Compare commits

..

73 Commits

Author SHA1 Message Date
Blake Blackshear
b1e84ca7fe allow dash in camera name 2022-02-05 14:31:06 -06:00
Blake Blackshear
e6ec5cb097 make motion the default retain mode 2022-02-05 09:38:22 -06:00
Blake Blackshear
23c70acd51 update stationary interval docs 2022-02-05 09:38:22 -06:00
Blake Blackshear
091648187f make expire interval configurable for users wanting to minimize i/o 2022-02-05 09:38:22 -06:00
Blake Blackshear
2b7d38f947 avoid extra tracking work on stationary frames 2022-02-05 09:38:22 -06:00
Blake Blackshear
f801930588 use iou instead of centroid 2022-02-05 09:38:22 -06:00
Blake Blackshear
955c2779d9 dont stop scanning when there are other regions 2022-02-05 09:38:22 -06:00
Blake Blackshear
037f8667a6 default periodic checks to never 2022-02-05 09:38:22 -06:00
Blake Blackshear
307068a61f scan the frame on startup 2022-02-05 09:38:22 -06:00
Blake Blackshear
077d900b44 require a position change to be an active object 2022-02-05 09:38:22 -06:00
Blake Blackshear
92f9195075 randomize the region multiplier for variation 2022-02-05 09:38:22 -06:00
Blake Blackshear
82c60093d1 improve method for determining position
compares the centroid to a history of bounding boxes
2022-02-05 09:38:22 -06:00
Blake Blackshear
944b9181e0 if recording not on disk, delete from db and return 2022-02-05 09:38:22 -06:00
Blake Blackshear
326b368e82 cleanup clean snapshots on event deletion too 2022-02-05 09:38:22 -06:00
Blake Blackshear
040d8c9778 require url safe camera names 2022-02-05 09:38:22 -06:00
Bernt Christian Egeland
273f803c7c Event Datepicker (#2428)
* new datepicker

* dev

* dev

* dev

* fix for version 0.10

* added rounded corners for date range

* lint

* Commented out some Select.test.

* improved date range selection

* improved functions with useCallback

* improved Select.test.jsx

* keyboard navigation

* keyboard navigation

* added dropdown menu icon

* Hide filters on xs, Button to show

* check if to far left before right

* Filter button text

* improved local timezone
2022-02-02 07:26:45 -06:00
Yuriy Sannikov
bd8e23833c Run python unit tests in a github actions (#2589)
* tox tests initial commit

* run tests in the Dockerfile during the build phase

* remove local tests

Co-authored-by: YS <ys@gm.com>
2022-01-14 07:31:25 -06:00
Yuriy Sannikov
9edf38347c safe refactoring (#2552)
Co-authored-by: YS <ys@gm.com>
2021-12-31 11:59:43 -06:00
TJ Horner
1569ce7cf6 Change JPEG mime type (#2543) 2021-12-30 17:03:29 -06:00
Blake Blackshear
db1255aa7f disable disk sync on startup 2021-12-13 06:51:03 -06:00
Blake Blackshear
609b436ed8 fix migrations 2021-12-13 06:50:06 -06:00
Blake Blackshear
95bdf9fe34 check for apex dir 2021-12-12 10:27:01 -06:00
Ryan McLean
251d29aa38 #2117 change entered_zones from set to list so that they are not automatically alphabetically ordered (#2212) 2021-12-12 09:29:57 -06:00
Justin Goette
156e1a4dc2 Allow for ".yaml" (#2244)
* allow for ".yaml"

* remove unused import
2021-12-12 09:27:05 -06:00
Matt Clayton
a5c13e7455 Add temperature of coral tpu to telemetry mqtt message 2021-12-12 09:22:32 -06:00
Blake Blackshear
fcb4aaef0d limit vod response cache 2021-12-12 09:21:45 -06:00
Blake Blackshear
589432bc89 update docs 2021-12-12 09:21:45 -06:00
Blake Blackshear
b19a02888a expire overlapping segments based on mode 2021-12-12 09:21:45 -06:00
Blake Blackshear
18fd50dfce store objects and motion counts in the db 2021-12-12 09:21:45 -06:00
Blake Blackshear
df0246aed8 warn when retention mismatch 2021-12-12 09:21:45 -06:00
Blake Blackshear
cbb2882123 refactor segment stats logic 2021-12-12 09:21:45 -06:00
Blake Blackshear
9f18629df3 switch to retain config instead of retain_days 2021-12-12 09:21:45 -06:00
Blake Blackshear
63f8034e46 pass processed tracked objects 2021-12-12 09:21:45 -06:00
Blake Blackshear
f3efc0667f retain frame data for recording maintenance 2021-12-12 09:21:45 -06:00
Blake Blackshear
af001321a8 fix process_clip 2021-12-12 09:21:45 -06:00
Blake Blackshear
92e08b92f5 sync recordings with disk once on startup 2021-12-12 09:21:45 -06:00
Blake Blackshear
26241b0877 no need to expire recordings every minute 2021-12-12 09:21:45 -06:00
Blake Blackshear
c1155af169 ensure cache copies when events have ended 2021-11-21 09:43:37 -06:00
Blake Blackshear
77c1f1bb1b cleanup missing files from database once per hour 2021-11-21 07:55:35 -06:00
Blake Blackshear
ae3c01fe2d handle missing file edge case 2021-11-21 07:26:31 -06:00
Blake Blackshear
7a2a85d253 log error messages on vod endpoints 2021-11-21 07:25:36 -06:00
Blake Blackshear
77c66d4e49 ensure duration > 0 for segments 2021-11-21 07:25:01 -06:00
Blake Blackshear
494e5ac4ec use snapshot url to support in progress events 2021-11-20 09:52:02 -06:00
Blake Blackshear
63b7465452 ensure stationary interval is greater than 0 2021-11-20 09:15:03 -06:00
Blake Blackshear
e6d2df5661 add duration to cache 2021-11-19 16:56:00 -06:00
Blake Blackshear
a3301e0347 avoid running ffprobe for each segment multiple times 2021-11-19 07:28:51 -06:00
Blake Blackshear
3d556cc2cb warn if no wait time 2021-11-19 07:19:14 -06:00
Blake Blackshear
585efe1a0f keep 5 segments in cache 2021-11-19 07:16:29 -06:00
Blake Blackshear
c7d47439dd better cache handling 2021-11-17 08:57:57 -06:00
Blake Blackshear
19a6978228 avoid proactive messages with retain_days 0 and handle first pass 2021-11-17 07:44:58 -06:00
Blake Blackshear
1ebb8a54bf avoid divide by zero 2021-11-17 07:29:23 -06:00
Blake Blackshear
ae968044d6 revert switch to b/w frame prep 2021-11-17 07:28:53 -06:00
Blake Blackshear
b912851e49 fix default motion comment 2021-11-15 06:54:03 -06:00
Blake Blackshear
14c74e4361 more robust cache management 2021-11-10 21:12:41 -06:00
Blake Blackshear
51fb532e1a set retain when setting switches from frontend 2021-11-09 07:40:23 -06:00
Blake Blackshear
3541f966e3 error handling for the recording maintainer 2021-11-09 07:05:21 -06:00
Blake Blackshear
c7faef8faa don't modify ffmpeg_cmd object 2021-11-08 19:05:39 -06:00
Blake Blackshear
cdd3000315 fix ffmpeg config for env vars 2021-11-08 18:20:47 -06:00
Blake Blackshear
1c1c28d0e5 create ffmpeg commands on startup 2021-11-08 07:36:21 -06:00
Blake Blackshear
4422e86907 clarify shm in docs 2021-11-08 07:36:21 -06:00
Blake Blackshear
8f43a2d109 use resolution of clip 2021-11-08 07:36:21 -06:00
Blake Blackshear
bd7755fdd3 revamp process clip 2021-11-08 07:36:21 -06:00
Blake Blackshear
d554175631 no longer make motion settings dynamic 2021-11-08 07:36:21 -06:00
Blake Blackshear
ff667b019a remove min frame height of 180 and increase contour area 2021-11-08 07:36:21 -06:00
Blake Blackshear
57dcb29f8b consolidate regions 2021-11-08 07:36:21 -06:00
Blake Blackshear
9dc6c423b7 improve contrast 2021-11-08 07:36:21 -06:00
Blake Blackshear
58117e2a3e check for overlapping motion boxes 2021-11-08 07:36:21 -06:00
Blake Blackshear
5bec438f9c config option for stationary detection interval 2021-11-01 07:58:30 -05:00
Blake Blackshear
24cc63d6d3 drop high overlap detections 2021-11-01 07:58:30 -05:00
Blake Blackshear
d17bd74c9a reduce detection rate for stationary objects 2021-11-01 07:58:30 -05:00
Blake Blackshear
8f101ccca8 improve box merging and keep tracking 2021-11-01 07:58:30 -05:00
Blake Blackshear
b63c56d810 only save recordings when an event is in progress 2021-10-25 06:40:36 -05:00
Blake Blackshear
61c62d4685 version tick 2021-10-25 06:40:02 -05:00
35 changed files with 427 additions and 30151 deletions

View File

@@ -3,7 +3,7 @@ default_target: amd64_frigate
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
version:
echo "VERSION='0.10.1-$(COMMIT_HASH)'" > frigate/version.py
echo "VERSION='0.10.0-$(COMMIT_HASH)'" > frigate/version.py
web:
docker build --tag frigate-web --file docker/Dockerfile.web web/

View File

@@ -22,5 +22,3 @@ RUN pip3 install pylint black
# Install Node 14
RUN curl -sL https://deb.nodesource.com/setup_14.x | bash - \
&& apt-get install -y nodejs
RUN npm install -g npm@latest

View File

@@ -43,11 +43,6 @@ If you are storing your database on a network share (SMB, NFS, etc), you may get
This may need to be in a custom location if network storage is used for the media folder.
```yaml
database:
path: /path/to/frigate.db
```
### `model`
If using a custom model, the width and height will need to be specified.

View File

@@ -19,34 +19,6 @@ output_args:
rtmp: -c:v libx264 -an -f flv
```
### JPEG Stream Cameras
Cameras using a live changing jpeg image will need input parameters as below
```yaml
input_args:
- -r
- 5 # << enter FPS here
- -stream_loop
- -1
- -f
- image2
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- 1
```
Outputting the stream will have the same args and caveats as per [MJPEG Cameras](#mjpeg-cameras)
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
@@ -89,8 +61,8 @@ cameras:
roles:
- detect
detect:
width: 896
height: 672
width: 640
height: 480
fps: 7
```

View File

@@ -159,26 +159,9 @@ detect:
enabled: True
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
# Optional: Configuration for stationary object tracking
stationary:
# Optional: Frequency for running detection on stationary objects (default: shown below)
# When set to 0, object detection will never be run on stationary objects. If set to 10, it will be run on every 10th frame.
interval: 0
# Optional: Number of frames without a position change for an object to be considered stationary (default: 10x the frame rate or 10s)
threshold: 50
# Optional: Define a maximum number of frames for tracking a stationary object (default: not set, track forever)
# This can help with false positives for objects that should only be stationary for a limited amount of time.
# It can also be used to disable stationary object tracking. For example, you may want to set a value for person, but leave
# car at the default.
# WARNING: Setting these values overrides default behavior and disables stationary object tracking.
# There are very few situations where you would want it disabled. It is NOT recommended to
# copy these values from the example config into your config unless you know they are needed.
max_frames:
# Optional: Default for all object types (default: not set, track forever)
default: 3000
# Optional: Object specific values
objects:
person: 1000
# Optional: Frequency for running detection on stationary objects (default: 0)
# When set to 0, object detection will never be run on stationary objects. If set to 10, it will be run on every 10th frame.
stationary_interval: 0
# Optional: Object configuration
# NOTE: Can be overridden at the camera level
@@ -236,20 +219,11 @@ motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
# Optional: improve contrast (default: shown below)
# Enables dynamic contrast improvement. This should help improve night detections at the cost of making motion detection more sensitive
# for daytime.
improve_contrast: False
# Optional: Record configuration
# NOTE: Can be overridden at the camera level
record:
# Optional: Enable recording (default: shown below)
# WARNING: Frigate does not currently support limiting recordings based
# on available disk space automatically. If using recordings,
# you must specify retention settings for a number of days that
# will fit within the available disk space of your drive or Frigate
# will crash.
enabled: False
# Optional: Number of minutes to wait between cleanup runs (default: shown below)
# This can be used to reduce the frequency of deleting recording segments from disk if you want to minimize i/o
@@ -407,7 +381,7 @@ cameras:
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Presence in a zone is evaluated only based on the bottom center of the objects bounding box.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: List of objects that can trigger this zone (default: all tracked objects)
objects:

View File

@@ -97,3 +97,15 @@ processes:
| 0 N/A N/A 12827 C ffmpeg 417MiB |
+-----------------------------------------------------------------------------+
```
To further improve performance, you can set ffmpeg to skip frames in the output,
using the fps filter:
```yaml
output_args:
- -filter:v
- fps=fps=5
```
This setting, for example, allows Frigate to consume my 10-15fps camera streams on
my relatively low powered Haswell machine with relatively low cpu usage.

View File

@@ -5,11 +5,7 @@ title: Objects
import labels from "../../../labelmap.txt";
Frigate includes the object models listed below from the Google Coral test data.
Please note:
- `car` is listed twice because `truck` has been renamed to `car` by default. These object types are frequently confused.
- `person` is the only tracked object by default. See the [full configuration reference](https://docs.frigate.video/configuration/index#full-configuration-reference) for an example of expanding the list of tracked objects.
By default, Frigate includes the following object models from the Google Coral test data. Note that `car` is listed twice because `truck` has been renamed to `car` by default. These object types are frequently confused.
<ul>
{labels.split("\n").map((label) => (

View File

@@ -21,18 +21,4 @@ record:
This configuration will retain recording segments that overlap with events and have active tracked objects for 10 days. Because multiple events can reference the same recording segments, this avoids storing duplicate footage for overlapping events and reduces overall storage needs.
When `retain -> days` is set to `0`, segments will be deleted from the cache if no events are in progress.
## What do the different retain modes mean?
Frigate saves from the stream with the `record` role in 10 second segments. These options determine which recording segments are kept for 24/7 recording (but can also affect events).
Let's say you have frigate configured so that your doorbell camera would retain the last **2** days of 24/7 recording.
- With the `all` option all 48 hours of those two days would be kept and viewable.
- With the `motion` option the only parts of those 48 hours would be segments that frigate detected motion. This is the middle ground option that won't keep all 48 hours, but will likely keep all segments of interest along with the potential for some extra segments.
- With the `active_objects` option the only segments that would be kept are those where there was a true positive object that was not considered stationary.
The same options are available with events. Let's consider a scenario where you drive up and park in your driveway, go inside, then come back out 4 hours later.
- With the `all` option all segments for the duration of the event would be saved for the event. This event would have 4 hours of footage.
- With the `motion` option all segments for the duration of the event with motion would be saved. This means any segment where a car drove by in the street, person walked by, lighting changed, etc. would be saved.
- With the `active_objects` it would only keep segments where the object was active. In this case the only segments that would be saved would be the ones where the car was driving up, you going inside, you coming outside, and the car driving away. Essentially reducing the 4 hours to a minute or two of event footage.
When `retain_days` is set to `0`, segments will be deleted from the cache if no events are in progress.

View File

@@ -5,4 +5,4 @@ title: RTMP
Frigate can re-stream your video feed as a RTMP feed for other applications such as Home Assistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and Home Assistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization. Some more information about it can be found [here](../faqs#audio-in-recordings).
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.

View File

@@ -3,9 +3,7 @@ id: zones
title: Zones
---
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Presence in a zone is evaluated based on the bottom center of the bounding box for the object. It does not matter how much of the bounding box overlaps with the zone.
Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
During testing, enable the Zones option for the debug feed so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.

View File

@@ -11,24 +11,9 @@ This error message is due to a shm-size that is too small. Try updating your shm
A solid green image means that frigate has not received any frames from ffmpeg. Check the logs to see why ffmpeg is exiting and adjust your ffmpeg args accordingly.
### How can I get sound or audio in my recordings? {#audio-in-recordings}
### How can I get sound or audio in my recordings?
By default, Frigate removes audio from recordings to reduce the likelihood of failing for invalid data. If you would like to include audio, you need to override the output args to remove `-an` for where you want to include audio. The recommended audio codec is `aac`. Not all audio codecs are supported by RTMP, so you may need to re-encode your audio with `-c:a aac`. The default ffmpeg args are shown [here](/configuration/index/#full-configuration-reference).
:::tip
When using `-c:a aac`, do not forget to replace `-c copy` with `-c:v copy`. Example:
```diff title="frigate.yml"
ffmpeg:
output_args:
- record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
+ record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c:v copy -c:a aac
```
This is needed because the `-c` flag (without `:a` or `:v`) applies for both audio and video, thus making it conflicting with `-c:a aac`.
:::
By default, Frigate removes audio from recordings to reduce the likelihood of failing for invalid data. If you would like to include audio, you need to override the output args to remove `-an` for where you want to include audio. The recommended audio codec is `aac`. Not all audio codecs are supported by RTMP, so you may need to re-encode your audio with `-c:a aac`. The default ffmpeg args are shown [here](configuration/index#full-configuration-reference).
### My mjpeg stream or snapshots look green and crazy

View File

@@ -62,8 +62,6 @@ cameras:
roles:
- detect
- rtmp
rtmp:
enabled: False # <-- RTMP should be disabled if your stream is not H264
detect:
width: 1280 # <---- update for your camera's resolution
height: 720 # <---- update for your camera's resolution
@@ -73,9 +71,7 @@ cameras:
At this point you should be able to start Frigate and see the the video feed in the UI.
If you get a green image from the camera, this means ffmpeg was not able to get the video feed from your camera. Check the logs for error messages from ffmpeg. The default ffmpeg arguments are designed to work with H264 RTSP cameras that support TCP connections. If you do not have H264 cameras, make sure you have disabled RTMP. It is possible to enable it, but you must tell ffmpeg to re-encode the video with customized output args.
FFmpeg arguments for other types of cameras can be found [here](/configuration/camera_specific).
If you get a green image from the camera, this means ffmpeg was not able to get the video feed from your camera. Check the logs for error messages from ffmpeg. The default ffmpeg arguments are designed to work with RTSP cameras that support TCP connections. FFmpeg arguments for other types of cameras can be found [here](/configuration/camera_specific).
### Step 5: Configure hardware acceleration (optional)
@@ -167,17 +163,13 @@ cameras:
roles:
- detect
- rtmp
- path: rtsp://10.0.10.10:554/high_res_stream # <----- Add high res stream
roles:
- record
- record # <----- Add role
detect: ...
record: # <----- Enable recording
enabled: True
motion: ...
```
If you don't have separate streams for detect and record, you would just add the record role to the list on the first input.
By default, Frigate will retain video of all events for 10 days. The full set of options for recording can be found [here](/configuration/index#full-configuration-reference).
### Step 8: Enable snapshots (optional)

View File

@@ -25,30 +25,6 @@ automation:
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
Note that iOS devices support live previews of cameras by adding a camera entity id to the message data.
```yaml
automation:
- alias: Security_Frigate_Notifications
description: ""
trigger:
- platform: mqtt
topic: frigate/events
payload: new
value_template: "{{ value_json.type }}"
action:
- service: notify.mobile_app_iphone
data:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
image: >-
https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg
tag: '{{trigger.payload_json["after"]["id"]}}'
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
entity_id: camera.{{trigger.payload_json["after"]["camera"]}}
mode: single
```
## Conditions
Conditions with the `before` and `after` values allow a high degree of customization for automations.

View File

@@ -21,17 +21,19 @@ I may earn a small commission for my endorsement, recommendation, testimonial, o
## Server
My current favorite is the Minisforum GK41 because of the dual NICs that allow you to setup a dedicated private network for your cameras where they can be blocked from accessing the internet. There are many used workstation options on eBay that work very well. Anything with an Intel CPU and capable of running Debian should work fine. As a bonus, you may want to look for devices with a M.2 or PCIe express slot that is compatible with the Google Coral. I may earn a small commission for my endorsement, recommendation, testimonial, or link to any products or services from this website.
My current favorite is the Odyssey X86 Blue J4125 because the Coral M.2 compatibility and dual NICs that allow you to setup a dedicated private network for your cameras where they can be blocked from accessing the internet. I may earn a small commission for my endorsement, recommendation, testimonial, or link to any products or services from this website.
| Name | Inference Speed | Coral Compatibility | Notes |
| ------------------------------------------------------------------------------------------------------------------------------- | --------------- | ------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| <a href="https://amzn.to/3oH4BKi" target="_blank" rel="nofollow noopener sponsored">Odyssey X86 Blue J4125</a> (affiliate link) | 9-10ms | M.2 B+M | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3ptnb8D" target="_blank" rel="nofollow noopener sponsored">Minisforum GK41</a> (affiliate link) | 9-10ms | USB | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/35E79BC" target="_blank" rel="nofollow noopener sponsored">Beelink GK55</a> (affiliate link) | 9-10ms | USB | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3psFlHi" target="_blank" rel="nofollow noopener sponsored">Intel NUC</a> (affiliate link) | 8-10ms | USB | Overkill for most, but great performance. Can handle many cameras at 5fps depending on typical amounts of motion. Requires extra parts. |
| <a href="https://amzn.to/3a6TBh8" target="_blank" rel="nofollow noopener sponsored">BMAX B2 Plus</a> (affiliate link) | 10-12ms | USB | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
| <a href="https://amzn.to/2YjpY9m" target="_blank" rel="nofollow noopener sponsored">Atomic Pi</a> (affiliate link) | 16ms | USB | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
| <a href="https://amzn.to/2YhSGHH" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 4 (64bit)</a> (affiliate link) | 10-15ms | USB | Can handle a small number of cameras. |
| Name | Inference Speed | Coral Compatibility | Notes |
| -------------------------------------------------------------------------------------------------------------------------------- | --------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| <a href="https://amzn.to/3oH4BKi" target="_blank" rel="nofollow noopener sponsored">Odyssey X86 Blue J4125</a> (affiliate link) | 9-10ms | M.2 B+M | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3oxEC8m" target="_blank" rel="nofollow noopener sponsored">Minisforum GK41</a> (affiliate link) | 9-10ms | USB | Great alternative to a NUC. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3ixJFlb" target="_blank" rel="nofollow noopener sponsored">Minisforum GK50</a> (affiliate link) | 9-10ms | USB | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3l7vCEI" target="_blank" rel="nofollow noopener sponsored">Intel NUC</a> (affiliate link) | 8-10ms | USB | Overkill for most, but great performance. Can handle many cameras at 5fps depending on typical amounts of motion. |
| <a href="https://amzn.to/3a6TBh8" target="_blank" rel="nofollow noopener sponsored">BMAX B2 Plus</a> (affiliate link) | 10-12ms | USB | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
| <a href="https://amzn.to/2YjpY9m" target="_blank" rel="nofollow noopener sponsored">Atomic Pi</a> (affiliate link) | 16ms | USB | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
| <a href="https://amzn.to/2WIpwRU" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 3B (32bit)</a> (affiliate link) | 60ms | USB | Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0. |
| <a href="https://amzn.to/2YhSGHH" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 4 (32bit)</a> (affiliate link) | 15-20ms | USB | Can handle a small number of cameras. The 2GB version runs fine. |
| <a href="https://amzn.to/2YhSGHH" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 4 (64bit)</a> (affiliate link) | 10-15ms | USB | Can handle a small number of cameras. The 2GB version runs fine. |
## Google Coral TPU

View File

@@ -21,12 +21,6 @@ Windows is not officially supported, but some users have had success getting it
Frigate uses the following locations for read/write operations in the container. Docker volume mappings can be used to map these to any location on your host machine.
:::caution
Note that Frigate does not currently support limiting recordings based on available disk space automatically. If using recordings, you must specify retention settings for a number of days that will fit within the available disk space of your drive or Frigate will crash.
:::
- `/media/frigate/clips`: Used for snapshot storage. In the future, it will likely be renamed from `clips` to `snapshots`. The file structure here cannot be modified and isn't intended to be browsed or managed manually.
- `/media/frigate/recordings`: Internal system storage for recording segments. The file structure here cannot be modified and isn't intended to be browsed or managed manually.
- `/media/frigate/frigate.db`: Default location for the sqlite database. You will also see several files alongside this file while frigate is running. If moving the database location (often needed when using a network drive at `/media/frigate`), it is recommended to mount a volume with docker at `/db` and change the storage location of the database to `/db/frigate.db` in the config file.
@@ -124,7 +118,6 @@ services:
shm_size: "64mb" # update for your cameras based on calculation above
devices:
- /dev/bus/usb:/dev/bus/usb # passes the USB Coral, needs to be modified for other versions
- /dev/apex_0:/dev/apex_0 # passes a PCIe Coral, follow driver instructions here https://coral.ai/docs/m2/get-started/#2a-on-linux
- /dev/dri/renderD128 # for intel hwaccel, needs to be updated for your hardware
volumes:
- /etc/localtime:/etc/localtime:ro
@@ -184,15 +177,6 @@ HassOS users can install via the addon repository.
6. Start the addon container
7. (not for proxy addon) If you are using hardware acceleration for ffmpeg, you may need to disable "Protection mode"
There are several versions of the addon available:
| Addon Version | Description |
| ------------------------------ | ---------------------------------------------------------- |
| Frigate NVR | Current release with protection mode on |
| Frigate NVR (Full Access) | Current release with the option to disable protection mode |
| Frigate NVR Beta | Beta release with protection mode on |
| Frigate NVR Beta (Full Access) | Beta release with the option to disable protection mode |
## Home Assistant Supervised
:::tip

View File

@@ -45,14 +45,11 @@ that card.
## Configuration
When configuring the integration, you will be asked for the `URL` of your frigate instance which is the URL you use to access Frigate in the browser. This may look like `http://<host>:5000/`. If you are using HassOS with the addon, the URL should be one of the following depending on which addon version you are using. Note that if you are using the Proxy Addon, you do NOT point the integration at the proxy URL. Just enter the URL used to access frigate directly from your network.
When configuring the integration, you will be asked for the following parameters:
| Addon Version | URL |
| ------------------------------ | -------------------------------------- |
| Frigate NVR | `http://ccab4aaf-frigate:5000` |
| Frigate NVR (Full Access) | `http://ccab4aaf-frigate-fa:5000` |
| Frigate NVR Beta | `http://ccab4aaf-frigate-beta:5000` |
| Frigate NVR Beta (Full Access) | `http://ccab4aaf-frigate-fa-beta:5000` |
| Variable | Description |
| -------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| URL | The `URL` of your frigate instance, the URL you use to access Frigate in the browser. This may look like `http://<host>:5000/`. If you are using HassOS with the addon, the URL should be `http://ccab4aaf-frigate:5000` (or `http://ccab4aaf-frigate-beta:5000` if your are using the beta version of the addon). Live streams required port 1935, see [RTMP streams](#streams) |
<a name="options"></a>

View File

@@ -55,10 +55,7 @@ Message published for each changed event. The first message is published when th
"entered_zones": ["yard", "driveway"],
"thumbnail": null,
"has_snapshot": false,
"has_clip": false,
"stationary": false, // whether or not the object is considered stationary
"motionless_count": 0, // number of frames the object has been motionless
"position_changes": 2 // number of times the object has moved from a stationary position
"has_clip": false
},
"after": {
"id": "1607123955.475377-mxklsc",
@@ -78,10 +75,7 @@ Message published for each changed event. The first message is published when th
"entered_zones": ["yard", "driveway"],
"thumbnail": null,
"has_snapshot": false,
"has_clip": false,
"stationary": false, // whether or not the object is considered stationary
"motionless_count": 0, // number of frames the object has been motionless
"position_changes": 2 // number of times the object has changed position
"has_clip": false
}
}
```

14859
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -12,13 +12,13 @@
"clear": "docusaurus clear"
},
"dependencies": {
"@docusaurus/core": "^2.0.0-beta.15",
"@docusaurus/preset-classic": "^2.0.0-beta.15",
"@mdx-js/react": "^1.6.22",
"@docusaurus/core": "^2.0.0-beta.6",
"@docusaurus/preset-classic": "^2.0.0-beta.6",
"@mdx-js/react": "^1.6.21",
"clsx": "^1.1.1",
"raw-loader": "^4.0.2",
"react": "^16.14.0",
"react-dom": "^16.14.0"
"react": "^16.8.4",
"react-dom": "^16.8.4"
},
"browserslist": {
"production": [
@@ -31,8 +31,5 @@
"last 1 firefox version",
"last 1 safari version"
]
},
"devDependencies": {
"@types/react": "^16.14.0"
}
}

View File

@@ -8,7 +8,6 @@ import threading
from logging.handlers import QueueHandler
from typing import Dict, List
import traceback
import yaml
from peewee_migrate import Router
from playhouse.sqlite_ext import SqliteExtDatabase
@@ -321,7 +320,6 @@ class FrigateApp:
print("*** Config Validation Errors ***")
print("*************************************************************")
print(e)
print(traceback.format_exc())
print("*************************************************************")
print("*** End Config Validation Errors ***")
print("*************************************************************")

View File

@@ -122,7 +122,6 @@ class MotionConfig(FrigateBaseModel):
ge=1,
le=255,
)
improve_contrast: bool = Field(default=False, title="Improve Contrast")
contour_area: Optional[int] = Field(default=30, title="Contour Area")
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
frame_alpha: float = Field(default=0.2, title="Frame Alpha")
@@ -163,29 +162,6 @@ class RuntimeMotionConfig(MotionConfig):
extra = Extra.ignore
class StationaryMaxFramesConfig(FrigateBaseModel):
default: Optional[int] = Field(title="Default max frames.", ge=1)
objects: Dict[str, int] = Field(
default_factory=dict, title="Object specific max frames."
)
class StationaryConfig(FrigateBaseModel):
interval: Optional[int] = Field(
default=0,
title="Frame interval for checking stationary objects.",
ge=0,
)
threshold: Optional[int] = Field(
title="Number of frames without a position change for an object to be considered stationary",
ge=1,
)
max_frames: StationaryMaxFramesConfig = Field(
default_factory=StationaryMaxFramesConfig,
title="Max frames for stationary objects.",
)
class DetectConfig(FrigateBaseModel):
height: int = Field(default=720, title="Height of the stream for the detect role.")
width: int = Field(default=1280, title="Width of the stream for the detect role.")
@@ -196,9 +172,10 @@ class DetectConfig(FrigateBaseModel):
max_disappeared: Optional[int] = Field(
title="Maximum number of frames the object can dissapear before detection ends."
)
stationary: StationaryConfig = Field(
default_factory=StationaryConfig,
title="Stationary objects config.",
stationary_interval: Optional[int] = Field(
default=0,
title="Frame interval for checking stationary objects.",
ge=0,
)
@@ -789,11 +766,6 @@ class FrigateConfig(FrigateBaseModel):
if camera_config.detect.max_disappeared is None:
camera_config.detect.max_disappeared = max_disappeared
# Default stationary_threshold configuration
stationary_threshold = camera_config.detect.fps * 10
if camera_config.detect.stationary.threshold is None:
camera_config.detect.stationary.threshold = stationary_threshold
# FFMPEG input substitution
for input in camera_config.ffmpeg.inputs:
input.path = input.path.format(**FRIGATE_ENV_VARS)
@@ -864,18 +836,14 @@ class FrigateConfig(FrigateBaseModel):
camera_config.record.retain.days = camera_config.record.retain_days
# warning if the higher level record mode is potentially more restrictive than the events
rank_map = {
RetainModeEnum.all: 0,
RetainModeEnum.motion: 1,
RetainModeEnum.active_objects: 2,
}
if (
camera_config.record.retain.days != 0
and rank_map[camera_config.record.retain.mode]
> rank_map[camera_config.record.events.retain.mode]
and camera_config.record.retain.mode != RetainModeEnum.all
and camera_config.record.events.retain.mode
!= camera_config.record.retain.mode
):
logger.warning(
f"{name}: Recording retention is configured for {camera_config.record.retain.mode} and event retention is configured for {camera_config.record.events.retain.mode}. The more restrictive retention policy will be applied."
f"Recording retention is configured for {camera_config.record.retain.mode} and event retention is configured for {camera_config.record.events.retain.mode}. The more restrictive retention policy will be applied."
)
# generage the ffmpeg commands
camera_config.create_ffmpeg_cmds()

View File

@@ -15,16 +15,6 @@ from frigate.models import Event
logger = logging.getLogger(__name__)
def should_update_db(prev_event, current_event):
return (
prev_event["top_score"] != current_event["top_score"]
or prev_event["entered_zones"] != current_event["entered_zones"]
or prev_event["thumbnail"] != current_event["thumbnail"]
or prev_event["has_clip"] != current_event["has_clip"]
or prev_event["has_snapshot"] != current_event["has_snapshot"]
)
class EventProcessor(threading.Thread):
def __init__(
self, config, camera_processes, event_queue, event_processed_queue, stop_event
@@ -58,9 +48,7 @@ class EventProcessor(threading.Thread):
if event_type == "start":
self.events_in_process[event_data["id"]] = event_data
elif event_type == "update" and should_update_db(
self.events_in_process[event_data["id"]], event_data
):
elif event_type == "update":
self.events_in_process[event_data["id"]] = event_data
# TODO: this will generate a lot of db activity possibly
if event_data["has_clip"] or event_data["has_snapshot"]:

View File

@@ -249,10 +249,7 @@ def event_clip(id):
clip_path = os.path.join(CLIPS_DIR, file_name)
if not os.path.isfile(clip_path):
end_ts = (
datetime.now().timestamp() if event.end_time is None else event.end_time
)
return recording_clip(event.camera, event.start_time, end_ts)
return recording_clip(event.camera, event.start_time, event.end_time)
response = make_response()
response.headers["Content-Description"] = "File Transfer"
@@ -367,13 +364,7 @@ def best(camera_name, label):
box_size = 300
box = best_object.get("box", (0, 0, box_size, box_size))
region = calculate_region(
best_frame.shape,
box[0],
box[1],
box[2],
box[3],
box_size,
multiplier=1.1,
best_frame.shape, box[0], box[1], box[2], box[3], box_size, multiplier=1.1
)
best_frame = best_frame[region[1] : region[3], region[0] : region[2]]
@@ -527,17 +518,12 @@ def recordings(camera_name):
FROM C2
WHERE cnt = 0
)
SELECT id, label, camera, top_score, start_time, end_time
FROM event
WHERE camera = ? AND end_time IS NULL
UNION ALL
SELECT MIN(id) as id, label, camera, MAX(top_score) as top_score, MIN(ts) AS start_time, max(ts) AS end_time
FROM C3
GROUP BY label, grpnum
ORDER BY start_time;""",
camera_name,
camera_name,
camera_name,
)
event: Event
@@ -725,15 +711,7 @@ def vod_event(id):
end_ts = (
datetime.now().timestamp() if event.end_time is None else event.end_time
)
vod_response = vod_ts(event.camera, event.start_time, end_ts)
# If the recordings are not found, set has_clip to false
if (
type(vod_response) == tuple
and len(vod_response) == 2
and vod_response[1] == 404
):
Event.update(has_clip=False).where(Event.id == id).execute()
return vod_response
return vod_ts(event.camera, event.start_time, end_ts)
duration = int((event.end_time - event.start_time) * 1000)
return jsonify(

View File

@@ -38,15 +38,14 @@ class MotionDetector:
)
# Improve contrast
if self.config.improve_contrast:
minval = np.percentile(resized_frame, 4)
maxval = np.percentile(resized_frame, 96)
# don't adjust if the image is a single color
if minval < maxval:
resized_frame = np.clip(resized_frame, minval, maxval)
resized_frame = (
((resized_frame - minval) / (maxval - minval)) * 255
).astype(np.uint8)
minval = np.percentile(resized_frame, 4)
maxval = np.percentile(resized_frame, 96)
# don't adjust if the image is a single color
if minval < maxval:
resized_frame = np.clip(resized_frame, minval, maxval)
resized_frame = (
((resized_frame - minval) / (maxval - minval)) * 255
).astype(np.uint8)
# mask frame
resized_frame[self.mask] = [255]

View File

@@ -101,13 +101,14 @@ class TrackedObject:
return median(scores)
def update(self, current_frame_time, obj_data):
thumb_update = False
significant_change = False
significant_update = False
zone_change = False
self.obj_data.update(obj_data)
# if the object is not in the current frame, add a 0.0 to the score history
if obj_data["frame_time"] != current_frame_time:
if self.obj_data["frame_time"] != current_frame_time:
self.score_history.append(0.0)
else:
self.score_history.append(obj_data["score"])
self.score_history.append(self.obj_data["score"])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
@@ -121,24 +122,24 @@ class TrackedObject:
if not self.false_positive:
# determine if this frame is a better thumbnail
if self.thumbnail_data is None or is_better_thumbnail(
self.thumbnail_data, obj_data, self.camera_config.frame_shape
self.thumbnail_data, self.obj_data, self.camera_config.frame_shape
):
self.thumbnail_data = {
"frame_time": obj_data["frame_time"],
"box": obj_data["box"],
"area": obj_data["area"],
"region": obj_data["region"],
"score": obj_data["score"],
"frame_time": self.obj_data["frame_time"],
"box": self.obj_data["box"],
"area": self.obj_data["area"],
"region": self.obj_data["region"],
"score": self.obj_data["score"],
}
thumb_update = True
significant_update = True
# check zones
current_zones = []
bottom_center = (obj_data["centroid"][0], obj_data["box"][3])
bottom_center = (self.obj_data["centroid"][0], self.obj_data["box"][3])
# check each zone
for name, zone in self.camera_config.zones.items():
# if the zone is not for this object type, skip
if len(zone.objects) > 0 and not obj_data["label"] in zone.objects:
if len(zone.objects) > 0 and not self.obj_data["label"] in zone.objects:
continue
contour = zone.contour
# check if the object is in the zone
@@ -149,29 +150,12 @@ class TrackedObject:
if name not in self.entered_zones:
self.entered_zones.append(name)
if not self.false_positive:
# if the zones changed, signal an update
if set(self.current_zones) != set(current_zones):
significant_change = True
# if the zones changed, signal an update
if not self.false_positive and set(self.current_zones) != set(current_zones):
zone_change = True
# if the position changed, signal an update
if self.obj_data["position_changes"] != obj_data["position_changes"]:
significant_change = True
# if the motionless_count reaches the stationary threshold
if (
self.obj_data["motionless_count"]
== self.camera_config.detect.stationary.threshold
):
significant_change = True
# update at least once per minute
if self.obj_data["frame_time"] - self.previous["frame_time"] > 60:
significant_change = True
self.obj_data.update(obj_data)
self.current_zones = current_zones
return (thumb_update, significant_change)
return (significant_update, zone_change)
def to_dict(self, include_thumbnail: bool = False):
snapshot_time = (
@@ -193,8 +177,6 @@ class TrackedObject:
"box": self.obj_data["box"],
"area": self.obj_data["area"],
"region": self.obj_data["region"],
"stationary": self.obj_data["motionless_count"]
> self.camera_config.detect.stationary.threshold,
"motionless_count": self.obj_data["motionless_count"],
"position_changes": self.obj_data["position_changes"],
"current_zones": self.current_zones.copy(),
@@ -484,11 +466,11 @@ class CameraState:
for id in updated_ids:
updated_obj = tracked_objects[id]
thumb_update, significant_update = updated_obj.update(
significant_update, zone_change = updated_obj.update(
frame_time, current_detections[id]
)
if thumb_update:
if significant_update:
# ensure this frame is stored in the cache
if (
updated_obj.thumbnail_data["frame_time"] == frame_time
@@ -498,13 +480,13 @@ class CameraState:
updated_obj.last_updated = frame_time
# if it has been more than 5 seconds since the last thumb update
# if it has been more than 5 seconds since the last publish
# and the last update is greater than the last publish or
# the object has changed significantly
# the object has changed zones
if (
frame_time - updated_obj.last_published > 5
and updated_obj.last_updated > updated_obj.last_published
) or significant_update:
) or zone_change:
# call event handlers
for c in self.callbacks["update"]:
c(self.name, updated_obj, frame_time)

View File

@@ -48,7 +48,7 @@ class ObjectTracker:
del self.tracked_objects[id]
del self.disappeared[id]
# tracks the current position of the object based on the last N bounding boxes
# tracks the current position of the object based on the last 10 bounding boxes
# returns False if the object has moved outside its previous position
def update_position(self, id, box):
position = self.positions[id]
@@ -93,51 +93,19 @@ class ObjectTracker:
return True
def is_expired(self, id):
obj = self.tracked_objects[id]
# get the max frames for this label type or the default
max_frames = self.detect_config.stationary.max_frames.objects.get(
obj["label"], self.detect_config.stationary.max_frames.default
)
# if there is no max_frames for this label type, continue
if max_frames is None:
return False
# if the object has exceeded the max_frames setting, deregister
if (
obj["motionless_count"] - self.detect_config.stationary.threshold
> max_frames
):
return True
def update(self, id, new_obj):
self.disappeared[id] = 0
# update the motionless count if the object has not moved to a new position
if self.update_position(id, new_obj["box"]):
self.tracked_objects[id]["motionless_count"] += 1
if self.is_expired(id):
self.deregister(id)
return
else:
# register the first position change and then only increment if
# the object was previously stationary
if (
self.tracked_objects[id]["position_changes"] == 0
or self.tracked_objects[id]["motionless_count"]
>= self.detect_config.stationary.threshold
):
self.tracked_objects[id]["position_changes"] += 1
self.tracked_objects[id]["motionless_count"] = 0
self.tracked_objects[id]["position_changes"] += 1
self.tracked_objects[id].update(new_obj)
def update_frame_times(self, frame_time):
for id in list(self.tracked_objects.keys()):
for id in self.tracked_objects.keys():
self.tracked_objects[id]["frame_time"] = frame_time
self.tracked_objects[id]["motionless_count"] += 1
if self.is_expired(id):
self.deregister(id)
def match_and_update(self, frame_time, new_objects):
# group by name

View File

@@ -184,7 +184,10 @@ class BirdsEyeFrameManager:
if self.mode == BirdseyeModeEnum.continuous:
return True
if self.mode == BirdseyeModeEnum.motion and motion_box_count > 0:
if (
self.mode == BirdseyeModeEnum.motion
and object_box_count + motion_box_count > 0
):
return True
if self.mode == BirdseyeModeEnum.objects and object_box_count > 0:
@@ -415,7 +418,7 @@ def output_frames(config: FrigateConfig, video_output_queue):
):
if birdseye_manager.update(
camera,
len([o for o in current_tracked_objects if not o["stationary"]]),
len(current_tracked_objects),
len(motion_boxes),
frame_time,
frame,

View File

@@ -51,6 +51,7 @@ class RecordingMaintainer(threading.Thread):
self.config = config
self.recordings_info_queue = recordings_info_queue
self.stop_event = stop_event
self.first_pass = True
self.recordings_info = defaultdict(list)
self.end_time_cache = {}
@@ -229,7 +230,7 @@ class RecordingMaintainer(threading.Thread):
[
o
for o in frame[1]
if not o["false_positive"] and o["motionless_count"] == 0
if not o["false_positive"] and o["motionless_count"] > 0
]
)
@@ -284,7 +285,6 @@ class RecordingMaintainer(threading.Thread):
end_time=end_time.timestamp(),
duration=duration,
motion=motion_count,
# TODO: update this to store list of active objects at some point
objects=active_count,
)
except Exception as e:
@@ -333,6 +333,12 @@ class RecordingMaintainer(threading.Thread):
logger.error(e)
duration = datetime.datetime.now().timestamp() - run_start
wait_time = max(0, 5 - duration)
if wait_time == 0 and not self.first_pass:
logger.warning(
"Cache is taking longer than 5 seconds to clear. Your recordings disk may be too slow."
)
if self.first_pass:
self.first_pass = False
logger.info(f"Exiting recording maintenance...")

View File

@@ -567,9 +567,6 @@ class EventsPerSecond:
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now - self._start, last_n_seconds)
# avoid divide by zero
if seconds == 0:
seconds = 1
return (
len([t for t in self._timestamps if t > (now - last_n_seconds)]) / seconds
)
@@ -604,7 +601,6 @@ def add_mask(mask, mask_img):
)
cv2.fillPoly(mask_img, pts=[contour], color=(0))
def load_labels(path, encoding="utf-8"):
"""Loads labels from file (with or without index numbers).
Args:
@@ -624,7 +620,6 @@ def load_labels(path, encoding="utf-8"):
else:
return {index: line.strip() for index, line in enumerate(lines)}
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:

View File

@@ -153,10 +153,10 @@ def capture_frames(
try:
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception as e:
logger.error(f"{camera_name}: Unable to read frames from ffmpeg process.")
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
if ffmpeg_process.poll() != None:
logger.error(
logger.info(
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
)
frame_manager.delete(frame_name)
@@ -221,11 +221,12 @@ class CameraWatchdog(threading.Thread):
if not self.capture_thread.is_alive():
self.logger.error(
f"Ffmpeg process crashed unexpectedly for {self.camera_name}."
f"FFMPEG process crashed unexpectedly for {self.camera_name}."
)
self.logger.error(
"The following ffmpeg logs include the last 100 lines prior to exit."
)
self.logger.error("You may have invalid args defined for this camera.")
self.logpipe.dump()
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
@@ -491,219 +492,212 @@ def process_frames(
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
if not detection_enabled.value:
fps.value = fps_tracker.eps()
object_tracker.match_and_update(frame_time, [])
detected_objects_queue.put(
(camera_name, frame_time, object_tracker.tracked_objects, [], [])
)
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
continue
# look for motion
motion_boxes = motion_detector.detect(frame)
regions = []
# get stationary object ids
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if there hasn't been motion for 10 frames
if obj["motionless_count"] >= 10
# and it isn't due for a periodic check
and (
detect_config.stationary_interval == 0
or obj["motionless_count"] % detect_config.stationary_interval != 0
)
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes
and not intersects_any(obj["box"], motion_boxes)
]
# if detection is disabled
if not detection_enabled.value:
object_tracker.match_and_update(frame_time, [])
else:
# get stationary object ids
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if there hasn't been motion for 10 frames
if obj["motionless_count"] >= 10
# and it isn't due for a periodic check
and (
detect_config.stationary.interval == 0
or obj["motionless_count"] % detect_config.stationary.interval != 0
)
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes
and not intersects_any(obj["box"], motion_boxes)
]
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
obj["box"]
for obj in object_tracker.tracked_objects.values()
if not obj["id"] in stationary_object_ids
]
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
obj["box"]
for obj in object_tracker.tracked_objects.values()
if not obj["id"] in stationary_object_ids
]
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
region_min_size = max(model_shape[0], model_shape[1])
# compute regions
regions = [
calculate_region(
frame_shape,
a[0],
a[1],
a[2],
a[3],
region_min_size,
multiplier=random.uniform(1.2, 1.5),
)
for a in combined_boxes
]
region_min_size = max(model_shape[0], model_shape[1])
# compute regions
regions = [
# consolidate regions with heavy overlap
regions = [
calculate_region(
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0
)
for a in reduce_boxes(regions, 0.4)
]
# if starting up, get the next startup scan region
if startup_scan_counter < 9:
ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3)
ymax = int(frame_shape[0] / 3 + ymin)
xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3)
xmax = int(frame_shape[1] / 3 + xmin)
regions.append(
calculate_region(
frame_shape,
a[0],
a[1],
a[2],
a[3],
region_min_size,
multiplier=random.uniform(1.2, 1.5),
frame_shape, xmin, ymin, xmax, ymax, region_min_size, multiplier=1.2
)
for a in combined_boxes
]
)
startup_scan_counter += 1
# consolidate regions with heavy overlap
regions = [
calculate_region(
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0
# resize regions and detect
# seed with stationary objects
detections = [
(
obj["label"],
obj["score"],
obj["box"],
obj["area"],
obj["region"],
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] in stationary_object_ids
]
for region in regions:
detections.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
for a in reduce_boxes(regions, 0.4)
]
)
# if starting up, get the next startup scan region
if startup_scan_counter < 9:
ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3)
ymax = int(frame_shape[0] / 3 + ymin)
xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3)
xmax = int(frame_shape[1] / 3 + xmin)
regions.append(
calculate_region(
frame_shape,
xmin,
ymin,
xmax,
ymax,
region_min_size,
multiplier=1.2,
)
)
startup_scan_counter += 1
#########
# merge objects, check for clipped objects and look again up to 4 times
#########
refining = len(regions) > 0
refine_count = 0
while refining and refine_count < 4:
refining = False
# resize regions and detect
# seed with stationary objects
detections = [
(
obj["label"],
obj["score"],
obj["box"],
obj["area"],
obj["region"],
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] in stationary_object_ids
]
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
for region in regions:
detections.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
selected_objects = []
for group in detected_object_groups.values():
#########
# merge objects, check for clipped objects and look again up to 4 times
#########
refining = len(regions) > 0
refine_count = 0
while refining and refine_count < 4:
refining = False
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(
frame_shape, box[0], box[1], box[2], box[3], region_min_size
)
selected_objects = []
for group in detected_object_groups.values():
regions.append(region)
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(
frame_shape,
box[0],
box[1],
box[2],
box[3],
region_min_size,
selected_objects.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
regions.append(region)
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
selected_objects.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
if refining:
refine_count += 1
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
## drop detections that overlap too much
consolidated_detections = []
if refining:
refine_count += 1
# if detection was run on this frame, consolidate
if len(regions) > 0:
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
## drop detections that overlap too much
consolidated_detections = []
# loop over detections grouped by label
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# if detection was run on this frame, consolidate
if len(regions) > 0:
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
# loop over detections grouped by label
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
# if 90% of smaller detection is inside of another detection, consolidate
if (
area(intersection(current_detection, to_check))
/ area(current_detection)
> 0.9
):
to_check = sorted_by_area[to_check_idx][2]
# if 90% of smaller detection is inside of another detection, consolidate
if (
area(intersection(current_detection, to_check))
/ area(current_detection)
> 0.9
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(
sorted_by_area[current_detection_idx]
)
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, consolidated_detections)
# else, just update the frame times for the stationary objects
else:
object_tracker.update_frame_times(frame_time)
overlap = 1
break
if overlap == 0:
consolidated_detections.append(
sorted_by_area[current_detection_idx]
)
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, consolidated_detections)
# else, just update the frame times for the stationary objects
else:
object_tracker.update_frame_times(frame_time)
# add to the queue if not full
if detected_objects_queue.full():

14794
web/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,14 +1,6 @@
import { h } from 'preact';
import { useState } from 'preact/hooks';
import {
differenceInSeconds,
fromUnixTime,
format,
parseISO,
startOfHour,
differenceInMinutes,
differenceInHours,
} from 'date-fns';
import { addSeconds, differenceInSeconds, fromUnixTime, format, parseISO, startOfHour } from 'date-fns';
import ArrowDropdown from '../icons/ArrowDropdown';
import ArrowDropup from '../icons/ArrowDropup';
import Link from '../components/Link';
@@ -29,31 +21,25 @@ export default function RecordingPlaylist({ camera, recordings, selectedDate, se
events={recording.events}
selected={recording.date === selectedDate}
>
{recording.recordings
.slice()
.reverse()
.map((item, i) => (
<div className="mb-2 w-full">
<div
className={`flex w-full text-md text-white px-8 py-2 mb-2 ${
i === 0 ? 'border-t border-white border-opacity-50' : ''
}`}
>
<div className="flex-1">
<Link href={`/recording/${camera}/${recording.date}/${item.hour}`} type="text">
{item.hour}:00
</Link>
</div>
<div className="flex-1 text-right">{item.events.length} Events</div>
{recording.recordings.slice().reverse().map((item, i) => (
<div className="mb-2 w-full">
<div
className={`flex w-full text-md text-white px-8 py-2 mb-2 ${
i === 0 ? 'border-t border-white border-opacity-50' : ''
}`}
>
<div className="flex-1">
<Link href={`/recording/${camera}/${recording.date}/${item.hour}`} type="text">
{item.hour}:00
</Link>
</div>
{item.events
.slice()
.reverse()
.map((event) => (
<EventCard camera={camera} event={event} delay={item.delay} />
))}
<div className="flex-1 text-right">{item.events.length} Events</div>
</div>
))}
{item.events.slice().reverse().map((event) => (
<EventCard camera={camera} event={event} delay={item.delay} />
))}
</div>
))}
</ExpandableList>
);
}
@@ -97,17 +83,8 @@ export function ExpandableList({ title, events = 0, children, selected = false }
export function EventCard({ camera, event, delay }) {
const apiHost = useApiHost();
const start = fromUnixTime(event.start_time);
let duration = 'In Progress';
if (event.end_time) {
const end = fromUnixTime(event.end_time);
const hours = differenceInHours(end, start);
const minutes = differenceInMinutes(end, start) - hours * 60;
const seconds = differenceInSeconds(end, start) - hours * 60 - minutes * 60;
duration = '';
if (hours) duration += `${hours}h `;
if (minutes) duration += `${minutes}m `;
duration += `${seconds}s`;
}
const end = fromUnixTime(event.end_time);
const duration = addSeconds(new Date(0), differenceInSeconds(end, start));
const position = differenceInSeconds(start, startOfHour(start));
const offset = Object.entries(delay)
.map(([p, d]) => (position > p ? d : 0))
@@ -125,7 +102,7 @@ export function EventCard({ camera, event, delay }) {
<div className="flex-1">
<div className="text-2xl text-white leading-tight capitalize">{event.label}</div>
<div className="text-xs md:text-normal text-gray-300">Start: {format(start, 'HH:mm:ss')}</div>
<div className="text-xs md:text-normal text-gray-300">Duration: {duration}</div>
<div className="text-xs md:text-normal text-gray-300">Duration: {format(duration, 'mm:ss')}</div>
</div>
<div className="text-lg text-white text-right leading-tight">{(event.top_score * 100).toFixed(1)}%</div>
</div>

View File

@@ -29,8 +29,12 @@ function Camera({ name, conf }) {
const { payload: snapshotValue, send: sendSnapshots } = useSnapshotsState(name);
const href = `/cameras/${name}`;
const buttons = useMemo(() => {
return [{ name: 'Events', href: `/events?camera=${name}` }, { name: 'Recordings', href: `/recording/${name}` }];
}, [name]);
const result = [{ name: 'Events', href: `/events?camera=${name}` }];
if (conf.record.enabled) {
result.push({ name: 'Recordings', href: `/recording/${name}` });
}
return result;
}, [name, conf.record.enabled]);
const icons = useMemo(
() => [
{

View File

@@ -66,9 +66,6 @@ export default function Recording({ camera, date, hour, seconds }) {
this.player.currentTime(seconds);
}
}
// Force playback rate to be correct
const playbackRate = this.player.playbackRate();
this.player.defaultPlaybackRate(playbackRate);
}
return (

View File

@@ -46,7 +46,7 @@ describe('Cameras Route', () => {
expect(screen.queryByLabelText('Loading…')).not.toBeInTheDocument();
expect(screen.queryAllByText('Recordings')).toHaveLength(2);
expect(screen.queryAllByText('Recordings')).toHaveLength(1);
});
test('buttons toggle detect, clips, and snapshots', async () => {