cleaned up

* removed some video controls for mobile devices

* lint

* moved hooks to global folder

* moved buttons for small devices

* added button groups

Co-authored-by: Bernt Christian Egeland <cbegelan@gmail.com>
2021-09-03 07:11:23 -05:00
Bernt Christian Egeland
b8df419bad hide birdseye nav if not enabled 2021-09-03 07:07:45 -05:00
Peter Campion-Bye
faf103152a Update optimizing.md
Need note about increasing GPU memory on Pi - otherwise ffmpeg hwaccel won't work
2021-09-03 07:04:21 -05:00
drinfernoo
65855e23d9 Add RTMP and timestamp style to global config (#1674)
* :memo::white_check_mark:🔧 - Make RTMP config global

Fixes #1671

* :memo::white_check_mark:🔧 - Make timestamp style config global

Fixes #1656

* fix test function names

* formatter

Co-authored-by: Blake Blackshear <blakeb@blakeshome.com>
2021-09-03 07:03:36 -05:00
Blake Blackshear
6c28613def moar speed 2021-09-03 06:31:06 -05:00
Blake Blackshear
56480dc1ef bulk delete recordings 2021-09-02 20:40:38 -05:00
Blake Blackshear
8e1c15291d optimize checking recordings for events
sorts events and recordings so you can avoid a cartesian product of checking all events against all recordings
2021-09-02 08:24:53 -05:00
Blake Blackshear
a1e52c51b1 dont expire events in two places 2021-09-01 07:06:52 -05:00
Blake Blackshear
8cc834633e reduce db queries for recording cleanup 2021-09-01 06:44:05 -05:00
Blake Blackshear
7d65c05994 properly handle scenario with no recordings 2021-08-30 06:58:50 -05:00
Blake Blackshear
d74021af47 reverse sort events within hour 2021-08-29 07:46:09 -05:00
Blake Blackshear
bddde74c06 Update issue templates 2021-08-24 07:01:29 -05:00
105 changed files with 6573 additions and 8690 deletions

View File

@@ -7,4 +7,5 @@ config/
.git
core
*.mp4
*.db
*.db
*.ts

View File

@@ -1,56 +0,0 @@
---
name: Bug report or Support request
about: Bug report or Support request
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what your issue is.
**Version of frigate**
Output from `/api/version`
**Config file**
Include your full config file wrapped in triple back ticks.
```yaml
config here
```
**Frigate container logs**
```
Include relevant log output here
```
**Frigate stats**
```json
Output from frigate's /api/stats endpoint
```
**FFprobe from your camera**
Run the following command and paste output below
```
ffprobe <stream_url>
```
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Computer Hardware**
- OS: [e.g. Ubuntu, Windows]
- Install method: [e.g. Addon, Docker Compose, Docker Command]
- Virtualization: [e.g. Proxmox, Virtualbox]
- Coral Version: [e.g. USB, PCIe, None]
- Network Setup: [e.g. Wired, WiFi]
**Camera Info:**
- Manufacturer: [e.g. Dahua]
- Model: [e.g. IPC-HDW5231R-ZE]
- Resolution: [e.g. 720p]
- FPS: [e.g. 5]
**Additional context**
Add any other context about the problem here.

1
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1 @@
blank_issues_enabled: false

View File

@@ -0,0 +1,20 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''
---
**Describe what you are trying to accomplish and why in non technical terms**
I want to be able to ... so that I can ...
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@@ -0,0 +1,107 @@
name: Support Request
description: Support for Frigate setup or configuration
title: "[Support]: "
labels: ["support", "triage"]
assignees: []
body:
- type: textarea
id: description
attributes:
label: Describe the problem you are having
validations:
required: true
- type: input
id: version
attributes:
label: Version
description: Visible on the Debug page in the Web UI
validations:
required: true
- type: textarea
id: config
attributes:
label: Frigate config file
description: This will be automatically formatted into code, so no need for backticks.
render: yaml
validations:
required: true
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell
validations:
required: true
- type: textarea
id: ffprobe
attributes:
label: FFprobe output from your camera
description: Run `ffprobe <camera_url>` and provide output below
render: shell
validations:
required: true
- type: textarea
id: stats
attributes:
label: Frigate stats
description: Output from frigate's /api/stats endpoint
render: json
- type: dropdown
id: os
attributes:
label: Operating system
options:
- HassOS
- Debian
- Other Linux
- Proxmox
- UNRAID
- Windows
- Other
validations:
required: true
- type: dropdown
id: install-method
attributes:
label: Install method
options:
- HassOS Addon
- Docker Compose
- Docker CLI
validations:
required: true
- type: dropdown
id: coral
attributes:
label: Coral version
options:
- USB
- PCIe
- M.2
- Dev Board
- Other
- CPU (no coral)
validations:
required: true
- type: dropdown
id: network
attributes:
label: Network connection
options:
- Wired
- Wireless
- Mixed
validations:
required: true
- type: input
id: camera
attributes:
label: Camera make and model
description: Dahua, hikvision, amcrest, reolink, etc and model number
validations:
required: true
- type: textarea
id: other
attributes:
label: Any other information that may be helpful

View File

@@ -1,28 +0,0 @@
name: On push
on:
push:
branches:
- master
- release-0.8.0
jobs:
deploy-docs:
name: Deploy docs
runs-on: ubuntu-latest
defaults:
run:
working-directory: ./docs
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 12.x
- run: npm install
- name: Build docs
run: npm run build
- name: Deploy documentation
uses: peaceiris/actions-gh-pages@v3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./docs/build

2
.gitignore vendored
View File

@@ -6,7 +6,9 @@ debug
config/config.yml
models
*.mp4
*.ts
*.db
*.csv
frigate/version.py
web/build
web/node_modules

View File

@@ -3,7 +3,7 @@ default_target: amd64_frigate
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
version:
echo "VERSION='0.9.0-$(COMMIT_HASH)'" > frigate/version.py
echo "VERSION='0.10.0-$(COMMIT_HASH)'" > frigate/version.py
web:
docker build --tag frigate-web --file docker/Dockerfile.web web/
@@ -39,13 +39,13 @@ aarch64_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-aarch64 --file docker/Dockerfile.wheels .
aarch64_ffmpeg:
docker build --no-cache --pull --tag blakeblackshear/frigate-ffmpeg:1.2.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
docker build --no-cache --pull --tag blakeblackshear/frigate-ffmpeg:1.3.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
aarch64_frigate: version web
docker build --no-cache --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.3 --build-arg NGINX_VERSION=1.0.2 --file docker/Dockerfile.base .
docker build --no-cache --tag frigate --file docker/Dockerfile.aarch64 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
aarch64_all: aarch64_wheels aarch64_ffmpeg aarch64_frigate
armv7_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-armv7 --file docker/Dockerfile.wheels .

View File

@@ -20,7 +20,7 @@ Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but
## Documentation
View the documentation at https://blakeblackshear.github.io/frigate
View the documentation at https://docs.frigate.video
## Donations

View File

@@ -9,7 +9,7 @@ WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 xutils-dev && \
apt-get autoremove -y && \
apt-get clean -y
@@ -18,7 +18,7 @@ FROM base as build
ENV FFMPEG_VERSION=4.3.2 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FREETYPE_VERSION=2.11.0 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
@@ -43,7 +43,7 @@ ENV FFMPEG_VERSION=4.3.2 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FREETYPE_SHA256SUM="a45c6b403413abd5706f3582f04c8339d26397c4304b78fa552f2215df64101f freetype-2.11.0.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
@@ -392,6 +392,16 @@ RUN \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/rkmpp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
git clone https://github.com/rockchip-linux/libdrm-rockchip && git clone https://github.com/rockchip-linux/mpp && \
cd libdrm-rockchip && bash autogen.sh && ./configure && make && make install && \
cd ../mpp && cmake -DRKPLATFORM=ON -DHAVE_DRM=ON && make -j6 && make install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
@@ -434,6 +444,8 @@ RUN \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-rkmpp \
--enable-libdrm \
# --enable-omx \
# --enable-omx-rpi \
# --enable-mmal \

View File

@@ -1,4 +1,5 @@
daemon off;
user root;
worker_processes 1;
error_log /usr/local/nginx/logs/error.log warn;

View File

@@ -1,50 +1,11 @@
---
id: advanced
title: Advanced
sidebar_label: Advanced
title: Advanced Options
sidebar_label: Advanced Options
---
## Advanced configuration
### `motion`
Global motion detection config. These may also be defined at the camera level.
```yaml
motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 25
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: ~0.17% of the motion frame area)
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
# moving objects.
contour_area: 100
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
# Too low and a fast moving person wont be detected as motion.
delta_alpha: 0.2
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.2
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height, but no less than 180)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
# Lower values result in less CPU, but small changes may not register as motion.
frame_height: 180
```
### `detect`
Global object detection settings. These may also be defined at the camera level.
```yaml
detect:
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
```
### `logger`
Change the default log level for troubleshooting purposes.
@@ -72,12 +33,7 @@ Examples of available modules are:
### `environment_vars`
This section can be used to set environment variables for those unable to modify the environment of the container (ie. within Hass.io)
```yaml
environment_vars:
EXAMPLE_VAR: value
```
This section can be used to set environment variables for those unable to modify the environment of the container (ie. within HassOS)
### `database`
@@ -87,27 +43,6 @@ If you are storing your database on a network share (SMB, NFS, etc), you may get
This may need to be in a custom location if network storage is used for the media folder.
```yaml
database:
path: /media/frigate/frigate.db
```
### `detectors`
```yaml
detectors:
# Required: name of the detector
coral:
# Required: type of the detector
# Valid values are 'edgetpu' (requires device property below) and 'cpu'.
type: edgetpu
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
device: usb
# Optional: num_threads value passed to the tflite.Interpreter (default: shown below)
# This value is only used for CPU types
num_threads: 3
```
### `model`
If using a custom model, the width and height will need to be specified.
@@ -116,11 +51,14 @@ The labelmap can be customized to your needs. A common reason to do this is to c
```yaml
model:
# Required: height of the trained model
height: 320
# Required: width of the trained model
width: 320
# Optional: labelmap overrides
labelmap:
7: car
2: vehicle
3: vehicle
5: vehicle
7: vehicle
15: animal
16: animal
17: animal
```
Note that if you rename objects in the labelmap, you will also need to update your `objects -> track` list as well.

View File

@@ -0,0 +1,87 @@
---
id: camera_specific
title: Camera Specific Configurations
---
### MJPEG Cameras
The input and output parameters need to be adjusted for MJPEG cameras
```yaml
input_args: -avoid_negative_ts make_zero -fflags nobuffer -flags low_delay -strict experimental -fflags +genpts+discardcorrupt -use_wallclock_as_timestamps 1
```
Note that mjpeg cameras require encoding the video into h264 for recording, and rtmp roles. This will use significantly more CPU than if the cameras supported h264 feeds directly.
```yaml
output_args:
record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c:v libx264 -an
rtmp: -c:v libx264 -an -f flv
```
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args: -avoid_negative_ts make_zero -fflags nobuffer -flags low_delay -strict experimental -fflags +genpts+discardcorrupt -rw_timeout 5000000 -use_wallclock_as_timestamps 1 -f live_flv
```
### Reolink 410/520 (possibly others)
According to [this discussion](https://github.com/blakeblackshear/frigate/issues/1713#issuecomment-932976305), the http video streams seem to be the most reliable for Reolink.
```yaml
cameras:
reolink:
ffmpeg:
hwaccel_args:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer+genpts+discardcorrupt
- -flags
- low_delay
- -strict
- experimental
- -analyzeduration
- 1000M
- -probesize
- 1000M
- -rw_timeout
- "5000000"
inputs:
- path: http://reolink_ip/flv?port=1935&app=bcs&stream=channel0_main.bcs&user=username&password=password
roles:
- record
- rtmp
- path: http://reolink_ip/flv?port=1935&app=bcs&stream=channel0_ext.bcs&user=username&password=password
roles:
- detect
detect:
width: 640
height: 480
fps: 7
```
![Resolutions](/img/reolink-settings.png)
### Blue Iris RTSP Cameras
You will need to remove `nobuffer` flag for Blue Iris RTSP cameras
```yaml
ffmpeg:
input_args: -avoid_negative_ts make_zero -flags low_delay -strict experimental -fflags +genpts+discardcorrupt -rtsp_transport tcp -stimeout 5000000 -use_wallclock_as_timestamps 1
```
### UDP Only Cameras
If your cameras do not support TCP connections for RTSP, you can use UDP.
```yaml
ffmpeg:
input_args: -avoid_negative_ts make_zero -fflags +genpts+discardcorrupt -rtsp_transport udp -stimeout 5000000 -use_wallclock_as_timestamps 1
```

View File

@@ -5,17 +5,15 @@ title: Cameras
## Setting Up Camera Inputs
Up to 4 inputs can be configured for each camera and the role of each input can be mixed and matched based on your needs. This allows you to use a lower resolution stream for object detection, but create recordings from a higher resolution stream, or vice versa.
Several inputs can be configured for each camera and the role of each input can be mixed and matched based on your needs. This allows you to use a lower resolution stream for object detection, but create recordings from a higher resolution stream, or vice versa.
Each role can only be assigned to one input per camera. The options for roles are as follows:
| Role | Description |
| -------- | ------------------------------------------------------------------------------------- |
| `detect` | Main feed for object detection |
| `record` | Saves segments of the video feed based on configuration settings. [docs](#recordings) |
| `rtmp` | Broadcast as an RTMP feed for other services to consume. [docs](#rtmp-streams) |
### Example
| Role | Description |
| -------- | ----------------------------------------------------------------------------------------------- |
| `detect` | Main feed for object detection |
| `record` | Saves segments of the video feed based on configuration settings. [docs](/configuration/record) |
| `rtmp` | Broadcast as an RTMP feed for other services to consume. [docs](/configuration/rtmp) |
```yaml
mqtt:
@@ -34,524 +32,14 @@ cameras:
detect:
width: 1280
height: 720
fps: 5
```
`width`, `height`, and `fps` are only used for the `detect` role. Other streams are passed through, so there is no need to specify the resolution.
## Masks & Zones
### Masks
Masks are used to ignore initial detection in areas of your camera's field of view.
There are two types of masks available:
- **Motion masks**: Motion masks are used to prevent unwanted types of motion from triggering detection. Try watching the video feed with `Motion Boxes` enabled to see what may be regularly detected as motion. For example, you want to mask out your timestamp, the sky, rooftops, etc. Keep in mind that this mask only prevents motion from being detected and does not prevent objects from being detected if object detection was started due to motion in unmasked areas. Motion is also used during object tracking to refine the object detection area in the next frame. Over masking will make it more difficult for objects to be tracked. To see this effect, create a mask, and then watch the video feed with `Motion Boxes` enabled again.
- **Object filter masks**: Object filter masks are used to filter out false positives for a given object type. These should be used to filter any areas where it is not possible for an object of that type to be. The bottom center of the detected object's bounding box is evaluated against the mask. If it is in a masked area, it is assumed to be a false positive. For example, you may want to mask out rooftops, walls, the sky, treetops for people. For cars, masking locations other than the street or your driveway will tell frigate that anything in your yard is a false positive.
To create a poly mask:
1. Visit the [web UI](/usage/web)
1. Click the camera you wish to create a mask for
1. Click "Mask & Zone creator"
1. Click "Add" on the type of mask or zone you would like to create
1. Click on the camera's latest image to create a masked area. The yaml representation will be updated in real-time
1. When you've finished creating your mask, click "Copy" and paste the contents into your `config.yaml` file and restart Frigate
Example of a finished row corresponding to the below example image:
```yaml
motion:
mask: "0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432"
```
![poly](/img/example-mask-poly.png)
```yaml
# Optional: camera level motion config
motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
```
### Zones
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
During testing, `draw_zones` should be set in the config to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
To create a zone, follow the same steps above for a "Motion mask", but use the section of the web UI for creating a zone instead.
```yaml
# Optional: zones for this camera
zones:
# Required: name of the zone
# NOTE: This must be different than any camera names, but can match with another zone on another
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: List of objects that can trigger this zone (default: all tracked objects)
objects:
- person
# Optional: Zone level object filters.
# NOTE: The global and camera filters are applied upstream.
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.7
```
## Objects
For a list of available objects, see the [objects documentation](./objects.mdx).
```yaml
# Optional: Camera level object filters config.
objects:
track:
- person
- car
# Optional: mask to prevent all object types from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object.
# NOTE: This mask is COMBINED with the object type specific mask below
mask: 0,0,1000,0,1000,200,0,200
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.7
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object
mask: 0,0,1000,0,1000,200,0,200
```
## Recordings
24/7 recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding and are available in Home Assistant's media browser. Each camera supports a configurable retention policy in the config.
Exported clips are also created off of these recordings. Frigate chooses the largest matching retention value between the recording retention and the event retention when determining if a recording should be removed.
These recordings will not be playable in the web UI or in Home Assistant's media browser unless your camera sends video as h264.
:::caution
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
:::
```yaml
record:
# Optional: Enable recording (default: shown below)
enabled: False
# Optional: Number of days to retain (default: shown below)
retain_days: 0
# Optional: Event recording settings
events:
# Optional: Enable event recording retention settings (default: shown below)
enabled: False
# Optional: Maximum length of time to retain video during long events. (default: shown below)
# NOTE: If an object is being tracked for longer than this amount of time, the cache
# will begin to expire and the resulting clip will be the last x seconds of the event unless retain_days under record is > 0.
max_seconds: 300
# Optional: Number of seconds before the event to include in the event (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include in the event (default: shown below)
post_capture: 5
# Optional: Objects to save event for. (default: all tracked objects)
objects:
- person
# Optional: Restrict event to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Retention settings for event
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
## Snapshots
Frigate can save a snapshot image to `/media/frigate/clips` for each event named as `<camera>-<id>.jpg`.
```yaml
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
snapshots:
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: Enable writing a clean copy png snapshot to /media/frigate/clips (default: shown below)
# Only works if snapshots are enabled. This image is intended to be used for training purposes.
clean_copy: True
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: False
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: False
# Optional: crop the snapshot (default: shown below)
crop: False
# Optional: height to resize the snapshot to (default: original size)
height: 175
# Optional: jpeg encode quality (default: shown below)
quality: 70
# Optional: Restrict snapshots to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
## RTMP streams
Frigate can re-stream your video feed as a RTMP feed for other applications such as Home Assistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and Home Assistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.
## Timestamp style configuration
For the debug view and snapshots it is possible to embed a timestamp in the feed. In some instances the default position obstructs important space, visibility or contrast is too low because of color or the datetime format does not match ones desire.
```yaml
# Optional: in-feed timestamp style configuration
timestamp_style:
# Optional: Position of the timestamp (default: shown below)
# "tl" (top left), "tr" (top right), "bl" (bottom left), "br" (bottom right)
position: "tl"
# Optional: Format specifier conform to the Python package "datetime" (default: shown below)
# Additional Examples:
# german: "%d.%m.%Y %H:%M:%S"
format: "%m/%d/%Y %H:%M:%S"
# Optional: Color of font
color:
# All Required when color is specified (default: shown below)
red: 255
green: 255
blue: 255
# Optional: Scale factor for font (default: shown below)
scale: 1.0
# Optional: Line thickness of font (default: shown below)
thickness: 2
# Optional: Effect of lettering (default: shown below)
# None (No effect),
# "solid" (solid background in inverse color of font)
# "shadow" (shadow for font)
effect: None
```
## Full example
The following is a full example of all of the options together for a camera configuration
Additional cameras are simply added to the config under the `cameras` entry.
```yaml
mqtt: ...
cameras:
# Required: name of the camera
back:
# Required: ffmpeg settings for the camera
ffmpeg:
# Required: A list of input streams for the camera. See documentation for more information.
inputs:
# Required: the path to the stream
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
# Required: list of roles for this stream. valid values are: detect,record,rtmp
# NOTICE: In addition to assigning the record, and rtmp roles,
# they must also be enabled in the camera config.
roles:
- detect
- rtmp
# Optional: stream specific global args (default: inherit)
global_args:
# Optional: stream specific hwaccel args (default: inherit)
hwaccel_args:
# Optional: stream specific input args (default: inherit)
input_args:
# Optional: camera specific global args (default: inherit)
global_args:
# Optional: camera specific hwaccel args (default: inherit)
hwaccel_args:
# Optional: camera specific input args (default: inherit)
input_args:
# Optional: camera specific output args (default: inherit)
output_args:
# Required: Camera level detect settings
detect:
# Optional: width of the frame for the input with the detect role (default: shown below)
width: 1280
# Optional: height of the frame for the input with the detect role (default: shown below)
height: 720
# Optional: desired fps for your camera for the input with the detect role (default: shown below)
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
fps: 5
# Optional: enables detection for the camera (default: True)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: True
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
# Optional: camera level motion config
motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
# Optional: timeout for highest scoring image before allowing it
# to be replaced by a newer image. (default: shown below)
best_image_timeout: 60
# Optional: zones for this camera
zones:
# Required: name of the zone
# NOTE: This must be different than any camera names, but can match with another zone on another
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: List of objects that can trigger this zone (default: all tracked objects)
objects:
- person
# Optional: Zone level object filters.
# NOTE: The global and camera filters are applied upstream.
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.7
# Optional: 24/7 recording configuration
record:
# Optional: Enable recording (default: global setting)
enabled: False
# Optional: Number of days to retain (default: global setting)
retain_days: 30
# Optional: Event recording settings
events:
# Required: enables event recordings for the camera (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: Number of seconds before the event to include (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include (default: shown below)
post_capture: 5
# Optional: Objects to save events for. (default: all tracked objects)
objects:
- person
# Optional: Restrict events to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: RTMP re-stream configuration
rtmp:
# Required: Enable the RTMP stream (default: True)
enabled: True
# Optional: Live stream configuration for WebUI
live:
# Optional: Set the height of the live stream. (default: 720)
# This must be less than or equal to the height of the detect stream. Lower resolutions
# reduce bandwidth required for viewing the live stream. Width is computed to match known aspect ratio.
height: 720
# Optional: Set the encode quality of the live stream (default: shown below)
# 1 is the highest quality, and 31 is the lowest. Lower quality feeds utilize less CPU resources.
quality: 8
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
snapshots:
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: False
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: False
# Optional: crop the snapshot (default: shown below)
crop: False
# Optional: height to resize the snapshot to (default: original size)
height: 175
# Optional: Restrict snapshots to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: Configuration for the jpg snapshots published via MQTT
mqtt:
# Optional: Enable publishing snapshot via mqtt for camera (default: shown below)
# NOTE: Only applies to publishing image data to MQTT via 'frigate/<camera_name>/<object_name>/snapshot'.
# All other messages will still be published.
enabled: True
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: True
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: True
# Optional: crop the snapshot (default: shown below)
crop: True
# Optional: height to resize the snapshot to (default: shown below)
height: 270
# Optional: jpeg encode quality (default: shown below)
quality: 70
# Optional: Restrict mqtt messages to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera level object filters config.
objects:
track:
- person
- car
# Optional: mask to prevent all object types from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object.
# NOTE: This mask is COMBINED with the object type specific mask below
mask: 0,0,1000,0,1000,200,0,200
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.7
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object
mask: 0,0,1000,0,1000,200,0,200
# Optional: In-feed timestamp style configuration
timestamp_style:
# Optional: Position of the timestamp (default: shown below)
# "tl" (top left), "tr" (top right), "bl" (bottom left), "br" (bottom right)
position: "tl"
# Optional: Format specifier conform to the Python package "datetime" (default: shown below)
# Additional Examples:
# german: "%d.%m.%Y %H:%M:%S"
format: "%m/%d/%Y %H:%M:%S"
# Optional: Color of font
color:
# All Required when color is specified (default: shown below)
red: 255
green: 255
blue: 255
# Optional: Scale factor for font (default: shown below)
scale: 1.0
# Optional: Line thickness of font (default: shown below)
thickness: 2
# Optional: Effect of lettering (default: shown below)
# None (No effect),
# "solid" (solid background in inverse color of font)
# "shadow" (shadow for font)
effect: None
```
## Camera specific configuration
### MJPEG Cameras
The input and output parameters need to be adjusted for MJPEG cameras
```yaml
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -r
- "3" # <---- adjust depending on your desired frame rate from the mjpeg image
- -use_wallclock_as_timestamps
- "1"
```
Note that mjpeg cameras require encoding the video into h264 for recording, and rtmp roles. This will use significantly more CPU than if the cameras supported h264 feeds directly.
```yaml
output_args:
record: -f segment -segment_time 60 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c:v libx264 -an
rtmp: -c:v libx264 -an -f flv
```
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- "1"
```
### Reolink 410/520 (possibly others)
Several users have reported success with the rtmp video from Reolink cameras.
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rw_timeout
- "5000000"
- -use_wallclock_as_timestamps
- "1"
```
### Blue Iris RTSP Cameras
You will need to remove `nobuffer` flag for Blue Iris RTSP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rtsp_transport
- tcp
- -stimeout
- "5000000"
- -use_wallclock_as_timestamps
- "1"
back: ...
front: ...
side: ...
```

View File

@@ -3,13 +3,13 @@ id: detectors
title: Detectors
---
The default config will look for a USB Coral device. If you do not have a Coral, you will need to configure a CPU detector. If you have PCI or multiple Coral devices, you need to configure your detector devices in the config file. When using multiple detectors, they run in dedicated processes, but pull from a common queue of requested detections across all cameras.
By default, Frigate will use a single CPU detector. If you have a Coral, you will need to configure your detector devices in the config file. When using multiple detectors, they run in dedicated processes, but pull from a common queue of requested detections across all cameras.
Frigate supports `edgetpu` and `cpu` as detector types. The device value should be specified according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api).
**Note**: There is no support for Nvidia GPUs to perform object detection with tensorflow. It can be used for ffmpeg decoding, but not object detection.
Single USB Coral:
### Single USB Coral
```yaml
detectors:
@@ -18,7 +18,7 @@ detectors:
device: usb
```
Multiple USB Corals:
### Multiple USB Corals
```yaml
detectors:
@@ -30,16 +30,17 @@ detectors:
device: usb:1
```
Native Coral (Dev Board):
### Native Coral (Dev Board)
_warning: may have [compatibility issues](https://github.com/blakeblackshear/frigate/issues/1706) after `v0.9.x`_
```yaml
detectors:
coral:
type: edgetpu
device: ''
device: ""
```
Multiple PCIE/M.2 Corals:
### Multiple PCIE/M.2 Corals
```yaml
detectors:
@@ -51,7 +52,7 @@ detectors:
device: pci:1
```
Mixing Corals:
### Mixing Corals
```yaml
detectors:
@@ -63,12 +64,16 @@ detectors:
device: pci
```
CPU Detectors (not recommended):
### CPU Detectors (not recommended)
```yaml
detectors:
cpu1:
type: cpu
num_threads: 3
cpu2:
type: cpu
num_threads: 3
```
When using CPU detectors, you can add a CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.

View File

@@ -0,0 +1,70 @@
---
id: hardware_acceleration
title: Hardware Acceleration
---
It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible. More information on hardware accelerated decoding for ffmpeg can be found here: https://trac.ffmpeg.org/wiki/HWAccelIntro
### Raspberry Pi 3/4 (32-bit OS)
Ensure you increase the allocated RAM for your GPU to at least 128 (raspi-config > Performance Options > GPU Memory).
**NOTICE**: If you are using the addon, you may need to turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_mmal
```
### Raspberry Pi 3/4 (64-bit OS)
**NOTICE**: If you are using the addon, you may need to turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_v4l2m2m
```
### Intel-based CPUs (<10th Generation) via Quicksync
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```
### Intel-based CPUs (>=10th Generation) via Quicksync
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- qsv
- -qsv_device
- /dev/dri/renderD128
```
### AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver
**Note:** You also need to set `LIBVA_DRIVER_NAME=radeonsi` as an environment variable on the container.
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
```
### NVIDIA GPU
NVIDIA GPU based decoding via NVDEC is supported, but requires special configuration. See the [NVIDIA NVDEC documentation](/configuration/nvdec) for more details.

View File

@@ -1,13 +1,13 @@
---
id: index
title: Configuration
title: Configuration File
---
For HassOS installations, the default location for the config file is `/config/frigate.yml`.
For Home Assistant Addon installations, the config file needs to be in the root of your Home Assistant config directory (same location as `configuration.yaml`) and named `frigate.yml`.
For all other installations, the default location for the config file is '/config/config.yml'. This can be overridden with the `CONFIG_FILE` environment variable. Camera specific ffmpeg parameters are documented [here](cameras.md).
For all other installation types, the config file should be mapped to `/config/config.yml` inside the container.
It is recommended to start with a minimal configuration and add to it:
It is recommended to start with a minimal configuration and add to it as described in [this guide](/guides/getting_started):
```yaml
mqtt:
@@ -23,12 +23,15 @@ cameras:
detect:
width: 1280
height: 720
fps: 5
```
## Required
### Full configuration reference:
## `mqtt`
:::caution
It is not recommended to copy this full configuration file. Only specify values that are different from the defaults. Configuration options and default values may change in future versions.
:::
```yaml
mqtt:
@@ -37,16 +40,16 @@ mqtt:
# Optional: port (default: shown below)
port: 1883
# Optional: topic prefix (default: shown below)
# WARNING: must be unique if you are running multiple instances
# NOTE: must be unique if you are running multiple instances
topic_prefix: frigate
# Optional: client id (default: shown below)
# WARNING: must be unique if you are running multiple instances
# NOTE: must be unique if you are running multiple instances
client_id: frigate
# Optional: user
user: mqtt_user
# Optional: password
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}.
# eg. password: '{FRIGATE_MQTT_PASSWORD}'
# NOTE: MQTT password can be specified with an environment variables that must begin with 'FRIGATE_'.
# e.g. password: '{FRIGATE_MQTT_PASSWORD}'
password: password
# Optional: tls_ca_certs for enabling TLS using self-signed certs (default: None)
tls_ca_certs: /path/to/ca.crt
@@ -61,59 +64,39 @@ mqtt:
tls_insecure: false
# Optional: interval in seconds for publishing stats (default: shown below)
stats_interval: 60
```
## `cameras`
# Optional: Detectors configuration. Defaults to a single CPU detector
detectors:
# Required: name of the detector
coral:
# Required: type of the detector
# Valid values are 'edgetpu' (requires device property below) and 'cpu'.
type: edgetpu
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
device: usb
# Optional: num_threads value passed to the tflite.Interpreter (default: shown below)
# This value is only used for CPU types
num_threads: 3
Each of your cameras must be configured. The following is the minimum required to register a camera in Frigate. Check the [camera configuration page](cameras.md) for a complete list of options.
```yaml
cameras:
# Name of your camera
front_door:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
detect:
width: 1280
height: 720
fps: 5
```
## Optional
### `database`
```yaml
# Optional: Database configuration
database:
# The path to store the SQLite DB (default: shown below)
path: /media/frigate/frigate.db
```
### `model`
```yaml
# Optional: model modifications
model:
# Optional: path to the model (default: automatic based on detector)
path: /edgetpu_model.tflite
# Optional: path to the labelmap (default: shown below)
labelmap_path: /labelmap.txt
# Required: Object detection model input width (default: shown below)
width: 320
# Required: Object detection model input height (default: shown below)
height: 320
# Optional: Label name modifications
# Optional: Label name modifications. These are merged into the standard labelmap.
labelmap:
2: vehicle # previously "car"
```
2: vehicle
### `detectors`
Check the [detectors configuration page](detectors.md) for a complete list of options.
### `logger`
```yaml
# Optional: logger verbosity settings
logger:
# Optional: Default log verbosity (default: shown below)
@@ -121,102 +104,12 @@ logger:
# Optional: Component specific logger overrides
logs:
frigate.event: debug
```
### `record`
# Optional: set environment variables
environment_vars:
EXAMPLE_VAR: value
Can be overridden at the camera level. 24/7 recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding and are available in Home Assistant's media browser. Each camera supports a configurable retention policy in the config.
Exported clips are also created off of these recordings. Frigate chooses the largest matching retention value between the recording retention and the event retention when determining if a recording should be removed.
These recordings will not be playable in the web UI or in Home Assistant's media browser unless your camera sends video as h264.
:::caution
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
:::
```yaml
record:
# Optional: Enable recording (default: shown below)
enabled: False
# Optional: Number of days to retain (default: shown below)
retain_days: 0
# Optional: Event recording settings
events:
# Optional: Enable event recording retention settings (default: shown below)
enabled: False
# Optional: Maximum length of time to retain video during long events. (default: shown below)
# NOTE: If an object is being tracked for longer than this amount of time, the cache
# will begin to expire and the resulting clip will be the last x seconds of the event unless retain_days under record is > 0.
max_seconds: 300
# Optional: Number of seconds before the event to include (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include (default: shown below)
post_capture: 5
# Optional: Objects to save recordings for. (default: all tracked objects)
objects:
- person
# Optional: Restrict recordings to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Retention settings for events
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
### `ffmpeg`
Can be overridden at the camera level.
```yaml
ffmpeg:
# Optional: global ffmpeg args (default: shown below)
global_args: -hide_banner -loglevel warning
# Optional: global hwaccel args (default: shown below)
# NOTE: See hardware acceleration docs for your specific device
hwaccel_args: []
# Optional: global input args (default: shown below)
input_args: -avoid_negative_ts make_zero -fflags +genpts+discardcorrupt -rtsp_transport tcp -stimeout 5000000 -use_wallclock_as_timestamps 1
# Optional: global output args
output_args:
# Optional: output args for detect streams (default: shown below)
detect: -f rawvideo -pix_fmt yuv420p
# Optional: output args for record streams (default: shown below)
record: -f segment -segment_time 60 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
# Optional: output args for rtmp streams (default: shown below)
rtmp: -c copy -f flv
```
### `objects`
Can be overridden at the camera level. For a list of available objects, see the [objects documentation](./objects.mdx).
```yaml
objects:
# Optional: list of objects to track from labelmap.txt (default: shown below)
track:
- person
# Optional: filters to reduce false positives for specific object types
filters:
person:
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
min_area: 5000
# Optional: maximum width*height of the bounding box for the detected object (default: 24000000)
max_area: 100000
# Optional: minimum score for the object to initiate tracking (default: shown below)
min_score: 0.5
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
threshold: 0.7
```
### `birdseye`
A dynamic combined camera view of all tracked cameras. This is optimized for minimal bandwidth and server resource utilization. Encoding is only performed when actively viewing the video feed, and only active (defined by the mode) cameras are included in the view.
```yaml
# Optional: birdseye configuration
birdseye:
# Optional: Enable birdseye view (default: shown below)
enabled: True
@@ -232,4 +125,269 @@ birdseye:
# motion - cameras are included if motion was detected in the last 30 seconds
# continuous - all cameras are included always
mode: objects
# Optional: ffmpeg configuration
ffmpeg:
# Optional: global ffmpeg args (default: shown below)
global_args: -hide_banner -loglevel warning
# Optional: global hwaccel args (default: shown below)
# NOTE: See hardware acceleration docs for your specific device
hwaccel_args: []
# Optional: global input args (default: shown below)
input_args: -avoid_negative_ts make_zero -fflags +genpts+discardcorrupt -rtsp_transport tcp -stimeout 5000000 -use_wallclock_as_timestamps 1
# Optional: global output args
output_args:
# Optional: output args for detect streams (default: shown below)
detect: -f rawvideo -pix_fmt yuv420p
# Optional: output args for record streams (default: shown below)
record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
# Optional: output args for rtmp streams (default: shown below)
rtmp: -c copy -f flv
# Optional: Detect configuration
# NOTE: Can be overridden at the camera level
detect:
# Optional: width of the frame for the input with the detect role (default: shown below)
width: 1280
# Optional: height of the frame for the input with the detect role (default: shown below)
height: 720
# Optional: desired fps for your camera for the input with the detect role (default: shown below)
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
fps: 5
# Optional: enables detection for the camera (default: True)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: True
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
# Optional: Frequency for running detection on stationary objects (default: 10x the frame rate)
stationary_interval: 50
# Optional: Object configuration
# NOTE: Can be overridden at the camera level
objects:
# Optional: list of objects to track from labelmap.txt (default: shown below)
track:
- person
# Optional: mask to prevent all object types from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object.
# NOTE: This mask is COMBINED with the object type specific mask below
mask: 0,0,1000,0,1000,200,0,200
# Optional: filters to reduce false positives for specific object types
filters:
person:
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
min_area: 5000
# Optional: maximum width*height of the bounding box for the detected object (default: 24000000)
max_area: 100000
# Optional: minimum score for the object to initiate tracking (default: shown below)
min_score: 0.5
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
threshold: 0.7
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object
mask: 0,0,1000,0,1000,200,0,200
# Optional: Motion configuration
# NOTE: Can be overridden at the camera level
motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 25
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: 30)
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will
# make motion detection more sensitive to smaller moving objects.
# As a rule of thumb:
# - 15 - high sensitivity
# - 30 - medium sensitivity
# - 50 - low sensitivity
contour_area: 30
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
# Too low and a fast moving person wont be detected as motion.
delta_alpha: 0.2
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.2
# Optional: Height of the resized motion frame (default: 50)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense
# of higher CPU usage. Lower values result in less CPU, but small changes may not register as motion.
frame_height: 50
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
# Optional: Record configuration
# NOTE: Can be overridden at the camera level
record:
# Optional: Enable recording (default: shown below)
enabled: False
# Optional: Number of days to retain recordings regardless of events (default: shown below)
# NOTE: This should be set to 0 and retention should be defined in events section below
# if you only want to retain recordings of events.
retain_days: 0
# Optional: Event recording settings
events:
# Optional: Maximum length of time to retain video during long events. (default: shown below)
# NOTE: If an object is being tracked for longer than this amount of time, the retained recordings
# will be the last x seconds of the event unless retain_days under record is > 0.
max_seconds: 300
# Optional: Number of seconds before the event to include (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include (default: shown below)
post_capture: 5
# Optional: Objects to save recordings for. (default: all tracked objects)
objects:
- person
# Optional: Restrict recordings to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Retention settings for recordings of events
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
# NOTE: Can be overridden at the camera level
snapshots:
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: False
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: False
# Optional: crop the snapshot (default: shown below)
crop: False
# Optional: height to resize the snapshot to (default: original size)
height: 175
# Optional: Restrict snapshots to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: RTMP configuration
# NOTE: Can be overridden at the camera level
rtmp:
# Optional: Enable the RTMP stream (default: True)
enabled: True
# Optional: Live stream configuration for WebUI
# NOTE: Can be overridden at the camera level
live:
# Optional: Set the height of the live stream. (default: 720)
# This must be less than or equal to the height of the detect stream. Lower resolutions
# reduce bandwidth required for viewing the live stream. Width is computed to match known aspect ratio.
height: 720
# Optional: Set the encode quality of the live stream (default: shown below)
# 1 is the highest quality, and 31 is the lowest. Lower quality feeds utilize less CPU resources.
quality: 8
# Optional: in-feed timestamp style configuration
# NOTE: Can be overridden at the camera level
timestamp_style:
# Optional: Position of the timestamp (default: shown below)
# "tl" (top left), "tr" (top right), "bl" (bottom left), "br" (bottom right)
position: "tl"
# Optional: Format specifier conform to the Python package "datetime" (default: shown below)
# Additional Examples:
# german: "%d.%m.%Y %H:%M:%S"
format: "%m/%d/%Y %H:%M:%S"
# Optional: Color of font
color:
# All Required when color is specified (default: shown below)
red: 255
green: 255
blue: 255
# Optional: Line thickness of font (default: shown below)
thickness: 2
# Optional: Effect of lettering (default: shown below)
# None (No effect),
# "solid" (solid background in inverse color of font)
# "shadow" (shadow for font)
effect: None
# Required
cameras:
# Required: name of the camera
back:
# Required: ffmpeg settings for the camera
ffmpeg:
# Required: A list of input streams for the camera. See documentation for more information.
inputs:
# Required: the path to the stream
# NOTE: path may include environment variables, which must begin with 'FRIGATE_' and be referenced in {}
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
# Required: list of roles for this stream. valid values are: detect,record,rtmp
# NOTICE: In addition to assigning the record, and rtmp roles,
# they must also be enabled in the camera config.
roles:
- detect
- rtmp
# Optional: stream specific global args (default: inherit)
# global_args:
# Optional: stream specific hwaccel args (default: inherit)
# hwaccel_args:
# Optional: stream specific input args (default: inherit)
# input_args:
# Optional: camera specific global args (default: inherit)
# global_args:
# Optional: camera specific hwaccel args (default: inherit)
# hwaccel_args:
# Optional: camera specific input args (default: inherit)
# input_args:
# Optional: camera specific output args (default: inherit)
# output_args:
# Optional: timeout for highest scoring image before allowing it
# to be replaced by a newer image. (default: shown below)
best_image_timeout: 60
# Optional: zones for this camera
zones:
# Required: name of the zone
# NOTE: This must be different than any camera names, but can match with another zone on another
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: List of objects that can trigger this zone (default: all tracked objects)
objects:
- person
# Optional: Zone level object filters.
# NOTE: The global and camera filters are applied upstream.
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.7
# Optional: Configuration for the jpg snapshots published via MQTT
mqtt:
# Optional: Enable publishing snapshot via mqtt for camera (default: shown below)
# NOTE: Only applies to publishing image data to MQTT via 'frigate/<camera_name>/<object_name>/snapshot'.
# All other messages will still be published.
enabled: True
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: True
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: True
# Optional: crop the snapshot (default: shown below)
crop: True
# Optional: height to resize the snapshot to (default: shown below)
height: 270
# Optional: jpeg encode quality (default: shown below)
quality: 70
# Optional: Restrict mqtt messages to objects that entered any of the listed zones (default: no required zones)
required_zones: []
```

View File

@@ -0,0 +1,77 @@
---
id: masks
title: Masks
---
There are two types of masks available:
**Motion masks**: Motion masks are used to prevent unwanted types of motion from triggering detection. Try watching the debug feed with `Motion Boxes` enabled to see what may be regularly detected as motion. For example, you want to mask out your timestamp, the sky, rooftops, etc. Keep in mind that this mask only prevents motion from being detected and does not prevent objects from being detected if object detection was started due to motion in unmasked areas. Motion is also used during object tracking to refine the object detection area in the next frame. Over masking will make it more difficult for objects to be tracked. To see this effect, create a mask, and then watch the video feed with `Motion Boxes` enabled again.
**Object filter masks**: Object filter masks are used to filter out false positives for a given object type based on location. These should be used to filter any areas where it is not possible for an object of that type to be. The bottom center of the detected object's bounding box is evaluated against the mask. If it is in a masked area, it is assumed to be a false positive. For example, you may want to mask out rooftops, walls, the sky, treetops for people. For cars, masking locations other than the street or your driveway will tell frigate that anything in your yard is a false positive.
To create a poly mask:
1. Visit the Web UI
1. Click the camera you wish to create a mask for
1. Select "Debug" at the top
1. Expand the "Options" below the video feed
1. Click "Mask & Zone creator"
1. Click "Add" on the type of mask or zone you would like to create
1. Click on the camera's latest image to create a masked area. The yaml representation will be updated in real-time
1. When you've finished creating your mask, click "Copy" and paste the contents into your config file and restart Frigate
Example of a finished row corresponding to the below example image:
```yaml
motion:
mask: "0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432"
```
Multiple masks can be listed.
```yaml
motion:
mask:
- 458,1346,336,973,317,869,375,866,432
- 0,461,3,0,1919,0,1919,843,1699,492,1344
```
![poly](/img/example-mask-poly-min.png)
### Further Clarification
This is a response to a [question posed on reddit](https://www.reddit.com/r/homeautomation/comments/ppxdve/replacing_my_doorbell_with_a_security_camera_a_6/hd876w4?utm_source=share&utm_medium=web2x&context=3):
It is helpful to understand a bit about how Frigate uses motion detection and object detection together.
First, Frigate uses motion detection as a first line check to see if there is anything happening in the frame worth checking with object detection.
Once motion is detected, it tries to group up nearby areas of motion together in hopes of identifying a rectangle in the image that will capture the area worth inspecting. These are the red "motion boxes" you see in the debug viewer.
After the area with motion is identified, Frigate creates a "region" (the green boxes in the debug viewer) to run object detection on. The models are trained on square images, so these regions are always squares. It adds a margin around the motion area in hopes of capturing a cropped view of the object moving that fills most of the image passed to object detection, but doesn't cut anything off. It also takes into consideration the location of the bounding box from the previous frame if it is tracking an object.
After object detection runs, if there are detected objects that seem to be cut off, Frigate reframes the region and runs object detection again on the same frame to get a better look.
All of this happens for each area of motion and tracked object.
> Are you simply saying that INITIAL triggering of any kind of detection will only happen in un-masked areas, but that once this triggering happens, the masks become irrelevant and object detection takes precedence?
Essentially, yes. I wouldn't describe it as object detection taking precedence though. The motion masks just prevent those areas from being counted as motion. Those masks do not modify the regions passed to object detection in any way, so you can absolutely detect objects in areas masked for motion.
> If so, this is completely expected and intuitive behavior for me. Because obviously if a "foot" starts motion detection the camera should be able to check if it's an entire person before it fully crosses into the zone. The docs imply this is the behavior, so I also don't understand why this would be detrimental to object detection on the whole.
When just a foot is triggering motion, Frigate will zoom in and look only at the foot. If that even qualifies as a person, it will determine the object is being cut off and look again and again until it zooms back out enough to find the whole person.
It is also detrimental to how Frigate tracks a moving object. Motion nearby the bounding box from the previous frame is used to intelligently determine where the region should be in the next frame. With too much masking, tracking is hampered and if an object walks from an unmasked area into a fully masked area, they essentially disappear and will be picked up as a "new" object if they leave the masked area. This is important because Frigate uses the history of scores while tracking an object to determine if it is a false positive or not. It takes a minimum of 3 frames for Frigate to determine is the object type it thinks it is, and the median score must be greater than the threshold. If a person meets this threshold while on the sidewalk before they walk into your stoop, you will get an alert the instant they step a single foot into a zone.
> I thought the main point of this feature was to cut down on CPU use when motion is happening in unnecessary areas.
It is, but the definition of "unnecessary" varies. I want to ignore areas of motion that I know are definitely not being triggered by objects of interest. Timestamps, trees, sky, rooftops. I don't want to ignore motion from objects that I want to track and know where they go.
> For me, giving my masks ANY padding results in a lot of people detection I'm not interested in. I live in the city and catch a lot of the sidewalk on my camera. People walk by my front door all the time and the margin between the sidewalk and actually walking onto my stoop is very thin, so I basically have everything but the exact contours of my stoop masked out. This results in very tidy detections but this info keeps throwing me off. Am I just overthinking it?
This is what `required_zones` are for. You should define a zone (remember this is evaluated based on the bottom center of the bounding box) and make it required to save snapshots and clips (now events in 0.9.0). You can also use this in your conditions for a notification.
> Maybe my specific situation just warrants this. I've just been having a hard time understanding the relevance of this information - it seems to be that it's exactly what would be expected when "masking out" an area of ANY image.
That may be the case for you. Frigate will definitely work harder tracking people on the sidewalk to make sure it doesn't miss anyone who steps foot on your stoop. The trade off with the way you have it now is slower recognition of objects and potential misses. That may be acceptable based on your needs. Also, if your resolution is low enough on the detect stream, your regions may already be so big that they grab the entire object anyway.

View File

@@ -1,6 +1,6 @@
---
id: nvdec
title: nVidia hardware decoder
title: NVIDIA hardware decoder
---
Certain nvidia cards include a hardware decoder, which can greatly improve the
@@ -9,6 +9,8 @@ ffmpeg with NVDEC support is required. The special docker architecture 'amd64nvi
includes this support for amd64 platforms. An aarch64 for the Jetson, which
also includes NVDEC may be added in the future.
Some more detailed setup instructions are also available in [this issue](https://github.com/blakeblackshear/frigate/issues/1847#issuecomment-932076731).
## Docker setup
### Requirements
@@ -23,7 +25,7 @@ In order to pass NVDEC, the docker engine must be set to `nvidia` and the enviro
In a docker compose file, these lines need to be set:
```
```yaml
services:
frigate:
...
@@ -41,7 +43,7 @@ The decoder you choose will depend on the input video.
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get a list)
```
```shell
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
@@ -57,10 +59,9 @@ A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the c
For example, for H265 video (hevc), you'll select `hevc_cuvid`. Add
`-c:v hevc_cuvid` to your ffmpeg input arguments:
```
```yaml
ffmpeg:
input_args:
...
input_args: ...
- -c:v
- hevc_cuvid
```
@@ -100,10 +101,10 @@ processes:
To further improve performance, you can set ffmpeg to skip frames in the output,
using the fps filter:
```
output_args:
- -filter:v
- fps=fps=5
```yaml
output_args:
- -filter:v
- fps=fps=5
```
This setting, for example, allows Frigate to consume my 10-15fps camera streams on

View File

@@ -1,12 +1,11 @@
---
id: objects
title: Default available objects
sidebar_label: Available objects
title: Objects
---
import labels from "../../../labelmap.txt";
By default, Frigate includes the following object models from the Google Coral test data.
By default, Frigate includes the following object models from the Google Coral test data. Note that `car` is listed twice because `truck` has been renamed to `car` by default. These object types are frequently confused.
<ul>
{labels.split("\n").map((label) => (
@@ -22,4 +21,4 @@ Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use yo
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
You also need to update the model width/height in the config if they differ from the defaults.
You also need to update the [model config](/configuration/advanced#model) if they differ from the defaults.

View File

@@ -1,72 +0,0 @@
---
id: optimizing
title: Optimizing performance
---
- **Google Coral**: It is strongly recommended to use a Google Coral, Frigate will no longer fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU. Frigate should work with any supported Coral device from https://coral.ai
- **Resolution**: For the `detect` input, choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
- **FPS**: 5 frames per second should be adequate. Higher frame rates will require more CPU usage without improving detections or accuracy. Reducing the frame rate on your camera will have the greatest improvement on system resources.
- **Hardware Acceleration**: Make sure you configure the `hwaccel_args` for your hardware. They provide a significant reduction in CPU usage if they are available.
- **Masks**: Masks can be used to ignore motion and reduce your idle CPU load. If you have areas with regular motion such as timestamps or trees blowing in the wind, frigate will constantly try to determine if that motion is from a person or other object you are tracking. Those detections not only increase your average CPU usage, but also clog the pipeline for detecting objects elsewhere. If you are experiencing high values for `detection_fps` when no objects of interest are in the cameras, you should use masks to tell frigate to ignore movement from trees, bushes, timestamps, or any part of the image where detections should not be wasted looking for objects.
### FFmpeg Hardware Acceleration
Frigate works on Raspberry Pi 3b/4 and x86 machines. It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible.
Raspberry Pi 3/4 (32-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_mmal
```
Raspberry Pi 3/4 (64-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_v4l2m2m
```
Intel-based CPUs (<10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```
Intel-based CPUs (>=10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- qsv
- -qsv_device
- /dev/dri/renderD128
```
AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
**Note:** You also need to set `LIBVA_DRIVER_NAME=radeonsi` as an environment variable on the container.
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
```
Nvidia GPU based decoding via NVDEC is supported, but requires special configuration. See the [nvidia NVDEC documentation](/configuration/nvdec) for more details.

View File

@@ -0,0 +1,25 @@
---
id: record
title: Recording
---
Recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding. Each camera supports a configurable retention policy in the config. Frigate chooses the largest matching retention value between the recording retention and the event retention when determining if a recording should be removed.
H265 recordings can be viewed in Edge and Safari only. All other browsers require recordings to be encoded with H264.
## What if I don't want 24/7 recordings?
If you only used clips in previous versions with recordings disabled, you can use the following config to get the same behavior. This is also the default behavior when recordings are enabled.
```yaml
record:
enabled: True
retain_days: 0
events:
retain:
default: 10
```
This configuration will retain recording segments that overlap with events for 10 days. Because multiple events can reference the same recording segments, this avoids storing duplicate footage for overlapping events and reduces overall storage needs.
When `retain_days` is set to `0`, segments will be deleted from the cache if no events are in progress

View File

@@ -0,0 +1,8 @@
---
id: rtmp
title: RTMP
---
Frigate can re-stream your video feed as a RTMP feed for other applications such as Home Assistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and Home Assistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.

View File

@@ -0,0 +1,6 @@
---
id: snapshots
title: Snapshots
---
Frigate can save a snapshot image to `/media/frigate/clips` for each event named as `<camera>-<id>.jpg`.

View File

@@ -0,0 +1,38 @@
---
id: zones
title: Zones
---
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
During testing, enable the Zones option for the debug feed so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
To create a zone, follow [the steps for a "Motion mask"](/configuration/masks), but use the section of the web UI for creating a zone instead.
### Restricting zones to specific objects
Sometimes you want to limit a zone to specific object types to have more granular control of when events/snapshots are saved. The following example will limit one zone to person objects and the other to cars.
```yaml
camera:
record:
events:
required_zones:
- entire_yard
- front_yard_street
snapshots:
required_zones:
- entire_yard
- front_yard_street
zones:
entire_yard:
coordinates: ... (everywhere you want a person)
objects:
- person
front_yard_street:
coordinates: ... (just the street)
objects:
- car
```
Only car objects can trigger the `front_yard_street` zone and only person can trigger the `entire_yard`. You will get events for person objects that enter anywhere in the yard, and events for cars only if they enter the street.

View File

@@ -1,21 +1,25 @@
---
id: troubleshooting
title: Troubleshooting and FAQ
id: faqs
title: Frequently Asked Questions
---
### Fatal Python error: Bus error
This error message is due to a shm-size that is too small. Try updating your shm-size according to [this guide](/installation#calculating-required-shm-size).
### I am seeing a solid green image for my camera.
A solid green image means that frigate has not received any frames from ffmpeg. Check the logs to see why ffmpeg is exiting and adjust your ffmpeg args accordingly.
### How can I get sound or audio in my recordings?
By default, Frigate removes audio from recordings to reduce the likelihood of failing for invalid data. If you would like to include audio, you need to override the output args to remove `-an` for where you want to include audio. The recommended audio codec is `aac`. Not all audio codecs are supported by RTMP, so you may need to re-encode your audio with `-c:a aac`. The default ffmpeg args are shown [here](/frigate/configuration/index#ffmpeg).
By default, Frigate removes audio from recordings to reduce the likelihood of failing for invalid data. If you would like to include audio, you need to override the output args to remove `-an` for where you want to include audio. The recommended audio codec is `aac`. Not all audio codecs are supported by RTMP, so you may need to re-encode your audio with `-c:a aac`. The default ffmpeg args are shown [here](configuration/index#full-configuration-reference).
### My mjpeg stream or snapshots look green and crazy
This almost always means that the width/height defined for your camera are not correct. Double check the resolution with vlc or another player. Also make sure you don't have the width and height values backwards.
![mismatched-resolution](/img/mismatched-resolution.jpg)
![mismatched-resolution](/img/mismatched-resolution-min.jpg)
### I can't view events or recordings in the Web UI.

View File

@@ -0,0 +1,47 @@
---
id: camera_setup
title: Camera setup
---
Cameras configured to output H.264 video and AAC audio will offer the most compatibility with all features of Frigate and Home Assistant. H.265 has better compression, but far less compatibility. Safari and Edge are the only browsers able to play H.265. Ideally, cameras should be configured directly for the desired resolutions and frame rates you want to use in Frigate. Reducing frame rates within Frigate will waste CPU resources decoding extra frames that are discarded. There are three different goals that you want to tune your stream configurations around.
- **Detection**: This is the only stream that Frigate will decode for processing. Also, this is the stream where snapshots will be generated from. The resolution for detection should be tuned for the size of the objects you want to detect. See [Choosing a detect resolution](#choosing-a-detect-resolution) for more details. The recommended frame rate is 5fps, but may need to be higher for very fast moving objects. Higher resolutions and frame rates will drive higher CPU usage on your server.
- **Recording**: This stream should be the resolution you wish to store for reference. Typically, this will be the highest resolution your camera supports. I recommend setting this feed to 15 fps.
- **Stream Viewing**: This stream will be rebroadcast as is to Home Assistant for viewing with the stream component. Setting this resolution too high will use significant bandwidth when viewing streams in Home Assistant, and they may not load reliably over slower connections.
### Choosing a detect resolution
The ideal resolution for detection is one where the objects you want to detect fit inside the dimensions of the model used by Frigate (320x320). Frigate does not pass the entire camera frame to object detection. It will crop an area of motion from the full frame and look in that portion of the frame. If the area being inspected is larger than 320x320, Frigate must resize it before running object detection. Higher resolutions do not improve the detection accuracy because the additional detail is lost in the resize. Below you can see a reference for how large a 320x320 area is against common resolutions.
Larger resolutions **do** improve performance if the objects are very small in the frame.
![Resolutions](/img/resolutions-min.jpg)
### Example Camera Configuration
For the Dahua/Loryta 5442 camera, I use the following settings:
**Main Stream (Recording)**
- Encode Mode: H.264
- Resolution: 2688\*1520
- Frame Rate(FPS): 15
- I Frame Interval: 30
**Sub Stream 1 (RTMP)**
- Enable: Sub Stream 1
- Encode Mode: H.264
- Resolution: 720\*576
- Frame Rate: 10
- I Frame Interval: 10
**Sub Stream 2 (Detection)**
- Enable: Sub Stream 2
- Encode Mode: H.264
- Resolution: 1280\*720
- Frame Rate: 5
- I Frame Interval: 5

View File

@@ -0,0 +1,193 @@
---
id: getting_started
title: Creating a config file
---
This guide walks through the steps to build a configuration file for Frigate. It assumes that you already have an environment setup as described in [Installation](/installation). You should also configure your cameras according to the [camera setup guide](/guides/camera_setup)
### Step 1: Configure the MQTT server
Frigate requires a functioning MQTT server. Start by adding the mqtt section at the top level in your config:
```yaml
mqtt:
host: <ip of your mqtt server>
```
If using the Mosquitto Addon in Home Assistant, a username and password is required. For example:
```yaml
mqtt:
host: <ip of your mqtt server>
user: <username>
password: <password>
```
Frigate supports many configuration options for mqtt. See the [configuration reference](/configuration/index#full-configuration-reference) for more info.
### Step 2: Configure detectors
By default, Frigate will use a single CPU detector. If you have a USB Coral, you will need to add a detectors section to your config.
```yaml
mqtt:
host: <ip of your mqtt server>
detectors:
coral:
type: edgetpu
device: usb
```
More details on available detectors can be found [here](/configuration/detectors).
### Step 3: Add a minimal camera configuration
Now let's add the first camera:
```yaml
mqtt:
host: <ip of your mqtt server>
detectors:
coral:
type: edgetpu
device: usb
cameras:
camera_1: # <------ Name the camera
ffmpeg:
inputs:
- path: rtsp://10.0.10.10:554/rtsp # <----- Update for your camera
roles:
- detect
- rtmp
detect:
width: 1280 # <---- update for your camera's resolution
height: 720 # <---- update for your camera's resolution
```
### Step 4: Start Frigate
At this point you should be able to start Frigate and see the the video feed in the UI.
If you get a green image from the camera, this means ffmpeg was not able to get the video feed from your camera. Check the logs for error messages from ffmpeg. The default ffmpeg arguments are designed to work with RTSP cameras that support TCP connections. FFmpeg arguments for other types of cameras can be found [here](/configuration/camera_specific).
### Step 5: Configure hardware acceleration (optional)
Now that you have a working camera configuration, you want to setup hardware acceleration to minimize the CPU required to decode your video streams. See the [hardware acceleration](/configuration/hardware_acceleration) config reference for examples applicable to your hardware.
In order to best evaluate the performance impact of hardware acceleration, it is recommended to temporarily disable detection.
```yaml
mqtt: ...
detectors: ...
cameras:
camera_1:
ffmpeg: ...
detect:
enabled: False
...
```
Here is an example configuration with hardware acceleration configured:
```yaml
mqtt: ...
detectors: ...
cameras:
camera_1:
ffmpeg:
inputs: ...
hwaccel_args: -c:v h264_v4l2m2m
detect: ...
```
### Step 6: Setup motion masks
Now that you have optimized your configuration for decoding the video stream, you will want to check to see where to implement motion masks. To do this, navigate to the camera in the UI, select "Debug" at the top, and enable "Motion boxes" in the options below the video feed. Watch for areas that continuously trigger unwanted motion to be detected. Common areas to mask include camera timestamps and trees that frequently blow in the wind. The goal is to avoid wasting object detection cycles looking at these areas.
Now that you know where you need to mask, use the "Mask & Zone creator" in the options pane to generate the coordinates needed for your config file. More information about masks can be found [here](/configuration/masks).
:::caution
Note that motion masks should not be used to mark out areas where you do not want objects to be detected or to reduce false positives. They do not alter the image sent to object detection, so you can still get events and detections in areas with motion masks. These only prevent motion in these areas from initiating object detection.
:::
Your configuration should look similar to this now.
```yaml
mqtt:
host: mqtt.local
detectors:
coral:
type: edgetpu
device: usb
cameras:
camera_1:
ffmpeg:
inputs:
- path: rtsp://10.0.10.10:554/rtsp
roles:
- detect
- rtmp
detect:
width: 1280
height: 720
motion:
mask:
- 0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432
```
### Step 7: Enable recording (optional)
To enable recording video, add the `record` role to a stream and enable it in the config.
```yaml
mqtt: ...
detectors: ...
cameras:
camera_1:
ffmpeg:
inputs:
- path: rtsp://10.0.10.10:554/rtsp
roles:
- detect
- rtmp
- record # <----- Add role
detect: ...
record: # <----- Enable recording
enabled: True
motion: ...
```
By default, Frigate will retain video of all events for 10 days. The full set of options for recording can be found [here](/configuration/index#full-configuration-reference).
### Step 8: Enable snapshots (optional)
To enable snapshots of your events, just enable it in the config.
```yaml
mqtt: ...
detectors: ...
cameras:
camera_1: ...
detect: ...
record: ...
snapshots: # <----- Enable snapshots
enabled: True
motion: ...
```
By default, Frigate will retain snapshots of all events for 10 days. The full set of options for snapshots can be found [here](/configuration/index#full-configuration-reference).

View File

@@ -0,0 +1,56 @@
---
id: ha_notifications
title: Home Assistant notifications
---
The best way to get started with notifications for Frigate is to use the [Blueprint](https://community.home-assistant.io/t/frigate-mobile-app-notifications/311091). You can use the yaml generated from the Blueprint as a starting point and customize from there.
It is generally recommended to trigger notifications based on the `frigate/events` mqtt topic. This provides the event_id needed to fetch [thumbnails/snapshots/clips](/integrations/home-assistant#notification-api) and other useful information to customize when and where you want to receive alerts. The data is published in the form of a change feed, which means you can reference the "previous state" of the object in the `before` section and the "current state" of the object in the `after` section. You can see an example [here](/integrations/mqtt#frigateevents).
Here is a simple example of a notification automation of events which will update the existing notification for each change. This means the image you see in the notification will update as frigate finds a "better" image.
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
image: 'https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg?format=android'
tag: '{{trigger.payload_json["after"]["id"]}}'
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
## Conditions
Conditions with the `before` and `after` values allow a high degree of customization for automations.
When a person enters a zone named yard
```yaml
condition:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
```
When a person leaves a zone named yard
```yaml
condition:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
```
Notify for dogs in the front with a high top score
```yaml
condition:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
```

View File

@@ -0,0 +1,37 @@
---
id: stationary_objects
title: Avoiding stationary objects
---
Many people use Frigate to detect cars entering their driveway, and they often run into an issue with repeated events of a parked car being repeatedly detected. This is because object tracking stops when motion ends and the event ends. Motion detection works by determining if a sufficient number of pixels have changed between frames. Shadows or other lighting changes will be detected as motion. This will often cause a new event for a parked car.
You can use zones to restrict events and notifications to objects that have entered specific areas.
:::caution
It is not recommended to use masks to try and eliminate parked cars in your driveway. Masks are designed to prevent motion from triggering object detection and/or to indicate areas that are guaranteed false positives.
Frigate is designed to track objects as they move and over-masking can prevent it from knowing that an object in the current frame is the same as the previous frame. You want Frigate to detect objects everywhere and configure your events and alerts to be based on the location of the object with zones.
:::
To only be notified of cars that enter your driveway from the street, you could create multiple zones that cover your driveway. For cars, you would only notify if `entered_zones` from the events MQTT topic has more than 1 zone.
See [this example](/configuration/zones#restricting-zones-to-specific-objects) from the Zones documentation to see how to restrict zones to certain object types.
![Driveway Zones](/img/driveway_zones-min.png)
To limit snapshots and events, you can list the zone for the entrance of your driveway under `required_zones` in your configuration file. Example below.
```yaml
camera:
record:
events:
required_zones:
- zone_2
zones:
zone_1:
coordinates: ... (parking area)
zone_2:
coordinates: ... (entrance to driveway)
```

View File

@@ -7,23 +7,62 @@ title: Recommended hardware
Cameras that output H.264 video and AAC audio will offer the most compatibility with all features of Frigate and Home Assistant. It is also helpful if your camera supports multiple substreams to allow different resolutions to be used for detection, streaming, and recordings without re-encoding.
## Computer
I recommend Dahua, Hikvision, and Amcrest in that order. Dahua edges out Hikvision because they are easier to find and order, not because they are better cameras. I personally use Dahua cameras because they are easier to purchase directly. In my experience Dahua and Hikvision both have multiple streams with configurable resolutions and frame rates and rock solid streams. They also both have models with large sensors well known for excellent image quality at night. Not all the models are equal. Larger sensors are better than higher resolutions; especially at night. Amcrest is the fallback recommendation because they are rebranded Dahuas. They are rebranding the lower end models with smaller sensors or less configuration options.
| Name | Inference Speed | Notes |
| ----------------------- | --------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| Atomic Pi | 16ms | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
| Intel NUC NUC7i3BNK | 8-10ms | Great performance. Can handle many cameras at 5fps depending on typical amounts of motion. |
| BMAX B2 Plus | 10-12ms | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
| Minisforum GK41 | 9-10ms | Great alternative to a NUC with dual Gigabit NICs. Easily handles several 1080p cameras. |
| Raspberry Pi 3B (32bit) | 60ms | Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0. |
| Raspberry Pi 4 (32bit) | 15-20ms | Can handle a small number of cameras. The 2GB version runs fine. |
| Raspberry Pi 4 (64bit) | 10-15ms | Can handle a small number of cameras. The 2GB version runs fine. |
Many users have reported various issues with Reolink cameras, so I do not recommend them. If you are using Reolink, I suggest the [Reolink specific configuration](configuration/camera_specific#reolink-410520-possibly-others). Wifi cameras are also not recommended. Their streams are less reliable and cause connection loss and/or lost video data.
## Unraid
Here are some of the camera's I recommend:
Many people have powerful enough NAS devices or home servers to also run docker. There is a Unraid Community App.
To install make sure you have the [community app plugin here](https://forums.unraid.net/topic/38582-plug-in-community-applications/). Then search for "Frigate" in the apps section within Unraid - you can see the online store [here](https://unraid.net/community/apps?q=frigate#r)
- <a href="https://amzn.to/3uFLtxB" target="_blank" rel="nofollow noopener sponsored">Loryta(Dahua) T5442TM-AS-LED</a> (affiliate link)
- <a href="https://amzn.to/3isJ3gU" target="_blank" rel="nofollow noopener sponsored">Loryta(Dahua) IPC-T5442TM-AS</a> (affiliate link)
- <a href="https://amzn.to/2ZWNWIA" target="_blank" rel="nofollow noopener sponsored">Amcrest IP5M-T1179EW-28MM</a> (affiliate link)
| Name | Inference Speed | Notes |
| ------------------------------------ | --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [M2 Coral Edge TPU](http://coral.ai) | 6.2ms | Install the Coral plugin from Unraid Community App Center [info here](https://forums.unraid.net/topic/98064-support-blakeblackshear-frigate/?do=findComment&comment=949789) |
I may earn a small commission for my endorsement, recommendation, testimonial, or link to any products or services from this website.
## Server
My current favorite is the Odyssey X86 Blue J4125 because the Coral M.2 compatibility and dual NICs that allow you to setup a dedicated private network for your cameras where they can be blocked from accessing the internet. I may earn a small commission for my endorsement, recommendation, testimonial, or link to any products or services from this website.
| Name | Inference Speed | Coral Compatibility | Notes |
| -------------------------------------------------------------------------------------------------------------------------------- | --------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| <a href="https://amzn.to/3oH4BKi" target="_blank" rel="nofollow noopener sponsored">Odyssey X86 Blue J4125</a> (affiliate link) | 9-10ms | M.2 B+M | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3oxEC8m" target="_blank" rel="nofollow noopener sponsored">Minisforum GK41</a> (affiliate link) | 9-10ms | USB | Great alternative to a NUC. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3ixJFlb" target="_blank" rel="nofollow noopener sponsored">Minisforum GK50</a> (affiliate link) | 9-10ms | USB | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3l7vCEI" target="_blank" rel="nofollow noopener sponsored">Intel NUC</a> (affiliate link) | 8-10ms | USB | Overkill for most, but great performance. Can handle many cameras at 5fps depending on typical amounts of motion. |
| <a href="https://amzn.to/3a6TBh8" target="_blank" rel="nofollow noopener sponsored">BMAX B2 Plus</a> (affiliate link) | 10-12ms | USB | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
| <a href="https://amzn.to/2YjpY9m" target="_blank" rel="nofollow noopener sponsored">Atomic Pi</a> (affiliate link) | 16ms | USB | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
| <a href="https://amzn.to/2WIpwRU" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 3B (32bit)</a> (affiliate link) | 60ms | USB | Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0. |
| <a href="https://amzn.to/2YhSGHH" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 4 (32bit)</a> (affiliate link) | 15-20ms | USB | Can handle a small number of cameras. The 2GB version runs fine. |
| <a href="https://amzn.to/2YhSGHH" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 4 (64bit)</a> (affiliate link) | 10-15ms | USB | Can handle a small number of cameras. The 2GB version runs fine. |
## Google Coral TPU
It is strongly recommended to use a Google Coral. Frigate is designed around the expectation that a Coral is used to achieve very low inference speeds. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU. Frigate should work with any supported Coral device from https://coral.ai
The USB version is compatible with the widest variety of hardware and does not require a driver on the host machine. However, it does lack the automatic throttling features of the other versions.
The PCIe and M.2 versions require installation of a driver on the host. Follow the instructions for your version from https://coral.ai
A single Coral can handle many cameras and will be sufficient for the majority of users. You can calculate the maximum performance of your Coral based on the inference speed reported by Frigate. With an inference speed of 10, your Coral will top out at `1000/10=100`, or 100 frames per second. If your detection fps is regularly getting close to that, you should first consider tuning motion masks. If those are already properly configured, a second Coral may be needed.
### What does Frigate use the CPU for and what does it use the Coral for? (ELI5 Version)
This is taken from a [user question on reddit](https://www.reddit.com/r/homeassistant/comments/q8mgau/comment/hgqbxh5/?utm_source=share&utm_medium=web2x&context=3). Modified slightly for clarity.
CPU Usage: I am a CPU, Mendel is a Google Coral
My buddy Mendel and I have been tasked with keeping the neighbor's red footed booby off my parent's yard. Now I'm really bad at identifying birds. It takes me forever, but my buddy Mendel is incredible at it.
Mendel however, struggles at pretty much anything else. So we make an agreement. I wait till I see something that moves, and snap a picture of it for Mendel. I then show him the picture and he tells me what it is. Most of the time it isn't anything. But eventually I see some movement and Mendel tells me it is the Booby. Score!
_What happens when I increase the resolution of my camera?_
However we realize that there is a problem. There is still booby poop all over the yard. How could we miss that! I've been watching all day! My parents check the window and realize its dirty and a bit small to see the entire yard so they clean it and put a bigger one in there. Now there is so much more to see! However I now have a much bigger area to scan for movement and have to work a lot harder! Even my buddy Mendel has to work harder, as now the pictures have a lot more detail in them that he has to look at to see if it is our sneaky booby.
Basically - When you increase the resolution and/or the frame rate of the stream there is now significantly more data for the CPU to parse. That takes additional computing power. The Google Coral is really good at doing object detection, but it doesn't have time to look everywhere all the time (especially when there are many windows to check). To balance it, Frigate uses the CPU to look for movement, then sends those frames to the Coral to do object detection. This allows the Coral to be available to a large number of cameras and not overload it.
### Do hwaccel args help if I am using a Coral?
YES! The Coral does not help with decoding video streams.
Decompressing video streams takes a significant amount of CPU power. Video compression uses key frames (also known as I-frames) to send a full frame in the video stream. The following frames only include the difference from the key frame, and the CPU has to compile each frame by merging the differences with the key frame. [More detailed explanation](https://blog.video.ibm.com/streaming-video-tips/keyframes-interframe-video-compression/). Higher resolutions and frame rates mean more processing power is needed to decode the video stream, so try and set them on the camera to avoid unnecessary decoding work.

View File

@@ -1,13 +0,0 @@
---
id: how-it-works
title: How Frigate Works
sidebar_label: How it works
---
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
![Diagram](/img/diagram.png)
1. Look for Motion
2. Calculate Detection Regions
3. Run Object Detection

View File

@@ -1,13 +1,12 @@
---
id: index
title: Frigate
sidebar_label: Features
title: Introduction
slug: /
---
A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but strongly recommended. CPU detection should only be used for testing purposes. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
- Tight integration with Home Assistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
@@ -15,11 +14,12 @@ Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- 24/7 recording
- Recording with retention based on detected objects
- Re-streaming via RTMP to reduce the number of connections to your camera
- A dynamic combined camera view of all tracked cameras.
## Screenshots
![Media Browser](/img/media_browser.png)
![Media Browser](/img/media_browser-min.png)
![Notification](/img/notification.png)
![Notification](/img/notification-min.png)

View File

@@ -3,25 +3,99 @@ id: installation
title: Installation
---
Frigate is a Docker container that can be run on any Docker host including as a [HassOS Addon](https://www.home-assistant.io/addons/). See instructions below for installing the HassOS addon.
Frigate is a Docker container that can be run on any Docker host including as a [HassOS Addon](https://www.home-assistant.io/addons/). Note that a Home Assistant Addon is **not** the same thing as the integration. The [integration](integrations/home-assistant) is required to integrate Frigate into Home Assistant.
For Home Assistant users, there is also a [custom component (aka integration)](https://github.com/blakeblackshear/frigate-hass-integration). This custom component adds tighter integration with Home Assistant by automatically setting up camera entities, sensors, media browser for recordings, and a public API to simplify notifications.
## Dependencies
Note that HassOS Addons and custom components are different things. If you are already running Frigate with Docker directly, you do not need the Addon since the Addon would run another instance of Frigate.
**MQTT broker** - Frigate requires an MQTT broker. If using Home Assistant, Frigate and Home Assistant must be connected to the same MQTT broker.
## HassOS Addon
## Preparing your hardware
HassOS users can install via the addon repository. Frigate requires an MQTT server.
### Operating System
1. Navigate to Supervisor > Add-on Store > Repositories
2. Add https://github.com/blakeblackshear/frigate-hass-addons
3. Setup your network configuration in the `Configuration` tab if deisred
4. Create the file `frigate.yml` in your `config` directory with your detailed Frigate configuration
5. Start the addon container
6. If you are using hardware acceleration for ffmpeg, you will need to disable "Protection mode"
Frigate runs best with docker installed on bare metal debian-based distributions. For ideal performance, Frigate needs access to underlying hardware for the Coral and GPU devices. Running Frigate in a VM on top of Proxmox, ESXi, Virtualbox, etc. is not recommended. The virtualization layer often introduces a sizable amount of overhead for communication with Coral devices, but [not in all circumstances](https://github.com/blakeblackshear/frigate/discussions/1837).
Windows is not officially supported, but some users have had success getting it to run under WSL or Virtualbox. Getting the GPU and/or Coral devices properly passed to Frigate may be difficult or impossible. Search previous discussions or issues for help.
### Storage
Frigate uses the following locations for read/write operations in the container. Docker volume mappings can be used to map these to any location on your host machine.
- `/media/frigate/clips`: Used for snapshot storage. In the future, it will likely be renamed from `clips` to `snapshots`. The file structure here cannot be modified and isn't intended to be browsed or managed manually.
- `/media/frigate/recordings`: Internal system storage for recording segments. The file structure here cannot be modified and isn't intended to be browsed or managed manually.
- `/media/frigate/frigate.db`: Default location for the sqlite database. You will also see several files alongside this file while frigate is running. If moving the database location (often needed when using a network drive at `/media/frigate`), it is recommended to mount a volume with docker at `/db` and change the storage location of the database to `/db/frigate.db` in the config file.
- `/tmp/cache`: Cache location for recording segments. Initial recordings are written here before being checked and converted to mp4 and moved to the recordings folder.
- `/dev/shm`: It is not recommended to modify this directory or map it with docker. This is the location for raw decoded frames in shared memory and it's size is impacted by the `shm-size` calculations below.
- `/config/config.yml`: Default location of the config file.
#### Common docker compose storage configurations
Writing to a local disk or external USB drive:
```yaml
version: "3.9"
services:
frigate:
...
volumes:
- /path/to/your/config.yml:/config/config.yml:ro
- /path/to/your/storage:/media/frigate
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
target: /tmp/cache
tmpfs:
size: 1000000000
...
```
Writing to a network drive with database on a local drive:
```yaml
version: "3.9"
services:
frigate:
...
volumes:
- /path/to/your/config.yml:/config/config.yml:ro
- /path/to/network/storage:/media/frigate
- /path/to/local/disk:/db
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
target: /tmp/cache
tmpfs:
size: 1000000000
...
```
frigate.yml
```yaml
database:
path: /db/frigate.db
```
### Calculating required shm-size
Frigate utilizes shared memory to store frames during processing. The default `shm-size` provided by Docker is 64m.
The default shm-size of 64m is fine for setups with 2 or less 1080p cameras. If frigate is exiting with "Bus error" messages, it is likely because you have too many high resolution cameras and you need to specify a higher shm size.
You can calculate the necessary shm-size for each camera with the following formula using the resolution specified for detect:
```
(width * height * 1.5 * 9 + 270480)/1048576 = <shm size in mb>
```
The shm size cannot be set per container for Home Assistant Addons. You must set `default-shm-size` in `/etc/docker/daemon.json` to increase the default shm size. This will increase the shm size for all of your docker containers. This may or may not cause issues with your setup. https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
### Raspberry Pi 3/4
By default, the Raspberry Pi limits the amount of memory available to the GPU. In order to use ffmpeg hardware acceleration, you must increase the available memory by setting `gpu_mem` to the maximum recommended value in `config.txt` as described in the [official docs](https://www.raspberrypi.org/documentation/computers/config_txt.html#memory-options).
Additionally, the USB Coral draws a considerable amount of power. If using any other USB devices such as an SSD, you will experience instability due to the Pi not providing enough power to USB devices. You will need to purchase an external USB hub with it's own power supply. Some have reported success with <a href="https://amzn.to/3a2mH0P" target="_blank" rel="nofollow noopener sponsored">this</a> (affiliate link).
## Docker
Running in Docker directly is the recommended install method.
Make sure you choose the right image for your architecture:
| Arch | Image Name |
@@ -41,13 +115,14 @@ services:
privileged: true # this may not be necessary for all setups
restart: unless-stopped
image: blakeblackshear/frigate:<specify_version_tag>
shm_size: "64mb" # update for your cameras based on calculation above
devices:
- /dev/bus/usb:/dev/bus/usb
- /dev/bus/usb:/dev/bus/usb # passes the USB Coral, needs to be modified for other versions
- /dev/dri/renderD128 # for intel hwaccel, needs to be updated for your hardware
volumes:
- /etc/localtime:/etc/localtime:ro
- <path_to_config_file>:/config/config.yml:ro
- <path_to_directory_for_media>:/media/frigate
- /path/to/your/config.yml:/config/config.yml:ro
- /path/to/your/storage:/media/frigate
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
target: /tmp/cache
tmpfs:
@@ -68,8 +143,9 @@ docker run -d \
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
--device /dev/bus/usb:/dev/bus/usb \
--device /dev/dri/renderD128 \
-v <path_to_directory_for_media>:/media/frigate \
-v <path_to_config_file>:/config/config.yml:ro \
--shm-size=64m \
-v /path/to/your/storage:/media/frigate \
-v /path/to/your/config.yml:/config/config.yml:ro \
-v /etc/localtime:/etc/localtime:ro \
-e FRIGATE_RTSP_PASSWORD='password' \
-p 5000:5000 \
@@ -77,48 +153,62 @@ docker run -d \
blakeblackshear/frigate:<specify_version_tag>
```
### Calculating shm-size
## Home Assistant Operating System (HassOS)
The default shm-size of 64m is fine for setups with 3 or less 1080p cameras. If frigate is exiting with "Bus error" messages, it could be because you have too many high resolution cameras and you need to specify a higher shm size.
:::caution
You can calculate the necessary shm-size for each camera with the following formula:
Due to limitations in Home Assistant Operating System, utilizing external storage for recordings or snapshots requires [modifying udev rules manually](https://community.home-assistant.io/t/solved-mount-usb-drive-in-hassio-to-be-used-on-the-media-folder-with-udev-customization/258406/46).
```
(width * height * 1.5 * 7 + 270480)/1048576 = <shm size in mb>
:::
:::tip
If possible, it is recommended to run Frigate standalone in Docker and use [Frigate's Proxy Addon](https://github.com/blakeblackshear/frigate-hass-addons/blob/main/frigate_proxy/README.md).
:::
HassOS users can install via the addon repository.
1. Navigate to Supervisor > Add-on Store > Repositories
2. Add https://github.com/blakeblackshear/frigate-hass-addons
3. Install your desired Frigate NVR Addon and navigate to it's page
4. Setup your network configuration in the `Configuration` tab
5. (not for proxy addon) Create the file `frigate.yml` in your `config` directory with your detailed Frigate configuration
6. Start the addon container
7. (not for proxy addon) If you are using hardware acceleration for ffmpeg, you may need to disable "Protection mode"
## Home Assistant Supervised
:::tip
If possible, it is recommended to run Frigate standalone in Docker and use [Frigate's Proxy Addon](https://github.com/blakeblackshear/frigate-hass-addons/blob/main/frigate_proxy/README.md).
:::
When running Home Assistant with the [Supervised install method](https://github.com/home-assistant/supervised-installer), you can get the benefit of running the Addon along with the ability to customize the storage used by Frigate.
In order to customize the storage location for Frigate, simply use `fstab` to mount the drive you want at `/usr/share/hassio/media`. Here is an example fstab entry:
```shell
UUID=1a65fec6-c25f-404a-b3d2-1f2fcf6095c8 /media/data ext4 defaults 0 0
/media/data/homeassistant/media /usr/share/hassio/media none bind 0 0
```
The shm size cannot be set per container for Home Assistant Addons. You must set `default-shm-size` in `/etc/docker/daemon.json` to increase the default shm size. This will increase the shm size for all of your docker containers. This may or may not cause issues with your setup. https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
Then follow the instructions listed for [Home Assistant Operating System](#home-assistant-operating-system-hassos).
## Kubernetes
Use the [helm chart](https://github.com/blakeblackshear/blakeshome-charts/tree/master/charts/frigate).
## Virtualization
## Unraid
For ideal performance, Frigate needs access to underlying hardware for the Coral and GPU devices for ffmpeg decoding. Running Frigate in a VM on top of Proxmox, ESXi, Virtualbox, etc. is not recommended. The virtualization layer typically introduces a sizable amount of overhead for communication with Coral devices.
Many people have powerful enough NAS devices or home servers to also run docker. There is a Unraid Community App.
To install make sure you have the [community app plugin here](https://forums.unraid.net/topic/38582-plug-in-community-applications/). Then search for "Frigate" in the apps section within Unraid - you can see the online store [here](https://unraid.net/community/apps?q=frigate#r)
### Proxmox
## Proxmox
Some people have had success running Frigate in LXC directly with the following config:
It is recommended to run Frigate in LXC for maximum performance. See [this discussion](https://github.com/blakeblackshear/frigate/discussions/1111) for more information.
```
arch: amd64
cores: 2
features: nesting=1
hostname: FrigateLXC
memory: 4096
net0: name=eth0,bridge=vmbr0,firewall=1,hwaddr=2E:76:AE:5A:58:48,ip=dhcp,ip6=auto,type=veth
ostype: debian
rootfs: local-lvm:vm-115-disk-0,size=12G
swap: 512
lxc.cgroup.devices.allow: c 189:385 rwm
lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file
lxc.mount.entry: /dev/bus/usb/004/002 dev/bus/usb/004/002 none bind,optional,create=file
lxc.apparmor.profile: unconfined
lxc.cgroup.devices.allow: a
lxc.cap.drop:
```
### ESX
## ESX
For details on running Frigate under ESX, see details [here](https://github.com/blakeblackshear/frigate/issues/305).

View File

@@ -192,6 +192,10 @@ Permanently deletes the event along with any clips/snapshots.
Returns a thumbnail for the event id optimized for notifications. Works while the event is in progress and after completion. Passing `?format=android` will convert the thumbnail to 2:1 aspect ratio.
### `GET /api/events/<id>/clip.mp4`
Returns the clip for the event id. Works after the event has ended.
### `GET /api/events/<id>/snapshot.jpg`
Returns the snapshot image for the event id. Works while the event is in progress and after completion.
@@ -206,10 +210,22 @@ Accepts the following query string parameters, but they are only applied when an
| `crop` | int | Crop the snapshot to the (0 or 1) |
| `quality` | int | Jpeg encoding quality (0-100). Defaults to 70. |
### `/clips/<camera>-<id>.jpg`
### `GET /clips/<camera>-<id>.jpg`
JPG snapshot for the given camera and event id.
### `/vod/<year>-<month>/<day>/<hour>/<camera>/master.m3u8`
### `GET /vod/<year>-<month>/<day>/<hour>/<camera>/master.m3u8`
HTTP Live Streaming Video on Demand URL for the specified hour and camera. Can be viewed in an application like VLC.
### `GET /vod/event/<event-id>/index.m3u8`
HTTP Live Streaming Video on Demand URL for the specified event. Can be viewed in an application like VLC.
### `GET /vod/event/<event-id>/index.m3u8`
HTTP Live Streaming Video on Demand URL for the specified event. Can be viewed in an application like VLC.
### `GET /vod/<camera>/start/<start-timestamp>/end/<end-timestamp>/index.m3u8`
HTTP Live Streaming Video on Demand URL for the camera with the specified time range. Can be viewed in an application like VLC.

View File

@@ -1,25 +1,24 @@
---
id: home-assistant
title: Integration with Home Assistant
sidebar_label: Home Assistant
title: Home Assistant Integration
---
The best way to integrate with Home Assistant is to use the [official integration](https://github.com/blakeblackshear/frigate-hass-integration).
## Installation
Available via HACS as a [custom repository](https://hacs.xyz/docs/faq/custom_repositories). To install:
### Preparation
- Add the custom repository:
The Frigate integration requires the `mqtt` integration to be installed and
manually configured first.
```
Home Assistant > HACS > Integrations > [...] > Custom Repositories
```
See the [MQTT integration
documentation](https://www.home-assistant.io/integrations/mqtt/) for more
details.
| Key | Value |
| -------------- | ----------------------------------------------------------- |
| Repository URL | https://github.com/blakeblackshear/frigate-hass-integration |
| Category | Integration |
### Integration installation
Available via HACS as a default repository. To install:
- Use [HACS](https://hacs.xyz/) to install the integration:
@@ -38,6 +37,12 @@ Note: You will also need
[media_source](https://www.home-assistant.io/integrations/media_source/) enabled
in your Home Assistant configuration for the Media Browser to appear.
### (Optional) Lovelace Card Installation
To install the optional companion Lovelace card, please see the [separate
installation instructions](https://github.com/dermotduffy/frigate-hass-card) for
that card.
## Configuration
When configuring the integration, you will be asked for the following parameters:
@@ -71,131 +76,34 @@ Home Assistant > Configuration > Integrations > Frigate > Options
The integration provides:
- Rich UI with thumbnails for browsing event recordings
- Rich UI for browsing 24/7 recordings by month, day, camera, time
- Browsing event recordings with thumbnails
- Browsing snapshots
- Browsing recordings by month, day, camera, time
This is accessible via "Media Browser" on the left menu panel in Home Assistant.
<a name="api"></a>
## API
## Notification API
- Notification API with public facing endpoints for images in notifications
Many people do not want to expose Frigate to the web, so the integration creates some public API endpoints that can be used for notifications.
### Notifications
Frigate publishes event information in the form of a change feed via MQTT. This
allows lots of customization for notifications to meet your needs. Event changes
are published with `before` and `after` information as shown
[here](#frigateevents). Note that some people may not want to expose frigate to
the web, so you can leverage the HA API that frigate custom_integration ties
into (which is exposed to the web, and thus can be used for mobile notifications
etc):
To load an image taken by frigate from Home Assistants API see below:
To load a thumbnail for an event:
```
https://HA_URL/api/frigate/notifications/<event-id>/thumbnail.jpg
```
To load a video clip taken by frigate from Home Assistants API :
To load a snapshot for an event:
```
https://HA_URL/api/frigate/notifications/<event-id>/<camera>/clip.mp4
https://HA_URL/api/frigate/notifications/<event-id>/snapshot.jpg
```
Here is a simple example of a notification automation of events which will update the existing notification for each change. This means the image you see in the notification will update as frigate finds a "better" image.
To load a video clip of an event:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
image: 'https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg?format=android'
tag: '{{trigger.payload_json["after"]["id"]}}'
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
```yaml
automation:
- alias: When a person enters a zone named yard
trigger:
platform: mqtt
topic: frigate/events
condition:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
```yaml
- alias: When a person leaves a zone named yard
trigger:
platform: mqtt
topic: frigate/events
condition:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
```yaml
- alias: Notify for dogs in the front with a high top score
trigger:
platform: mqtt
topic: frigate/events
condition:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "High confidence dog detection."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
If you are using telegram, you can fetch the image directly from Frigate:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.telegram_full
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
# this url should work for addon users
- url: 'http://ccab4aaf-frigate:5000/api/events/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg'
caption: 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
https://HA_URL/api/frigate/notifications/<event-id>/clip.mp4
```
<a name="streams"></a>
@@ -276,6 +184,6 @@ which server they are referring to.
## FAQ
### If I am detecting multiple objects, how do I assign the correct `binary_sensor` to the camera in HomeKit?
#### If I am detecting multiple objects, how do I assign the correct `binary_sensor` to the camera in HomeKit?
The [HomeKit integration](https://www.home-assistant.io/integrations/homekit/) randomly links one of the binary sensors (motion sensor entities) grouped with the camera device in Home Assistant. You can specify a `linked_motion_sensor` in the Home Assistant [HomeKit configuration](https://www.home-assistant.io/integrations/homekit/#linked_motion_sensor) for each camera.

View File

@@ -36,7 +36,7 @@ Message published for each changed event. The first message is published when th
```json
{
"type": "update", // new, update, end or clip_ready
"type": "update", // new, update, end
"before": {
"id": "1607123955.475377-mxklsc",
"camera": "front_door",
@@ -53,7 +53,9 @@ Message published for each changed event. The first message is published when th
"region": [264, 450, 667, 853],
"current_zones": ["driveway"],
"entered_zones": ["yard", "driveway"],
"thumbnail": null
"thumbnail": null,
"has_snapshot": false,
"has_clip": false
},
"after": {
"id": "1607123955.475377-mxklsc",
@@ -71,7 +73,9 @@ Message published for each changed event. The first message is published when th
"region": [218, 440, 693, 915],
"current_zones": ["yard", "driveway"],
"entered_zones": ["yard", "driveway"],
"thumbnail": null
"thumbnail": null,
"has_snapshot": false,
"has_clip": false
}
}
```

View File

@@ -1,11 +0,0 @@
---
id: howtos
title: Community Guides
sidebar_label: Community Guides
---
## Communitiy Guides/How-To's
- Best Camera AI Person & Object Detection - How to Setup Frigate w/ Home Assistant - digiblurDIY [YouTube](https://youtu.be/V8vGdoYO6-Y) - [Article](https://www.digiblur.com/2021/05/how-to-setup-frigate-home-assistant.html)
- Even More Free Local Object Detection with Home Assistant - Frigate Install - Everything Smart Home [YouTube](https://youtu.be/pqDCEZSVeRk)
- Home Assistant Frigate integration for local image recognition - KPeyanski [YouTube](https://youtu.be/Q2UT78lFQpo) - [Article](https://peyanski.com/home-assistant-frigate-integration/)

View File

@@ -1,10 +0,0 @@
---
id: web
title: Web Interface
---
Frigate comes bundled with a simple web ui that supports the following:
- Show cameras
- Browse events
- Mask helper

View File

@@ -3,8 +3,8 @@ const path = require('path');
module.exports = {
title: 'Frigate',
tagline: 'NVR With Realtime Object Detection for IP Cameras',
url: 'https://blakeblackshear.github.io',
baseUrl: '/frigate/',
url: 'https://docs.frigate.video',
baseUrl: '/',
onBrokenLinks: 'throw',
onBrokenMarkdownLinks: 'warn',
favicon: 'img/favicon.ico',
@@ -29,6 +29,16 @@ module.exports = {
label: 'Docs',
position: 'left',
},
{
href: 'https://frigate.video',
label: 'Website',
position: 'right',
},
{
href: 'https://demo.frigate.video',
label: 'Demo',
position: 'right',
},
{
href: 'https://github.com/blakeblackshear/frigate',
label: 'GitHub',

9141
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -12,8 +12,8 @@
"clear": "docusaurus clear"
},
"dependencies": {
"@docusaurus/core": "2.0.0-alpha.70",
"@docusaurus/preset-classic": "2.0.0-alpha.70",
"@docusaurus/core": "^2.0.0-beta.6",
"@docusaurus/preset-classic": "^2.0.0-beta.6",
"@mdx-js/react": "^1.6.21",
"clsx": "^1.1.1",
"raw-loader": "^4.0.2",

View File

@@ -1,16 +1,34 @@
module.exports = {
docs: {
Frigate: ['index', 'how-it-works', 'hardware', 'installation', 'troubleshooting'],
Frigate: [
'index',
'hardware',
'installation',
],
Guides: [
'guides/camera_setup',
'guides/getting_started',
'guides/false_positives',
'guides/ha_notifications',
'guides/stationary_objects',
],
Configuration: [
'configuration/index',
'configuration/cameras',
'configuration/optimizing',
'configuration/detectors',
'configuration/false_positives',
'configuration/cameras',
'configuration/masks',
'configuration/record',
'configuration/snapshots',
'configuration/objects',
'configuration/rtmp',
'configuration/zones',
'configuration/advanced',
'configuration/hardware_acceleration',
'configuration/nvdec',
'configuration/camera_specific',
],
Usage: ['usage/home-assistant', 'usage/web', 'usage/api', 'usage/mqtt'],
Integrations: ['integrations/home-assistant', 'integrations/api', 'integrations/mqtt'],
Troubleshooting: ['faqs'],
Development: ['contributing'],
},
};

BIN
docs/static/img/driveway_zones-min.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 195 KiB

BIN
docs/static/img/driveway_zones.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

BIN
docs/static/img/media_browser-min.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 133 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

BIN
docs/static/img/notification-min.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

BIN
docs/static/img/reolink-settings.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/static/img/resolutions-min.jpg vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

BIN
docs/static/img/resolutions.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

View File

@@ -12,6 +12,7 @@ import yaml
from peewee_migrate import Router
from playhouse.sqlite_ext import SqliteExtDatabase
from playhouse.sqliteq import SqliteQueueDatabase
from pydantic import ValidationError
from frigate.config import DetectorTypeEnum, FrigateConfig
from frigate.const import CACHE_DIR, CLIPS_DIR, RECORD_DIR
@@ -20,14 +21,14 @@ from frigate.events import EventCleanup, EventProcessor
from frigate.http import create_app
from frigate.log import log_process, root_configurer
from frigate.models import Event, Recordings
from frigate.mqtt import create_mqtt_client, MqttSocketRelay
from frigate.mqtt import MqttSocketRelay, create_mqtt_client
from frigate.object_processing import TrackedObjectProcessor
from frigate.output import output_frames
from frigate.record import RecordingCleanup, RecordingMaintainer
from frigate.stats import StatsEmitter, stats_init
from frigate.version import VERSION
from frigate.video import capture_camera, track_camera
from frigate.watchdog import FrigateWatchdog
from frigate.zeroconf import broadcast_zeroconf
logger = logging.getLogger(__name__)
@@ -70,6 +71,9 @@ class FrigateApp:
self.config = user_config.runtime_config
for camera_name in self.config.cameras.keys():
# generage the ffmpeg commands
self.config.cameras[camera_name].create_ffmpeg_cmds()
# create camera_metrics
self.camera_metrics[camera_name] = {
"camera_fps": mp.Value("d", 0.0),
@@ -85,29 +89,6 @@ class FrigateApp:
"frame_queue": mp.Queue(maxsize=2),
}
def check_config(self):
for name, camera in self.config.cameras.items():
assigned_roles = list(
set([r for i in camera.ffmpeg.inputs for r in i.roles])
)
if not camera.record.enabled and "record" in assigned_roles:
logger.warning(
f"Camera {name} has record assigned to an input, but record is not enabled."
)
elif camera.record.enabled and not "record" in assigned_roles:
logger.warning(
f"Camera {name} has record enabled, but record is not assigned to an input."
)
if not camera.rtmp.enabled and "rtmp" in assigned_roles:
logger.warning(
f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled."
)
elif camera.rtmp.enabled and not "rtmp" in assigned_roles:
logger.warning(
f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input."
)
def set_log_levels(self):
logging.getLogger().setLevel(self.config.logger.default.value.upper())
for log, level in self.config.logger.logs.items():
@@ -170,6 +151,7 @@ class FrigateApp:
self.mqtt_relay.start()
def start_detectors(self):
model_path = self.config.model.path
model_shape = (self.config.model.height, self.config.model.width)
for name in self.config.cameras.keys():
self.detection_out_events[name] = mp.Event()
@@ -199,6 +181,7 @@ class FrigateApp:
name,
self.detection_queue,
self.detection_out_events,
model_path,
model_shape,
"cpu",
detector.num_threads,
@@ -208,6 +191,7 @@ class FrigateApp:
name,
self.detection_queue,
self.detection_out_events,
model_path,
model_shape,
detector.device,
detector.num_threads,
@@ -312,16 +296,28 @@ class FrigateApp:
def start(self):
self.init_logger()
logger.info(f"Starting Frigate ({VERSION})")
try:
try:
self.init_config()
except Exception as e:
print(f"Error parsing config: {e}")
print("*************************************************************")
print("*************************************************************")
print("*** Your config file is not valid! ***")
print("*** Please check the docs at ***")
print("*** https://docs.frigate.video/configuration/index ***")
print("*************************************************************")
print("*************************************************************")
print("*** Config Validation Errors ***")
print("*************************************************************")
print(e)
print("*************************************************************")
print("*** End Config Validation Errors ***")
print("*************************************************************")
self.log_process.terminate()
sys.exit(1)
self.set_environment_vars()
self.ensure_dirs()
self.check_config()
self.set_log_levels()
self.init_queues()
self.init_database()

BIN
frigate/birdseye.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

View File

@@ -9,10 +9,10 @@ from typing import Dict, List, Optional, Tuple, Union
import matplotlib.pyplot as plt
import numpy as np
import yaml
from pydantic import BaseModel, Field, validator
from pydantic import BaseModel, Extra, Field, validator
from pydantic.fields import PrivateAttr
from frigate.const import BASE_DIR, CACHE_DIR, RECORD_DIR
from frigate.const import BASE_DIR, CACHE_DIR
from frigate.edgetpu import load_labels
from frigate.util import create_mask, deep_merge
@@ -29,18 +29,23 @@ DEFAULT_TRACKED_OBJECTS = ["person"]
DEFAULT_DETECTORS = {"cpu": {"type": "cpu"}}
class FrigateBaseModel(BaseModel):
class Config:
extra = Extra.forbid
class DetectorTypeEnum(str, Enum):
edgetpu = "edgetpu"
cpu = "cpu"
class DetectorConfig(BaseModel):
class DetectorConfig(FrigateBaseModel):
type: DetectorTypeEnum = Field(default=DetectorTypeEnum.cpu, title="Detector Type")
device: str = Field(default="usb", title="Device Type")
num_threads: int = Field(default=3, title="Number of detection threads")
class MqttConfig(BaseModel):
class MqttConfig(FrigateBaseModel):
host: str = Field(title="MQTT Host")
port: int = Field(default=1883, title="MQTT Port")
topic_prefix: str = Field(default="frigate", title="MQTT Topic Prefix")
@@ -60,50 +65,48 @@ class MqttConfig(BaseModel):
return v
class RetainConfig(BaseModel):
default: int = Field(default=10, title="Default retention period.")
objects: Dict[str, int] = Field(
class RetainConfig(FrigateBaseModel):
default: float = Field(default=10, title="Default retention period.")
objects: Dict[str, float] = Field(
default_factory=dict, title="Object retention period."
)
# DEPRECATED: Will eventually be removed
class ClipsConfig(BaseModel):
enabled: bool = Field(default=False, title="Save clips.")
max_seconds: int = Field(default=300, title="Maximum clip duration.")
pre_capture: int = Field(default=5, title="Seconds to capture before event starts.")
post_capture: int = Field(default=5, title="Seconds to capture after event ends.")
class EventsConfig(FrigateBaseModel):
max_seconds: int = Field(default=300, title="Maximum event duration.")
pre_capture: int = Field(default=5, title="Seconds to retain before event starts.")
post_capture: int = Field(default=5, title="Seconds to retain after event ends.")
required_zones: List[str] = Field(
default_factory=list,
title="List of required zones to be entered in order to save the clip.",
title="List of required zones to be entered in order to save the event.",
)
objects: Optional[List[str]] = Field(
title="List of objects to be detected in order to save the clip.",
title="List of objects to be detected in order to save the event.",
)
retain: RetainConfig = Field(
default_factory=RetainConfig, title="Clip retention settings."
default_factory=RetainConfig, title="Event retention settings."
)
class RecordConfig(BaseModel):
class RecordConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable record on all cameras.")
retain_days: int = Field(default=0, title="Recording retention period in days.")
events: ClipsConfig = Field(
default_factory=ClipsConfig, title="Event specific settings."
retain_days: float = Field(default=0, title="Recording retention period in days.")
events: EventsConfig = Field(
default_factory=EventsConfig, title="Event specific settings."
)
class MotionConfig(BaseModel):
class MotionConfig(FrigateBaseModel):
threshold: int = Field(
default=25,
title="Motion detection threshold (1-255).",
ge=1,
le=255,
)
contour_area: Optional[int] = Field(title="Contour Area")
contour_area: Optional[int] = Field(default=30, title="Contour Area")
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
frame_alpha: float = Field(default=0.2, title="Frame Alpha")
frame_height: Optional[int] = Field(title="Frame Height")
frame_height: Optional[int] = Field(default=50, title="Frame Height")
mask: Union[str, List[str]] = Field(
default="", title="Coordinates polygon for the motion mask."
)
@@ -116,15 +119,6 @@ class RuntimeMotionConfig(MotionConfig):
def __init__(self, **config):
frame_shape = config.get("frame_shape", (1, 1))
if "frame_height" not in config:
config["frame_height"] = max(frame_shape[0] // 6, 180)
if "contour_area" not in config:
frame_width = frame_shape[1] * config["frame_height"] / frame_shape[0]
config["contour_area"] = (
config["frame_height"] * frame_width * 0.00173611111
)
mask = config.get("mask", "")
config["raw_mask"] = mask
@@ -146,9 +140,10 @@ class RuntimeMotionConfig(MotionConfig):
class Config:
arbitrary_types_allowed = True
extra = Extra.ignore
class DetectConfig(BaseModel):
class DetectConfig(FrigateBaseModel):
height: int = Field(default=720, title="Height of the stream for the detect role.")
width: int = Field(default=1280, title="Width of the stream for the detect role.")
fps: int = Field(
@@ -158,9 +153,12 @@ class DetectConfig(BaseModel):
max_disappeared: Optional[int] = Field(
title="Maximum number of frames the object can dissapear before detection ends."
)
stationary_interval: Optional[int] = Field(
title="Frame interval for checking stationary objects."
)
class FilterConfig(BaseModel):
class FilterConfig(FrigateBaseModel):
min_area: int = Field(
default=0, title="Minimum area of bounding box for object to be counted."
)
@@ -201,8 +199,10 @@ class RuntimeFilterConfig(FilterConfig):
class Config:
arbitrary_types_allowed = True
extra = Extra.ignore
# this uses the base model because the color is an extra attribute
class ZoneConfig(BaseModel):
filters: Dict[str, FilterConfig] = Field(
default_factory=dict, title="Zone filters."
@@ -244,7 +244,7 @@ class ZoneConfig(BaseModel):
self._contour = np.array([])
class ObjectConfig(BaseModel):
class ObjectConfig(FrigateBaseModel):
track: List[str] = Field(default=DEFAULT_TRACKED_OBJECTS, title="Objects to track.")
filters: Optional[Dict[str, FilterConfig]] = Field(title="Object filters.")
mask: Union[str, List[str]] = Field(default="", title="Object mask.")
@@ -256,7 +256,7 @@ class BirdseyeModeEnum(str, Enum):
continuous = "continuous"
class BirdseyeConfig(BaseModel):
class BirdseyeConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="Enable birdseye view.")
width: int = Field(default=1280, title="Birdseye width.")
height: int = Field(default=720, title="Birdseye height.")
@@ -303,7 +303,7 @@ RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT = [
]
class FfmpegOutputArgsConfig(BaseModel):
class FfmpegOutputArgsConfig(FrigateBaseModel):
detect: Union[str, List[str]] = Field(
default=DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT,
title="Detect role FFmpeg output arguments.",
@@ -318,7 +318,7 @@ class FfmpegOutputArgsConfig(BaseModel):
)
class FfmpegConfig(BaseModel):
class FfmpegConfig(FrigateBaseModel):
global_args: Union[str, List[str]] = Field(
default=FFMPEG_GLOBAL_ARGS_DEFAULT, title="Global FFmpeg arguments."
)
@@ -340,7 +340,7 @@ class CameraRoleEnum(str, Enum):
detect = "detect"
class CameraInput(BaseModel):
class CameraInput(FrigateBaseModel):
path: str = Field(title="Camera input path.")
roles: List[CameraRoleEnum] = Field(title="Roles assigned to this input.")
global_args: Union[str, List[str]] = Field(
@@ -371,7 +371,7 @@ class CameraFfmpegConfig(FfmpegConfig):
return v
class SnapshotsConfig(BaseModel):
class SnapshotsConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Snapshots enabled.")
clean_copy: bool = Field(
default=True, title="Create a clean copy of the snapshot image."
@@ -399,22 +399,35 @@ class SnapshotsConfig(BaseModel):
)
class ColorConfig(BaseModel):
red: int = Field(default=255, le=0, ge=255, title="Red")
green: int = Field(default=255, le=0, ge=255, title="Green")
blue: int = Field(default=255, le=0, ge=255, title="Blue")
class ColorConfig(FrigateBaseModel):
red: int = Field(default=255, ge=0, le=255, title="Red")
green: int = Field(default=255, ge=0, le=255, title="Green")
blue: int = Field(default=255, ge=0, le=255, title="Blue")
class TimestampStyleConfig(BaseModel):
position: str = Field(default="tl", title="Timestamp position.")
class TimestampPositionEnum(str, Enum):
tl = "tl"
tr = "tr"
bl = "bl"
br = "br"
class TimestampEffectEnum(str, Enum):
solid = "solid"
shadow = "shadow"
class TimestampStyleConfig(FrigateBaseModel):
position: TimestampPositionEnum = Field(
default=TimestampPositionEnum.tl, title="Timestamp position."
)
format: str = Field(default=DEFAULT_TIME_FORMAT, title="Timestamp format.")
color: ColorConfig = Field(default_factory=ColorConfig, title="Timestamp color.")
scale: float = Field(default=1.0, title="Timestamp scale.")
thickness: int = Field(default=2, title="Timestamp thickness.")
effect: Optional[str] = Field(title="Timestamp effect.")
effect: Optional[TimestampEffectEnum] = Field(title="Timestamp effect.")
class CameraMqttConfig(BaseModel):
class CameraMqttConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="Send image over MQTT.")
timestamp: bool = Field(default=True, title="Add timestamp to MQTT image.")
bounding_box: bool = Field(default=True, title="Add bounding box to MQTT image.")
@@ -432,16 +445,16 @@ class CameraMqttConfig(BaseModel):
)
class CameraRtmpConfig(BaseModel):
class RtmpConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="RTMP restreaming enabled.")
class CameraLiveConfig(BaseModel):
class CameraLiveConfig(FrigateBaseModel):
height: int = Field(default=720, title="Live camera view height")
quality: int = Field(default=8, ge=1, le=31, title="Live camera view quality")
class CameraConfig(BaseModel):
class CameraConfig(FrigateBaseModel):
name: Optional[str] = Field(title="Camera name.")
ffmpeg: CameraFfmpegConfig = Field(title="FFmpeg configuration for the camera.")
best_image_timeout: int = Field(
@@ -454,8 +467,8 @@ class CameraConfig(BaseModel):
record: RecordConfig = Field(
default_factory=RecordConfig, title="Record configuration."
)
rtmp: CameraRtmpConfig = Field(
default_factory=CameraRtmpConfig, title="RTMP restreaming configuration."
rtmp: RtmpConfig = Field(
default_factory=RtmpConfig, title="RTMP restreaming configuration."
)
live: CameraLiveConfig = Field(
default_factory=CameraLiveConfig, title="Live playback settings."
@@ -476,6 +489,7 @@ class CameraConfig(BaseModel):
timestamp_style: TimestampStyleConfig = Field(
default_factory=TimestampStyleConfig, title="Timestamp style configuration."
)
_ffmpeg_cmds: List[Dict[str, List[str]]] = PrivateAttr()
def __init__(self, **config):
# Set zone colors
@@ -486,6 +500,10 @@ class CameraConfig(BaseModel):
for idx, (name, z) in enumerate(config["zones"].items())
}
# add roles to the input if there is only one
if len(config["ffmpeg"]["inputs"]) == 1:
config["ffmpeg"]["inputs"][0]["roles"] = ["record", "rtmp", "detect"]
super().__init__(**config)
@property
@@ -498,6 +516,9 @@ class CameraConfig(BaseModel):
@property
def ffmpeg_cmds(self) -> List[Dict[str, List[str]]]:
return self._ffmpeg_cmds
def create_ffmpeg_cmds(self):
ffmpeg_cmds = []
for ffmpeg_input in self.ffmpeg.inputs:
ffmpeg_cmd = self._get_ffmpeg_cmd(ffmpeg_input)
@@ -505,7 +526,7 @@ class CameraConfig(BaseModel):
continue
ffmpeg_cmds.append({"roles": ffmpeg_input.roles, "cmd": ffmpeg_cmd})
return ffmpeg_cmds
self._ffmpeg_cmds = ffmpeg_cmds
def _get_ffmpeg_cmd(self, ffmpeg_input: CameraInput):
ffmpeg_output_args = []
@@ -541,6 +562,7 @@ class CameraConfig(BaseModel):
if isinstance(self.ffmpeg.output_args.record, list)
else self.ffmpeg.output_args.record.split(" ")
)
ffmpeg_output_args = (
record_args
+ [f"{os.path.join(CACHE_DIR, self.name)}-%Y%m%d%H%M%S.mp4"]
@@ -577,13 +599,15 @@ class CameraConfig(BaseModel):
return [part for part in cmd if part != ""]
class DatabaseConfig(BaseModel):
class DatabaseConfig(FrigateBaseModel):
path: str = Field(
default=os.path.join(BASE_DIR, "frigate.db"), title="Database path."
)
class ModelConfig(BaseModel):
class ModelConfig(FrigateBaseModel):
path: Optional[str] = Field(title="Custom Object detection model path.")
labelmap_path: Optional[str] = Field(title="Label map for custom object detector.")
width: int = Field(default=320, title="Object detection model input width.")
height: int = Field(default=320, title="Object detection model input height.")
labelmap: Dict[int, str] = Field(
@@ -604,7 +628,7 @@ class ModelConfig(BaseModel):
super().__init__(**config)
self._merged_labelmap = {
**load_labels("/labelmap.txt"),
**load_labels(config.get("labelmap_path", "/labelmap.txt")),
**config.get("labelmap", {}),
}
@@ -623,7 +647,7 @@ class LogLevelEnum(str, Enum):
critical = "critical"
class LoggerConfig(BaseModel):
class LoggerConfig(FrigateBaseModel):
default: LogLevelEnum = Field(
default=LogLevelEnum.info, title="Default logging level."
)
@@ -632,7 +656,7 @@ class LoggerConfig(BaseModel):
)
class FrigateConfig(BaseModel):
class FrigateConfig(FrigateBaseModel):
mqtt: MqttConfig = Field(title="MQTT Configuration.")
database: DatabaseConfig = Field(
default_factory=DatabaseConfig, title="Database configuration."
@@ -656,6 +680,12 @@ class FrigateConfig(BaseModel):
snapshots: SnapshotsConfig = Field(
default_factory=SnapshotsConfig, title="Global snapshots configuration."
)
live: CameraLiveConfig = Field(
default_factory=CameraLiveConfig, title="Global live configuration."
)
rtmp: RtmpConfig = Field(
default_factory=RtmpConfig, title="Global RTMP restreaming configuration."
)
birdseye: BirdseyeConfig = Field(
default_factory=BirdseyeConfig, title="Birdseye configuration."
)
@@ -672,6 +702,10 @@ class FrigateConfig(BaseModel):
default_factory=DetectConfig, title="Global object tracking configuration."
)
cameras: Dict[str, CameraConfig] = Field(title="Camera configuration.")
timestamp_style: TimestampStyleConfig = Field(
default_factory=TimestampStyleConfig,
title="Global timestamp style configuration.",
)
@property
def runtime_config(self) -> FrigateConfig:
@@ -687,10 +721,13 @@ class FrigateConfig(BaseModel):
include={
"record": ...,
"snapshots": ...,
"live": ...,
"rtmp": ...,
"objects": ...,
"motion": ...,
"detect": ...,
"ffmpeg": ...,
"timestamp_style": ...,
},
exclude_unset=True,
)
@@ -706,6 +743,11 @@ class FrigateConfig(BaseModel):
if camera_config.detect.max_disappeared is None:
camera_config.detect.max_disappeared = max_disappeared
# Default stationary_interval configuration
stationary_interval = camera_config.detect.fps * 10
if camera_config.detect.stationary_interval is None:
camera_config.detect.stationary_interval = stationary_interval
# FFMPEG input substitution
for input in camera_config.ffmpeg.inputs:
input.path = input.path.format(**FRIGATE_ENV_VARS)
@@ -753,6 +795,20 @@ class FrigateConfig(BaseModel):
**camera_config.motion.dict(exclude_unset=True),
)
# check runtime config
assigned_roles = list(
set([r for i in camera_config.ffmpeg.inputs for r in i.roles])
)
if camera_config.record.enabled and not "record" in assigned_roles:
raise ValueError(
f"Camera {name} has record enabled, but record is not assigned to an input."
)
if camera_config.rtmp.enabled and not "rtmp" in assigned_roles:
raise ValueError(
f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input."
)
config.cameras[name] = camera_config
return config

View File

@@ -45,7 +45,7 @@ class ObjectDetector(ABC):
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, num_threads=3, labels=None):
def __init__(self, tf_device=None, model_path=None, num_threads=3, labels=None):
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
@@ -64,7 +64,7 @@ class LocalObjectDetector(ObjectDetector):
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
logger.info("TPU found")
self.interpreter = tflite.Interpreter(
model_path="/edgetpu_model.tflite",
model_path=model_path or "/edgetpu_model.tflite",
experimental_delegates=[edge_tpu_delegate],
)
except ValueError:
@@ -77,7 +77,7 @@ class LocalObjectDetector(ObjectDetector):
"CPU detectors are not recommended and should only be used for testing or for trial purposes."
)
self.interpreter = tflite.Interpreter(
model_path="/cpu_model.tflite", num_threads=num_threads
model_path=model_path or "/cpu_model.tflite", num_threads=num_threads
)
self.interpreter.allocate_tensors()
@@ -133,6 +133,7 @@ def run_detector(
out_events: Dict[str, mp.Event],
avg_speed,
start,
model_path,
model_shape,
tf_device,
num_threads,
@@ -152,7 +153,9 @@ def run_detector(
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(tf_device=tf_device, num_threads=num_threads)
object_detector = LocalObjectDetector(
tf_device=tf_device, model_path=model_path, num_threads=num_threads
)
outputs = {}
for name in out_events.keys():
@@ -189,6 +192,7 @@ class EdgeTPUProcess:
name,
detection_queue,
out_events,
model_path,
model_shape,
tf_device=None,
num_threads=3,
@@ -199,6 +203,7 @@ class EdgeTPUProcess:
self.avg_inference_speed = mp.Value("d", 0.01)
self.detection_start = mp.Value("d", 0.0)
self.detect_process = None
self.model_path = model_path
self.model_shape = model_shape
self.tf_device = tf_device
self.num_threads = num_threads
@@ -226,6 +231,7 @@ class EdgeTPUProcess:
self.out_events,
self.avg_inference_speed,
self.detection_start,
self.model_path,
self.model_shape,
self.tf_device,
self.num_threads,

View File

@@ -6,12 +6,12 @@ import threading
import time
from pathlib import Path
from frigate.config import FrigateConfig, RecordConfig
from frigate.const import CLIPS_DIR
from frigate.models import Event, Recordings
from peewee import fn
from frigate.config import EventsConfig, FrigateConfig, RecordConfig
from frigate.const import CLIPS_DIR
from frigate.models import Event
logger = logging.getLogger(__name__)
@@ -29,41 +29,12 @@ class EventProcessor(threading.Thread):
self.events_in_process = {}
self.stop_event = stop_event
def should_create_clip(self, camera, event_data):
if event_data["false_positive"]:
return False
record_config: RecordConfig = self.config.cameras[camera].record
# Recording clips is disabled
if not record_config.enabled or (
record_config.retain_days == 0 and not record_config.events.enabled
):
return False
# If there are required zones and there is no overlap
required_zones = record_config.events.required_zones
if len(required_zones) > 0 and not set(event_data["entered_zones"]) & set(
required_zones
):
logger.debug(
f"Not creating clip for {event_data['id']} because it did not enter required zones"
)
return False
# If the required objects are not present
if (
record_config.events.objects is not None
and event_data["label"] not in record_config.events.objects
):
logger.debug(
f"Not creating clip for {event_data['id']} because it did not contain required objects"
)
return False
return True
def run(self):
# set an end_time on events without an end_time on startup
Event.update(end_time=Event.start_time + 30).where(
Event.end_time == None
).execute()
while not self.stop_event.is_set():
try:
event_type, camera, event_data = self.event_queue.get(timeout=10)
@@ -72,32 +43,58 @@ class EventProcessor(threading.Thread):
logger.debug(f"Event received: {event_type} {camera} {event_data['id']}")
event_config: EventsConfig = self.config.cameras[camera].record.events
if event_type == "start":
self.events_in_process[event_data["id"]] = event_data
if event_type == "end":
record_config: RecordConfig = self.config.cameras[camera].record
has_clip = self.should_create_clip(camera, event_data)
if has_clip or event_data["has_snapshot"]:
Event.create(
elif event_type == "update":
self.events_in_process[event_data["id"]] = event_data
# TODO: this will generate a lot of db activity possibly
if event_data["has_clip"] or event_data["has_snapshot"]:
Event.replace(
id=event_data["id"],
label=event_data["label"],
camera=camera,
start_time=event_data["start_time"],
end_time=event_data["end_time"],
start_time=event_data["start_time"] - event_config.pre_capture,
end_time=None,
top_score=event_data["top_score"],
false_positive=event_data["false_positive"],
zones=list(event_data["entered_zones"]),
thumbnail=event_data["thumbnail"],
has_clip=has_clip,
region=event_data["region"],
box=event_data["box"],
area=event_data["area"],
has_clip=event_data["has_clip"],
has_snapshot=event_data["has_snapshot"],
)
).execute()
elif event_type == "end":
if event_data["has_clip"] or event_data["has_snapshot"]:
Event.replace(
id=event_data["id"],
label=event_data["label"],
camera=camera,
start_time=event_data["start_time"] - event_config.pre_capture,
end_time=event_data["end_time"] + event_config.post_capture,
top_score=event_data["top_score"],
false_positive=event_data["false_positive"],
zones=list(event_data["entered_zones"]),
thumbnail=event_data["thumbnail"],
region=event_data["region"],
box=event_data["box"],
area=event_data["area"],
has_clip=event_data["has_clip"],
has_snapshot=event_data["has_snapshot"],
).execute()
del self.events_in_process[event_data["id"]]
self.event_processed_queue.put((event_data["id"], camera, has_clip))
self.event_processed_queue.put((event_data["id"], camera))
# set an end_time on events without an end_time before exiting
Event.update(end_time=datetime.datetime.now().timestamp()).where(
Event.end_time == None
).execute()
logger.info(f"Exiting event processor...")
@@ -225,12 +222,12 @@ class EventCleanup(threading.Thread):
for event in duplicate_events:
logger.debug(f"Removing duplicate: {event.id}")
media_name = f"{event.camera}-{event.id}"
if event.has_snapshot:
media_path = Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg")
media_path.unlink(missing_ok=True)
if event.has_clip:
media_path = Path(f"{os.path.join(CLIPS_DIR, media_name)}.mp4")
media_path.unlink(missing_ok=True)
media_path = Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg")
media_path.unlink(missing_ok=True)
media_path = Path(f"{os.path.join(CLIPS_DIR, media_name)}-clean.png")
media_path.unlink(missing_ok=True)
media_path = Path(f"{os.path.join(CLIPS_DIR, media_name)}.mp4")
media_path.unlink(missing_ok=True)
(
Event.delete()

View File

@@ -1,6 +1,7 @@
import base64
from collections import OrderedDict
from datetime import datetime, timedelta
import copy
import json
import glob
import logging
@@ -190,7 +191,7 @@ def event_snapshot(id):
download = request.args.get("download", type=bool)
jpg_bytes = None
try:
event = Event.get(Event.id == id)
event = Event.get(Event.id == id, Event.end_time != None)
if not event.has_snapshot:
return "Snapshot not available", 404
# read snapshot from disk
@@ -242,14 +243,11 @@ def event_clip(id):
if not event.has_clip:
return "Clip not available", 404
event_config = current_app.frigate_config.cameras[event.camera].record.events
start_ts = event.start_time - event_config.pre_capture
end_ts = event.end_time + event_config.post_capture
file_name = f"{event.camera}-{id}.mp4"
clip_path = os.path.join(CLIPS_DIR, file_name)
if not os.path.isfile(clip_path):
return recording_clip(event.camera, start_ts, end_ts)
return recording_clip(event.camera, event.start_time, event.end_time)
response = make_response()
response.headers["Content-Description"] = "File Transfer"
@@ -324,7 +322,7 @@ def config():
# add in the ffmpeg_cmds
for camera_name, camera in current_app.frigate_config.cameras.items():
camera_dict = config["cameras"][camera_name]
camera_dict["ffmpeg_cmds"] = camera.ffmpeg_cmds
camera_dict["ffmpeg_cmds"] = copy.deepcopy(camera.ffmpeg_cmds)
for cmd in camera_dict["ffmpeg_cmds"]:
cmd["cmd"] = " ".join(cmd["cmd"])
@@ -697,15 +695,15 @@ def vod_event(id):
if not event.has_clip:
return "Clip not available", 404
event_config = current_app.frigate_config.cameras[event.camera].record.events
start_ts = event.start_time - event_config.pre_capture
end_ts = event.end_time + event_config.post_capture
clip_path = os.path.join(CLIPS_DIR, f"{event.camera}-{id}.mp4")
if not os.path.isfile(clip_path):
return vod_ts(event.camera, start_ts, end_ts)
end_ts = (
datetime.now().timestamp() if event.end_time is None else event.end_time
)
return vod_ts(event.camera, event.start_time, end_ts)
duration = int((end_ts - start_ts) * 1000)
duration = int((event.end_time - event.start_time) * 1000)
return jsonify(
{
"cache": True,

View File

@@ -15,6 +15,9 @@ class Event(Model):
thumbnail = TextField()
has_clip = BooleanField(default=True)
has_snapshot = BooleanField(default=True)
region = JSONField()
box = JSONField()
area = IntegerField()
class Recordings(Model):

View File

@@ -23,6 +23,7 @@ class MotionDetector:
interpolation=cv2.INTER_LINEAR,
)
self.mask = np.where(resized_mask == [0])
self.save_images = False
def detect(self, frame):
motion_boxes = []
@@ -36,10 +37,13 @@ class MotionDetector:
interpolation=cv2.INTER_LINEAR,
)
# TODO: can I improve the contrast of the grayscale image here?
# convert to grayscale
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
# Improve contrast
minval = np.percentile(resized_frame, 4)
maxval = np.percentile(resized_frame, 96)
resized_frame = np.clip(resized_frame, minval, maxval)
resized_frame = (((resized_frame - minval) / (maxval - minval)) * 255).astype(
np.uint8
)
# mask frame
resized_frame[self.mask] = [255]
@@ -49,6 +53,8 @@ class MotionDetector:
if self.frame_counter < 30:
self.frame_counter += 1
else:
if self.save_images:
self.frame_counter += 1
# compare to average
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
@@ -58,7 +64,6 @@ class MotionDetector:
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
# compute the threshold image for the current frame
# TODO: threshold
current_thresh = cv2.threshold(
frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY
)[1]
@@ -75,8 +80,10 @@ class MotionDetector:
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
thresh_dilated = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cnts = imutils.grab_contours(cnts)
# loop over the contours
@@ -94,6 +101,35 @@ class MotionDetector:
)
)
if self.save_images:
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
# print("--------")
# print(self.frame_counter)
for c in cnts:
contour_area = cv2.contourArea(c)
# print(contour_area)
if contour_area > self.config.contour_area:
x, y, w, h = cv2.boundingRect(c)
cv2.rectangle(
thresh_dilated,
(x, y),
(x + w, y + h),
(0, 0, 255),
2,
)
# print("--------")
image_row_1 = cv2.hconcat(
[
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR),
]
)
image_row_2 = cv2.hconcat(
[cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated]
)
combined_image = cv2.vconcat([image_row_1, image_row_2])
cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image)
if len(motion_boxes) > 0:
self.motion_frame_count += 1
if self.motion_frame_count >= 10:

View File

@@ -16,7 +16,7 @@ from typing import Callable, Dict
import cv2
import numpy as np
from frigate.config import CameraConfig, FrigateConfig
from frigate.config import CameraConfig, SnapshotsConfig, RecordConfig, FrigateConfig
from frigate.const import CACHE_DIR, CLIPS_DIR, RECORD_DIR
from frigate.edgetpu import load_labels
from frigate.util import (
@@ -73,6 +73,8 @@ class TrackedObject:
self.current_zones = []
self.entered_zones = set()
self.false_positive = True
self.has_clip = False
self.has_snapshot = False
self.top_score = self.computed_score = 0.0
self.thumbnail_data = None
self.last_updated = 0
@@ -176,6 +178,8 @@ class TrackedObject:
"region": self.obj_data["region"],
"current_zones": self.current_zones.copy(),
"entered_zones": list(self.entered_zones).copy(),
"has_clip": self.has_clip,
"has_snapshot": self.has_snapshot,
}
if include_thumbnail:
@@ -275,9 +279,8 @@ class TrackedObject:
self.thumbnail_data["frame_time"],
self.camera_config.timestamp_style.format,
font_effect=self.camera_config.timestamp_style.effect,
font_scale=self.camera_config.timestamp_style.scale,
font_thickness=self.camera_config.timestamp_style.thickness,
font_color=(color.red, color.green, color.blue),
font_color=(color.blue, color.green, color.red),
position=self.camera_config.timestamp_style.position,
)
@@ -411,9 +414,8 @@ class CameraState:
frame_time,
self.camera_config.timestamp_style.format,
font_effect=self.camera_config.timestamp_style.effect,
font_scale=self.camera_config.timestamp_style.scale,
font_thickness=self.camera_config.timestamp_style.thickness,
font_color=(color.red, color.green, color.blue),
font_color=(color.blue, color.green, color.red),
position=self.camera_config.timestamp_style.position,
)
@@ -601,6 +603,8 @@ class TrackedObjectProcessor(threading.Thread):
self.event_queue.put(("start", camera, obj.to_dict()))
def update(camera, obj: TrackedObject, current_frame_time):
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
after = obj.to_dict()
message = {
"before": obj.previous,
@@ -611,11 +615,51 @@ class TrackedObjectProcessor(threading.Thread):
f"{self.topic_prefix}/events", json.dumps(message), retain=False
)
obj.previous = after
self.event_queue.put(
("update", camera, obj.to_dict(include_thumbnail=True))
)
def end(camera, obj: TrackedObject, current_frame_time):
snapshot_config = self.config.cameras[camera].snapshots
event_data = obj.to_dict(include_thumbnail=True)
event_data["has_snapshot"] = False
# populate has_snapshot
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
# write the snapshot to disk
if obj.has_snapshot:
snapshot_config: SnapshotsConfig = self.config.cameras[camera].snapshots
jpg_bytes = obj.get_jpg_bytes(
timestamp=snapshot_config.timestamp,
bounding_box=snapshot_config.bounding_box,
crop=snapshot_config.crop,
height=snapshot_config.height,
quality=snapshot_config.quality,
)
if jpg_bytes is None:
logger.warning(f"Unable to save snapshot for {obj.obj_data['id']}.")
else:
with open(
os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"),
"wb",
) as j:
j.write(jpg_bytes)
# write clean snapshot if enabled
if snapshot_config.clean_copy:
png_bytes = obj.get_clean_png()
if png_bytes is None:
logger.warning(
f"Unable to save clean snapshot for {obj.obj_data['id']}."
)
else:
with open(
os.path.join(
CLIPS_DIR,
f"{camera}-{obj.obj_data['id']}-clean.png",
),
"wb",
) as p:
p.write(png_bytes)
if not obj.false_positive:
message = {
"before": obj.previous,
@@ -625,46 +669,8 @@ class TrackedObjectProcessor(threading.Thread):
self.client.publish(
f"{self.topic_prefix}/events", json.dumps(message), retain=False
)
# write snapshot to disk if enabled
if snapshot_config.enabled and self.should_save_snapshot(camera, obj):
jpg_bytes = obj.get_jpg_bytes(
timestamp=snapshot_config.timestamp,
bounding_box=snapshot_config.bounding_box,
crop=snapshot_config.crop,
height=snapshot_config.height,
quality=snapshot_config.quality,
)
if jpg_bytes is None:
logger.warning(
f"Unable to save snapshot for {obj.obj_data['id']}."
)
else:
with open(
os.path.join(
CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"
),
"wb",
) as j:
j.write(jpg_bytes)
event_data["has_snapshot"] = True
# write clean snapshot if enabled
if snapshot_config.clean_copy:
png_bytes = obj.get_clean_png()
if png_bytes is None:
logger.warning(
f"Unable to save clean snapshot for {obj.obj_data['id']}."
)
else:
with open(
os.path.join(
CLIPS_DIR,
f"{camera}-{obj.obj_data['id']}-clean.png",
),
"wb",
) as p:
p.write(png_bytes)
self.event_queue.put(("end", camera, event_data))
self.event_queue.put(("end", camera, obj.to_dict(include_thumbnail=True)))
def snapshot(camera, obj: TrackedObject, current_frame_time):
mqtt_config = self.config.cameras[camera].mqtt
@@ -713,8 +719,16 @@ class TrackedObjectProcessor(threading.Thread):
self.zone_data = defaultdict(lambda: defaultdict(dict))
def should_save_snapshot(self, camera, obj: TrackedObject):
if obj.false_positive:
return False
snapshot_config: SnapshotsConfig = self.config.cameras[camera].snapshots
if not snapshot_config.enabled:
return False
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].snapshots.required_zones
required_zones = snapshot_config.required_zones
if len(required_zones) > 0 and not obj.entered_zones & set(required_zones):
logger.debug(
f"Not creating snapshot for {obj.obj_data['id']} because it did not enter required zones"
@@ -723,6 +737,36 @@ class TrackedObjectProcessor(threading.Thread):
return True
def should_retain_recording(self, camera, obj: TrackedObject):
if obj.false_positive:
return False
record_config: RecordConfig = self.config.cameras[camera].record
# Recording is disabled
if not record_config.enabled:
return False
# If there are required zones and there is no overlap
required_zones = record_config.events.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
logger.debug(
f"Not creating clip for {obj.obj_data['id']} because it did not enter required zones"
)
return False
# If the required objects are not present
if (
record_config.events.objects is not None
and obj.obj_data["label"] not in record_config.events.objects
):
logger.debug(
f"Not creating clip for {obj.obj_data['id']} because it did not contain required objects"
)
return False
return True
def should_mqtt_snapshot(self, camera, obj: TrackedObject):
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].mqtt.required_zones
@@ -817,17 +861,7 @@ class TrackedObjectProcessor(threading.Thread):
# cleanup event finished queue
while not self.event_processed_queue.empty():
event_id, camera, clip_created = self.event_processed_queue.get()
if clip_created:
obj = self.camera_states[camera].tracked_objects[event_id]
message = {
"before": obj.previous,
"after": obj.to_dict(),
"type": "clip_ready",
}
self.client.publish(
f"{self.topic_prefix}/events", json.dumps(message), retain=False
)
event_id, camera = self.event_processed_queue.get()
self.camera_states[camera].finished(event_id)
logger.info(f"Exiting object processor...")

View File

@@ -13,7 +13,7 @@ import numpy as np
from scipy.spatial import distance as dist
from frigate.config import DetectConfig
from frigate.util import draw_box_with_label
from frigate.util import intersection_over_union
class ObjectTracker:
@@ -27,6 +27,7 @@ class ObjectTracker:
id = f"{obj['frame_time']}-{rand_id}"
obj["id"] = id
obj["start_time"] = obj["frame_time"]
obj["motionless_count"] = 0
self.tracked_objects[id] = obj
self.disappeared[id] = 0
@@ -36,6 +37,13 @@ class ObjectTracker:
def update(self, id, new_obj):
self.disappeared[id] = 0
if (
intersection_over_union(self.tracked_objects[id]["box"], new_obj["box"])
> 0.9
):
self.tracked_objects[id]["motionless_count"] += 1
else:
self.tracked_objects[id]["motionless_count"] = 0
self.tracked_objects[id].update(new_obj)
def match_and_update(self, frame_time, new_objects):

View File

@@ -104,7 +104,7 @@ class BirdsEyeFrameManager:
self.blank_frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]] = 16
# find and copy the logo on the blank frame
logo_files = glob.glob("/opt/frigate/web/apple-touch-icon.*.png")
logo_files = glob.glob("/opt/frigate/frigate/birdseye.png")
frigate_logo = None
if len(logo_files) > 0:
frigate_logo = cv2.imread(logo_files[0], cv2.IMREAD_UNCHANGED)

View File

@@ -1,4 +1,5 @@
import datetime
import time
import itertools
import logging
import os
@@ -7,11 +8,11 @@ import shutil
import string
import subprocess as sp
import threading
from collections import defaultdict
from pathlib import Path
import psutil
from peewee import JOIN
from peewee import JOIN, DoesNotExist
from frigate.config import FrigateConfig
from frigate.const import CACHE_DIR, RECORD_DIR
@@ -46,7 +47,7 @@ class RecordingMaintainer(threading.Thread):
self.stop_event = stop_event
def move_files(self):
recordings = [
cache_files = [
d
for d in os.listdir(CACHE_DIR)
if os.path.isfile(os.path.join(CACHE_DIR, d))
@@ -67,7 +68,9 @@ class RecordingMaintainer(threading.Thread):
except:
continue
for f in recordings:
# group recordings by camera
grouped_recordings = defaultdict(list)
for f in cache_files:
# Skip files currently in use
if f in files_in_use:
continue
@@ -77,45 +80,126 @@ class RecordingMaintainer(threading.Thread):
camera, date = basename.rsplit("-", maxsplit=1)
start_time = datetime.datetime.strptime(date, "%Y%m%d%H%M%S")
# Just delete files if recordings are turned off
if (
not camera in self.config.cameras
or not self.config.cameras[camera].record.enabled
):
Path(cache_path).unlink(missing_ok=True)
continue
ffprobe_cmd = [
"ffprobe",
"-v",
"error",
"-show_entries",
"format=duration",
"-of",
"default=noprint_wrappers=1:nokey=1",
f"{cache_path}",
]
p = sp.run(ffprobe_cmd, capture_output=True)
if p.returncode == 0:
duration = float(p.stdout.decode().strip())
end_time = start_time + datetime.timedelta(seconds=duration)
else:
logger.info(f"bad file: {f}")
Path(cache_path).unlink(missing_ok=True)
continue
directory = os.path.join(
RECORD_DIR, start_time.strftime("%Y-%m/%d/%H"), camera
grouped_recordings[camera].append(
{
"cache_path": cache_path,
"start_time": start_time,
}
)
if not os.path.exists(directory):
os.makedirs(directory)
# delete all cached files past the most recent 2
for camera in grouped_recordings.keys():
if len(grouped_recordings[camera]) > 2:
logger.warning(
"Proactively cleaning cache. Your recordings disk may be too slow."
)
sorted_recordings = sorted(
grouped_recordings[camera], key=lambda i: i["start_time"]
)
to_remove = sorted_recordings[:-2]
for f in to_remove:
Path(f["cache_path"]).unlink(missing_ok=True)
grouped_recordings[camera] = sorted_recordings[-2:]
file_name = f"{start_time.strftime('%M.%S.mp4')}"
file_path = os.path.join(directory, file_name)
for camera, recordings in grouped_recordings.items():
# get all events with the end time after the start of the oldest cache file
# or with end_time None
events: Event = (
Event.select()
.where(
Event.camera == camera,
(Event.end_time == None)
| (Event.end_time >= recordings[0]["start_time"]),
Event.has_clip,
)
.order_by(Event.start_time)
)
for r in recordings:
cache_path = r["cache_path"]
start_time = r["start_time"]
# Just delete files if recordings are turned off
if (
not camera in self.config.cameras
or not self.config.cameras[camera].record.enabled
):
Path(cache_path).unlink(missing_ok=True)
continue
ffprobe_cmd = [
"ffprobe",
"-v",
"error",
"-show_entries",
"format=duration",
"-of",
"default=noprint_wrappers=1:nokey=1",
f"{cache_path}",
]
p = sp.run(ffprobe_cmd, capture_output=True)
if p.returncode == 0:
duration = float(p.stdout.decode().strip())
end_time = start_time + datetime.timedelta(seconds=duration)
else:
logger.warning(f"Discarding a corrupt recording segment: {f}")
Path(cache_path).unlink(missing_ok=True)
continue
# if cached file's start_time is earlier than the retain_days for the camera
if start_time <= (
(
datetime.datetime.now()
- datetime.timedelta(
days=self.config.cameras[camera].record.retain_days
)
)
):
# if the cached segment overlaps with the events:
overlaps = False
for event in events:
# if the event starts in the future, stop checking events
# and let this recording segment expire
if event.start_time > end_time.timestamp():
overlaps = False
break
# if the event is in progress or ends after the recording starts, keep it
# and stop looking at events
if event.end_time is None or event.end_time >= start_time:
overlaps = True
break
if overlaps:
# move from cache to recordings immediately
self.store_segment(
camera,
start_time,
end_time,
duration,
cache_path,
)
# else retain_days includes this segment
else:
self.store_segment(
camera, start_time, end_time, duration, cache_path
)
def store_segment(self, camera, start_time, end_time, duration, cache_path):
directory = os.path.join(RECORD_DIR, start_time.strftime("%Y-%m/%d/%H"), camera)
if not os.path.exists(directory):
os.makedirs(directory)
file_name = f"{start_time.strftime('%M.%S.mp4')}"
file_path = os.path.join(directory, file_name)
try:
start_frame = datetime.datetime.now().timestamp()
# copy then delete is required when recordings are stored on some network drives
shutil.copyfile(cache_path, file_path)
logger.debug(
f"Copied {file_path} in {datetime.datetime.now().timestamp()-start_frame} seconds."
)
os.remove(cache_path)
rand_id = "".join(
@@ -129,11 +213,24 @@ class RecordingMaintainer(threading.Thread):
end_time=end_time.timestamp(),
duration=duration,
)
except Exception as e:
logger.error(f"Unable to store recording segment {cache_path}")
Path(cache_path).unlink(missing_ok=True)
logger.error(e)
def run(self):
# Check for new files every 5 seconds
while not self.stop_event.wait(5):
self.move_files()
wait_time = 5
while not self.stop_event.wait(wait_time):
run_start = datetime.datetime.now().timestamp()
try:
self.move_files()
except Exception as e:
logger.error(
"Error occurred when attempting to maintain recording cache"
)
logger.error(e)
wait_time = max(0, 5 - (datetime.datetime.now().timestamp() - run_start))
logger.info(f"Exiting recording maintenance...")
@@ -158,18 +255,22 @@ class RecordingCleanup(threading.Thread):
logger.debug("Start deleted cameras.")
# Handle deleted cameras
expire_days = self.config.record.retain_days
expire_before = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
no_camera_recordings: Recordings = Recordings.select().where(
Recordings.camera.not_in(list(self.config.cameras.keys())),
Recordings.end_time < expire_before,
)
deleted_recordings = set()
for recording in no_camera_recordings:
expire_days = self.config.record.retain_days
expire_before = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
if recording.end_time < expire_before:
Path(recording.path).unlink(missing_ok=True)
Recordings.delete_by_id(recording.id)
Path(recording.path).unlink(missing_ok=True)
deleted_recordings.add(recording.id)
logger.debug(f"Expiring {len(deleted_recordings)} recordings")
Recordings.delete().where(Recordings.id << deleted_recordings).execute()
logger.debug("End deleted cameras.")
logger.debug("Start all cameras.")
@@ -186,59 +287,65 @@ class RecordingCleanup(threading.Thread):
).timestamp()
expire_date = min(min_end, expire_before)
# Get recordings to remove
recordings: Recordings = Recordings.select().where(
Recordings.camera == camera,
Recordings.end_time < expire_date,
# Get recordings to check for expiration
recordings: Recordings = (
Recordings.select()
.where(
Recordings.camera == camera,
Recordings.end_time < expire_date,
)
.order_by(Recordings.start_time)
)
for recording in recordings:
# See if there are any associated events
events: Event = Event.select().where(
Event.camera == recording.camera,
(
Event.start_time.between(
recording.start_time, recording.end_time
)
| Event.end_time.between(
recording.start_time, recording.end_time
)
| (
(recording.start_time > Event.start_time)
& (recording.end_time < Event.end_time)
)
),
# Get all the events to check against
events: Event = (
Event.select()
.where(
Event.camera == camera,
# need to ensure segments for all events starting
# before the expire date are included
Event.start_time < expire_date,
Event.has_clip,
)
keep = False
event_ids = set()
.order_by(Event.start_time)
.objects()
)
event: Event
for event in events:
event_ids.add(event.id)
# Check event/label retention and keep the recording if within window
expire_days_event = (
0
if not config.record.events.enabled
else config.record.events.retain.objects.get(
event.label, config.record.events.retain.default
)
)
expire_before_event = (
datetime.datetime.now()
- datetime.timedelta(days=expire_days_event)
).timestamp()
if recording.end_time >= expire_before_event:
# loop over recordings and see if they overlap with any non-expired events
event_start = 0
deleted_recordings = set()
for recording in recordings.objects().iterator():
keep = False
# Now look for a reason to keep this recording segment
for idx in range(event_start, len(events)):
event = events[idx]
# if the event starts in the future, stop checking events
# and let this recording segment expire
if event.start_time > recording.end_time:
keep = False
break
# if the event is in progress or ends after the recording starts, keep it
# and stop looking at events
if event.end_time is None or event.end_time >= recording.start_time:
keep = True
break
# if the event ends before this recording segment starts, skip
# this event and check the next event for an overlap.
# since the events and recordings are sorted, we can skip events
# that end before the previous recording segment started on future segments
if event.end_time < recording.start_time:
event_start = idx
# Delete recordings outside of the retention window
if not keep:
Path(recording.path).unlink(missing_ok=True)
Recordings.delete_by_id(recording.id)
if event_ids:
# Update associated events
Event.update(has_clip=False).where(
Event.id.in_(list(event_ids))
).execute()
deleted_recordings.add(recording.id)
logger.debug(f"Expiring {len(deleted_recordings)} recordings")
Recordings.delete().where(Recordings.id << deleted_recordings).execute()
logger.debug(f"End camera: {camera}.")
@@ -261,19 +368,20 @@ class RecordingCleanup(threading.Thread):
)
# find all the recordings older than the oldest recording in the db
oldest_recording = (
Recordings.select().order_by(Recordings.start_time.desc()).get()
)
try:
oldest_recording = Recordings.select().order_by(Recordings.start_time).get()
oldest_timestamp = (
oldest_recording.start_time
if oldest_recording
else datetime.datetime.now().timestamp()
)
p = Path(oldest_recording.path)
oldest_timestamp = p.stat().st_mtime - 1
except DoesNotExist:
oldest_timestamp = datetime.datetime.now().timestamp()
except FileNotFoundError:
logger.warning(f"Unable to find file from recordings database: {p}")
oldest_timestamp = datetime.datetime.now().timestamp()
logger.debug(f"Oldest recording in the db: {oldest_timestamp}")
process = sp.run(
["find", RECORD_DIR, "-type", "f", "-newermt", f"@{oldest_timestamp}"],
["find", RECORD_DIR, "-type", "f", "!", "-newermt", f"@{oldest_timestamp}"],
capture_output=True,
text=True,
)

View File

@@ -473,7 +473,7 @@ class TestConfig(unittest.TestCase):
"width": 1920,
"fps": 5,
},
"record": {"events": {"enabled": True}},
"record": {"events": {}},
}
},
}
@@ -702,7 +702,11 @@ class TestConfig(unittest.TestCase):
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect", "clips"],
"roles": ["detect"],
},
{
"path": "rtsp://10.0.0.1:554/video2",
"roles": ["clips"],
},
]
},
@@ -717,6 +721,87 @@ class TestConfig(unittest.TestCase):
self.assertRaises(ValidationError, lambda: FrigateConfig(**config))
def test_fails_on_missing_role(self):
config = {
"mqtt": {"host": "mqtt"},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
{
"path": "rtsp://10.0.0.1:554/video2",
"roles": ["record"],
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"rtmp": {"enabled": True},
}
},
}
frigate_config = FrigateConfig(**config)
self.assertRaises(ValueError, lambda: frigate_config.runtime_config)
def test_works_on_missing_role_multiple_cams(self):
config = {
"mqtt": {"host": "mqtt"},
"rtmp": {"enabled": False},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
{
"path": "rtsp://10.0.0.1:554/video2",
"roles": ["record"],
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
},
"cam2": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
{
"path": "rtsp://10.0.0.1:554/video2",
"roles": ["record"],
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
},
},
}
frigate_config = FrigateConfig(**config)
runtime_config = frigate_config.runtime_config
def test_global_detect(self):
config = {
@@ -884,6 +969,281 @@ class TestConfig(unittest.TestCase):
assert runtime_config.cameras["back"].snapshots.height == 150
assert runtime_config.cameras["back"].snapshots.enabled
def test_global_rtmp(self):
config = {
"mqtt": {"host": "mqtt"},
"rtmp": {"enabled": True},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
},
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].rtmp.enabled
def test_default_rtmp(self):
config = {
"mqtt": {"host": "mqtt"},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
}
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].rtmp.enabled
def test_global_rtmp_merge(self):
config = {
"mqtt": {"host": "mqtt"},
"rtmp": {"enabled": False},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
},
"rtmp": {
"enabled": True,
},
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].rtmp.enabled
def test_global_rtmp_default(self):
config = {
"mqtt": {"host": "mqtt"},
"rtmp": {"enabled": False},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
{
"path": "rtsp://10.0.0.1:554/video2",
"roles": ["record"],
},
]
},
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert not runtime_config.cameras["back"].rtmp.enabled
def test_global_live(self):
config = {
"mqtt": {"host": "mqtt"},
"live": {"quality": 4},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
},
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].live.quality == 4
def test_default_live(self):
config = {
"mqtt": {"host": "mqtt"},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
}
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].live.quality == 8
def test_global_live_merge(self):
config = {
"mqtt": {"host": "mqtt"},
"live": {"quality": 4, "height": 480},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
},
"live": {
"quality": 7,
},
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].live.quality == 7
assert runtime_config.cameras["back"].live.height == 480
def test_global_timestamp_style(self):
config = {
"mqtt": {"host": "mqtt"},
"timestamp_style": {"position": "bl"},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
},
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].timestamp_style.position == "bl"
def test_default_timestamp_style(self):
config = {
"mqtt": {"host": "mqtt"},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
}
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].timestamp_style.position == "tl"
def test_global_timestamp_style_merge(self):
config = {
"mqtt": {"host": "mqtt"},
"rtmp": {"enabled": False},
"timestamp_style": {"position": "br", "thickness": 2},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
},
"timestamp_style": {"position": "bl", "thickness": 4},
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].timestamp_style.position == "bl"
assert runtime_config.cameras["back"].timestamp_style.thickness == 4
def test_allow_retain_to_be_a_decimal(self):
config = {
"mqtt": {"host": "mqtt"},
"snapshots": {"retain": {"default": 1.5}},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
},
}
},
}
frigate_config = FrigateConfig(**config)
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].snapshots.retain.default == 1.5
if __name__ == "__main__":
unittest.main(verbosity=2)

View File

@@ -0,0 +1,27 @@
import cv2
import numpy as np
from unittest import TestCase, main
from frigate.video import box_overlaps, reduce_boxes
class TestBoxOverlaps(TestCase):
def test_overlap(self):
assert box_overlaps((100, 100, 200, 200), (50, 50, 150, 150))
def test_overlap_2(self):
assert box_overlaps((50, 50, 150, 150), (100, 100, 200, 200))
def test_no_overlap(self):
assert not box_overlaps((100, 100, 200, 200), (250, 250, 350, 350))
class TestReduceBoxes(TestCase):
def test_cluster(self):
clusters = reduce_boxes(
[(144, 290, 221, 459), (225, 178, 426, 341), (343, 105, 584, 250)]
)
assert len(clusters) == 2
if __name__ == "__main__":
main(verbosity=2)

View File

@@ -18,6 +18,7 @@ import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import psutil
logger = logging.getLogger(__name__)
@@ -51,18 +52,32 @@ def draw_timestamp(
timestamp,
timestamp_format,
font_effect=None,
font_scale=1.0,
font_thickness=2,
font_color=(255, 255, 255),
position="tl",
):
time_to_show = datetime.datetime.fromtimestamp(timestamp).strftime(timestamp_format)
# calculate a dynamic font size
size = cv2.getTextSize(
time_to_show,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0,
thickness=font_thickness,
)
text_width = size[0][0]
desired_size = max(150, 0.33 * frame.shape[1])
font_scale = desired_size / text_width
# calculate the actual size with the dynamic scale
size = cv2.getTextSize(
time_to_show,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
thickness=font_thickness,
)
image_width = frame.shape[1]
image_height = frame.shape[0]
text_width = size[0][0]
@@ -176,7 +191,7 @@ def draw_box_with_label(
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is the longest edge and divisible by 4
size = int(max(xmax - xmin, ymax - ymin) // 4 * 4 * multiplier)
size = int((max(xmax - xmin, ymax - ymin) * multiplier) // 4 * 4)
# dont go any smaller than 300
if size < 300:
size = 300
@@ -520,7 +535,13 @@ def clipped(obj, frame_shape):
def restart_frigate():
os.kill(os.getpid(), signal.SIGTERM)
proc = psutil.Process(1)
# if this is running via s6, sigterm pid 1
if proc.name() == "s6-svscan":
proc.terminate()
# otherwise, just try and exit frigate
else:
os.kill(os.getpid(), signal.SIGTERM)
class EventsPerSecond:

View File

@@ -3,18 +3,18 @@ import itertools
import logging
import multiprocessing as mp
import queue
import subprocess as sp
import signal
import subprocess as sp
import threading
import time
from collections import defaultdict
from setproctitle import setproctitle
from typing import Dict, List
from cv2 import cv2
import numpy as np
from cv2 import cv2, reduce
from setproctitle import setproctitle
from frigate.config import CameraConfig
from frigate.config import CameraConfig, DetectConfig
from frigate.edgetpu import RemoteObjectDetector
from frigate.log import LogPipe
from frigate.motion import MotionDetector
@@ -23,8 +23,11 @@ from frigate.util import (
EventsPerSecond,
FrameManager,
SharedMemoryFrameManager,
area,
calculate_region,
clipped,
intersection,
intersection_over_union,
listen,
yuv_region_2_rgb,
)
@@ -72,7 +75,25 @@ def filtered(obj, objects_to_track, object_filters):
def create_tensor_input(frame, model_shape, region):
cropped_frame = yuv_region_2_rgb(frame, region)
# TODO: is it faster to just convert grayscale to RGB? or repeat dimensions with numpy?
height = frame.shape[0] // 3 * 2
width = frame.shape[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
size = region[3] - region[1]
cropped_frame = np.zeros((size, size), np.uint8)
cropped_frame[
0 : crop_y2 - crop_y1,
0 : crop_x2 - crop_x1,
] = frame[crop_y1:crop_y2, crop_x1:crop_x2]
cropped_frame = np.repeat(np.expand_dims(cropped_frame, -1), 3, 2)
# Resize to 300x300 if needed
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
@@ -364,6 +385,7 @@ def track_camera(
frame_queue,
frame_shape,
model_shape,
config.detect,
frame_manager,
motion_detector,
object_detector,
@@ -379,26 +401,36 @@ def track_camera(
logger.info(f"{name}: exiting subprocess")
def reduce_boxes(boxes):
if len(boxes) == 0:
return []
reduced_boxes = cv2.groupRectangles(
[list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2
)[0]
return [tuple(b) for b in reduced_boxes]
def box_overlaps(b1, b2):
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
return False
return True
def reduce_boxes(boxes, iou_threshold=0.0):
clusters = []
for box in boxes:
matched = 0
for cluster in clusters:
if intersection_over_union(box, cluster) > iou_threshold:
matched = 1
cluster[0] = min(cluster[0], box[0])
cluster[1] = min(cluster[1], box[1])
cluster[2] = max(cluster[2], box[2])
cluster[3] = max(cluster[3], box[3])
if not matched:
clusters.append(list(box))
return [tuple(c) for c in clusters]
# modified from https://stackoverflow.com/a/40795835
def intersects_any(box_a, boxes):
for box in boxes:
if (
box_a[2] < box[0]
or box_a[0] > box[2]
or box_a[1] > box[3]
or box_a[3] < box[1]
):
continue
return True
if box_overlaps(box_a, box):
return True
return False
def detect(
@@ -434,6 +466,7 @@ def process_frames(
frame_queue: mp.Queue,
frame_shape,
model_shape,
detect_config: DetectConfig,
frame_manager: FrameManager,
motion_detector: MotionDetector,
object_detector: RemoteObjectDetector,
@@ -487,11 +520,28 @@ def process_frames(
# look for motion
motion_boxes = motion_detector.detect(frame)
# only get the tracked object boxes that intersect with motion
# get stationary object ids
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if there hasn't been motion for 10 frames
if obj["motionless_count"] >= 10
# and it isn't due for a periodic check
and obj["motionless_count"] % detect_config.stationary_interval != 0
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes
and not intersects_any(obj["box"], motion_boxes)
]
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
obj["box"]
for obj in object_tracker.tracked_objects.values()
if intersects_any(obj["box"], motion_boxes)
if not obj["id"] in stationary_object_ids
]
# combine motion boxes with known locations of existing objects
@@ -503,17 +553,25 @@ def process_frames(
for a in combined_boxes
]
# combine overlapping regions
combined_regions = reduce_boxes(regions)
# re-compute regions
# consolidate regions with heavy overlap
regions = [
calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in combined_regions
for a in reduce_boxes(regions, 0.4)
]
# resize regions and detect
detections = []
# seed with stationary objects
detections = [
(
obj["label"],
obj["score"],
obj["box"],
obj["area"],
obj["region"],
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] in stationary_object_ids
]
for region in regions:
detections.extend(
detect(
@@ -582,14 +640,46 @@ def process_frames(
if refining:
refine_count += 1
# Limit to the detections overlapping with motion areas
# to avoid picking up stationary background objects
detections_with_motion = [
d for d in detections if intersects_any(d[2], motion_boxes)
]
## drop detections that overlap too much
consolidated_detections = []
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
# loop over detections grouped by label
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
# if 90% of smaller detection is inside of another detection, consolidate
if (
area(intersection(current_detection, to_check))
/ area(current_detection)
> 0.9
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(
sorted_by_area[current_detection_idx]
)
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections_with_motion)
object_tracker.match_and_update(frame_time, consolidated_detections)
# add to the queue if not full
if detected_objects_queue.full():

View File

@@ -5,6 +5,10 @@ import time
import os
import signal
from frigate.util import (
restart_frigate,
)
logger = logging.getLogger(__name__)
@@ -30,6 +34,6 @@ class FrigateWatchdog(threading.Thread):
detector.start_or_restart()
elif not detector.detect_process.is_alive():
logger.info("Detection appears to have stopped. Exiting frigate...")
os.kill(os.getpid(), signal.SIGTERM)
restart_frigate()
logger.info(f"Exiting watchdog...")

View File

@@ -0,0 +1,48 @@
"""Peewee migrations -- 004_add_bbox_region_area.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import datetime as dt
import peewee as pw
from playhouse.sqlite_ext import *
from decimal import ROUND_HALF_EVEN
from frigate.models import Event
try:
import playhouse.postgres_ext as pw_pext
except ImportError:
pass
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.add_fields(
Event,
region=JSONField(default=[]),
box=JSONField(default=[]),
area=pw.IntegerField(default=0),
)
def rollback(migrator, database, fake=False, **kwargs):
migrator.remove_fields(Event, ["region", "box", "area"])

View File

@@ -0,0 +1,43 @@
"""Peewee migrations -- 004_add_bbox_region_area.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import datetime as dt
import peewee as pw
from playhouse.sqlite_ext import *
from decimal import ROUND_HALF_EVEN
from frigate.models import Event
try:
import playhouse.postgres_ext as pw_pext
except ImportError:
pass
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.drop_not_null(Event, "end_time")
def rollback(migrator, database, fake=False, **kwargs):
pass

View File

@@ -1,23 +1,26 @@
import datetime
import sys
from typing_extensions import runtime
sys.path.append("/lab/frigate")
import json
import logging
import multiprocessing as mp
import os
import subprocess as sp
import sys
from unittest import TestCase, main
import click
import csv
import cv2
import numpy as np
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
from frigate.config import FrigateConfig
from frigate.edgetpu import LocalObjectDetector
from frigate.motion import MotionDetector
from frigate.object_processing import CameraState
from frigate.objects import ObjectTracker
from frigate.util import (
DictFrameManager,
EventsPerSecond,
SharedMemoryFrameManager,
draw_box_with_label,
@@ -96,20 +99,22 @@ class ProcessClip:
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=["person"], object_filters={}):
def process_frames(
self, object_detector, objects_to_track=["person"], object_filters={}
):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(
self.frame_shape, mask, self.camera_config.motion
)
motion_detector = MotionDetector(self.frame_shape, self.camera_config.motion)
motion_detector.save_images = False
object_detector = LocalObjectDetector(labels="/labelmap.txt")
object_tracker = ObjectTracker(self.camera_config.detect)
process_info = {
"process_fps": mp.Value("d", 0.0),
"detection_fps": mp.Value("d", 0.0),
"detection_frame": mp.Value("d", 0.0),
}
detection_enabled = mp.Value("d", 1)
stop_event = mp.Event()
model_shape = (self.config.model.height, self.config.model.width)
@@ -118,6 +123,7 @@ class ProcessClip:
self.frame_queue,
self.frame_shape,
model_shape,
self.camera_config.detect,
self.frame_manager,
motion_detector,
object_detector,
@@ -126,25 +132,16 @@ class ProcessClip:
process_info,
objects_to_track,
object_filters,
mask,
detection_enabled,
stop_event,
exit_on_empty=True,
)
def top_object(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj, frame_time):
nonlocal obj_detected
nonlocal top_computed_score
if obj.computed_score > top_computed_score:
top_computed_score = obj.computed_score
if not obj.false_positive:
obj_detected = True
self.camera_state.on("new", handle_event)
self.camera_state.on("update", handle_event)
def stats(self, debug_path=None):
total_regions = 0
total_motion_boxes = 0
object_ids = set()
total_frames = 0
while not self.detected_objects_queue.empty():
(
@@ -154,7 +151,8 @@ class ProcessClip:
motion_boxes,
regions,
) = self.detected_objects_queue.get()
if not debug_path is None:
if debug_path:
self.save_debug_frame(
debug_path, frame_time, current_tracked_objects.values()
)
@@ -162,10 +160,22 @@ class ProcessClip:
self.camera_state.update(
frame_time, current_tracked_objects, motion_boxes, regions
)
total_regions += len(regions)
total_motion_boxes += len(motion_boxes)
for id, obj in self.camera_state.tracked_objects.items():
if not obj.false_positive:
object_ids.add(id)
self.frame_manager.delete(self.camera_state.previous_frame_id)
total_frames += 1
return {"object_detected": obj_detected, "top_score": top_computed_score}
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
"total_regions": total_regions,
"total_motion_boxes": total_motion_boxes,
"true_positive_objects": len(object_ids),
"total_frames": total_frames,
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = cv2.cvtColor(
@@ -178,7 +188,6 @@ class ProcessClip:
for obj in tracked_objects:
thickness = 2
color = (0, 0, 175)
if obj["frame_time"] != frame_time:
thickness = 1
color = (255, 0, 0)
@@ -221,10 +230,9 @@ class ProcessClip:
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default="person", help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("-s", "--scores", default=None, help="File to save csv of top scores")
@click.option("-o", "--output", default=None, help="File to save csv of data")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, threshold, scores, debug_path):
def process(path, label, output, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
@@ -235,51 +243,78 @@ def process(path, label, threshold, scores, debug_path):
json_config = {
"mqtt": {"host": "mqtt"},
"detectors": {"coral": {"type": "edgetpu", "device": "usb"}},
"cameras": {
"camera": {
"ffmpeg": {
"inputs": [
{
"path": "path.mp4",
"global_args": "",
"input_args": "",
"global_args": "-hide_banner",
"input_args": "-loglevel info",
"roles": ["detect"],
}
]
},
"height": 1920,
"width": 1080,
"rtmp": {"enabled": False},
"record": {"enabled": False},
}
},
}
object_detector = LocalObjectDetector(labels="/labelmap.txt")
results = []
for c in clips:
logger.info(c)
frame_shape = get_frame_shape(c)
json_config["cameras"]["camera"]["height"] = frame_shape[0]
json_config["cameras"]["camera"]["width"] = frame_shape[1]
json_config["cameras"]["camera"]["detect"] = {
"height": frame_shape[0],
"width": frame_shape[1],
}
json_config["cameras"]["camera"]["ffmpeg"]["inputs"][0]["path"] = c
config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
frigate_config = FrigateConfig(**json_config)
runtime_config = frigate_config.runtime_config
process_clip = ProcessClip(c, frame_shape, config)
process_clip = ProcessClip(c, frame_shape, runtime_config)
process_clip.load_frames()
process_clip.process_frames(objects_to_track=[label])
process_clip.process_frames(object_detector, objects_to_track=[label])
results.append((c, process_clip.top_object(debug_path)))
results.append((c, process_clip.stats(debug_path)))
if not scores is None:
with open(scores, "w") as writer:
for result in results:
writer.write(f"{result[0]},{result[1]['top_score']}\n")
positive_count = sum(1 for result in results if result[1]["object_detected"])
positive_count = sum(
1 for result in results if result[1]["true_positive_objects"] > 0
)
print(
f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s)."
)
if output:
# now we will open a file for writing
data_file = open(output, "w")
# create the csv writer object
csv_writer = csv.writer(data_file)
# Counter variable used for writing
# headers to the CSV file
count = 0
for result in results:
if count == 0:
# Writing headers of CSV file
header = ["file"] + list(result[1].keys())
csv_writer.writerow(header)
count += 1
# Writing data of CSV file
csv_writer.writerow([result[0]] + list(result[1].values()))
data_file.close()
if __name__ == "__main__":
process()

847
web/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -14,11 +14,11 @@
"@cycjimmy/jsmpeg-player": "^5.0.1",
"date-fns": "^2.21.3",
"idb-keyval": "^5.0.2",
"immer": "^8.0.1",
"immer": "^9.0.6",
"preact": "^10.5.9",
"preact-async-route": "^2.2.1",
"preact-router": "^3.2.1",
"video.js": "^7.13.0",
"video.js": "^7.15.4",
"videojs-playlist": "^4.3.1",
"videojs-seek-buttons": "^2.0.1"
},

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.3 KiB

After

Width:  |  Height:  |  Size: 3.9 KiB

View File

@@ -11,7 +11,8 @@
<link rel="manifest" href="/site.webmanifest" />
<link rel="mask-icon" href="/safari-pinned-tab.svg" color="#3b82f7" />
<meta name="msapplication-TileColor" content="#3b82f7" />
<meta name="theme-color" content="#ff0000" />
<meta name="theme-color" content="#ffffff" media="(prefers-color-scheme: light)" />
<meta name="theme-color" content="#111827" media="(prefers-color-scheme: dark)" />
</head>
<body>
<div id="root" class="z-0"></div>

View File

@@ -13,7 +13,7 @@
"type": "image/png"
}
],
"theme_color": "#ff0000",
"background_color": "#ff0000",
"theme_color": "#ffffff",
"background_color": "#ffffff",
"display": "standalone"
}

View File

@@ -10,6 +10,7 @@ import NavigationDrawer, { Destination, Separator } from './components/Navigatio
export default function Sidebar() {
const { data: config } = useConfig();
const cameras = useMemo(() => Object.entries(config.cameras), [config]);
const { birdseye } = config;
return (
<NavigationDrawer header={<Header />}>
@@ -49,7 +50,7 @@ export default function Sidebar() {
) : null
}
</Match>
<Destination href="/birdseye" text="Birdseye" />
{birdseye?.enabled ? <Destination href="/birdseye" text="Birdseye" /> : null}
<Destination href="/events" text="Events" />
<Destination href="/debug" text="Debug" />
<Separator />
@@ -60,7 +61,7 @@ export default function Sidebar() {
<Separator />
</Fragment>
) : null}
<Destination className="self-end" href="https://blakeblackshear.github.io/frigate" text="Documentation" />
<Destination className="self-end" href="https://docs.frigate.video" text="Documentation" />
<Destination className="self-end" href="https://github.com/blakeblackshear/frigate" text="GitHub" />
</NavigationDrawer>
);

View File

@@ -121,12 +121,12 @@ describe('MqttProvider', () => {
</MqttProvider>
);
await screen.findByTestId('data');
expect(screen.getByTestId('front/detect/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"ON"}');
expect(screen.getByTestId('front/recordings/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"OFF"}');
expect(screen.getByTestId('front/snapshots/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"ON"}');
expect(screen.getByTestId('side/detect/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"OFF"}');
expect(screen.getByTestId('side/recordings/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"OFF"}');
expect(screen.getByTestId('side/snapshots/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"OFF"}');
expect(screen.getByTestId('front/detect/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"ON","retain":true}');
expect(screen.getByTestId('front/recordings/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"OFF","retain":true}');
expect(screen.getByTestId('front/snapshots/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"ON","retain":true}');
expect(screen.getByTestId('side/detect/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"OFF","retain":true}');
expect(screen.getByTestId('side/recordings/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"OFF","retain":true}');
expect(screen.getByTestId('side/snapshots/state')).toHaveTextContent('{"lastUpdate":123456,"payload":"OFF","retain":true}');
});
});

View File

@@ -42,9 +42,9 @@ export function MqttProvider({
useEffect(() => {
Object.keys(config.cameras).forEach((camera) => {
const { name, record, detect, snapshots } = config.cameras[camera];
dispatch({ topic: `${name}/recordings/state`, payload: record.enabled ? 'ON' : 'OFF' });
dispatch({ topic: `${name}/detect/state`, payload: detect.enabled ? 'ON' : 'OFF' });
dispatch({ topic: `${name}/snapshots/state`, payload: snapshots.enabled ? 'ON' : 'OFF' });
dispatch({ topic: `${name}/recordings/state`, payload: record.enabled ? 'ON' : 'OFF', retain: true });
dispatch({ topic: `${name}/detect/state`, payload: detect.enabled ? 'ON' : 'OFF', retain: true });
dispatch({ topic: `${name}/snapshots/state`, payload: snapshots.enabled ? 'ON' : 'OFF', retain: true });
});
}, [config]);

View File

@@ -37,7 +37,8 @@ export default function AppBar({ title: Title, overflowRef, onOverflowClick }) {
return (
<div
className={`w-full border-b border-gray-200 dark:border-gray-700 flex items-center align-middle p-2 fixed left-0 right-0 z-10 bg-white dark:bg-gray-900 transform transition-all duration-200 ${
id="appbar"
className={`w-full border-b border-gray-200 dark:border-gray-700 flex items-center align-middle p-2 fixed left-0 right-0 z-10 bg-white dark:bg-gray-900 transform transition-all duration-200 ${
!show ? '-translate-y-full' : 'translate-y-0'
} ${!atZero ? 'shadow-sm' : ''}`}
data-testid="appbar"

View File

@@ -3,7 +3,7 @@ import { baseUrl } from '../api/baseUrl';
import { useRef, useEffect } from 'preact/hooks';
import JSMpeg from '@cycjimmy/jsmpeg-player';
export default function JSMpegPlayer({ camera }) {
export default function JSMpegPlayer({ camera, width, height }) {
const playerRef = useRef();
const url = `${baseUrl.replace(/^http/, 'ws')}/live/${camera}`
@@ -32,6 +32,6 @@ export default function JSMpegPlayer({ camera }) {
}, [url]);
return (
<div ref={playerRef} class="jsmpeg" />
<div ref={playerRef} class="jsmpeg" style={`max-height: ${height}px; max-width: ${width}px`} />
);
}

View File

@@ -35,7 +35,7 @@ export default function RecordingPlaylist({ camera, recordings, selectedDate, se
</div>
<div className="flex-1 text-right">{item.events.length} Events</div>
</div>
{item.events.map((event) => (
{item.events.slice().reverse().map((event) => (
<EventCard camera={camera} event={event} delay={item.delay} />
))}
</div>

View File

@@ -14,9 +14,9 @@ export function Thead({ children, className, ...attrs }) {
);
}
export function Tbody({ children, className, ...attrs }) {
export function Tbody({ children, className, reference, ...attrs }) {
return (
<tbody className={className} {...attrs}>
<tbody ref={reference} className={className} {...attrs}>
{children}
</tbody>
);
@@ -30,9 +30,10 @@ export function Tfoot({ children, className = '', ...attrs }) {
);
}
export function Tr({ children, className = '', ...attrs }) {
export function Tr({ children, className = '', reference, ...attrs }) {
return (
<tr
ref={reference}
className={`border-b border-gray-200 dark:border-gray-700 hover:bg-gray-100 dark:hover:bg-gray-800 ${className}`}
{...attrs}
>
@@ -49,9 +50,9 @@ export function Th({ children, className = '', colspan, ...attrs }) {
);
}
export function Td({ children, className = '', colspan, ...attrs }) {
export function Td({ children, className = '', reference, colspan, ...attrs }) {
return (
<td className={`p-2 px-1 lg:p-4 ${className}`} colSpan={colspan} {...attrs}>
<td ref={reference} className={`p-2 px-1 lg:p-4 ${className}`} colSpan={colspan} {...attrs}>
{children}
</td>
);

View File

@@ -88,7 +88,7 @@ export default function VideoPlayer({ children, options, seekOptions = {}, onRea
return (
<div data-vjs-player>
<video ref={playerRef} className="video-js vjs-default-skin" controls playsinline />
<video ref={playerRef} className="small-player video-js vjs-default-skin" controls playsinline />
{children}
</div>
);

View File

@@ -0,0 +1,22 @@
import { useEffect, useRef } from 'preact/hooks';
// https://stackoverflow.com/a/54292872/2693528
export const useClickOutside = (callback) => {
const callbackRef = useRef(); // initialize mutable ref, which stores callback
const innerRef = useRef(); // returned to client, who marks "border" element
// update cb on each render, so second useEffect has access to current value
useEffect(() => {
callbackRef.current = callback;
});
useEffect(() => {
document.addEventListener('click', handleClick);
return () => document.removeEventListener('click', handleClick);
function handleClick(e) {
if (innerRef.current && callbackRef.current && !innerRef.current.contains(e.target)) callbackRef.current(e);
}
}, []);
return innerRef; // convenience for client (doesn't need to init ref himself)
};

View File

@@ -0,0 +1,25 @@
import { useState, useCallback } from 'preact/hooks';
const defaultSearchString = (limit) => `include_thumbnails=0&limit=${limit}`;
export const useSearchString = (limit, searchParams) => {
const { searchParams: initialSearchParams } = new URL(window.location);
const _searchParams = searchParams || initialSearchParams.toString();
const [searchString, changeSearchString] = useState(`${defaultSearchString(limit)}&${_searchParams}`);
const setSearchString = useCallback(
(limit, searchString) => {
changeSearchString(`${defaultSearchString(limit)}&${searchString}`);
},
[changeSearchString]
);
const removeDefaultSearchKeys = useCallback((searchParams) => {
searchParams.delete('limit');
searchParams.delete('include_thumbnails');
searchParams.delete('before');
}, []);
return { searchString, setSearchString, removeDefaultSearchKeys };
};

View File

@@ -36,5 +36,20 @@ Maintain aspect ratio and scale down the video container
Could not find a proper tailwind css.
*/
.outer-max-width {
max-width: 60%;
max-width: 70%;
}
/*
Hide some videoplayer controls on mobile devices to
align the video player and bottom control bar properly.
*/
@media only screen and (max-width: 700px) {
.small-player .vjs-time-control,
.small-player .vjs-time-divider {
display: none;
}
div.vjs-control-bar > .skip-back.skip-5,
div.vjs-control-bar > .skip-forward.skip-10 {
display: none;
}
}

View File

@@ -21,6 +21,7 @@ export default function Camera({ camera }) {
const [viewMode, setViewMode] = useState('live');
const cameraConfig = config?.cameras[camera];
const liveWidth = Math.round(cameraConfig.live.height * (cameraConfig.detect.width / cameraConfig.detect.height))
const [options, setOptions] = usePersistence(`${camera}-feed`, emptyObject);
const handleSetOption = useCallback(
@@ -87,7 +88,7 @@ export default function Camera({ camera }) {
player = (
<Fragment>
<div>
<JSMpegPlayer camera={camera} />
<JSMpegPlayer camera={camera} width={liveWidth} height={cameraConfig.live.height} />
</div>
</Fragment>
);

View File

@@ -1,7 +1,10 @@
import { h, Fragment } from 'preact';
import { useCallback, useState, useEffect } from 'preact/hooks';
import Link from '../components/Link';
import ActivityIndicator from '../components/ActivityIndicator';
import Button from '../components/Button';
import ArrowDown from '../icons/ArrowDropdown';
import ArrowDropup from '../icons/ArrowDropup';
import Clip from '../icons/Clip';
import Close from '../icons/Close';
import Delete from '../icons/Delete';
@@ -9,12 +12,46 @@ import Snapshot from '../icons/Snapshot';
import Dialog from '../components/Dialog';
import Heading from '../components/Heading';
import VideoPlayer from '../components/VideoPlayer';
import { Table, Thead, Tbody, Th, Tr, Td } from '../components/Table';
import { FetchStatus, useApiHost, useEvent, useDelete } from '../api';
const ActionButtonGroup = ({ className, handleClickDelete, close }) => (
<div className={`space-y-2 space-x-2 sm:space-y-0 xs:space-x-4 ${className}`}>
<Button className="xs:w-auto" color="red" onClick={handleClickDelete}>
<Delete className="w-6" /> Delete event
</Button>
<Button color="gray" className="xs:w-auto" onClick={() => close()}>
<Close className="w-6" /> Close
</Button>
</div>
);
const DownloadButtonGroup = ({ className, apiHost, eventId }) => (
<span className={`space-y-2 sm:space-y-0 space-x-0 sm:space-x-4 ${className}`}>
<Button
className="w-full sm:w-auto"
color="blue"
href={`${apiHost}/api/events/${eventId}/clip.mp4?download=true`}
download
>
<Clip className="w-6" /> Download Clip
</Button>
<Button
className="w-full sm:w-auto"
color="blue"
href={`${apiHost}/api/events/${eventId}/snapshot.jpg?download=true`}
download
>
<Snapshot className="w-6" /> Download Snapshot
</Button>
</span>
);
export default function Event({ eventId, close, scrollRef }) {
const apiHost = useApiHost();
const { data, status } = useEvent(eventId);
const [showDialog, setShowDialog] = useState(false);
const [showDetails, setShowDetails] = useState(false);
const [shouldScroll, setShouldScroll] = useState(true);
const [deleteStatus, setDeleteStatus] = useState(FetchStatus.NONE);
const setDeleteEvent = useDelete();
@@ -25,6 +62,13 @@ export default function Event({ eventId, close, scrollRef }) {
scrollRef[eventId].scrollIntoView();
setShouldScroll(false);
}
return () => {
// When opening new event window, the previous one will sometimes cause the
// navbar to be visible, hence the "hide nav" code bellow.
// Navbar will be hided if we add the - translate - y - full class.appBar.js
const element = document.getElementById('appbar');
if (element) element.classList.add('-translate-y-full');
};
}, [data, scrollRef, eventId, shouldScroll]);
const handleClickDelete = () => {
@@ -54,25 +98,28 @@ export default function Event({ eventId, close, scrollRef }) {
return <ActivityIndicator />;
}
const startime = new Date(data.start_time * 1000);
const endtime = data.end_time ? new Date(data.end_time * 1000) : null;
return (
<div className="space-y-4">
<div className="grid grid-cols-6 gap-4">
<div class="col-start-1 col-end-8 md:space-x-4">
<Button color="blue" href={`${apiHost}/api/events/${eventId}/clip.mp4?download=true`} download>
<Clip className="w-6" /> Download Clip
</Button>
<Button color="blue" href={`${apiHost}/api/events/${eventId}/snapshot.jpg?download=true`} download>
<Snapshot className="w-6" /> Download Snapshot
</Button>
</div>
<div class="col-end-10 col-span-2 space-x-4">
<Button className="self-start" color="red" onClick={handleClickDelete}>
<Delete className="w-6" /> Delete event
</Button>
<Button color="gray" className="self-start" onClick={() => close()}>
<Close className="w-6" /> Close
<div className="flex md:flex-row justify-between flex-wrap flex-col">
<div className="space-y-2 xs:space-y-0 sm:space-x-4">
<DownloadButtonGroup apiHost={apiHost} eventId={eventId} className="hidden sm:inline" />
<Button className="w-full sm:w-auto" onClick={() => setShowDetails(!showDetails)}>
{showDetails ? (
<Fragment>
<ArrowDropup className="w-6" />
Hide event Details
</Fragment>
) : (
<Fragment>
<ArrowDown className="w-6" />
Show event Details
</Fragment>
)}
</Button>
</div>
<ActionButtonGroup handleClickDelete={handleClickDelete} close={close} className="hidden sm:block" />
{showDialog ? (
<Dialog
onDismiss={handleDismissDeleteDialog}
@@ -91,13 +138,47 @@ export default function Event({ eventId, close, scrollRef }) {
/>
) : null}
</div>
<div className="outer-max-width m-auto">
<div className="w-full pt-5 relative pb-20">
<div>
{showDetails ? (
<Table class="w-full">
<Thead>
<Th>Key</Th>
<Th>Value</Th>
</Thead>
<Tbody>
<Tr>
<Td>Camera</Td>
<Td>
<Link href={`/cameras/${data.camera}`}>{data.camera}</Link>
</Td>
</Tr>
<Tr index={1}>
<Td>Timeframe</Td>
<Td>
{startime.toLocaleString()}{endtime === null ? ` ${endtime.toLocaleString()}`:''}
</Td>
</Tr>
<Tr>
<Td>Score</Td>
<Td>{(data.top_score * 100).toFixed(2)}%</Td>
</Tr>
<Tr index={1}>
<Td>Zones</Td>
<Td>{data.zones.join(', ')}</Td>
</Tr>
</Tbody>
</Table>
) : null}
</div>
<div className="outer-max-width xs:m-auto">
<div className="pt-5 relative pb-20 w-screen xs:w-full">
{data.has_clip ? (
<Fragment>
<Heading size="lg">Clip</Heading>
<VideoPlayer
options={{
preload: 'none',
sources: [
{
src: `${apiHost}/vod/event/${eventId}/index.m3u8`,
@@ -105,7 +186,7 @@ export default function Event({ eventId, close, scrollRef }) {
},
],
poster: data.has_snapshot
? `${apiHost}/clips/${data.camera}-${eventId}.jpg`
? `${apiHost}/api/events/${eventId}/snapshot.jpg`
: `data:image/jpeg;base64,${data.thumbnail}`,
}}
seekOptions={{ forward: 10, back: 5 }}
@@ -127,6 +208,10 @@ export default function Event({ eventId, close, scrollRef }) {
)}
</div>
</div>
<div className="space-y-2 xs:space-y-0">
<DownloadButtonGroup apiHost={apiHost} eventId={eventId} className="block sm:hidden" />
<ActionButtonGroup handleClickDelete={handleClickDelete} close={close} className="block sm:hidden" />
</div>
</div>
);
}

View File

@@ -1,326 +0,0 @@
import { h, Fragment } from 'preact';
import ActivityIndicator from '../components/ActivityIndicator';
import Heading from '../components/Heading';
import Link from '../components/Link';
import Select from '../components/Select';
import produce from 'immer';
import { route } from 'preact-router';
import Event from './Event';
import { useIntersectionObserver } from '../hooks';
import { FetchStatus, useApiHost, useConfig, useEvents } from '../api';
import { Table, Thead, Tbody, Tfoot, Th, Tr, Td } from '../components/Table';
import { useCallback, useEffect, useMemo, useReducer, useState } from 'preact/hooks';
const API_LIMIT = 25;
const initialState = Object.freeze({ events: [], reachedEnd: false, searchStrings: {}, deleted: 0 });
const reducer = (state = initialState, action) => {
switch (action.type) {
case 'DELETE_EVENT': {
const { deletedId } = action;
return produce(state, (draftState) => {
const idx = draftState.events.findIndex((e) => e.id === deletedId);
if (idx === -1) return state;
draftState.events.splice(idx, 1);
draftState.deleted++;
});
}
case 'APPEND_EVENTS': {
const {
meta: { searchString },
payload,
} = action;
return produce(state, (draftState) => {
draftState.searchStrings[searchString] = true;
draftState.events.push(...payload);
draftState.deleted = 0;
});
}
case 'REACHED_END': {
const {
meta: { searchString },
} = action;
return produce(state, (draftState) => {
draftState.reachedEnd = true;
draftState.searchStrings[searchString] = true;
});
}
case 'RESET':
return initialState;
default:
return state;
}
};
const defaultSearchString = (limit) => `include_thumbnails=0&limit=${limit}`;
function removeDefaultSearchKeys(searchParams) {
searchParams.delete('limit');
searchParams.delete('include_thumbnails');
searchParams.delete('before');
}
export default function Events({ path: pathname, limit = API_LIMIT } = {}) {
const apiHost = useApiHost();
const [{ events, reachedEnd, searchStrings, deleted }, dispatch] = useReducer(reducer, initialState);
const { searchParams: initialSearchParams } = new URL(window.location);
const [viewEvent, setViewEvent] = useState(null);
const [searchString, setSearchString] = useState(`${defaultSearchString(limit)}&${initialSearchParams.toString()}`);
const { data, status, deletedId } = useEvents(searchString);
const scrollToRef = {};
useEffect(() => {
if (data && !(searchString in searchStrings)) {
dispatch({ type: 'APPEND_EVENTS', payload: data, meta: { searchString } });
}
if (data && Array.isArray(data) && data.length + deleted < limit) {
dispatch({ type: 'REACHED_END', meta: { searchString } });
}
if (deletedId) {
dispatch({ type: 'DELETE_EVENT', deletedId });
}
}, [data, limit, searchString, searchStrings, deleted, deletedId]);
const [entry, setIntersectNode] = useIntersectionObserver();
useEffect(() => {
if (entry && entry.isIntersecting) {
const { startTime } = entry.target.dataset;
const { searchParams } = new URL(window.location);
searchParams.set('before', parseFloat(startTime) - 0.0001);
setSearchString(`${defaultSearchString(limit)}&${searchParams.toString()}`);
}
}, [entry, limit]);
const lastCellRef = useCallback(
(node) => {
if (node !== null && !reachedEnd) {
setIntersectNode(node);
}
},
[setIntersectNode, reachedEnd]
);
const handleFilter = useCallback(
(searchParams) => {
dispatch({ type: 'RESET' });
removeDefaultSearchKeys(searchParams);
setSearchString(`${defaultSearchString(limit)}&${searchParams.toString()}`);
route(`${pathname}?${searchParams.toString()}`);
},
[limit, pathname, setSearchString]
);
const viewEventHandler = (id) => {
//Toggle event view
if (viewEvent === id) return setViewEvent(null);
//Set event id to be rendered.
setViewEvent(id);
};
const searchParams = useMemo(() => new URLSearchParams(searchString), [searchString]);
return (
<div className="space-y-4 w-full">
<Heading>Events</Heading>
<Filters onChange={handleFilter} searchParams={searchParams} />
<div className="min-w-0 overflow-auto">
<Table className="min-w-full table-fixed">
<Thead>
<Tr>
<Th />
<Th>Camera</Th>
<Th>Label</Th>
<Th>Score</Th>
<Th>Zones</Th>
<Th>Date</Th>
<Th>Start</Th>
<Th>End</Th>
</Tr>
</Thead>
<Tbody>
{events.map(
({ camera, id, label, start_time: startTime, end_time: endTime, top_score: score, zones }, i) => {
const start = new Date(parseInt(startTime * 1000, 10));
const end = new Date(parseInt(endTime * 1000, 10));
const ref = i === events.length - 1 ? lastCellRef : undefined;
return (
<Fragment key={id}>
<Tr data-testid={`event-${id}`} className={`${viewEvent === id ? 'border-none' : ''}`}>
<Td className="w-40">
<a
onClick={() => viewEventHandler(id)}
ref={ref}
data-start-time={startTime}
data-reached-end={reachedEnd}
>
<img
ref={(el) => (scrollToRef[id] = el)}
width="150"
height="150"
className="cursor-pointer"
style="min-height: 48px; min-width: 48px;"
src={`${apiHost}/api/events/${id}/thumbnail.jpg`}
/>
</a>
</Td>
<Td>
<Filterable
onFilter={handleFilter}
pathname={pathname}
searchParams={searchParams}
paramName="camera"
name={camera}
/>
</Td>
<Td>
<Filterable
onFilter={handleFilter}
pathname={pathname}
searchParams={searchParams}
paramName="label"
name={label}
/>
</Td>
<Td>{(score * 100).toFixed(2)}%</Td>
<Td>
<ul>
{zones.map((zone) => (
<li>
<Filterable
onFilter={handleFilter}
pathname={pathname}
searchParams={searchString}
paramName="zone"
name={zone}
/>
</li>
))}
</ul>
</Td>
<Td>{start.toLocaleDateString()}</Td>
<Td>{start.toLocaleTimeString()}</Td>
<Td>{end.toLocaleTimeString()}</Td>
</Tr>
{viewEvent === id ? (
<Tr className="border-b-1">
<Td colSpan="8">
<Event eventId={id} close={() => setViewEvent(null)} scrollRef={scrollToRef} />
</Td>
</Tr>
) : null}
</Fragment>
);
}
)}
</Tbody>
<Tfoot>
<Tr>
<Td className="text-center p-4" colSpan="8">
{status === FetchStatus.LOADING ? <ActivityIndicator /> : reachedEnd ? 'No more events' : null}
</Td>
</Tr>
</Tfoot>
</Table>
</div>
</div>
);
}
function Filterable({ onFilter, pathname, searchParams, paramName, name }) {
const href = useMemo(() => {
const params = new URLSearchParams(searchParams.toString());
params.set(paramName, name);
removeDefaultSearchKeys(params);
return `${pathname}?${params.toString()}`;
}, [searchParams, paramName, pathname, name]);
const handleClick = useCallback(
(event) => {
event.preventDefault();
route(href, true);
const params = new URLSearchParams(searchParams.toString());
params.set(paramName, name);
onFilter(params);
},
[href, searchParams, onFilter, paramName, name]
);
return (
<Link href={href} onclick={handleClick}>
{name}
</Link>
);
}
function Filters({ onChange, searchParams }) {
const { data } = useConfig();
const cameras = useMemo(() => Object.keys(data.cameras), [data]);
const zones = useMemo(
() =>
Object.values(data.cameras)
.reduce((memo, camera) => {
memo = memo.concat(Object.keys(camera.zones));
return memo;
}, [])
.filter((value, i, self) => self.indexOf(value) === i),
[data]
);
const labels = useMemo(() => {
return Object.values(data.cameras)
.reduce((memo, camera) => {
memo = memo.concat(camera.objects?.track || []);
return memo;
}, data.objects?.track || [])
.filter((value, i, self) => self.indexOf(value) === i);
}, [data]);
return (
<div className="flex space-x-4">
<Filter onChange={onChange} options={cameras} paramName="camera" searchParams={searchParams} />
<Filter onChange={onChange} options={zones} paramName="zone" searchParams={searchParams} />
<Filter onChange={onChange} options={labels} paramName="label" searchParams={searchParams} />
</div>
);
}
function Filter({ onChange, searchParams, paramName, options }) {
const handleSelect = useCallback(
(key) => {
const newParams = new URLSearchParams(searchParams.toString());
if (key !== 'all') {
newParams.set(paramName, key);
} else {
newParams.delete(paramName);
}
onChange(newParams);
},
[searchParams, paramName, onChange]
);
const selectOptions = useMemo(() => ['all', ...options], [options]);
return (
<Select
label={`${paramName.charAt(0).toUpperCase()}${paramName.substr(1)}`}
onChange={handleSelect}
options={selectOptions}
selected={searchParams.get(paramName) || 'all'}
/>
);
}

View File

@@ -0,0 +1,31 @@
import { h } from 'preact';
import Select from '../../../components/Select';
import { useCallback, useMemo } from 'preact/hooks';
const Filter = ({ onChange, searchParams, paramName, options }) => {
const handleSelect = useCallback(
(key) => {
const newParams = new URLSearchParams(searchParams.toString());
if (key !== 'all') {
newParams.set(paramName, key);
} else {
newParams.delete(paramName);
}
onChange(newParams);
},
[searchParams, paramName, onChange]
);
const selectOptions = useMemo(() => ['all', ...options], [options]);
return (
<Select
label={`${paramName.charAt(0).toUpperCase()}${paramName.substr(1)}`}
onChange={handleSelect}
options={selectOptions}
selected={searchParams.get(paramName) || 'all'}
/>
);
};
export default Filter;

View File

@@ -0,0 +1,32 @@
import { h } from 'preact';
import { useCallback, useMemo } from 'preact/hooks';
import Link from '../../../components/Link';
import { route } from 'preact-router';
const Filterable = ({ onFilter, pathname, searchParams, paramName, name, removeDefaultSearchKeys }) => {
const href = useMemo(() => {
const params = new URLSearchParams(searchParams.toString());
params.set(paramName, name);
removeDefaultSearchKeys(params);
return `${pathname}?${params.toString()}`;
}, [searchParams, paramName, pathname, name, removeDefaultSearchKeys]);
const handleClick = useCallback(
(event) => {
event.preventDefault();
route(href, true);
const params = new URLSearchParams(searchParams.toString());
params.set(paramName, name);
onFilter(params);
},
[href, searchParams, onFilter, paramName, name]
);
return (
<Link href={href} onclick={handleClick}>
{name}
</Link>
);
};
export default Filterable;

View File

@@ -0,0 +1,39 @@
import { h } from 'preact';
import Filter from './filter';
import { useConfig } from '../../../api';
import { useMemo } from 'preact/hooks';
const Filters = ({ onChange, searchParams }) => {
const { data } = useConfig();
const cameras = useMemo(() => Object.keys(data.cameras), [data]);
const zones = useMemo(
() =>
Object.values(data.cameras)
.reduce((memo, camera) => {
memo = memo.concat(Object.keys(camera.zones));
return memo;
}, [])
.filter((value, i, self) => self.indexOf(value) === i),
[data]
);
const labels = useMemo(() => {
return Object.values(data.cameras)
.reduce((memo, camera) => {
memo = memo.concat(camera.objects?.track || []);
return memo;
}, data.objects?.track || [])
.filter((value, i, self) => self.indexOf(value) === i);
}, [data]);
return (
<div className="flex space-x-4">
<Filter onChange={onChange} options={cameras} paramName="camera" searchParams={searchParams} />
<Filter onChange={onChange} options={zones} paramName="zone" searchParams={searchParams} />
<Filter onChange={onChange} options={labels} paramName="label" searchParams={searchParams} />
</div>
);
};
export default Filters;

View File

@@ -0,0 +1,3 @@
export { default as TableHead } from './tableHead';
export { default as TableRow } from './tableRow';
export { default as Filters } from './filters';

View File

@@ -0,0 +1,18 @@
import { h } from 'preact';
import { Thead, Th, Tr } from '../../../components/Table';
const TableHead = () => (
<Thead>
<Tr>
<Th />
<Th>Camera</Th>
<Th>Label</Th>
<Th>Score</Th>
<Th>Zones</Th>
<Th>Date</Th>
<Th>Start</Th>
<Th>End</Th>
</Tr>
</Thead>
);
export default TableHead;

View File

@@ -0,0 +1,119 @@
import { h } from 'preact';
import { memo } from 'preact/compat';
import { useCallback, useState, useMemo } from 'preact/hooks';
import { Tr, Td, Tbody } from '../../../components/Table';
import Filterable from './filterable';
import Event from '../../Event';
import { useSearchString } from '../../../hooks/useSearchString';
import { useClickOutside } from '../../../hooks/useClickOutside';
const EventsRow = memo(
({
id,
apiHost,
start_time: startTime,
end_time: endTime,
scrollToRef,
lastRowRef,
handleFilter,
pathname,
limit,
camera,
label,
top_score: score,
zones,
}) => {
const [viewEvent, setViewEvent] = useState(null);
const { searchString, removeDefaultSearchKeys } = useSearchString(limit);
const searchParams = useMemo(() => new URLSearchParams(searchString), [searchString]);
const innerRef = useClickOutside(() => {
setViewEvent(null);
});
const viewEventHandler = useCallback(
(id) => {
//Toggle event view
if (viewEvent === id) return setViewEvent(null);
//Set event id to be rendered.
setViewEvent(id);
},
[viewEvent]
);
const start = new Date(parseInt(startTime * 1000, 10));
const end = endTime ? new Date(parseInt(endTime * 1000, 10)) : null;
return (
<Tbody reference={innerRef}>
<Tr data-testid={`event-${id}`} className={`${viewEvent === id ? 'border-none' : ''}`}>
<Td className="w-40">
<a
onClick={() => viewEventHandler(id)}
ref={lastRowRef}
data-start-time={startTime}
// data-reached-end={reachedEnd} <-- Enable this will cause all events to re-render when reaching end.
>
<img
width="150"
height="150"
className="cursor-pointer"
style="min-height: 48px; min-width: 48px;"
src={`${apiHost}/api/events/${id}/thumbnail.jpg`}
/>
</a>
</Td>
<Td>
<Filterable
onFilter={handleFilter}
pathname={pathname}
searchParams={searchParams}
paramName="camera"
name={camera}
removeDefaultSearchKeys={removeDefaultSearchKeys}
/>
</Td>
<Td>
<Filterable
onFilter={handleFilter}
pathname={pathname}
searchParams={searchParams}
paramName="label"
name={label}
removeDefaultSearchKeys={removeDefaultSearchKeys}
/>
</Td>
<Td>{(score * 100).toFixed(2)}%</Td>
<Td>
<ul>
{zones.map((zone) => (
<li>
<Filterable
onFilter={handleFilter}
pathname={pathname}
searchParams={searchString}
paramName="zone"
name={zone}
removeDefaultSearchKeys={removeDefaultSearchKeys}
/>
</li>
))}
</ul>
</Td>
<Td>{start.toLocaleDateString()}</Td>
<Td>{start.toLocaleTimeString()}</Td>
<Td>{end === null ? 'In progress' : end.toLocaleTimeString()}</Td>
</Tr>
{viewEvent === id ? (
<Tr className="border-b-1">
<Td colSpan="8" reference={(el) => (scrollToRef[id] = el)}>
<Event eventId={id} close={() => setViewEvent(null)} scrollRef={scrollToRef} />
</Td>
</Tr>
) : null}
</Tbody>
);
}
);
export default EventsRow;

View File

@@ -0,0 +1,107 @@
import { h } from 'preact';
import ActivityIndicator from '../../components/ActivityIndicator';
import Heading from '../../components/Heading';
import { TableHead, Filters, TableRow } from './components';
import { route } from 'preact-router';
import { FetchStatus, useApiHost, useEvents } from '../../api';
import { Table, Tfoot, Tr, Td } from '../../components/Table';
import { useCallback, useEffect, useMemo, useReducer } from 'preact/hooks';
import { reducer, initialState } from './reducer';
import { useSearchString } from '../../hooks/useSearchString';
import { useIntersectionObserver } from '../../hooks';
const API_LIMIT = 25;
export default function Events({ path: pathname, limit = API_LIMIT } = {}) {
const apiHost = useApiHost();
const { searchString, setSearchString, removeDefaultSearchKeys } = useSearchString(limit);
const [{ events, reachedEnd, searchStrings, deleted }, dispatch] = useReducer(reducer, initialState);
const { data, status, deletedId } = useEvents(searchString);
const scrollToRef = useMemo(() => Object, []);
useEffect(() => {
if (data && !(searchString in searchStrings)) {
dispatch({ type: 'APPEND_EVENTS', payload: data, meta: { searchString } });
}
if (data && Array.isArray(data) && data.length + deleted < limit) {
dispatch({ type: 'REACHED_END', meta: { searchString } });
}
if (deletedId) {
dispatch({ type: 'DELETE_EVENT', deletedId });
}
}, [data, limit, searchString, searchStrings, deleted, deletedId]);
const [entry, setIntersectNode] = useIntersectionObserver();
useEffect(() => {
if (entry && entry.isIntersecting) {
const { startTime } = entry.target.dataset;
const { searchParams } = new URL(window.location);
searchParams.set('before', parseFloat(startTime) - 0.0001);
setSearchString(limit, searchParams.toString());
}
}, [entry, limit, setSearchString]);
const lastCellRef = useCallback(
(node) => {
if (node !== null && !reachedEnd) {
setIntersectNode(node);
}
},
[setIntersectNode, reachedEnd]
);
const handleFilter = useCallback(
(searchParams) => {
dispatch({ type: 'RESET' });
removeDefaultSearchKeys(searchParams);
setSearchString(limit, searchParams.toString());
route(`${pathname}?${searchParams.toString()}`);
},
[limit, pathname, setSearchString, removeDefaultSearchKeys]
);
const searchParams = useMemo(() => new URLSearchParams(searchString), [searchString]);
const RenderTableRow = useCallback(
(props) => (
<TableRow
key={props.id}
apiHost={apiHost}
scrollToRef={scrollToRef}
pathname={pathname}
limit={API_LIMIT}
handleFilter={handleFilter}
{...props}
/>
),
[apiHost, handleFilter, pathname, scrollToRef]
);
return (
<div className="space-y-4 w-full">
<Heading>Events</Heading>
<Filters onChange={handleFilter} searchParams={searchParams} />
<div className="min-w-0 overflow-auto">
<Table className="min-w-full table-fixed">
<TableHead />
{events.map((props, idx) => {
const lastRowRef = idx === events.length - 1 ? lastCellRef : undefined;
return <RenderTableRow {...props} lastRowRef={lastRowRef} idx={idx} />;
})}
<Tfoot>
<Tr>
<Td className="text-center p-4" colSpan="8">
{status === FetchStatus.LOADING ? <ActivityIndicator /> : reachedEnd ? 'No more events' : null}
</Td>
</Tr>
</Tfoot>
</Table>
</div>
</div>
);
}

View File

@@ -0,0 +1,47 @@
import produce from 'immer';
export const initialState = Object.freeze({ events: [], reachedEnd: false, searchStrings: {}, deleted: 0 });
export const reducer = (state = initialState, action) => {
switch (action.type) {
case 'DELETE_EVENT': {
const { deletedId } = action;
return produce(state, (draftState) => {
const idx = draftState.events.findIndex((e) => e.id === deletedId);
if (idx === -1) return state;
draftState.events.splice(idx, 1);
draftState.deleted++;
});
}
case 'APPEND_EVENTS': {
const {
meta: { searchString },
payload,
} = action;
return produce(state, (draftState) => {
draftState.searchStrings[searchString] = true;
draftState.events.push(...payload);
draftState.deleted = 0;
});
}
case 'REACHED_END': {
const {
meta: { searchString },
} = action;
return produce(state, (draftState) => {
draftState.reachedEnd = true;
draftState.searchStrings[searchString] = true;
});
}
case 'RESET':
return initialState;
default:
return state;
}
};

Some files were not shown because too many files have changed in this diff Show More