Compare commits

..

21 Commits

Author SHA1 Message Date
Blake Blackshear
b912851e49 fix default motion comment 2021-11-15 06:54:03 -06:00
Blake Blackshear
14c74e4361 more robust cache management 2021-11-10 21:12:41 -06:00
Blake Blackshear
51fb532e1a set retain when setting switches from frontend 2021-11-09 07:40:23 -06:00
Blake Blackshear
3541f966e3 error handling for the recording maintainer 2021-11-09 07:05:21 -06:00
Blake Blackshear
c7faef8faa don't modify ffmpeg_cmd object 2021-11-08 19:05:39 -06:00
Blake Blackshear
cdd3000315 fix ffmpeg config for env vars 2021-11-08 18:20:47 -06:00
Blake Blackshear
1c1c28d0e5 create ffmpeg commands on startup 2021-11-08 07:36:21 -06:00
Blake Blackshear
4422e86907 clarify shm in docs 2021-11-08 07:36:21 -06:00
Blake Blackshear
8f43a2d109 use resolution of clip 2021-11-08 07:36:21 -06:00
Blake Blackshear
bd7755fdd3 revamp process clip 2021-11-08 07:36:21 -06:00
Blake Blackshear
d554175631 no longer make motion settings dynamic 2021-11-08 07:36:21 -06:00
Blake Blackshear
ff667b019a remove min frame height of 180 and increase contour area 2021-11-08 07:36:21 -06:00
Blake Blackshear
57dcb29f8b consolidate regions 2021-11-08 07:36:21 -06:00
Blake Blackshear
9dc6c423b7 improve contrast 2021-11-08 07:36:21 -06:00
Blake Blackshear
58117e2a3e check for overlapping motion boxes 2021-11-08 07:36:21 -06:00
Blake Blackshear
5bec438f9c config option for stationary detection interval 2021-11-01 07:58:30 -05:00
Blake Blackshear
24cc63d6d3 drop high overlap detections 2021-11-01 07:58:30 -05:00
Blake Blackshear
d17bd74c9a reduce detection rate for stationary objects 2021-11-01 07:58:30 -05:00
Blake Blackshear
8f101ccca8 improve box merging and keep tracking 2021-11-01 07:58:30 -05:00
Blake Blackshear
b63c56d810 only save recordings when an event is in progress 2021-10-25 06:40:36 -05:00
Blake Blackshear
61c62d4685 version tick 2021-10-25 06:40:02 -05:00
60 changed files with 671 additions and 31627 deletions

View File

@@ -44,27 +44,3 @@ jobs:
- name: Test
run: npm run test
working-directory: ./web
docker_tests_on_aarch64:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v2
- name: Set up QEMU
uses: docker/setup-qemu-action@v1
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Build and run tests
run: make run_tests PLATFORM="linux/arm64/v8" ARCH="aarch64"
docker_tests_on_amd64:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v2
- name: Set up QEMU
uses: docker/setup-qemu-action@v1
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Build and run tests
run: make run_tests PLATFORM="linux/amd64" ARCH="amd64"

View File

@@ -3,7 +3,7 @@ default_target: amd64_frigate
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
version:
echo "VERSION='0.10.1-$(COMMIT_HASH)'" > frigate/version.py
echo "VERSION='0.10.0-$(COMMIT_HASH)'" > frigate/version.py
web:
docker build --tag frigate-web --file docker/Dockerfile.web web/
@@ -59,16 +59,4 @@ armv7_frigate: version web
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
run_tests:
# PLATFORM: linux/arm64/v8 linux/amd64 or linux/arm/v7
# ARCH: aarch64 amd64 or armv7
@cat docker/Dockerfile.base docker/Dockerfile.$(ARCH) > docker/Dockerfile.test
@sed -i "s/FROM frigate-web as web/#/g" docker/Dockerfile.test
@sed -i "s/COPY --from=web \/opt\/frigate\/build web\//#/g" docker/Dockerfile.test
@sed -i "s/FROM frigate-base/#/g" docker/Dockerfile.test
@echo "" >> docker/Dockerfile.test
@echo "RUN python3 -m unittest" >> docker/Dockerfile.test
@docker buildx build --platform=$(PLATFORM) --tag frigate-base --build-arg NGINX_VERSION=1.0.2 --build-arg FFMPEG_VERSION=1.0.0 --build-arg ARCH=$(ARCH) --build-arg WHEELS_VERSION=1.0.3 --file docker/Dockerfile.test .
@rm docker/Dockerfile.test
.PHONY: web run_tests
.PHONY: web

View File

@@ -22,5 +22,3 @@ RUN pip3 install pylint black
# Install Node 14
RUN curl -sL https://deb.nodesource.com/setup_14.x | bash - \
&& apt-get install -y nodejs
RUN npm install -g npm@latest

View File

@@ -58,7 +58,7 @@ http {
# vod caches
vod_metadata_cache metadata_cache 512m;
vod_mapping_cache mapping_cache 5m 10m;
vod_mapping_cache mapping_cache 5m;
# gzip manifests
gzip on;

View File

@@ -43,11 +43,6 @@ If you are storing your database on a network share (SMB, NFS, etc), you may get
This may need to be in a custom location if network storage is used for the media folder.
```yaml
database:
path: /path/to/frigate.db
```
### `model`
If using a custom model, the width and height will need to be specified.

View File

@@ -19,34 +19,6 @@ output_args:
rtmp: -c:v libx264 -an -f flv
```
### JPEG Stream Cameras
Cameras using a live changing jpeg image will need input parameters as below
```yaml
input_args:
- -r
- 5 # << enter FPS here
- -stream_loop
- -1
- -f
- image2
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- 1
```
Outputting the stream will have the same args and caveats as per [MJPEG Cameras](#mjpeg-cameras)
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
@@ -89,8 +61,8 @@ cameras:
roles:
- detect
detect:
width: 896
height: 672
width: 640
height: 480
fps: 7
```

View File

@@ -159,26 +159,8 @@ detect:
enabled: True
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
# Optional: Configuration for stationary object tracking
stationary:
# Optional: Frequency for running detection on stationary objects (default: shown below)
# When set to 0, object detection will never be run on stationary objects. If set to 10, it will be run on every 10th frame.
interval: 0
# Optional: Number of frames without a position change for an object to be considered stationary (default: 10x the frame rate or 10s)
threshold: 50
# Optional: Define a maximum number of frames for tracking a stationary object (default: not set, track forever)
# This can help with false positives for objects that should only be stationary for a limited amount of time.
# It can also be used to disable stationary object tracking. For example, you may want to set a value for person, but leave
# car at the default.
# WARNING: Setting these values overrides default behavior and disables stationary object tracking.
# There are very few situations where you would want it disabled. It is NOT recommended to
# copy these values from the example config into your config unless you know they are needed.
max_frames:
# Optional: Default for all object types (default: not set, track forever)
default: 3000
# Optional: Object specific values
objects:
person: 1000
# Optional: Frequency for running detection on stationary objects (default: 10x the frame rate)
stationary_interval: 50
# Optional: Object configuration
# NOTE: Can be overridden at the camera level
@@ -236,41 +218,21 @@ motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
# Optional: improve contrast (default: shown below)
# Enables dynamic contrast improvement. This should help improve night detections at the cost of making motion detection more sensitive
# for daytime.
improve_contrast: False
# Optional: Record configuration
# NOTE: Can be overridden at the camera level
record:
# Optional: Enable recording (default: shown below)
# WARNING: Frigate does not currently support limiting recordings based
# on available disk space automatically. If using recordings,
# you must specify retention settings for a number of days that
# will fit within the available disk space of your drive or Frigate
# will crash.
enabled: False
# Optional: Number of minutes to wait between cleanup runs (default: shown below)
# This can be used to reduce the frequency of deleting recording segments from disk if you want to minimize i/o
expire_interval: 60
# Optional: Retention settings for recording
retain:
# Optional: Number of days to retain recordings regardless of events (default: shown below)
# NOTE: This should be set to 0 and retention should be defined in events section below
# if you only want to retain recordings of events.
days: 0
# Optional: Mode for retention. Available options are: all, motion, and active_objects
# all - save all recording segments regardless of activity
# motion - save all recordings segments with any detected motion
# active_objects - save all recording segments with active/moving objects
# NOTE: this mode only applies when the days setting above is greater than 0
mode: all
# Optional: Number of days to retain recordings regardless of events (default: shown below)
# NOTE: This should be set to 0 and retention should be defined in events section below
# if you only want to retain recordings of events.
retain_days: 0
# Optional: Event recording settings
events:
# Optional: Maximum length of time to retain video during long events. (default: shown below)
# NOTE: If an object is being tracked for longer than this amount of time, the retained recordings
# will be the last x seconds of the event unless retain->days under record is > 0.
# will be the last x seconds of the event unless retain_days under record is > 0.
max_seconds: 300
# Optional: Number of seconds before the event to include (default: shown below)
pre_capture: 5
@@ -285,16 +247,6 @@ record:
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Mode for retention. (default: shown below)
# all - save all recording segments for events regardless of activity
# motion - save all recordings segments for events with any detected motion
# active_objects - save all recording segments for event with active/moving objects
#
# NOTE: If the retain mode for the camera is more restrictive than the mode configured
# here, the segments will already be gone by the time this mode is applied.
# For example, if the camera retain mode is "motion", the segments without motion are
# never stored, so setting the mode to "all" here won't bring them back.
mode: motion
# Optional: Per object retention days
objects:
person: 15
@@ -407,7 +359,7 @@ cameras:
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Presence in a zone is evaluated only based on the bottom center of the objects bounding box.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: List of objects that can trigger this zone (default: all tracked objects)
objects:

View File

@@ -97,3 +97,15 @@ processes:
| 0 N/A N/A 12827 C ffmpeg 417MiB |
+-----------------------------------------------------------------------------+
```
To further improve performance, you can set ffmpeg to skip frames in the output,
using the fps filter:
```yaml
output_args:
- -filter:v
- fps=fps=5
```
This setting, for example, allows Frigate to consume my 10-15fps camera streams on
my relatively low powered Haswell machine with relatively low cpu usage.

View File

@@ -5,11 +5,7 @@ title: Objects
import labels from "../../../labelmap.txt";
Frigate includes the object models listed below from the Google Coral test data.
Please note:
- `car` is listed twice because `truck` has been renamed to `car` by default. These object types are frequently confused.
- `person` is the only tracked object by default. See the [full configuration reference](https://docs.frigate.video/configuration/index#full-configuration-reference) for an example of expanding the list of tracked objects.
By default, Frigate includes the following object models from the Google Coral test data. Note that `car` is listed twice because `truck` has been renamed to `car` by default. These object types are frequently confused.
<ul>
{labels.split("\n").map((label) => (

View File

@@ -14,25 +14,12 @@ If you only used clips in previous versions with recordings disabled, you can us
```yaml
record:
enabled: True
retain_days: 0
events:
retain:
default: 10
```
This configuration will retain recording segments that overlap with events and have active tracked objects for 10 days. Because multiple events can reference the same recording segments, this avoids storing duplicate footage for overlapping events and reduces overall storage needs.
This configuration will retain recording segments that overlap with events for 10 days. Because multiple events can reference the same recording segments, this avoids storing duplicate footage for overlapping events and reduces overall storage needs.
When `retain -> days` is set to `0`, segments will be deleted from the cache if no events are in progress.
## What do the different retain modes mean?
Frigate saves from the stream with the `record` role in 10 second segments. These options determine which recording segments are kept for 24/7 recording (but can also affect events).
Let's say you have frigate configured so that your doorbell camera would retain the last **2** days of 24/7 recording.
- With the `all` option all 48 hours of those two days would be kept and viewable.
- With the `motion` option the only parts of those 48 hours would be segments that frigate detected motion. This is the middle ground option that won't keep all 48 hours, but will likely keep all segments of interest along with the potential for some extra segments.
- With the `active_objects` option the only segments that would be kept are those where there was a true positive object that was not considered stationary.
The same options are available with events. Let's consider a scenario where you drive up and park in your driveway, go inside, then come back out 4 hours later.
- With the `all` option all segments for the duration of the event would be saved for the event. This event would have 4 hours of footage.
- With the `motion` option all segments for the duration of the event with motion would be saved. This means any segment where a car drove by in the street, person walked by, lighting changed, etc. would be saved.
- With the `active_objects` it would only keep segments where the object was active. In this case the only segments that would be saved would be the ones where the car was driving up, you going inside, you coming outside, and the car driving away. Essentially reducing the 4 hours to a minute or two of event footage.
When `retain_days` is set to `0`, segments will be deleted from the cache if no events are in progress

View File

@@ -5,4 +5,4 @@ title: RTMP
Frigate can re-stream your video feed as a RTMP feed for other applications such as Home Assistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and Home Assistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization. Some more information about it can be found [here](../faqs#audio-in-recordings).
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.

View File

@@ -3,9 +3,7 @@ id: zones
title: Zones
---
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Presence in a zone is evaluated based on the bottom center of the bounding box for the object. It does not matter how much of the bounding box overlaps with the zone.
Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
During testing, enable the Zones option for the debug feed so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.

View File

@@ -11,24 +11,9 @@ This error message is due to a shm-size that is too small. Try updating your shm
A solid green image means that frigate has not received any frames from ffmpeg. Check the logs to see why ffmpeg is exiting and adjust your ffmpeg args accordingly.
### How can I get sound or audio in my recordings? {#audio-in-recordings}
### How can I get sound or audio in my recordings?
By default, Frigate removes audio from recordings to reduce the likelihood of failing for invalid data. If you would like to include audio, you need to override the output args to remove `-an` for where you want to include audio. The recommended audio codec is `aac`. Not all audio codecs are supported by RTMP, so you may need to re-encode your audio with `-c:a aac`. The default ffmpeg args are shown [here](/configuration/index/#full-configuration-reference).
:::tip
When using `-c:a aac`, do not forget to replace `-c copy` with `-c:v copy`. Example:
```diff title="frigate.yml"
ffmpeg:
output_args:
- record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
+ record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c:v copy -c:a aac
```
This is needed because the `-c` flag (without `:a` or `:v`) applies for both audio and video, thus making it conflicting with `-c:a aac`.
:::
By default, Frigate removes audio from recordings to reduce the likelihood of failing for invalid data. If you would like to include audio, you need to override the output args to remove `-an` for where you want to include audio. The recommended audio codec is `aac`. Not all audio codecs are supported by RTMP, so you may need to re-encode your audio with `-c:a aac`. The default ffmpeg args are shown [here](configuration/index#full-configuration-reference).
### My mjpeg stream or snapshots look green and crazy

View File

@@ -62,8 +62,6 @@ cameras:
roles:
- detect
- rtmp
rtmp:
enabled: False # <-- RTMP should be disabled if your stream is not H264
detect:
width: 1280 # <---- update for your camera's resolution
height: 720 # <---- update for your camera's resolution
@@ -73,9 +71,7 @@ cameras:
At this point you should be able to start Frigate and see the the video feed in the UI.
If you get a green image from the camera, this means ffmpeg was not able to get the video feed from your camera. Check the logs for error messages from ffmpeg. The default ffmpeg arguments are designed to work with H264 RTSP cameras that support TCP connections. If you do not have H264 cameras, make sure you have disabled RTMP. It is possible to enable it, but you must tell ffmpeg to re-encode the video with customized output args.
FFmpeg arguments for other types of cameras can be found [here](/configuration/camera_specific).
If you get a green image from the camera, this means ffmpeg was not able to get the video feed from your camera. Check the logs for error messages from ffmpeg. The default ffmpeg arguments are designed to work with RTSP cameras that support TCP connections. FFmpeg arguments for other types of cameras can be found [here](/configuration/camera_specific).
### Step 5: Configure hardware acceleration (optional)
@@ -167,17 +163,13 @@ cameras:
roles:
- detect
- rtmp
- path: rtsp://10.0.10.10:554/high_res_stream # <----- Add high res stream
roles:
- record
- record # <----- Add role
detect: ...
record: # <----- Enable recording
enabled: True
motion: ...
```
If you don't have separate streams for detect and record, you would just add the record role to the list on the first input.
By default, Frigate will retain video of all events for 10 days. The full set of options for recording can be found [here](/configuration/index#full-configuration-reference).
### Step 8: Enable snapshots (optional)

View File

@@ -25,30 +25,6 @@ automation:
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
Note that iOS devices support live previews of cameras by adding a camera entity id to the message data.
```yaml
automation:
- alias: Security_Frigate_Notifications
description: ""
trigger:
- platform: mqtt
topic: frigate/events
payload: new
value_template: "{{ value_json.type }}"
action:
- service: notify.mobile_app_iphone
data:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
image: >-
https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg
tag: '{{trigger.payload_json["after"]["id"]}}'
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
entity_id: camera.{{trigger.payload_json["after"]["camera"]}}
mode: single
```
## Conditions
Conditions with the `before` and `after` values allow a high degree of customization for automations.

View File

@@ -21,17 +21,19 @@ I may earn a small commission for my endorsement, recommendation, testimonial, o
## Server
My current favorite is the Minisforum GK41 because of the dual NICs that allow you to setup a dedicated private network for your cameras where they can be blocked from accessing the internet. There are many used workstation options on eBay that work very well. Anything with an Intel CPU and capable of running Debian should work fine. As a bonus, you may want to look for devices with a M.2 or PCIe express slot that is compatible with the Google Coral. I may earn a small commission for my endorsement, recommendation, testimonial, or link to any products or services from this website.
My current favorite is the Odyssey X86 Blue J4125 because the Coral M.2 compatibility and dual NICs that allow you to setup a dedicated private network for your cameras where they can be blocked from accessing the internet. I may earn a small commission for my endorsement, recommendation, testimonial, or link to any products or services from this website.
| Name | Inference Speed | Coral Compatibility | Notes |
| ------------------------------------------------------------------------------------------------------------------------------- | --------------- | ------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| <a href="https://amzn.to/3oH4BKi" target="_blank" rel="nofollow noopener sponsored">Odyssey X86 Blue J4125</a> (affiliate link) | 9-10ms | M.2 B+M | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3ptnb8D" target="_blank" rel="nofollow noopener sponsored">Minisforum GK41</a> (affiliate link) | 9-10ms | USB | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/35E79BC" target="_blank" rel="nofollow noopener sponsored">Beelink GK55</a> (affiliate link) | 9-10ms | USB | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3psFlHi" target="_blank" rel="nofollow noopener sponsored">Intel NUC</a> (affiliate link) | 8-10ms | USB | Overkill for most, but great performance. Can handle many cameras at 5fps depending on typical amounts of motion. Requires extra parts. |
| <a href="https://amzn.to/3a6TBh8" target="_blank" rel="nofollow noopener sponsored">BMAX B2 Plus</a> (affiliate link) | 10-12ms | USB | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
| <a href="https://amzn.to/2YjpY9m" target="_blank" rel="nofollow noopener sponsored">Atomic Pi</a> (affiliate link) | 16ms | USB | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
| <a href="https://amzn.to/2YhSGHH" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 4 (64bit)</a> (affiliate link) | 10-15ms | USB | Can handle a small number of cameras. |
| Name | Inference Speed | Coral Compatibility | Notes |
| -------------------------------------------------------------------------------------------------------------------------------- | --------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| <a href="https://amzn.to/3oH4BKi" target="_blank" rel="nofollow noopener sponsored">Odyssey X86 Blue J4125</a> (affiliate link) | 9-10ms | M.2 B+M | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3oxEC8m" target="_blank" rel="nofollow noopener sponsored">Minisforum GK41</a> (affiliate link) | 9-10ms | USB | Great alternative to a NUC. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3ixJFlb" target="_blank" rel="nofollow noopener sponsored">Minisforum GK50</a> (affiliate link) | 9-10ms | USB | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| <a href="https://amzn.to/3l7vCEI" target="_blank" rel="nofollow noopener sponsored">Intel NUC</a> (affiliate link) | 8-10ms | USB | Overkill for most, but great performance. Can handle many cameras at 5fps depending on typical amounts of motion. |
| <a href="https://amzn.to/3a6TBh8" target="_blank" rel="nofollow noopener sponsored">BMAX B2 Plus</a> (affiliate link) | 10-12ms | USB | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
| <a href="https://amzn.to/2YjpY9m" target="_blank" rel="nofollow noopener sponsored">Atomic Pi</a> (affiliate link) | 16ms | USB | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
| <a href="https://amzn.to/2WIpwRU" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 3B (32bit)</a> (affiliate link) | 60ms | USB | Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0. |
| <a href="https://amzn.to/2YhSGHH" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 4 (32bit)</a> (affiliate link) | 15-20ms | USB | Can handle a small number of cameras. The 2GB version runs fine. |
| <a href="https://amzn.to/2YhSGHH" target="_blank" rel="nofollow noopener sponsored">Raspberry Pi 4 (64bit)</a> (affiliate link) | 10-15ms | USB | Can handle a small number of cameras. The 2GB version runs fine. |
## Google Coral TPU

View File

@@ -21,12 +21,6 @@ Windows is not officially supported, but some users have had success getting it
Frigate uses the following locations for read/write operations in the container. Docker volume mappings can be used to map these to any location on your host machine.
:::caution
Note that Frigate does not currently support limiting recordings based on available disk space automatically. If using recordings, you must specify retention settings for a number of days that will fit within the available disk space of your drive or Frigate will crash.
:::
- `/media/frigate/clips`: Used for snapshot storage. In the future, it will likely be renamed from `clips` to `snapshots`. The file structure here cannot be modified and isn't intended to be browsed or managed manually.
- `/media/frigate/recordings`: Internal system storage for recording segments. The file structure here cannot be modified and isn't intended to be browsed or managed manually.
- `/media/frigate/frigate.db`: Default location for the sqlite database. You will also see several files alongside this file while frigate is running. If moving the database location (often needed when using a network drive at `/media/frigate`), it is recommended to mount a volume with docker at `/db` and change the storage location of the database to `/db/frigate.db` in the config file.
@@ -124,7 +118,6 @@ services:
shm_size: "64mb" # update for your cameras based on calculation above
devices:
- /dev/bus/usb:/dev/bus/usb # passes the USB Coral, needs to be modified for other versions
- /dev/apex_0:/dev/apex_0 # passes a PCIe Coral, follow driver instructions here https://coral.ai/docs/m2/get-started/#2a-on-linux
- /dev/dri/renderD128 # for intel hwaccel, needs to be updated for your hardware
volumes:
- /etc/localtime:/etc/localtime:ro
@@ -184,15 +177,6 @@ HassOS users can install via the addon repository.
6. Start the addon container
7. (not for proxy addon) If you are using hardware acceleration for ffmpeg, you may need to disable "Protection mode"
There are several versions of the addon available:
| Addon Version | Description |
| ------------------------------ | ---------------------------------------------------------- |
| Frigate NVR | Current release with protection mode on |
| Frigate NVR (Full Access) | Current release with the option to disable protection mode |
| Frigate NVR Beta | Beta release with protection mode on |
| Frigate NVR Beta (Full Access) | Beta release with the option to disable protection mode |
## Home Assistant Supervised
:::tip

View File

@@ -45,14 +45,11 @@ that card.
## Configuration
When configuring the integration, you will be asked for the `URL` of your frigate instance which is the URL you use to access Frigate in the browser. This may look like `http://<host>:5000/`. If you are using HassOS with the addon, the URL should be one of the following depending on which addon version you are using. Note that if you are using the Proxy Addon, you do NOT point the integration at the proxy URL. Just enter the URL used to access frigate directly from your network.
When configuring the integration, you will be asked for the following parameters:
| Addon Version | URL |
| ------------------------------ | -------------------------------------- |
| Frigate NVR | `http://ccab4aaf-frigate:5000` |
| Frigate NVR (Full Access) | `http://ccab4aaf-frigate-fa:5000` |
| Frigate NVR Beta | `http://ccab4aaf-frigate-beta:5000` |
| Frigate NVR Beta (Full Access) | `http://ccab4aaf-frigate-fa-beta:5000` |
| Variable | Description |
| -------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| URL | The `URL` of your frigate instance, the URL you use to access Frigate in the browser. This may look like `http://<host>:5000/`. If you are using HassOS with the addon, the URL should be `http://ccab4aaf-frigate:5000` (or `http://ccab4aaf-frigate-beta:5000` if your are using the beta version of the addon). Live streams required port 1935, see [RTMP streams](#streams) |
<a name="options"></a>

View File

@@ -55,10 +55,7 @@ Message published for each changed event. The first message is published when th
"entered_zones": ["yard", "driveway"],
"thumbnail": null,
"has_snapshot": false,
"has_clip": false,
"stationary": false, // whether or not the object is considered stationary
"motionless_count": 0, // number of frames the object has been motionless
"position_changes": 2 // number of times the object has moved from a stationary position
"has_clip": false
},
"after": {
"id": "1607123955.475377-mxklsc",
@@ -78,10 +75,7 @@ Message published for each changed event. The first message is published when th
"entered_zones": ["yard", "driveway"],
"thumbnail": null,
"has_snapshot": false,
"has_clip": false,
"stationary": false, // whether or not the object is considered stationary
"motionless_count": 0, // number of frames the object has been motionless
"position_changes": 2 // number of times the object has changed position
"has_clip": false
}
}
```

14859
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -12,13 +12,13 @@
"clear": "docusaurus clear"
},
"dependencies": {
"@docusaurus/core": "^2.0.0-beta.15",
"@docusaurus/preset-classic": "^2.0.0-beta.15",
"@mdx-js/react": "^1.6.22",
"@docusaurus/core": "^2.0.0-beta.6",
"@docusaurus/preset-classic": "^2.0.0-beta.6",
"@mdx-js/react": "^1.6.21",
"clsx": "^1.1.1",
"raw-loader": "^4.0.2",
"react": "^16.14.0",
"react-dom": "^16.14.0"
"react": "^16.8.4",
"react-dom": "^16.8.4"
},
"browserslist": {
"production": [
@@ -31,8 +31,5 @@
"last 1 firefox version",
"last 1 safari version"
]
},
"devDependencies": {
"@types/react": "^16.14.0"
}
}

View File

@@ -8,7 +8,6 @@ import threading
from logging.handlers import QueueHandler
from typing import Dict, List
import traceback
import yaml
from peewee_migrate import Router
from playhouse.sqlite_ext import SqliteExtDatabase
@@ -68,16 +67,13 @@ class FrigateApp:
def init_config(self):
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
user_config = FrigateConfig.parse_file(config_file)
self.config = user_config.runtime_config
for camera_name in self.config.cameras.keys():
# generage the ffmpeg commands
self.config.cameras[camera_name].create_ffmpeg_cmds()
# create camera_metrics
self.camera_metrics[camera_name] = {
"camera_fps": mp.Value("d", 0.0),
@@ -112,9 +108,6 @@ class FrigateApp:
maxsize=len(self.config.cameras.keys()) * 2
)
# Queue for recordings info
self.recordings_info_queue = mp.Queue()
def init_database(self):
# Migrate DB location
old_db_path = os.path.join(CLIPS_DIR, "frigate.db")
@@ -213,7 +206,6 @@ class FrigateApp:
self.event_queue,
self.event_processed_queue,
self.video_output_queue,
self.recordings_info_queue,
self.stop_event,
)
self.detected_frames_processor.start()
@@ -281,9 +273,7 @@ class FrigateApp:
self.event_cleanup.start()
def start_recording_maintainer(self):
self.recording_maintainer = RecordingMaintainer(
self.config, self.recordings_info_queue, self.stop_event
)
self.recording_maintainer = RecordingMaintainer(self.config, self.stop_event)
self.recording_maintainer.start()
def start_recording_cleanup(self):
@@ -321,7 +311,6 @@ class FrigateApp:
print("*** Config Validation Errors ***")
print("*************************************************************")
print(e)
print(traceback.format_exc())
print("*************************************************************")
print("*** End Config Validation Errors ***")
print("*************************************************************")

View File

@@ -12,8 +12,9 @@ import yaml
from pydantic import BaseModel, Extra, Field, validator
from pydantic.fields import PrivateAttr
from frigate.const import BASE_DIR, CACHE_DIR, YAML_EXT
from frigate.util import create_mask, deep_merge, load_labels
from frigate.const import BASE_DIR, CACHE_DIR
from frigate.edgetpu import load_labels
from frigate.util import create_mask, deep_merge
logger = logging.getLogger(__name__)
@@ -64,15 +65,8 @@ class MqttConfig(FrigateBaseModel):
return v
class RetainModeEnum(str, Enum):
all = "all"
motion = "motion"
active_objects = "active_objects"
class RetainConfig(FrigateBaseModel):
default: float = Field(default=10, title="Default retention period.")
mode: RetainModeEnum = Field(default=RetainModeEnum.motion, title="Retain mode.")
objects: Dict[str, float] = Field(
default_factory=dict, title="Object retention period."
)
@@ -94,22 +88,9 @@ class EventsConfig(FrigateBaseModel):
)
class RecordRetainConfig(FrigateBaseModel):
days: float = Field(default=0, title="Default retention period.")
mode: RetainModeEnum = Field(default=RetainModeEnum.all, title="Retain mode.")
class RecordConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable record on all cameras.")
expire_interval: int = Field(
default=60,
title="Number of minutes to wait between cleanup runs.",
)
# deprecated - to be removed in a future version
retain_days: Optional[float] = Field(title="Recording retention period in days.")
retain: RecordRetainConfig = Field(
default_factory=RecordRetainConfig, title="Record retention settings."
)
retain_days: float = Field(default=0, title="Recording retention period in days.")
events: EventsConfig = Field(
default_factory=EventsConfig, title="Event specific settings."
)
@@ -122,7 +103,6 @@ class MotionConfig(FrigateBaseModel):
ge=1,
le=255,
)
improve_contrast: bool = Field(default=False, title="Improve Contrast")
contour_area: Optional[int] = Field(default=30, title="Contour Area")
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
frame_alpha: float = Field(default=0.2, title="Frame Alpha")
@@ -163,29 +143,6 @@ class RuntimeMotionConfig(MotionConfig):
extra = Extra.ignore
class StationaryMaxFramesConfig(FrigateBaseModel):
default: Optional[int] = Field(title="Default max frames.", ge=1)
objects: Dict[str, int] = Field(
default_factory=dict, title="Object specific max frames."
)
class StationaryConfig(FrigateBaseModel):
interval: Optional[int] = Field(
default=0,
title="Frame interval for checking stationary objects.",
ge=0,
)
threshold: Optional[int] = Field(
title="Number of frames without a position change for an object to be considered stationary",
ge=1,
)
max_frames: StationaryMaxFramesConfig = Field(
default_factory=StationaryMaxFramesConfig,
title="Max frames for stationary objects.",
)
class DetectConfig(FrigateBaseModel):
height: int = Field(default=720, title="Height of the stream for the detect role.")
width: int = Field(default=1280, title="Width of the stream for the detect role.")
@@ -196,9 +153,8 @@ class DetectConfig(FrigateBaseModel):
max_disappeared: Optional[int] = Field(
title="Maximum number of frames the object can dissapear before detection ends."
)
stationary: StationaryConfig = Field(
default_factory=StationaryConfig,
title="Stationary objects config.",
stationary_interval: Optional[int] = Field(
title="Frame interval for checking stationary objects."
)
@@ -499,7 +455,7 @@ class CameraLiveConfig(FrigateBaseModel):
class CameraConfig(FrigateBaseModel):
name: Optional[str] = Field(title="Camera name.", regex="^[a-zA-Z0-9_-]+$")
name: Optional[str] = Field(title="Camera name.")
ffmpeg: CameraFfmpegConfig = Field(title="FFmpeg configuration for the camera.")
best_image_timeout: int = Field(
default=60,
@@ -563,8 +519,6 @@ class CameraConfig(FrigateBaseModel):
return self._ffmpeg_cmds
def create_ffmpeg_cmds(self):
if "_ffmpeg_cmds" in self:
return
ffmpeg_cmds = []
for ffmpeg_input in self.ffmpeg.inputs:
ffmpeg_cmd = self._get_ffmpeg_cmd(ffmpeg_input)
@@ -667,7 +621,7 @@ class ModelConfig(FrigateBaseModel):
return self._merged_labelmap
@property
def colormap(self) -> Dict[int, Tuple[int, int, int]]:
def colormap(self) -> Dict[int, tuple[int, int, int]]:
return self._colormap
def __init__(self, **config):
@@ -789,10 +743,10 @@ class FrigateConfig(FrigateBaseModel):
if camera_config.detect.max_disappeared is None:
camera_config.detect.max_disappeared = max_disappeared
# Default stationary_threshold configuration
stationary_threshold = camera_config.detect.fps * 10
if camera_config.detect.stationary.threshold is None:
camera_config.detect.stationary.threshold = stationary_threshold
# Default stationary_interval configuration
stationary_interval = camera_config.detect.fps * 10
if camera_config.detect.stationary_interval is None:
camera_config.detect.stationary_interval = stationary_interval
# FFMPEG input substitution
for input in camera_config.ffmpeg.inputs:
@@ -855,30 +809,6 @@ class FrigateConfig(FrigateBaseModel):
f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input."
)
# backwards compatibility for retain_days
if not camera_config.record.retain_days is None:
logger.warning(
"The 'retain_days' config option has been DEPRECATED and will be removed in a future version. Please use the 'days' setting under 'retain'"
)
if camera_config.record.retain.days == 0:
camera_config.record.retain.days = camera_config.record.retain_days
# warning if the higher level record mode is potentially more restrictive than the events
rank_map = {
RetainModeEnum.all: 0,
RetainModeEnum.motion: 1,
RetainModeEnum.active_objects: 2,
}
if (
camera_config.record.retain.days != 0
and rank_map[camera_config.record.retain.mode]
> rank_map[camera_config.record.events.retain.mode]
):
logger.warning(
f"{name}: Recording retention is configured for {camera_config.record.retain.mode} and event retention is configured for {camera_config.record.events.retain.mode}. The more restrictive retention policy will be applied."
)
# generage the ffmpeg commands
camera_config.create_ffmpeg_cmds()
config.cameras[name] = camera_config
return config
@@ -896,7 +826,7 @@ class FrigateConfig(FrigateBaseModel):
with open(config_file) as f:
raw_config = f.read()
if config_file.endswith(YAML_EXT):
if config_file.endswith(".yml"):
config = yaml.safe_load(raw_config)
elif config_file.endswith(".json"):
config = json.loads(raw_config)

View File

@@ -2,4 +2,3 @@ BASE_DIR = "/media/frigate"
CLIPS_DIR = f"{BASE_DIR}/clips"
RECORD_DIR = f"{BASE_DIR}/recordings"
CACHE_DIR = "/tmp/cache"
YAML_EXT = (".yaml", ".yml")

View File

@@ -13,11 +13,31 @@ import tflite_runtime.interpreter as tflite
from setproctitle import setproctitle
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen, load_labels
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
logger = logging.getLogger(__name__)
def load_labels(path, encoding="utf-8"):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
with open(path, "r", encoding=encoding) as f:
lines = f.readlines()
if not lines:
return {}
if lines[0].split(" ", maxsplit=1)[0].isdigit():
pairs = [line.split(" ", maxsplit=1) for line in lines]
return {int(index): label.strip() for index, label in pairs}
else:
return {index: line.strip() for index, line in enumerate(lines)}
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold=0.4):

View File

@@ -15,16 +15,6 @@ from frigate.models import Event
logger = logging.getLogger(__name__)
def should_update_db(prev_event, current_event):
return (
prev_event["top_score"] != current_event["top_score"]
or prev_event["entered_zones"] != current_event["entered_zones"]
or prev_event["thumbnail"] != current_event["thumbnail"]
or prev_event["has_clip"] != current_event["has_clip"]
or prev_event["has_snapshot"] != current_event["has_snapshot"]
)
class EventProcessor(threading.Thread):
def __init__(
self, config, camera_processes, event_queue, event_processed_queue, stop_event
@@ -58,9 +48,7 @@ class EventProcessor(threading.Thread):
if event_type == "start":
self.events_in_process[event_data["id"]] = event_data
elif event_type == "update" and should_update_db(
self.events_in_process[event_data["id"]], event_data
):
elif event_type == "update":
self.events_in_process[event_data["id"]] = event_data
# TODO: this will generate a lot of db activity possibly
if event_data["has_clip"] or event_data["has_snapshot"]:

View File

@@ -133,8 +133,6 @@ def delete_event(id):
if event.has_snapshot:
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg")
media.unlink(missing_ok=True)
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}-clean.png")
media.unlink(missing_ok=True)
if event.has_clip:
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.mp4")
media.unlink(missing_ok=True)
@@ -184,7 +182,7 @@ def event_thumbnail(id):
thumbnail_bytes = jpg.tobytes()
response = make_response(thumbnail_bytes)
response.headers["Content-Type"] = "image/jpeg"
response.headers["Content-Type"] = "image/jpg"
return response
@@ -225,7 +223,7 @@ def event_snapshot(id):
return "Event not found", 404
response = make_response(jpg_bytes)
response.headers["Content-Type"] = "image/jpeg"
response.headers["Content-Type"] = "image/jpg"
if download:
response.headers[
"Content-Disposition"
@@ -249,10 +247,7 @@ def event_clip(id):
clip_path = os.path.join(CLIPS_DIR, file_name)
if not os.path.isfile(clip_path):
end_ts = (
datetime.now().timestamp() if event.end_time is None else event.end_time
)
return recording_clip(event.camera, event.start_time, end_ts)
return recording_clip(event.camera, event.start_time, event.end_time)
response = make_response()
response.headers["Content-Description"] = "File Transfer"
@@ -364,16 +359,9 @@ def best(camera_name, label):
crop = bool(request.args.get("crop", 0, type=int))
if crop:
box_size = 300
box = best_object.get("box", (0, 0, box_size, box_size))
box = best_object.get("box", (0, 0, 300, 300))
region = calculate_region(
best_frame.shape,
box[0],
box[1],
box[2],
box[3],
box_size,
multiplier=1.1,
best_frame.shape, box[0], box[1], box[2], box[3], 1.1
)
best_frame = best_frame[region[1] : region[3], region[0] : region[2]]
@@ -388,7 +376,7 @@ def best(camera_name, label):
".jpg", best_frame, [int(cv2.IMWRITE_JPEG_QUALITY), resize_quality]
)
response = make_response(jpg.tobytes())
response.headers["Content-Type"] = "image/jpeg"
response.headers["Content-Type"] = "image/jpg"
return response
else:
return "Camera named {} not found".format(camera_name), 404
@@ -450,7 +438,7 @@ def latest_frame(camera_name):
".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), resize_quality]
)
response = make_response(jpg.tobytes())
response.headers["Content-Type"] = "image/jpeg"
response.headers["Content-Type"] = "image/jpg"
return response
else:
return "Camera named {} not found".format(camera_name), 404
@@ -527,17 +515,12 @@ def recordings(camera_name):
FROM C2
WHERE cnt = 0
)
SELECT id, label, camera, top_score, start_time, end_time
FROM event
WHERE camera = ? AND end_time IS NULL
UNION ALL
SELECT MIN(id) as id, label, camera, MAX(top_score) as top_score, MIN(ts) AS start_time, max(ts) AS end_time
FROM C3
GROUP BY label, grpnum
ORDER BY start_time;""",
camera_name,
camera_name,
camera_name,
)
event: Event
@@ -675,15 +658,10 @@ def vod_ts(camera, start_ts, end_ts):
# Determine if we need to end the last clip early
if recording.end_time > end_ts:
duration -= int((recording.end_time - end_ts) * 1000)
if duration > 0:
clips.append(clip)
durations.append(duration)
else:
logger.warning(f"Recording clip is missing or empty: {recording.path}")
clips.append(clip)
durations.append(duration)
if not clips:
logger.error("No recordings found for the requested time range")
return "No recordings found.", 404
hour_ago = datetime.now() - timedelta(hours=1)
@@ -712,12 +690,10 @@ def vod_event(id):
try:
event: Event = Event.get(Event.id == id)
except DoesNotExist:
logger.error(f"Event not found: {id}")
return "Event not found.", 404
if not event.has_clip:
logger.error(f"Event does not have recordings: {id}")
return "Recordings not available", 404
return "Clip not available", 404
clip_path = os.path.join(CLIPS_DIR, f"{event.camera}-{id}.mp4")
@@ -725,15 +701,7 @@ def vod_event(id):
end_ts = (
datetime.now().timestamp() if event.end_time is None else event.end_time
)
vod_response = vod_ts(event.camera, event.start_time, end_ts)
# If the recordings are not found, set has_clip to false
if (
type(vod_response) == tuple
and len(vod_response) == 2
and vod_response[1] == 404
):
Event.update(has_clip=False).where(Event.id == id).execute()
return vod_response
return vod_ts(event.camera, event.start_time, end_ts)
duration = int((event.end_time - event.start_time) * 1000)
return jsonify(

View File

@@ -27,5 +27,3 @@ class Recordings(Model):
start_time = DateTimeField()
end_time = DateTimeField()
duration = FloatField()
motion = IntegerField(null=True)
objects = IntegerField(null=True)

View File

@@ -38,15 +38,12 @@ class MotionDetector:
)
# Improve contrast
if self.config.improve_contrast:
minval = np.percentile(resized_frame, 4)
maxval = np.percentile(resized_frame, 96)
# don't adjust if the image is a single color
if minval < maxval:
resized_frame = np.clip(resized_frame, minval, maxval)
resized_frame = (
((resized_frame - minval) / (maxval - minval)) * 255
).astype(np.uint8)
minval = np.percentile(resized_frame, 4)
maxval = np.percentile(resized_frame, 96)
resized_frame = np.clip(resized_frame, minval, maxval)
resized_frame = (((resized_frame - minval) / (maxval - minval)) * 255).astype(
np.uint8
)
# mask frame
resized_frame[self.mask] = [255]

View File

@@ -107,7 +107,7 @@ def create_mqtt_client(config: FrigateConfig, camera_metrics):
+ str(rc)
)
logger.debug("MQTT connected")
logger.info("MQTT connected")
client.subscribe(f"{mqtt_config.topic_prefix}/#")
client.publish(mqtt_config.topic_prefix + "/available", "online", retain=True)

View File

@@ -18,12 +18,12 @@ import numpy as np
from frigate.config import CameraConfig, SnapshotsConfig, RecordConfig, FrigateConfig
from frigate.const import CACHE_DIR, CLIPS_DIR, RECORD_DIR
from frigate.edgetpu import load_labels
from frigate.util import (
SharedMemoryFrameManager,
calculate_region,
draw_box_with_label,
draw_timestamp,
load_labels,
)
logger = logging.getLogger(__name__)
@@ -71,7 +71,7 @@ class TrackedObject:
self.camera_config = camera_config
self.frame_cache = frame_cache
self.current_zones = []
self.entered_zones = []
self.entered_zones = set()
self.false_positive = True
self.has_clip = False
self.has_snapshot = False
@@ -101,13 +101,14 @@ class TrackedObject:
return median(scores)
def update(self, current_frame_time, obj_data):
thumb_update = False
significant_change = False
significant_update = False
zone_change = False
self.obj_data.update(obj_data)
# if the object is not in the current frame, add a 0.0 to the score history
if obj_data["frame_time"] != current_frame_time:
if self.obj_data["frame_time"] != current_frame_time:
self.score_history.append(0.0)
else:
self.score_history.append(obj_data["score"])
self.score_history.append(self.obj_data["score"])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
@@ -121,24 +122,24 @@ class TrackedObject:
if not self.false_positive:
# determine if this frame is a better thumbnail
if self.thumbnail_data is None or is_better_thumbnail(
self.thumbnail_data, obj_data, self.camera_config.frame_shape
self.thumbnail_data, self.obj_data, self.camera_config.frame_shape
):
self.thumbnail_data = {
"frame_time": obj_data["frame_time"],
"box": obj_data["box"],
"area": obj_data["area"],
"region": obj_data["region"],
"score": obj_data["score"],
"frame_time": self.obj_data["frame_time"],
"box": self.obj_data["box"],
"area": self.obj_data["area"],
"region": self.obj_data["region"],
"score": self.obj_data["score"],
}
thumb_update = True
significant_update = True
# check zones
current_zones = []
bottom_center = (obj_data["centroid"][0], obj_data["box"][3])
bottom_center = (self.obj_data["centroid"][0], self.obj_data["box"][3])
# check each zone
for name, zone in self.camera_config.zones.items():
# if the zone is not for this object type, skip
if len(zone.objects) > 0 and not obj_data["label"] in zone.objects:
if len(zone.objects) > 0 and not self.obj_data["label"] in zone.objects:
continue
contour = zone.contour
# check if the object is in the zone
@@ -146,32 +147,14 @@ class TrackedObject:
# if the object passed the filters once, dont apply again
if name in self.current_zones or not zone_filtered(self, zone.filters):
current_zones.append(name)
if name not in self.entered_zones:
self.entered_zones.append(name)
self.entered_zones.add(name)
if not self.false_positive:
# if the zones changed, signal an update
if set(self.current_zones) != set(current_zones):
significant_change = True
# if the zones changed, signal an update
if not self.false_positive and set(self.current_zones) != set(current_zones):
zone_change = True
# if the position changed, signal an update
if self.obj_data["position_changes"] != obj_data["position_changes"]:
significant_change = True
# if the motionless_count reaches the stationary threshold
if (
self.obj_data["motionless_count"]
== self.camera_config.detect.stationary.threshold
):
significant_change = True
# update at least once per minute
if self.obj_data["frame_time"] - self.previous["frame_time"] > 60:
significant_change = True
self.obj_data.update(obj_data)
self.current_zones = current_zones
return (thumb_update, significant_change)
return (significant_update, zone_change)
def to_dict(self, include_thumbnail: bool = False):
snapshot_time = (
@@ -193,12 +176,8 @@ class TrackedObject:
"box": self.obj_data["box"],
"area": self.obj_data["area"],
"region": self.obj_data["region"],
"stationary": self.obj_data["motionless_count"]
> self.camera_config.detect.stationary.threshold,
"motionless_count": self.obj_data["motionless_count"],
"position_changes": self.obj_data["position_changes"],
"current_zones": self.current_zones.copy(),
"entered_zones": self.entered_zones.copy(),
"entered_zones": list(self.entered_zones).copy(),
"has_clip": self.has_clip,
"has_snapshot": self.has_snapshot,
}
@@ -283,15 +262,8 @@ class TrackedObject:
if crop:
box = self.thumbnail_data["box"]
box_size = 300
region = calculate_region(
best_frame.shape,
box[0],
box[1],
box[2],
box[3],
box_size,
multiplier=1.1,
best_frame.shape, box[0], box[1], box[2], box[3], 1.1
)
best_frame = best_frame[region[1] : region[3], region[0] : region[2]]
@@ -484,11 +456,11 @@ class CameraState:
for id in updated_ids:
updated_obj = tracked_objects[id]
thumb_update, significant_update = updated_obj.update(
significant_update, zone_change = updated_obj.update(
frame_time, current_detections[id]
)
if thumb_update:
if significant_update:
# ensure this frame is stored in the cache
if (
updated_obj.thumbnail_data["frame_time"] == frame_time
@@ -498,13 +470,13 @@ class CameraState:
updated_obj.last_updated = frame_time
# if it has been more than 5 seconds since the last thumb update
# if it has been more than 5 seconds since the last publish
# and the last update is greater than the last publish or
# the object has changed significantly
# the object has changed zones
if (
frame_time - updated_obj.last_published > 5
and updated_obj.last_updated > updated_obj.last_published
) or significant_update:
) or zone_change:
# call event handlers
for c in self.callbacks["update"]:
c(self.name, updated_obj, frame_time)
@@ -612,7 +584,6 @@ class TrackedObjectProcessor(threading.Thread):
event_queue,
event_processed_queue,
video_output_queue,
recordings_info_queue,
stop_event,
):
threading.Thread.__init__(self)
@@ -624,7 +595,6 @@ class TrackedObjectProcessor(threading.Thread):
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.video_output_queue = video_output_queue
self.recordings_info_queue = recordings_info_queue
self.stop_event = stop_event
self.camera_states: Dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
@@ -757,13 +727,9 @@ class TrackedObjectProcessor(threading.Thread):
if not snapshot_config.enabled:
return False
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# if there are required zones and there is no overlap
required_zones = snapshot_config.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
if len(required_zones) > 0 and not obj.entered_zones & set(required_zones):
logger.debug(
f"Not creating snapshot for {obj.obj_data['id']} because it did not enter required zones"
)
@@ -781,10 +747,6 @@ class TrackedObjectProcessor(threading.Thread):
if not record_config.enabled:
return False
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# If there are required zones and there is no overlap
required_zones = record_config.events.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
@@ -806,13 +768,9 @@ class TrackedObjectProcessor(threading.Thread):
return True
def should_mqtt_snapshot(self, camera, obj: TrackedObject):
# object never changed position
if obj.obj_data["position_changes"] == 0:
return False
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].mqtt.required_zones
if len(required_zones) > 0 and not set(obj.entered_zones) & set(required_zones):
if len(required_zones) > 0 and not obj.entered_zones & set(required_zones):
logger.debug(
f"Not sending mqtt for {obj.obj_data['id']} because it did not enter required zones"
)
@@ -855,26 +813,11 @@ class TrackedObjectProcessor(threading.Thread):
frame_time, current_tracked_objects, motion_boxes, regions
)
tracked_objects = [
o.to_dict() for o in camera_state.tracked_objects.values()
]
self.video_output_queue.put(
(
camera,
frame_time,
tracked_objects,
motion_boxes,
regions,
)
)
# send info on this frame to the recordings maintainer
self.recordings_info_queue.put(
(
camera,
frame_time,
tracked_objects,
current_tracked_objects,
motion_boxes,
regions,
)

View File

@@ -20,9 +20,7 @@ class ObjectTracker:
def __init__(self, config: DetectConfig):
self.tracked_objects = {}
self.disappeared = {}
self.positions = {}
self.max_disappeared = config.max_disappeared
self.detect_config = config
def register(self, index, obj):
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
@@ -30,115 +28,24 @@ class ObjectTracker:
obj["id"] = id
obj["start_time"] = obj["frame_time"]
obj["motionless_count"] = 0
obj["position_changes"] = 0
self.tracked_objects[id] = obj
self.disappeared[id] = 0
self.positions[id] = {
"xmins": [],
"ymins": [],
"xmaxs": [],
"ymaxs": [],
"xmin": 0,
"ymin": 0,
"xmax": self.detect_config.width,
"ymax": self.detect_config.height,
}
def deregister(self, id):
del self.tracked_objects[id]
del self.disappeared[id]
# tracks the current position of the object based on the last N bounding boxes
# returns False if the object has moved outside its previous position
def update_position(self, id, box):
position = self.positions[id]
position_box = (
position["xmin"],
position["ymin"],
position["xmax"],
position["ymax"],
)
xmin, ymin, xmax, ymax = box
iou = intersection_over_union(position_box, box)
# if the iou drops below the threshold
# assume the object has moved to a new position and reset the computed box
if iou < 0.6:
self.positions[id] = {
"xmins": [xmin],
"ymins": [ymin],
"xmaxs": [xmax],
"ymaxs": [ymax],
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return False
# if there are less than 10 entries for the position, add the bounding box
# and recompute the position box
if len(position["xmins"]) < 10:
position["xmins"].append(xmin)
position["ymins"].append(ymin)
position["xmaxs"].append(xmax)
position["ymaxs"].append(ymax)
# by using percentiles here, we hopefully remove outliers
position["xmin"] = np.percentile(position["xmins"], 15)
position["ymin"] = np.percentile(position["ymins"], 15)
position["xmax"] = np.percentile(position["xmaxs"], 85)
position["ymax"] = np.percentile(position["ymaxs"], 85)
return True
def is_expired(self, id):
obj = self.tracked_objects[id]
# get the max frames for this label type or the default
max_frames = self.detect_config.stationary.max_frames.objects.get(
obj["label"], self.detect_config.stationary.max_frames.default
)
# if there is no max_frames for this label type, continue
if max_frames is None:
return False
# if the object has exceeded the max_frames setting, deregister
if (
obj["motionless_count"] - self.detect_config.stationary.threshold
> max_frames
):
return True
def update(self, id, new_obj):
self.disappeared[id] = 0
# update the motionless count if the object has not moved to a new position
if self.update_position(id, new_obj["box"]):
if (
intersection_over_union(self.tracked_objects[id]["box"], new_obj["box"])
> 0.9
):
self.tracked_objects[id]["motionless_count"] += 1
if self.is_expired(id):
self.deregister(id)
return
else:
# register the first position change and then only increment if
# the object was previously stationary
if (
self.tracked_objects[id]["position_changes"] == 0
or self.tracked_objects[id]["motionless_count"]
>= self.detect_config.stationary.threshold
):
self.tracked_objects[id]["position_changes"] += 1
self.tracked_objects[id]["motionless_count"] = 0
self.tracked_objects[id].update(new_obj)
def update_frame_times(self, frame_time):
for id in list(self.tracked_objects.keys()):
self.tracked_objects[id]["frame_time"] = frame_time
self.tracked_objects[id]["motionless_count"] += 1
if self.is_expired(id):
self.deregister(id)
def match_and_update(self, frame_time, new_objects):
# group by name
new_object_groups = defaultdict(lambda: [])

View File

@@ -184,7 +184,10 @@ class BirdsEyeFrameManager:
if self.mode == BirdseyeModeEnum.continuous:
return True
if self.mode == BirdseyeModeEnum.motion and motion_box_count > 0:
if (
self.mode == BirdseyeModeEnum.motion
and object_box_count + motion_box_count > 0
):
return True
if self.mode == BirdseyeModeEnum.objects and object_box_count > 0:
@@ -415,7 +418,7 @@ def output_frames(config: FrigateConfig, video_output_queue):
):
if birdseye_manager.update(
camera,
len([o for o in current_tracked_objects if not o["stationary"]]),
len(current_tracked_objects),
len(motion_boxes),
frame_time,
frame,

View File

@@ -1,25 +1,22 @@
import datetime
import time
import itertools
import logging
import multiprocessing as mp
import os
import queue
import random
import shutil
import string
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
from peewee import JOIN, DoesNotExist
from frigate.config import RetainModeEnum, FrigateConfig
from frigate.config import FrigateConfig
from frigate.const import CACHE_DIR, RECORD_DIR
from frigate.models import Event, Recordings
from frigate.util import area
logger = logging.getLogger(__name__)
@@ -43,27 +40,20 @@ def remove_empty_directories(directory):
class RecordingMaintainer(threading.Thread):
def __init__(
self, config: FrigateConfig, recordings_info_queue: mp.Queue, stop_event
):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = "recording_maint"
self.config = config
self.recordings_info_queue = recordings_info_queue
self.stop_event = stop_event
self.recordings_info = defaultdict(list)
self.end_time_cache = {}
def move_files(self):
cache_files = sorted(
[
d
for d in os.listdir(CACHE_DIR)
if os.path.isfile(os.path.join(CACHE_DIR, d))
and d.endswith(".mp4")
and not d.startswith("clip_")
]
)
cache_files = [
d
for d in os.listdir(CACHE_DIR)
if os.path.isfile(os.path.join(CACHE_DIR, d))
and d.endswith(".mp4")
and not d.startswith("clip_")
]
files_in_use = []
for process in psutil.process_iter():
@@ -97,26 +87,21 @@ class RecordingMaintainer(threading.Thread):
}
)
# delete all cached files past the most recent 5
keep_count = 5
# delete all cached files past the most recent 2
for camera in grouped_recordings.keys():
if len(grouped_recordings[camera]) > keep_count:
to_remove = grouped_recordings[camera][:-keep_count]
if len(grouped_recordings[camera]) > 2:
logger.warning(
"Proactively cleaning cache. Your recordings disk may be too slow."
)
sorted_recordings = sorted(
grouped_recordings[camera], key=lambda i: i["start_time"]
)
to_remove = sorted_recordings[:-2]
for f in to_remove:
Path(f["cache_path"]).unlink(missing_ok=True)
self.end_time_cache.pop(f["cache_path"], None)
grouped_recordings[camera] = grouped_recordings[camera][-keep_count:]
grouped_recordings[camera] = sorted_recordings[-2:]
for camera, recordings in grouped_recordings.items():
# clear out all the recording info for old frames
while (
len(self.recordings_info[camera]) > 0
and self.recordings_info[camera][0][0]
< recordings[0]["start_time"].timestamp()
):
self.recordings_info[camera].pop(0)
# get all events with the end time after the start of the oldest cache file
# or with end_time None
events: Event = (
@@ -124,7 +109,7 @@ class RecordingMaintainer(threading.Thread):
.where(
Event.camera == camera,
(Event.end_time == None)
| (Event.end_time >= recordings[0]["start_time"].timestamp()),
| (Event.end_time >= recordings[0]["start_time"]),
Event.has_clip,
)
.order_by(Event.start_time)
@@ -139,38 +124,33 @@ class RecordingMaintainer(threading.Thread):
or not self.config.cameras[camera].record.enabled
):
Path(cache_path).unlink(missing_ok=True)
self.end_time_cache.pop(cache_path, None)
continue
if cache_path in self.end_time_cache:
end_time, duration = self.end_time_cache[cache_path]
ffprobe_cmd = [
"ffprobe",
"-v",
"error",
"-show_entries",
"format=duration",
"-of",
"default=noprint_wrappers=1:nokey=1",
f"{cache_path}",
]
p = sp.run(ffprobe_cmd, capture_output=True)
if p.returncode == 0:
duration = float(p.stdout.decode().strip())
end_time = start_time + datetime.timedelta(seconds=duration)
else:
ffprobe_cmd = [
"ffprobe",
"-v",
"error",
"-show_entries",
"format=duration",
"-of",
"default=noprint_wrappers=1:nokey=1",
f"{cache_path}",
]
p = sp.run(ffprobe_cmd, capture_output=True)
if p.returncode == 0:
duration = float(p.stdout.decode().strip())
end_time = start_time + datetime.timedelta(seconds=duration)
self.end_time_cache[cache_path] = (end_time, duration)
else:
logger.warning(f"Discarding a corrupt recording segment: {f}")
Path(cache_path).unlink(missing_ok=True)
continue
logger.warning(f"Discarding a corrupt recording segment: {f}")
Path(cache_path).unlink(missing_ok=True)
continue
# if cached file's start_time is earlier than the retain days for the camera
# if cached file's start_time is earlier than the retain_days for the camera
if start_time <= (
(
datetime.datetime.now()
- datetime.timedelta(
days=self.config.cameras[camera].record.retain.days
days=self.config.cameras[camera].record.retain_days
)
)
):
@@ -178,26 +158,18 @@ class RecordingMaintainer(threading.Thread):
overlaps = False
for event in events:
# if the event starts in the future, stop checking events
# and remove this segment
# and let this recording segment expire
if event.start_time > end_time.timestamp():
overlaps = False
Path(cache_path).unlink(missing_ok=True)
self.end_time_cache.pop(cache_path, None)
break
# if the event is in progress or ends after the recording starts, keep it
# and stop looking at events
if (
event.end_time is None
or event.end_time >= start_time.timestamp()
):
if event.end_time is None or event.end_time >= start_time:
overlaps = True
break
if overlaps:
record_mode = self.config.cameras[
camera
].record.events.retain.mode
# move from cache to recordings immediately
self.store_segment(
camera,
@@ -205,57 +177,14 @@ class RecordingMaintainer(threading.Thread):
end_time,
duration,
cache_path,
record_mode,
)
# else retain days includes this segment
# else retain_days includes this segment
else:
record_mode = self.config.cameras[camera].record.retain.mode
self.store_segment(
camera, start_time, end_time, duration, cache_path, record_mode
camera, start_time, end_time, duration, cache_path
)
def segment_stats(self, camera, start_time, end_time):
active_count = 0
motion_count = 0
for frame in self.recordings_info[camera]:
# frame is after end time of segment
if frame[0] > end_time.timestamp():
break
# frame is before start time of segment
if frame[0] < start_time.timestamp():
continue
active_count += len(
[
o
for o in frame[1]
if not o["false_positive"] and o["motionless_count"] == 0
]
)
motion_count += sum([area(box) for box in frame[2]])
return (motion_count, active_count)
def store_segment(
self,
camera,
start_time,
end_time,
duration,
cache_path,
store_mode: RetainModeEnum,
):
motion_count, active_count = self.segment_stats(camera, start_time, end_time)
# check if the segment shouldn't be stored
if (store_mode == RetainModeEnum.motion and motion_count == 0) or (
store_mode == RetainModeEnum.active_objects and active_count == 0
):
Path(cache_path).unlink(missing_ok=True)
self.end_time_cache.pop(cache_path, None)
return
def store_segment(self, camera, start_time, end_time, duration, cache_path):
directory = os.path.join(RECORD_DIR, start_time.strftime("%Y-%m/%d/%H"), camera)
if not os.path.exists(directory):
@@ -283,47 +212,17 @@ class RecordingMaintainer(threading.Thread):
start_time=start_time.timestamp(),
end_time=end_time.timestamp(),
duration=duration,
motion=motion_count,
# TODO: update this to store list of active objects at some point
objects=active_count,
)
except Exception as e:
logger.error(f"Unable to store recording segment {cache_path}")
Path(cache_path).unlink(missing_ok=True)
logger.error(e)
# clear end_time cache
self.end_time_cache.pop(cache_path, None)
def run(self):
# Check for new files every 5 seconds
wait_time = 5
while not self.stop_event.wait(wait_time):
run_start = datetime.datetime.now().timestamp()
# empty the recordings info queue
while True:
try:
(
camera,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = self.recordings_info_queue.get(False)
if self.config.cameras[camera].record.enabled:
self.recordings_info[camera].append(
(
frame_time,
current_tracked_objects,
motion_boxes,
regions,
)
)
except queue.Empty:
break
try:
self.move_files()
except Exception as e:
@@ -331,8 +230,7 @@ class RecordingMaintainer(threading.Thread):
"Error occurred when attempting to maintain recording cache"
)
logger.error(e)
duration = datetime.datetime.now().timestamp() - run_start
wait_time = max(0, 5 - duration)
wait_time = max(0, 5 - (datetime.datetime.now().timestamp() - run_start))
logger.info(f"Exiting recording maintenance...")
@@ -357,7 +255,7 @@ class RecordingCleanup(threading.Thread):
logger.debug("Start deleted cameras.")
# Handle deleted cameras
expire_days = self.config.record.retain.days
expire_days = self.config.record.retain_days
expire_before = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
@@ -383,7 +281,7 @@ class RecordingCleanup(threading.Thread):
datetime.datetime.now()
- datetime.timedelta(seconds=config.record.events.max_seconds)
).timestamp()
expire_days = config.record.retain.days
expire_days = config.record.retain_days
expire_before = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
@@ -414,7 +312,6 @@ class RecordingCleanup(threading.Thread):
)
# loop over recordings and see if they overlap with any non-expired events
# TODO: expire segments based on segment stats according to config
event_start = 0
deleted_recordings = set()
for recording in recordings.objects().iterator():
@@ -442,19 +339,8 @@ class RecordingCleanup(threading.Thread):
if event.end_time < recording.start_time:
event_start = idx
# Delete recordings outside of the retention window or based on the retention mode
if (
not keep
or (
config.record.events.retain.mode == RetainModeEnum.motion
and recording.motion == 0
)
or (
config.record.events.retain.mode
== RetainModeEnum.active_objects
and recording.objects == 0
)
):
# Delete recordings outside of the retention window
if not keep:
Path(recording.path).unlink(missing_ok=True)
deleted_recordings.add(recording.id)
@@ -471,14 +357,14 @@ class RecordingCleanup(threading.Thread):
default_expire = (
datetime.datetime.now().timestamp()
- SECONDS_IN_DAY * self.config.record.retain.days
- SECONDS_IN_DAY * self.config.record.retain_days
)
delete_before = {}
for name, camera in self.config.cameras.items():
delete_before[name] = (
datetime.datetime.now().timestamp()
- SECONDS_IN_DAY * camera.record.retain.days
- SECONDS_IN_DAY * camera.record.retain_days
)
# find all the recordings older than the oldest recording in the db
@@ -491,8 +377,7 @@ class RecordingCleanup(threading.Thread):
oldest_timestamp = datetime.datetime.now().timestamp()
except FileNotFoundError:
logger.warning(f"Unable to find file from recordings database: {p}")
Recordings.delete().where(Recordings.id == oldest_recording.id).execute()
return
oldest_timestamp = datetime.datetime.now().timestamp()
logger.debug(f"Oldest recording in the db: {oldest_timestamp}")
process = sp.run(
@@ -504,52 +389,21 @@ class RecordingCleanup(threading.Thread):
for f in files_to_check:
p = Path(f)
try:
if p.stat().st_mtime < delete_before.get(p.parent.name, default_expire):
p.unlink(missing_ok=True)
except FileNotFoundError:
logger.warning(f"Attempted to expire missing file: {f}")
if p.stat().st_mtime < delete_before.get(p.parent.name, default_expire):
p.unlink(missing_ok=True)
logger.debug("End expire files (legacy).")
def sync_recordings(self):
logger.debug("Start sync recordings.")
# get all recordings in the db
recordings: Recordings = Recordings.select()
# get all recordings files on disk
process = sp.run(
["find", RECORD_DIR, "-type", "f"],
capture_output=True,
text=True,
)
files_on_disk = process.stdout.splitlines()
recordings_to_delete = []
for recording in recordings.objects().iterator():
if not recording.path in files_on_disk:
recordings_to_delete.append(recording.id)
logger.debug(
f"Deleting {len(recordings_to_delete)} recordings with missing files"
)
Recordings.delete().where(Recordings.id << recordings_to_delete).execute()
logger.debug("End sync recordings.")
def run(self):
# on startup sync recordings with disk (disabled due to too much CPU usage)
# self.sync_recordings()
# Expire tmp clips every minute, recordings and clean directories every hour.
for counter in itertools.cycle(range(self.config.record.expire_interval)):
# Expire recordings every minute, clean directories every hour.
for counter in itertools.cycle(range(60)):
if self.stop_event.wait(60):
logger.info(f"Exiting recording cleanup...")
break
self.expire_recordings()
self.clean_tmp_clips()
if counter == 0:
self.expire_recordings()
self.expire_files()
remove_empty_directories(RECORD_DIR)

View File

@@ -4,7 +4,6 @@ import threading
import time
import psutil
import shutil
import os
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
@@ -32,28 +31,6 @@ def get_fs_type(path):
return fsType
def read_temperature(path):
if os.path.isfile(path):
with open(path) as f:
line = f.readline().strip()
return int(line) / 1000
return None
def get_temperatures():
temps = {}
# Get temperatures for all attached Corals
base = "/sys/class/apex/"
if os.path.isdir(base):
for apex in os.listdir(base):
temp = read_temperature(os.path.join(base, apex, "temp"))
if temp is not None:
temps[apex] = temp
return temps
def stats_snapshot(stats_tracking):
camera_metrics = stats_tracking["camera_metrics"]
stats = {}
@@ -84,7 +61,6 @@ def stats_snapshot(stats_tracking):
"uptime": (int(time.time()) - stats_tracking["started"]),
"version": VERSION,
"storage": {},
"temperatures": get_temperatures(),
}
for path in [RECORD_DIR, CLIPS_DIR, CACHE_DIR, "/dev/shm"]:

View File

@@ -572,7 +572,7 @@ class TestConfig(unittest.TestCase):
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].motion.frame_height == 50
assert runtime_config.cameras["back"].motion.frame_height >= 120
def test_motion_contour_area_dynamic(self):
@@ -601,7 +601,7 @@ class TestConfig(unittest.TestCase):
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config
assert round(runtime_config.cameras["back"].motion.contour_area) == 30
assert round(runtime_config.cameras["back"].motion.contour_area) == 99
def test_merge_labelmap(self):
@@ -1244,30 +1244,6 @@ class TestConfig(unittest.TestCase):
runtime_config = frigate_config.runtime_config
assert runtime_config.cameras["back"].snapshots.retain.default == 1.5
def test_fails_on_bad_camera_name(self):
config = {
"mqtt": {"host": "mqtt"},
"snapshots": {"retain": {"default": 1.5}},
"cameras": {
"back camer#": {
"ffmpeg": {
"inputs": [
{
"path": "rtsp://10.0.0.1:554/video",
"roles": ["detect"],
},
]
},
}
},
}
frigate_config = FrigateConfig(**config)
self.assertRaises(
ValidationError, lambda: frigate_config.runtime_config.cameras
)
if __name__ == "__main__":
unittest.main(verbosity=2)

View File

@@ -1,3 +1,4 @@
import cv2
import numpy as np
from unittest import TestCase, main
from frigate.video import box_overlaps, reduce_boxes

View File

@@ -189,12 +189,12 @@ def draw_box_with_label(
)
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, model_size, multiplier=2):
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is the longest edge and divisible by 4
size = int((max(xmax - xmin, ymax - ymin) * multiplier) // 4 * 4)
# dont go any smaller than the model_size
if size < model_size:
size = model_size
# dont go any smaller than 300
if size < 300:
size = 300
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax - xmin) / 2.0 + xmin - size / 2.0)
@@ -567,9 +567,6 @@ class EventsPerSecond:
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now - self._start, last_n_seconds)
# avoid divide by zero
if seconds == 0:
seconds = 1
return (
len([t for t in self._timestamps if t > (now - last_n_seconds)]) / seconds
)
@@ -605,26 +602,6 @@ def add_mask(mask, mask_img):
cv2.fillPoly(mask_img, pts=[contour], color=(0))
def load_labels(path, encoding="utf-8"):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
with open(path, "r", encoding=encoding) as f:
lines = f.readlines()
if not lines:
return {}
if lines[0].split(" ", maxsplit=1)[0].isdigit():
pairs = [line.split(" ", maxsplit=1) for line in lines]
return {int(index): label.strip() for index, label in pairs}
else:
return {index: line.strip() for index, line in enumerate(lines)}
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:

View File

@@ -3,7 +3,6 @@ import itertools
import logging
import multiprocessing as mp
import queue
import random
import signal
import subprocess as sp
import threading
@@ -76,7 +75,25 @@ def filtered(obj, objects_to_track, object_filters):
def create_tensor_input(frame, model_shape, region):
cropped_frame = yuv_region_2_rgb(frame, region)
# TODO: is it faster to just convert grayscale to RGB? or repeat dimensions with numpy?
height = frame.shape[0] // 3 * 2
width = frame.shape[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
size = region[3] - region[1]
cropped_frame = np.zeros((size, size), np.uint8)
cropped_frame[
0 : crop_y2 - crop_y1,
0 : crop_x2 - crop_x1,
] = frame[crop_y1:crop_y2, crop_x1:crop_x2]
cropped_frame = np.repeat(np.expand_dims(cropped_frame, -1), 3, 2)
# Resize to 300x300 if needed
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
@@ -153,10 +170,10 @@ def capture_frames(
try:
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception as e:
logger.error(f"{camera_name}: Unable to read frames from ffmpeg process.")
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
if ffmpeg_process.poll() != None:
logger.error(
logger.info(
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
)
frame_manager.delete(frame_name)
@@ -221,11 +238,12 @@ class CameraWatchdog(threading.Thread):
if not self.capture_thread.is_alive():
self.logger.error(
f"Ffmpeg process crashed unexpectedly for {self.camera_name}."
f"FFMPEG process crashed unexpectedly for {self.camera_name}."
)
self.logger.error(
"The following ffmpeg logs include the last 100 lines prior to exit."
)
self.logger.error("You may have invalid args defined for this camera.")
self.logpipe.dump()
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
@@ -469,8 +487,6 @@ def process_frames(
fps_tracker = EventsPerSecond()
fps_tracker.start()
startup_scan_counter = 0
while not stop_event.is_set():
if exit_on_empty and frame_queue.empty():
logger.info(f"Exiting track_objects...")
@@ -491,219 +507,179 @@ def process_frames(
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
if not detection_enabled.value:
fps.value = fps_tracker.eps()
object_tracker.match_and_update(frame_time, [])
detected_objects_queue.put(
(camera_name, frame_time, object_tracker.tracked_objects, [], [])
)
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
continue
# look for motion
motion_boxes = motion_detector.detect(frame)
regions = []
# get stationary object ids
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if there hasn't been motion for 10 frames
if obj["motionless_count"] >= 10
# and it isn't due for a periodic check
and obj["motionless_count"] % detect_config.stationary_interval != 0
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes
and not intersects_any(obj["box"], motion_boxes)
]
# if detection is disabled
if not detection_enabled.value:
object_tracker.match_and_update(frame_time, [])
else:
# get stationary object ids
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if there hasn't been motion for 10 frames
if obj["motionless_count"] >= 10
# and it isn't due for a periodic check
and (
detect_config.stationary.interval == 0
or obj["motionless_count"] % detect_config.stationary.interval != 0
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
obj["box"]
for obj in object_tracker.tracked_objects.values()
if not obj["id"] in stationary_object_ids
]
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
# compute regions
regions = [
calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in combined_boxes
]
# consolidate regions with heavy overlap
regions = [
calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in reduce_boxes(regions, 0.4)
]
# resize regions and detect
# seed with stationary objects
detections = [
(
obj["label"],
obj["score"],
obj["box"],
obj["area"],
obj["region"],
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] in stationary_object_ids
]
for region in regions:
detections.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes
and not intersects_any(obj["box"], motion_boxes)
]
)
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
obj["box"]
for obj in object_tracker.tracked_objects.values()
if not obj["id"] in stationary_object_ids
]
#########
# merge objects, check for clipped objects and look again up to 4 times
#########
refining = True
refine_count = 0
while refining and refine_count < 4:
refining = False
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
region_min_size = max(model_shape[0], model_shape[1])
# compute regions
regions = [
calculate_region(
frame_shape,
a[0],
a[1],
a[2],
a[3],
region_min_size,
multiplier=random.uniform(1.2, 1.5),
)
for a in combined_boxes
]
selected_objects = []
for group in detected_object_groups.values():
# consolidate regions with heavy overlap
regions = [
calculate_region(
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0
)
for a in reduce_boxes(regions, 0.4)
]
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# if starting up, get the next startup scan region
if startup_scan_counter < 9:
ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3)
ymax = int(frame_shape[0] / 3 + ymin)
xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3)
xmax = int(frame_shape[1] / 3 + xmin)
regions.append(
calculate_region(
frame_shape,
xmin,
ymin,
xmax,
ymax,
region_min_size,
multiplier=1.2,
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(
frame_shape, box[0], box[1], box[2], box[3]
)
regions.append(region)
selected_objects.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
## drop detections that overlap too much
consolidated_detections = []
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
# loop over detections grouped by label
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
# if 90% of smaller detection is inside of another detection, consolidate
if (
area(intersection(current_detection, to_check))
/ area(current_detection)
> 0.9
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(
sorted_by_area[current_detection_idx]
)
)
startup_scan_counter += 1
# resize regions and detect
# seed with stationary objects
detections = [
(
obj["label"],
obj["score"],
obj["box"],
obj["area"],
obj["region"],
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] in stationary_object_ids
]
for region in regions:
detections.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
#########
# merge objects, check for clipped objects and look again up to 4 times
#########
refining = len(regions) > 0
refine_count = 0
while refining and refine_count < 4:
refining = False
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(
frame_shape,
box[0],
box[1],
box[2],
box[3],
region_min_size,
)
regions.append(region)
selected_objects.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
## drop detections that overlap too much
consolidated_detections = []
# if detection was run on this frame, consolidate
if len(regions) > 0:
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
# loop over detections grouped by label
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
# if 90% of smaller detection is inside of another detection, consolidate
if (
area(intersection(current_detection, to_check))
/ area(current_detection)
> 0.9
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(
sorted_by_area[current_detection_idx]
)
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, consolidated_detections)
# else, just update the frame times for the stationary objects
else:
object_tracker.update_frame_times(frame_time)
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, consolidated_detections)
# add to the queue if not full
if detected_objects_queue.full():

View File

@@ -28,19 +28,17 @@ SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.sql(
'CREATE TABLE IF NOT EXISTS "recordings" ("id" VARCHAR(30) NOT NULL PRIMARY KEY, "camera" VARCHAR(20) NOT NULL, "path" VARCHAR(255) NOT NULL, "start_time" DATETIME NOT NULL, "end_time" DATETIME NOT NULL, "duration" REAL NOT NULL)'
)
migrator.sql(
'CREATE INDEX IF NOT EXISTS "recordings_camera" ON "recordings" ("camera")'
)
migrator.sql(
'CREATE UNIQUE INDEX IF NOT EXISTS "recordings_path" ON "recordings" ("path")'
)
migrator.sql(
'CREATE INDEX IF NOT EXISTS "recordings_start_time_end_time" ON "recordings" (start_time, end_time)'
)
migrator.create_model(Recordings)
def add_index():
# First add the index here, because there is a bug in peewee_migrate
# when trying to create an multi-column index in the same migration
# as the table: https://github.com/klen/peewee_migrate/issues/19
Recordings.add_index("start_time", "end_time")
Recordings.create_table()
migrator.python(add_index)
def rollback(migrator, database, fake=False, **kwargs):
pass
migrator.remove_model(Recordings)

View File

@@ -1,47 +0,0 @@
"""Peewee migrations -- 004_add_bbox_region_area.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import datetime as dt
import peewee as pw
from playhouse.sqlite_ext import *
from decimal import ROUND_HALF_EVEN
from frigate.models import Recordings
try:
import playhouse.postgres_ext as pw_pext
except ImportError:
pass
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.add_fields(
Recordings,
objects=pw.IntegerField(null=True),
motion=pw.IntegerField(null=True),
)
def rollback(migrator, database, fake=False, **kwargs):
migrator.remove_fields(Recordings, ["objects", "motion"])

View File

@@ -162,12 +162,9 @@ class ProcessClip:
)
total_regions += len(regions)
total_motion_boxes += len(motion_boxes)
top_score = 0
for id, obj in self.camera_state.tracked_objects.items():
if not obj.false_positive:
object_ids.add(id)
if obj.top_score > top_score:
top_score = obj.top_score
total_frames += 1
@@ -178,7 +175,6 @@ class ProcessClip:
"total_motion_boxes": total_motion_boxes,
"true_positive_objects": len(object_ids),
"total_frames": total_frames,
"top_score": top_score,
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
@@ -281,7 +277,6 @@ def process(path, label, output, debug_path):
frigate_config = FrigateConfig(**json_config)
runtime_config = frigate_config.runtime_config
runtime_config.cameras["camera"].create_ffmpeg_cmds()
process_clip = ProcessClip(c, frame_shape, runtime_config)
process_clip.load_frames()

14794
web/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,329 +0,0 @@
import { h } from 'preact';
import { useEffect, useState, useCallback, useMemo, useRef } from 'preact/hooks';
import ArrowRight from '../icons/ArrowRight';
import ArrowRightDouble from '../icons/ArrowRightDouble';
const todayTimestamp = new Date().setHours(0, 0, 0, 0).valueOf();
const Calender = ({ onChange, calenderRef, close }) => {
const keyRef = useRef([]);
const date = new Date();
const year = date.getFullYear();
const month = date.getMonth();
const daysMap = useMemo(() => ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'], []);
const monthMap = useMemo(
() => [
'January',
'February',
'March',
'April',
'May',
'June',
'July',
'August',
'September',
'October',
'November',
'December',
],
[]
);
const [state, setState] = useState({
getMonthDetails: [],
year,
month,
selectedDay: null,
timeRange: { before: null, after: null },
monthDetails: null,
});
const getNumberOfDays = useCallback((year, month) => {
return 40 - new Date(year, month, 40).getDate();
}, []);
const getDayDetails = useCallback(
(args) => {
const date = args.index - args.firstDay;
const day = args.index % 7;
let prevMonth = args.month - 1;
let prevYear = args.year;
if (prevMonth < 0) {
prevMonth = 11;
prevYear--;
}
const prevMonthNumberOfDays = getNumberOfDays(prevYear, prevMonth);
const _date = (date < 0 ? prevMonthNumberOfDays + date : date % args.numberOfDays) + 1;
const month = date < 0 ? -1 : date >= args.numberOfDays ? 1 : 0;
const timestamp = new Date(args.year, args.month, _date).getTime();
return {
date: _date,
day,
month,
timestamp,
dayString: daysMap[day],
};
},
[getNumberOfDays, daysMap]
);
const getMonthDetails = useCallback(
(year, month) => {
const firstDay = new Date(year, month).getDay();
const numberOfDays = getNumberOfDays(year, month);
const monthArray = [];
const rows = 6;
let currentDay = null;
let index = 0;
const cols = 7;
for (let row = 0; row < rows; row++) {
for (let col = 0; col < cols; col++) {
currentDay = getDayDetails({
index,
numberOfDays,
firstDay,
year,
month,
});
monthArray.push(currentDay);
index++;
}
}
return monthArray;
},
[getNumberOfDays, getDayDetails]
);
useEffect(() => {
setState((prev) => ({ ...prev, selectedDay: todayTimestamp, monthDetails: getMonthDetails(year, month) }));
}, [year, month, getMonthDetails]);
useEffect(() => {
// add refs for keyboard navigation
if (state.monthDetails) {
keyRef.current = keyRef.current.slice(0, state.monthDetails.length);
}
// set today date in focus for keyboard navigation
const todayDate = new Date(todayTimestamp).getDate();
keyRef.current.find((t) => t.tabIndex === todayDate)?.focus();
}, [state.monthDetails]);
const isCurrentDay = (day) => day.timestamp === todayTimestamp;
const isSelectedRange = useCallback(
(day) => {
if (!state.timeRange.after || !state.timeRange.before) return;
return day.timestamp < state.timeRange.before && day.timestamp >= state.timeRange.after;
},
[state.timeRange]
);
const isFirstDayInRange = useCallback(
(day) => {
if (isCurrentDay(day)) return;
return state.timeRange.after === day.timestamp;
},
[state.timeRange.after]
);
const isLastDayInRange = useCallback(
(day) => {
return state.timeRange.before === new Date(day.timestamp).setHours(24, 0, 0, 0);
},
[state.timeRange.before]
);
const getMonthStr = useCallback(
(month) => {
return monthMap[Math.max(Math.min(11, month), 0)] || 'Month';
},
[monthMap]
);
const onDateClick = (day) => {
const { before, after } = state.timeRange;
let timeRange = { before: null, after: null };
// user has selected a date < after, reset values
if (after === null || day.timestamp < after) {
timeRange = { before: new Date(day.timestamp).setHours(24, 0, 0, 0), after: day.timestamp };
}
// user has selected a date > after
if (after !== null && before !== new Date(day.timestamp).setHours(24, 0, 0, 0) && day.timestamp > after) {
timeRange = {
after,
before:
day.timestamp >= todayTimestamp
? new Date(todayTimestamp).setHours(24, 0, 0, 0)
: new Date(day.timestamp).setHours(24, 0, 0, 0),
};
}
// reset values
if (before === new Date(day.timestamp).setHours(24, 0, 0, 0)) {
timeRange = { before: null, after: null };
}
setState((prev) => ({
...prev,
timeRange,
selectedDay: day.timestamp,
}));
if (onChange) {
onChange(timeRange.after ? { before: timeRange.before / 1000, after: timeRange.after / 1000 } : ['all']);
}
};
const setYear = useCallback(
(offset) => {
const year = state.year + offset;
const month = state.month;
setState((prev) => {
return {
...prev,
year,
monthDetails: getMonthDetails(year, month),
};
});
},
[state.year, state.month, getMonthDetails]
);
const setMonth = (offset) => {
let year = state.year;
let month = state.month + offset;
if (month === -1) {
month = 11;
year--;
} else if (month === 12) {
month = 0;
year++;
}
setState((prev) => {
return {
...prev,
year,
month,
monthDetails: getMonthDetails(year, month),
};
});
};
const handleKeydown = (e, day, index) => {
if ((keyRef.current && e.key === 'Enter') || e.keyCode === 32) {
e.preventDefault();
day.month === 0 && onDateClick(day);
}
if (e.key === 'ArrowLeft') {
index > 0 && keyRef.current[index - 1].focus();
}
if (e.key === 'ArrowRight') {
index < 41 && keyRef.current[index + 1].focus();
}
if (e.key === 'ArrowUp') {
e.preventDefault();
index > 6 && keyRef.current[index - 7].focus();
}
if (e.key === 'ArrowDown') {
e.preventDefault();
index < 36 && keyRef.current[index + 7].focus();
}
if (e.key === 'Escape') {
close();
}
};
const renderCalendar = () => {
const days =
state.monthDetails &&
state.monthDetails.map((day, idx) => {
return (
<div
onClick={() => onDateClick(day)}
onkeydown={(e) => handleKeydown(e, day, idx)}
ref={(ref) => (keyRef.current[idx] = ref)}
tabIndex={day.month === 0 ? day.date : null}
className={`h-12 w-12 float-left flex flex-shrink justify-center items-center cursor-pointer ${
day.month !== 0 ? ' opacity-50 bg-gray-700 dark:bg-gray-700 pointer-events-none' : ''
}
${isFirstDayInRange(day) ? ' rounded-l-xl ' : ''}
${isSelectedRange(day) ? ' bg-blue-600 dark:hover:bg-blue-600' : ''}
${isLastDayInRange(day) ? ' rounded-r-xl ' : ''}
${isCurrentDay(day) && !isLastDayInRange(day) ? 'rounded-full bg-gray-100 dark:hover:bg-gray-100 ' : ''}`}
key={idx}
>
<div className="font-light">
<span className="text-gray-400">{day.date}</span>
</div>
</div>
);
});
return (
<div>
<div className="w-full flex justify-start flex-shrink">
{['SUN', 'MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT'].map((d, i) => (
<div key={i} className="w-12 text-xs font-light text-center">
{d}
</div>
))}
</div>
<div className="w-full h-56">{days}</div>
</div>
);
};
return (
<div className="select-none w-96 flex flex-shrink" ref={calenderRef}>
<div className="py-4 px-6">
<div className="flex items-center">
<div className="w-1/6 relative flex justify-around">
<div
tabIndex={100}
className="flex justify-center items-center cursor-pointer absolute -mt-4 text-center rounded-full w-10 h-10 bg-gray-500 hover:bg-gray-200 dark:hover:bg-gray-800"
onClick={() => setYear(-1)}
>
<ArrowRightDouble className="h-2/6 transform rotate-180 " />
</div>
</div>
<div className="w-1/6 relative flex justify-around ">
<div
tabIndex={101}
className="flex justify-center items-center cursor-pointer absolute -mt-4 text-center rounded-full w-10 h-10 bg-gray-500 hover:bg-gray-200 dark:hover:bg-gray-800"
onClick={() => setMonth(-1)}
>
<ArrowRight className="h-2/6 transform rotate-180 red" />
</div>
</div>
<div className="w-1/3">
<div className="text-3xl text-center text-gray-200 font-extralight">{state.year}</div>
<div className="text-center text-gray-400 font-extralight">{getMonthStr(state.month)}</div>
</div>
<div className="w-1/6 relative flex justify-around ">
<div
tabIndex={102}
className="flex justify-center items-center cursor-pointer absolute -mt-4 text-center rounded-full w-10 h-10 bg-gray-500 hover:bg-gray-200 dark:hover:bg-gray-800"
onClick={() => setMonth(1)}
>
<ArrowRight className="h-2/6" />
</div>
</div>
<div className="w-1/6 relative flex justify-around " tabIndex={104} onClick={() => setYear(1)}>
<div className="flex justify-center items-center cursor-pointer absolute -mt-4 text-center rounded-full w-10 h-10 bg-gray-500 hover:bg-gray-200 dark:hover:bg-gray-800">
<ArrowRightDouble className="h-2/6" />
</div>
</div>
</div>
<div className="mt-3">{renderCalendar()}</div>
</div>
</div>
);
};
export default Calender;

View File

@@ -1,162 +0,0 @@
import { h } from 'preact';
import { useCallback, useEffect, useState } from 'preact/hooks';
export const DateFilterOptions = [
{
label: 'All',
value: ['all'],
},
{
label: 'Today',
value: {
//Before
before: new Date().setHours(24, 0, 0, 0) / 1000,
//After
after: new Date().setHours(0, 0, 0, 0) / 1000,
},
},
{
label: 'Yesterday',
value: {
//Before
before: new Date(new Date().setDate(new Date().getDate() - 1)).setHours(24, 0, 0, 0) / 1000,
//After
after: new Date(new Date().setDate(new Date().getDate() - 1)).setHours(0, 0, 0, 0) / 1000,
},
},
{
label: 'Last 7 Days',
value: {
//Before
before: new Date().setHours(24, 0, 0, 0) / 1000,
//After
after: new Date(new Date().setDate(new Date().getDate() - 7)).setHours(0, 0, 0, 0) / 1000,
},
},
{
label: 'This Month',
value: {
//Before
before: new Date().setHours(24, 0, 0, 0) / 1000,
//After
after: new Date(new Date().getFullYear(), new Date().getMonth(), 1).getTime() / 1000,
},
},
{
label: 'Last Month',
value: {
//Before
before: new Date(new Date().getFullYear(), new Date().getMonth(), 1).getTime() / 1000,
//After
after: new Date(new Date().getFullYear(), new Date().getMonth() - 1, 1).getTime() / 1000,
},
},
{
label: 'Custom Range',
value: 'custom_range',
},
];
export default function DatePicker({
helpText,
keyboardType = 'text',
inputRef,
label,
leadingIcon: LeadingIcon,
onBlur,
onChangeText,
onFocus,
readonly,
trailingIcon: TrailingIcon,
value: propValue = '',
...props
}) {
const [isFocused, setFocused] = useState(false);
const [value, setValue] = useState(propValue);
useEffect(() => {
if (propValue !== value) {
setValue(propValue);
}
}, [propValue, setValue, value]);
const handleFocus = useCallback(
(event) => {
setFocused(true);
onFocus && onFocus(event);
},
[onFocus]
);
const handleBlur = useCallback(
(event) => {
setFocused(false);
onBlur && onBlur(event);
},
[onBlur]
);
const handleChange = useCallback(
(event) => {
const { value } = event.target;
setValue(value);
onChangeText && onChangeText(value);
},
[onChangeText, setValue]
);
const onClick = (e) => {
props.onclick(e);
};
const labelMoved = isFocused || value !== '';
return (
<div className="w-full">
{props.children}
<div
className={`bg-gray-100 dark:bg-gray-700 rounded rounded-b-none border-gray-400 border-b p-1 pl-4 pr-3 ${
isFocused ? 'border-blue-500 dark:border-blue-500' : ''
}`}
ref={inputRef}
>
<label
className="flex space-x-2 items-center"
data-testid={`label-${label.toLowerCase().replace(/[^\w]+/g, '_')}`}
>
{LeadingIcon ? (
<div className="w-10 h-full">
<LeadingIcon />
</div>
) : null}
<div className="relative w-full">
<input
className="h-6 mt-6 w-full bg-transparent focus:outline-none focus:ring-0"
type={keyboardType}
readOnly
onBlur={handleBlur}
onFocus={handleFocus}
onInput={handleChange}
tabIndex="0"
onClick={onClick}
value={propValue}
{...props}
/>
<div
className={`absolute top-3 transition transform text-gray-600 dark:text-gray-400 ${
labelMoved ? 'text-xs -translate-y-2' : ''
} ${isFocused ? 'text-blue-500 dark:text-blue-500' : ''}`}
>
<p>{label}</p>
</div>
</div>
{TrailingIcon ? (
<div className="w-10 h-10">
<TrailingIcon />
</div>
) : null}
</label>
</div>
{helpText ? <div className="text-xs pl-3 pt-1">{helpText}</div> : null}
</div>
);
}

View File

@@ -1,14 +1,6 @@
import { h } from 'preact';
import { useState } from 'preact/hooks';
import {
differenceInSeconds,
fromUnixTime,
format,
parseISO,
startOfHour,
differenceInMinutes,
differenceInHours,
} from 'date-fns';
import { addSeconds, differenceInSeconds, fromUnixTime, format, parseISO, startOfHour } from 'date-fns';
import ArrowDropdown from '../icons/ArrowDropdown';
import ArrowDropup from '../icons/ArrowDropup';
import Link from '../components/Link';
@@ -29,31 +21,25 @@ export default function RecordingPlaylist({ camera, recordings, selectedDate, se
events={recording.events}
selected={recording.date === selectedDate}
>
{recording.recordings
.slice()
.reverse()
.map((item, i) => (
<div className="mb-2 w-full">
<div
className={`flex w-full text-md text-white px-8 py-2 mb-2 ${
i === 0 ? 'border-t border-white border-opacity-50' : ''
}`}
>
<div className="flex-1">
<Link href={`/recording/${camera}/${recording.date}/${item.hour}`} type="text">
{item.hour}:00
</Link>
</div>
<div className="flex-1 text-right">{item.events.length} Events</div>
{recording.recordings.slice().reverse().map((item, i) => (
<div className="mb-2 w-full">
<div
className={`flex w-full text-md text-white px-8 py-2 mb-2 ${
i === 0 ? 'border-t border-white border-opacity-50' : ''
}`}
>
<div className="flex-1">
<Link href={`/recording/${camera}/${recording.date}/${item.hour}`} type="text">
{item.hour}:00
</Link>
</div>
{item.events
.slice()
.reverse()
.map((event) => (
<EventCard camera={camera} event={event} delay={item.delay} />
))}
<div className="flex-1 text-right">{item.events.length} Events</div>
</div>
))}
{item.events.slice().reverse().map((event) => (
<EventCard camera={camera} event={event} delay={item.delay} />
))}
</div>
))}
</ExpandableList>
);
}
@@ -97,17 +83,8 @@ export function ExpandableList({ title, events = 0, children, selected = false }
export function EventCard({ camera, event, delay }) {
const apiHost = useApiHost();
const start = fromUnixTime(event.start_time);
let duration = 'In Progress';
if (event.end_time) {
const end = fromUnixTime(event.end_time);
const hours = differenceInHours(end, start);
const minutes = differenceInMinutes(end, start) - hours * 60;
const seconds = differenceInSeconds(end, start) - hours * 60 - minutes * 60;
duration = '';
if (hours) duration += `${hours}h `;
if (minutes) duration += `${minutes}m `;
duration += `${seconds}s`;
}
const end = fromUnixTime(event.end_time);
const duration = addSeconds(new Date(0), differenceInSeconds(end, start));
const position = differenceInSeconds(start, startOfHour(start));
const offset = Object.entries(delay)
.map(([p, d]) => (position > p ? d : 0))
@@ -125,7 +102,7 @@ export function EventCard({ camera, event, delay }) {
<div className="flex-1">
<div className="text-2xl text-white leading-tight capitalize">{event.label}</div>
<div className="text-xs md:text-normal text-gray-300">Start: {format(start, 'HH:mm:ss')}</div>
<div className="text-xs md:text-normal text-gray-300">Duration: {duration}</div>
<div className="text-xs md:text-normal text-gray-300">Duration: {format(duration, 'mm:ss')}</div>
</div>
<div className="text-lg text-white text-right leading-tight">{(event.top_score * 100).toFixed(1)}%</div>
</div>

View File

@@ -27,7 +27,7 @@ export default function RelativeModal({
const handleKeydown = useCallback(
(event) => {
const focusable = ref.current && ref.current.querySelectorAll('[tabindex]');
const focusable = ref.current.querySelectorAll('[tabindex]');
if (event.key === 'Tab' && focusable.length) {
if (event.shiftKey && document.activeElement === focusable[0]) {
focusable[focusable.length - 1].focus();
@@ -69,15 +69,14 @@ export default function RelativeModal({
let newTop = top;
let newLeft = left;
// too far left
if (left < WINDOW_PADDING) {
newLeft = WINDOW_PADDING;
}
// too far right
else if (newLeft + width + WINDOW_PADDING >= windowWidth - WINDOW_PADDING) {
if (newLeft + width + WINDOW_PADDING >= windowWidth - WINDOW_PADDING) {
newLeft = windowWidth - width - WINDOW_PADDING;
}
// too far left
else if (left < WINDOW_PADDING) {
newLeft = WINDOW_PADDING;
}
// too close to bottom
if (top + menuHeight > windowHeight - WINDOW_PADDING + window.scrollY) {
newTop = WINDOW_PADDING;

View File

@@ -3,27 +3,74 @@ import ArrowDropdown from '../icons/ArrowDropdown';
import ArrowDropup from '../icons/ArrowDropup';
import Menu, { MenuItem } from './Menu';
import TextField from './TextField';
import DatePicker from './DatePicker';
import Calender from './Calender';
import { useCallback, useEffect, useMemo, useRef, useState } from 'preact/hooks';
export default function Select({
type,
label,
onChange,
paramName,
options: inputOptions = [],
selected: propSelected,
}) {
export default function Select({ label, onChange, options: inputOptions = [], selected: propSelected }) {
const options = useMemo(
() =>
typeof inputOptions[0] === 'string' ? inputOptions.map((opt) => ({ value: opt, label: opt })) : inputOptions,
[inputOptions]
);
const [showMenu, setShowMenu] = useState(false);
const [selected, setSelected] = useState();
const [datePickerValue, setDatePickerValue] = useState();
const [selected, setSelected] = useState(
Math.max(
options.findIndex(({ value }) => value === propSelected),
0
)
);
const [focused, setFocused] = useState(null);
const ref = useRef(null);
const handleSelect = useCallback(
(value, label) => {
setSelected(options.findIndex((opt) => opt.value === value));
onChange && onChange(value, label);
setShowMenu(false);
},
[onChange, options]
);
const handleClick = useCallback(() => {
setShowMenu(true);
}, [setShowMenu]);
const handleKeydown = useCallback(
(event) => {
switch (event.key) {
case 'Enter': {
if (!showMenu) {
setShowMenu(true);
setFocused(selected);
} else {
setSelected(focused);
onChange && onChange(options[focused].value, options[focused].label);
setShowMenu(false);
}
break;
}
case 'ArrowDown': {
const newIndex = focused + 1;
newIndex < options.length && setFocused(newIndex);
break;
}
case 'ArrowUp': {
const newIndex = focused - 1;
newIndex > -1 && setFocused(newIndex);
break;
}
// no default
}
},
[onChange, options, showMenu, setShowMenu, setFocused, focused, selected]
);
const handleDismiss = useCallback(() => {
setShowMenu(false);
}, [setShowMenu]);
// Reset the state if the prop value changes
useEffect(() => {
@@ -38,219 +85,25 @@ export default function Select({
// DO NOT include `selected`
}, [options, propSelected]); // eslint-disable-line react-hooks/exhaustive-deps
useEffect(() => {
if (type === 'datepicker') {
if ('after' && 'before' in propSelected) {
if (!propSelected.before || !propSelected.after) return setDatePickerValue('all');
for (let i = 0; i < inputOptions.length; i++) {
if (
inputOptions[i].value &&
Object.entries(inputOptions[i].value).sort().toString() === Object.entries(propSelected).sort().toString()
) {
setDatePickerValue(inputOptions[i]?.label);
break;
} else {
setDatePickerValue(
`${new Date(propSelected.after * 1000).toLocaleDateString()} -> ${new Date(
propSelected.before * 1000 - 1
).toLocaleDateString()}`
);
}
}
}
}
if (type === 'dropdown') {
setSelected(
Math.max(
options.findIndex(({ value }) => Object.values(propSelected).includes(value)),
0
)
);
}
}, [type, options, inputOptions, propSelected, setSelected]);
const [focused, setFocused] = useState(null);
const [showCalender, setShowCalender] = useState(false);
const calenderRef = useRef(null);
const ref = useRef(null);
const handleSelect = useCallback(
(value) => {
setSelected(options.findIndex(({ value }) => Object.values(propSelected).includes(value)));
setShowMenu(false);
//show calender date range picker
if (value === 'custom_range') return setShowCalender(true);
onChange && onChange(value);
},
[onChange, options, propSelected, setSelected]
return (
<Fragment>
<TextField
inputRef={ref}
label={label}
onchange={onChange}
onclick={handleClick}
onkeydown={handleKeydown}
readonly
trailingIcon={showMenu ? ArrowDropup : ArrowDropdown}
value={options[selected]?.label}
/>
{showMenu ? (
<Menu className="rounded-t-none" onDismiss={handleDismiss} relativeTo={ref} widthRelative>
{options.map(({ value, label }, i) => (
<MenuItem key={value} label={label} focus={focused === i} onSelect={handleSelect} value={value} />
))}
</Menu>
) : null}
</Fragment>
);
const handleDateRange = useCallback(
(range) => {
onChange && onChange(range);
setShowMenu(false);
},
[onChange]
);
const handleClick = useCallback(() => {
setShowMenu(true);
}, [setShowMenu]);
const handleKeydownDatePicker = useCallback(
(event) => {
switch (event.key) {
case 'Enter': {
if (!showMenu) {
setShowMenu(true);
setFocused(selected);
} else {
setSelected(focused);
if (options[focused].value === 'custom_range') {
setShowMenu(false);
return setShowCalender(true);
}
onChange && onChange(options[focused].value);
setShowMenu(false);
}
break;
}
case 'ArrowDown': {
event.preventDefault();
const newIndex = focused + 1;
newIndex < options.length && setFocused(newIndex);
break;
}
case 'ArrowUp': {
event.preventDefault();
const newIndex = focused - 1;
newIndex > -1 && setFocused(newIndex);
break;
}
// no default
}
},
[onChange, options, showMenu, setShowMenu, setFocused, focused, selected]
);
const handleKeydown = useCallback(
(event) => {
switch (event.key) {
case 'Enter': {
if (!showMenu) {
setShowMenu(true);
setFocused(selected);
} else {
setSelected(focused);
onChange && onChange({ [paramName]: options[focused].value });
setShowMenu(false);
}
break;
}
case 'ArrowDown': {
event.preventDefault();
const newIndex = focused + 1;
newIndex < options.length && setFocused(newIndex);
break;
}
case 'ArrowUp': {
event.preventDefault();
const newIndex = focused - 1;
newIndex > -1 && setFocused(newIndex);
break;
}
// no default
}
},
[onChange, options, showMenu, setShowMenu, setFocused, focused, selected, paramName]
);
const handleDismiss = useCallback(() => {
setShowMenu(false);
}, [setShowMenu]);
const findDOMNodes = (component) => {
return (component && (component.base || (component.nodeType === 1 && component))) || null;
};
useEffect(() => {
const addBackDrop = (e) => {
if (showCalender && !findDOMNodes(calenderRef.current).contains(e.target)) {
setShowCalender(false);
}
};
window.addEventListener('click', addBackDrop);
return function cleanup() {
window.removeEventListener('click', addBackDrop);
};
}, [showCalender]);
switch (type) {
case 'datepicker':
return (
<Fragment>
<DatePicker
inputRef={ref}
label={label}
onchange={onChange}
onclick={handleClick}
onkeydown={handleKeydownDatePicker}
trailingIcon={showMenu ? ArrowDropup : ArrowDropdown}
value={datePickerValue}
/>
{showCalender && (
<Menu className="rounded-t-none" onDismiss={handleDismiss} relativeTo={ref}>
<Calender onChange={handleDateRange} calenderRef={calenderRef} close={() => setShowCalender(false)} />
</Menu>
)}
{showMenu ? (
<Menu className="rounded-t-none" onDismiss={handleDismiss} relativeTo={ref} widthRelative>
{options.map(({ value, label }, i) => (
<MenuItem key={value} label={label} focus={focused === i} onSelect={handleSelect} value={value} />
))}
</Menu>
) : null}
</Fragment>
);
// case 'dropdown':
default:
return (
<Fragment>
<TextField
inputRef={ref}
label={label}
onchange={onChange}
onclick={handleClick}
onkeydown={handleKeydown}
readonly
trailingIcon={showMenu ? ArrowDropup : ArrowDropdown}
value={options[selected]?.label}
/>
{showMenu ? (
<Menu className="rounded-t-none" onDismiss={handleDismiss} relativeTo={ref} widthRelative>
{options.map(({ value, label }, i) => (
<MenuItem
key={value}
label={label}
focus={focused === i}
onSelect={handleSelect}
value={{ [paramName]: value }}
/>
))}
</Menu>
) : null}
</Fragment>
);
}
}

View File

@@ -5,40 +5,21 @@ import { fireEvent, render, screen } from '@testing-library/preact';
describe('Select', () => {
test('on focus, shows a menu', async () => {
const handleChange = jest.fn();
render(
<Select
label="Tacos"
type="dropdown"
onChange={handleChange}
options={['all', 'tacos', 'burritos']}
paramName={['dinner']}
selected=""
/>
);
render(<Select label="Tacos" onChange={handleChange} options={['tacos', 'burritos']} />);
expect(screen.queryByRole('listbox')).not.toBeInTheDocument();
fireEvent.click(screen.getByRole('textbox'));
expect(screen.queryByRole('listbox')).toBeInTheDocument();
expect(screen.queryByRole('option', { name: 'all' })).toBeInTheDocument();
expect(screen.queryByRole('option', { name: 'tacos' })).toBeInTheDocument();
expect(screen.queryByRole('option', { name: 'burritos' })).toBeInTheDocument();
fireEvent.click(screen.queryByRole('option', { name: 'tacos' }));
expect(handleChange).toHaveBeenCalledWith({ dinner: 'tacos' });
fireEvent.click(screen.queryByRole('option', { name: 'burritos' }));
expect(handleChange).toHaveBeenCalledWith('burritos', 'burritos');
});
test('allows keyboard navigation', async () => {
const handleChange = jest.fn();
render(
<Select
label="Tacos"
type="dropdown"
onChange={handleChange}
options={['tacos', 'burritos']}
paramName={['dinner']}
selected=""
/>
);
render(<Select label="Tacos" onChange={handleChange} options={['tacos', 'burritos']} />);
expect(screen.queryByRole('listbox')).not.toBeInTheDocument();
const input = screen.getByRole('textbox');
@@ -48,6 +29,6 @@ describe('Select', () => {
fireEvent.keyDown(input, { key: 'ArrowDown', code: 'ArrowDown' });
fireEvent.keyDown(input, { key: 'Enter', code: 'Enter' });
expect(handleChange).toHaveBeenCalledWith({ dinner: 'burritos' });
expect(handleChange).toHaveBeenCalledWith('burritos', 'burritos');
});
});

View File

@@ -18,8 +18,7 @@ export const useSearchString = (limit, searchParams) => {
const removeDefaultSearchKeys = useCallback((searchParams) => {
searchParams.delete('limit');
searchParams.delete('include_thumbnails');
// removed deletion of "before" as its used by DatePicker
// searchParams.delete('before');
searchParams.delete('before');
}, []);
return { searchString, setSearchString, removeDefaultSearchKeys };

View File

@@ -1,18 +0,0 @@
import { h } from 'preact';
import { memo } from 'preact/compat';
export function ArrowLeft({ className = '' }) {
return (
<svg
className={`fill-current ${className}`}
xmlns="http://www.w3.org/2000/svg"
width="24"
height="24"
viewBox="0 0 24 24"
>
<path d="M12 0c-6.627 0-12 5.373-12 12s5.373 12 12 12 12-5.373 12-12-5.373-12-12-12zm-1.218 19l-1.782-1.75 5.25-5.25-5.25-5.25 1.782-1.75 6.968 7-6.968 7z" />
</svg>
);
}
export default memo(ArrowLeft);

View File

@@ -1,12 +0,0 @@
import { h } from 'preact';
import { memo } from 'preact/compat';
export function ArrowRight({ className = '' }) {
return (
<svg className={`fill-current ${className}`} xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M5 3l3.057-3 11.943 12-11.943 12-3.057-3 9-9z" />
</svg>
);
}
export default memo(ArrowRight);

View File

@@ -1,12 +0,0 @@
import { h } from 'preact';
import { memo } from 'preact/compat';
export function ArrowRightDouble({ className = '' }) {
return (
<svg className={`fill-current ${className}`} xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M0 3.795l2.995-2.98 11.132 11.185-11.132 11.186-2.995-2.981 8.167-8.205-8.167-8.205zm18.04 8.205l-8.167 8.205 2.995 2.98 11.132-11.185-11.132-11.186-2.995 2.98 8.167 8.206z" />
</svg>
);
}
export default memo(ArrowRightDouble);

View File

@@ -29,8 +29,12 @@ function Camera({ name, conf }) {
const { payload: snapshotValue, send: sendSnapshots } = useSnapshotsState(name);
const href = `/cameras/${name}`;
const buttons = useMemo(() => {
return [{ name: 'Events', href: `/events?camera=${name}` }, { name: 'Recordings', href: `/recording/${name}` }];
}, [name]);
const result = [{ name: 'Events', href: `/events?camera=${name}` }];
if (conf.record.enabled) {
result.push({ name: 'Recordings', href: `/recording/${name}` });
}
return result;
}, [name, conf.record.enabled]);
const icons = useMemo(
() => [
{

View File

@@ -199,7 +199,7 @@ export default function Event({ eventId, close, scrollRef }) {
<img
src={
data.has_snapshot
? `${apiHost}/api/events/${eventId}/snapshot.jpg`
? `${apiHost}/clips/${data.camera}-${eventId}.jpg`
: `data:image/jpeg;base64,${data.thumbnail}`
}
alt={`${data.label} at ${(data.top_score * 100).toFixed(1)}% confidence`}

View File

@@ -1,26 +1,31 @@
import { h } from 'preact';
import Select from '../../../components/Select';
import { useCallback } from 'preact/hooks';
import { useCallback, useMemo } from 'preact/hooks';
function Filter({ onChange, searchParams, paramName, options, ...rest }) {
const Filter = ({ onChange, searchParams, paramName, options }) => {
const handleSelect = useCallback(
(key) => {
const newParams = new URLSearchParams(searchParams.toString());
Object.keys(key).map((entries) => {
if (key[entries] !== 'all') {
newParams.set(entries, key[entries]);
} else {
paramName.map((p) => newParams.delete(p));
}
});
if (key !== 'all') {
newParams.set(paramName, key);
} else {
newParams.delete(paramName);
}
onChange(newParams);
},
[searchParams, paramName, onChange]
);
const obj = {};
paramName.map((name) => Object.assign(obj, { [name]: searchParams.get(name) }), [searchParams]);
return <Select onChange={handleSelect} options={options} selected={obj} paramName={paramName} {...rest} />;
}
const selectOptions = useMemo(() => ['all', ...options], [options]);
return (
<Select
label={`${paramName.charAt(0).toUpperCase()}${paramName.substr(1)}`}
onChange={handleSelect}
options={selectOptions}
selected={searchParams.get(paramName) || 'all'}
/>
);
};
export default Filter;

View File

@@ -3,13 +3,7 @@ import { useCallback, useMemo } from 'preact/hooks';
import Link from '../../../components/Link';
import { route } from 'preact-router';
function Filterable({ onFilter, pathname, searchParams, paramName, name }) {
const removeDefaultSearchKeys = useCallback((searchParams) => {
searchParams.delete('limit');
searchParams.delete('include_thumbnails');
// searchParams.delete('before');
}, []);
const Filterable = ({ onFilter, pathname, searchParams, paramName, name, removeDefaultSearchKeys }) => {
const href = useMemo(() => {
const params = new URLSearchParams(searchParams.toString());
params.set(paramName, name);
@@ -33,6 +27,6 @@ function Filterable({ onFilter, pathname, searchParams, paramName, name }) {
{name}
</Link>
);
}
};
export default Filterable;

View File

@@ -1,13 +1,11 @@
import { h } from 'preact';
import Filter from './filter';
import { useConfig } from '../../../api';
import { useMemo, useState } from 'preact/hooks';
import { DateFilterOptions } from '../../../components/DatePicker';
import Button from '../../../components/Button';
import { useMemo } from 'preact/hooks';
const Filters = ({ onChange, searchParams }) => {
const [viewFilters, setViewFilters] = useState(false);
const { data } = useConfig();
const cameras = useMemo(() => Object.keys(data.cameras), [data]);
const zones = useMemo(
@@ -29,52 +27,12 @@ const Filters = ({ onChange, searchParams }) => {
}, data.objects?.track || [])
.filter((value, i, self) => self.indexOf(value) === i);
}, [data]);
return (
<div>
<Button
onClick={() => setViewFilters(!viewFilters)}
className="block xs:hidden w-full mb-4 text-center"
type="text"
>
{`${viewFilters ? 'Hide Filter' : 'Filter'}`}
</Button>
<div className={`xs:flex space-y-1 xs:space-y-0 xs:space-x-4 ${viewFilters ? 'flex-col' : 'hidden'}`}>
<Filter
type="dropdown"
onChange={onChange}
options={['all', ...cameras]}
paramName={['camera']}
label="Camera"
searchParams={searchParams}
/>
<Filter
type="dropdown"
onChange={onChange}
options={['all', ...zones]}
paramName={['zone']}
label="Zone"
searchParams={searchParams}
/>
<Filter
type="dropdown"
onChange={onChange}
options={['all', ...labels]}
paramName={['label']}
label="Label"
searchParams={searchParams}
/>
<Filter
type="datepicker"
onChange={onChange}
options={DateFilterOptions}
paramName={['before', 'after']}
label="DatePicker"
searchParams={searchParams}
/>
</div>
<div className="flex space-x-4">
<Filter onChange={onChange} options={cameras} paramName="camera" searchParams={searchParams} />
<Filter onChange={onChange} options={zones} paramName="zone" searchParams={searchParams} />
<Filter onChange={onChange} options={labels} paramName="label" searchParams={searchParams} />
</div>
);
};

View File

@@ -66,9 +66,6 @@ export default function Recording({ camera, date, hour, seconds }) {
this.player.currentTime(seconds);
}
}
// Force playback rate to be correct
const playbackRate = this.player.playbackRate();
this.player.defaultPlaybackRate(playbackRate);
}
return (

View File

@@ -46,7 +46,7 @@ describe('Cameras Route', () => {
expect(screen.queryByLabelText('Loading…')).not.toBeInTheDocument();
expect(screen.queryAllByText('Recordings')).toHaveLength(2);
expect(screen.queryAllByText('Recordings')).toHaveLength(1);
});
test('buttons toggle detect, clips, and snapshots', async () => {