forked from Github/frigate
Compare commits
116 Commits
v0.0.1
...
v0.4.0-bet
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8ea0eeda06 | ||
|
|
94878315ae | ||
|
|
8dab9e17dd | ||
|
|
5b2470e91e | ||
|
|
3d5faa956c | ||
|
|
b615b84f57 | ||
|
|
6f7b70665b | ||
|
|
3a5cb465fe | ||
|
|
205b8b413f | ||
|
|
1b74d7a19f | ||
|
|
b18e8ca468 | ||
|
|
9ebe186443 | ||
|
|
e580aca440 | ||
|
|
191f293037 | ||
|
|
d31ba69b1b | ||
|
|
02e1035826 | ||
|
|
3d419a39a8 | ||
|
|
474a3e604d | ||
|
|
fc757ad04f | ||
|
|
2a86d3e2e8 | ||
|
|
3e374ceb5f | ||
|
|
0b8f2cadf3 | ||
|
|
42f666491a | ||
|
|
35771b3444 | ||
|
|
2010ae8f87 | ||
|
|
fb0f6bcfae | ||
|
|
7b1da388d9 | ||
|
|
5d0c12fbd4 | ||
|
|
a43fd96349 | ||
|
|
bf94fdc54d | ||
|
|
48b3f22866 | ||
|
|
36443980ea | ||
|
|
0f8f8fa3b3 | ||
|
|
d8a3f8fc9d | ||
|
|
ab3e70b4db | ||
|
|
d90e408d50 | ||
|
|
6c87ce0879 | ||
|
|
b7b4e38f62 | ||
|
|
480175d70f | ||
|
|
bee99ca6ff | ||
|
|
5c01720567 | ||
|
|
262f45c8bc | ||
|
|
22bb17b2fd | ||
|
|
3a3afe14bf | ||
|
|
01f058a482 | ||
|
|
d899ef158e | ||
|
|
39d64f7ba7 | ||
|
|
f148eb5a7b | ||
|
|
297e2f1c0c | ||
|
|
e818744d81 | ||
|
|
ceedfae993 | ||
|
|
e13563770d | ||
|
|
a659019d1a | ||
|
|
ba71927d53 | ||
|
|
04fed31eac | ||
|
|
ebaa8fac01 | ||
|
|
2ec45cd1b6 | ||
|
|
700bd1e3ef | ||
|
|
c9e9f7a735 | ||
|
|
aea4dc8724 | ||
|
|
12d5007b90 | ||
|
|
8970e73f75 | ||
|
|
1ba006b24f | ||
|
|
4a58f16637 | ||
|
|
436b876b24 | ||
|
|
a770ab7f69 | ||
|
|
806acaf445 | ||
|
|
c653567cc1 | ||
|
|
8fee8f86a2 | ||
|
|
59a4b0e650 | ||
|
|
834a3df0bc | ||
|
|
c41b104997 | ||
|
|
7028b05856 | ||
|
|
2d22a04391 | ||
|
|
baa587028b | ||
|
|
2b51dc3e5b | ||
|
|
9f8278ea8f | ||
|
|
56b9c754f5 | ||
|
|
5c4f5ef3f0 | ||
|
|
8c924896c5 | ||
|
|
2c2f0044b9 | ||
|
|
874e9085a7 | ||
|
|
e791d6646b | ||
|
|
3019b0218c | ||
|
|
6900e140d5 | ||
|
|
911c1b2bfa | ||
|
|
f4587462cf | ||
|
|
cac1faa8ac | ||
|
|
9525bae5a3 | ||
|
|
dbcfd109f6 | ||
|
|
f95d8b6210 | ||
|
|
4dacf02ef9 | ||
|
|
3e803b6a03 | ||
|
|
7a7f507781 | ||
|
|
e0b9b616ce | ||
|
|
4476bd8a13 | ||
|
|
5aa3775c77 | ||
|
|
edf0cd36df | ||
|
|
0279121d77 | ||
|
|
8774e537dc | ||
|
|
0514eeac03 | ||
|
|
a074945394 | ||
|
|
a26d2217d4 | ||
|
|
200d769003 | ||
|
|
48aa245914 | ||
|
|
ada8ffccf9 | ||
|
|
bca4e78e9a | ||
|
|
7d3027e056 | ||
|
|
c406fda288 | ||
|
|
8ff9a982b6 | ||
|
|
f2c205be99 | ||
|
|
862aa2d3f0 | ||
|
|
8bae05cfe2 | ||
|
|
de9c3f4d74 | ||
|
|
c12e19349e | ||
|
|
afb70f11a8 |
@@ -1 +1,6 @@
|
||||
README.md
|
||||
README.md
|
||||
diagram.png
|
||||
.gitignore
|
||||
debug
|
||||
config/
|
||||
*.pyc
|
||||
1
.github/FUNDING.yml
vendored
Normal file
1
.github/FUNDING.yml
vendored
Normal file
@@ -0,0 +1 @@
|
||||
github: blakeblackshear
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1,2 +1,4 @@
|
||||
*.pyc
|
||||
debug
|
||||
.vscode
|
||||
config/config.yml
|
||||
125
Dockerfile
125
Dockerfile
@@ -1,90 +1,53 @@
|
||||
FROM ubuntu:16.04
|
||||
FROM debian:stretch-slim
|
||||
LABEL maintainer "blakeb@blakeshome.com"
|
||||
|
||||
# Install system packages
|
||||
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y python3 \
|
||||
python3-dev \
|
||||
python-pil \
|
||||
python-lxml \
|
||||
python-tk \
|
||||
build-essential \
|
||||
cmake \
|
||||
git \
|
||||
libgtk2.0-dev \
|
||||
pkg-config \
|
||||
libavcodec-dev \
|
||||
libavformat-dev \
|
||||
libswscale-dev \
|
||||
libtbb2 \
|
||||
libtbb-dev \
|
||||
libjpeg-dev \
|
||||
libpng-dev \
|
||||
libtiff-dev \
|
||||
libjasper-dev \
|
||||
libdc1394-22-dev \
|
||||
x11-apps \
|
||||
wget \
|
||||
vim \
|
||||
ffmpeg \
|
||||
unzip \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
# Install packages for apt repo
|
||||
RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||
apt-transport-https ca-certificates \
|
||||
gnupg wget \
|
||||
ffmpeg \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-dev \
|
||||
python3-numpy \
|
||||
# python-prctl
|
||||
build-essential libcap-dev \
|
||||
# pillow-simd
|
||||
# zlib1g-dev libjpeg-dev \
|
||||
# VAAPI drivers for Intel hardware accel
|
||||
i965-va-driver vainfo \
|
||||
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
|
||||
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
|
||||
&& apt -qq update \
|
||||
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
|
||||
&& apt -qq install --no-install-recommends -y \
|
||||
libedgetpu1-max \
|
||||
python3-edgetpu \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
|
||||
# Install core packages
|
||||
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
|
||||
RUN pip install -U pip \
|
||||
numpy \
|
||||
matplotlib \
|
||||
notebook \
|
||||
jupyter \
|
||||
pandas \
|
||||
moviepy \
|
||||
tensorflow \
|
||||
keras \
|
||||
autovizwidget \
|
||||
Flask \
|
||||
imutils \
|
||||
paho-mqtt
|
||||
# needs to be installed before others
|
||||
RUN pip3 install -U wheel setuptools
|
||||
|
||||
# Install tensorflow models object detection
|
||||
RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models
|
||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/google/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.tar.gz
|
||||
RUN pip3 install -U \
|
||||
opencv-python-headless \
|
||||
python-prctl \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib \
|
||||
scipy
|
||||
|
||||
# Download & build protobuf-python
|
||||
RUN cd /usr/local/src/ \
|
||||
&& tar xf protobuf-python-3.5.1.tar.gz \
|
||||
&& rm protobuf-python-3.5.1.tar.gz \
|
||||
&& cd /usr/local/src/protobuf-3.5.1/ \
|
||||
&& ./configure \
|
||||
&& make \
|
||||
&& make install \
|
||||
&& ldconfig \
|
||||
&& rm -rf /usr/local/src/protobuf-3.5.1/
|
||||
|
||||
# Add dataframe display widget
|
||||
RUN jupyter nbextension enable --py --sys-prefix widgetsnbextension
|
||||
|
||||
# Download & build OpenCV
|
||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
||||
RUN cd /usr/local/src/ \
|
||||
&& unzip 4.0.1.zip \
|
||||
&& rm 4.0.1.zip \
|
||||
&& cd /usr/local/src/opencv-4.0.1/ \
|
||||
&& mkdir build \
|
||||
&& cd /usr/local/src/opencv-4.0.1/build \
|
||||
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
|
||||
&& make -j4 \
|
||||
&& make install \
|
||||
&& rm -rf /usr/local/src/opencv-4.0.1
|
||||
|
||||
# Minimize image size
|
||||
RUN (apt-get autoremove -y; \
|
||||
apt-get autoclean -y)
|
||||
|
||||
# Set TF object detection available
|
||||
ENV PYTHONPATH "$PYTHONPATH:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research/slim"
|
||||
RUN cd /usr/local/lib/python3.5/dist-packages/tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=.
|
||||
# symlink the model and labels
|
||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
|
||||
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
|
||||
RUN ln -s mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
|
||||
RUN ln -s /coco_labels.txt /label_map.pbtext
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
COPY detect_objects.py .
|
||||
COPY benchmark.py .
|
||||
|
||||
CMD ["python3", "-u", "detect_objects.py"]
|
||||
CMD ["python3", "-u", "detect_objects.py"]
|
||||
|
||||
149
README.md
149
README.md
@@ -1,18 +1,18 @@
|
||||
# Frigate - Realtime Object Detection for RTSP Cameras
|
||||
Uses OpenCV and Tensorflow to perform realtime object detection locally for RTSP cameras. Designed for integration with HomeAssistant or others via MQTT.
|
||||
# Frigate - Realtime Object Detection for IP Cameras
|
||||
**Note:** This version requires the use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/)
|
||||
|
||||
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
|
||||
|
||||
- Leverages multiprocessing and threads heavily with an emphasis on realtime over processing every frame
|
||||
- Allows you to define specific regions (squares) in the image to look for motion/objects
|
||||
- Motion detection runs in a separate process per region and signals to object detection to avoid wasting CPU cycles looking for objects when there is no motion
|
||||
- Object detection with Tensorflow runs in a separate process per region
|
||||
- Detected objects are placed on a shared mp.Queue and aggregated into a list of recently detected objects in a separate thread
|
||||
- A person score is calculated as the sum of all scores/5
|
||||
- Motion and object info is published over MQTT for integration into HomeAssistant or others
|
||||
- Allows you to define specific regions (squares) in the image to look for objects
|
||||
- No motion detection (for now)
|
||||
- Object detection with Tensorflow runs in a separate thread
|
||||
- Object info is published over MQTT for integration into HomeAssistant as a binary sensor
|
||||
- An endpoint is available to view an MJPEG stream for debugging
|
||||
|
||||

|
||||
|
||||
## Example video
|
||||
## Example video (from older version)
|
||||
You see multiple bounding boxes because it draws bounding boxes from all frames in the past 1 second where a person was detected. Not all of the bounding boxes were from the current frame.
|
||||
[](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
|
||||
|
||||
@@ -22,24 +22,17 @@ Build the container with
|
||||
docker build -t frigate .
|
||||
```
|
||||
|
||||
Download a model from the [zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md).
|
||||
|
||||
Download the cooresponding label map from [here](https://github.com/tensorflow/models/tree/master/research/object_detection/data).
|
||||
The `mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite` model is included and used by default. You can use your own model and labels by mounting files in the container at `/frozen_inference_graph.pb` and `/label_map.pbtext`. Models must be compatible with the Coral according to [this](https://coral.withgoogle.com/models/).
|
||||
|
||||
Run the container with
|
||||
```
|
||||
docker run --rm \
|
||||
-v <path_to_frozen_detection_graph.pb>:/frozen_inference_graph.pb:ro \
|
||||
-v <path_to_labelmap.pbtext>:/label_map.pbtext:ro \
|
||||
--privileged \
|
||||
-v /dev/bus/usb:/dev/bus/usb \
|
||||
-v <path_to_config_dir>:/config:ro \
|
||||
-v /etc/localtime:/etc/localtime:ro \
|
||||
-p 5000:5000 \
|
||||
-e RTSP_URL='<rtsp_url>' \
|
||||
-e REGIONS='<box_size_1>,<x_offset_1>,<y_offset_1>,<min_person_size_1>,<min_motion_size_1>,<mask_file_1>:<box_size_2>,<x_offset_2>,<y_offset_2>,<min_person_size_2>,<min_motion_size_2>,<mask_file_2>' \
|
||||
-e MQTT_HOST='your.mqtthost.com' \
|
||||
-e MQTT_USER='username' \
|
||||
-e MQTT_PASS='password' \
|
||||
-e MQTT_TOPIC_PREFIX='cameras/1' \
|
||||
-e DEBUG='0' \
|
||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||
frigate:latest
|
||||
```
|
||||
|
||||
@@ -48,100 +41,82 @@ Example docker-compose:
|
||||
frigate:
|
||||
container_name: frigate
|
||||
restart: unless-stopped
|
||||
privileged: true
|
||||
image: frigate:latest
|
||||
volumes:
|
||||
- <path_to_frozen_detection_graph.pb>:/frozen_inference_graph.pb:ro
|
||||
- <path_to_labelmap.pbtext>:/label_map.pbtext:ro
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
- <path_to_config>:/config
|
||||
ports:
|
||||
- "127.0.0.1:5000:5000"
|
||||
- "5000:5000"
|
||||
environment:
|
||||
RTSP_URL: "<rtsp_url>"
|
||||
REGIONS: "<box_size_1>,<x_offset_1>,<y_offset_1>,<min_person_size_1>,<min_motion_size_1>,<mask_file_1>:<box_size_2>,<x_offset_2>,<y_offset_2>,<min_person_size_2>,<min_motion_size_2>,<mask_file_2>"
|
||||
MQTT_HOST: "your.mqtthost.com"
|
||||
MQTT_USER: "username" #optional
|
||||
MQTT_PASS: "password" #optional
|
||||
MQTT_TOPIC_PREFIX: "cameras/1"
|
||||
DEBUG: "0"
|
||||
FRIGATE_RTSP_PASSWORD: "password"
|
||||
```
|
||||
|
||||
Here is an example `REGIONS` env variable:
|
||||
`350,0,300,5000,200,mask-0-300.bmp:400,350,250,2000,200,mask-350-250.bmp:400,750,250,2000,200,mask-750-250.bmp`
|
||||
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
|
||||
|
||||
First region broken down (all are required):
|
||||
- `350` - size of the square (350px by 350px)
|
||||
- `0` - x coordinate of upper left corner (top left of image is 0,0)
|
||||
- `300` - y coordinate of upper left corner (top left of image is 0,0)
|
||||
- `5000` - minimum person bounding box size (width*height for bounding box of identified person)
|
||||
- `200` - minimum number of changed pixels to trigger motion
|
||||
- `mask-0-300.bmp` - a bmp file with the masked regions as pure black, must be the same size as the region
|
||||
|
||||
Mask files go in the `/config` directory.
|
||||
|
||||
Access the mjpeg stream at http://localhost:5000
|
||||
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
|
||||
|
||||
## Integration with HomeAssistant
|
||||
```
|
||||
camera:
|
||||
- name: Camera Last Person
|
||||
platform: generic
|
||||
still_image_url: http://<ip>:5000/best_person.jpg
|
||||
platform: mqtt
|
||||
topic: frigate/<camera_name>/person/snapshot
|
||||
- name: Camera Last Car
|
||||
platform: mqtt
|
||||
topic: frigate/<camera_name>/car/snapshot
|
||||
|
||||
binary_sensor:
|
||||
- name: Camera Motion
|
||||
- name: Camera Person
|
||||
platform: mqtt
|
||||
state_topic: "cameras/1/motion"
|
||||
state_topic: "frigate/<camera_name>/person"
|
||||
device_class: motion
|
||||
availability_topic: "cameras/1/available"
|
||||
availability_topic: "frigate/available"
|
||||
|
||||
sensor:
|
||||
- name: Camera Person Score
|
||||
platform: mqtt
|
||||
state_topic: "cameras/1/objects"
|
||||
value_template: '{{ value_json.person }}'
|
||||
unit_of_measurement: '%'
|
||||
availability_topic: "cameras/1/available"
|
||||
automation:
|
||||
- alias: Alert me if a person is detected while armed away
|
||||
trigger:
|
||||
platform: state
|
||||
entity_id: binary_sensor.camera_person
|
||||
from: 'off'
|
||||
to: 'on'
|
||||
condition:
|
||||
- condition: state
|
||||
entity_id: alarm_control_panel.home_alarm
|
||||
state: armed_away
|
||||
action:
|
||||
- service: notify.user_telegram
|
||||
data:
|
||||
message: "A person was detected."
|
||||
data:
|
||||
photo:
|
||||
- url: http://<ip>:5000/<camera_name>/person/best.jpg
|
||||
caption: A person was detected.
|
||||
```
|
||||
|
||||
## Tips
|
||||
- Lower the framerate of the RTSP feed on the camera to reduce the CPU usage for capturing the feed
|
||||
- Use SSDLite models to reduce CPU usage
|
||||
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
|
||||
|
||||
## Future improvements
|
||||
- [ ] Build tensorflow from source for CPU optimizations
|
||||
- [x] Remove motion detection for now
|
||||
- [x] Try running object detection in a thread rather than a process
|
||||
- [x] Implement min person size again
|
||||
- [x] Switch to a config file
|
||||
- [x] Handle multiple cameras in the same container
|
||||
- [ ] Attempt to figure out coral symlinking
|
||||
- [ ] Add object list to config with min scores for mqtt
|
||||
- [ ] Move mjpeg encoding to a separate process
|
||||
- [ ] Simplify motion detection (check entire image against mask, resize instead of gaussian blur)
|
||||
- [ ] See if motion detection is even worth running
|
||||
- [ ] Scan for people across entire image rather than specfic regions
|
||||
- [ ] Dynamically resize detection area and follow people
|
||||
- [ ] Add ability to turn detection on and off via MQTT
|
||||
- [ ] MQTT motion occasionally gets stuck ON
|
||||
- [ ] Output movie clips of people for notifications, etc.
|
||||
- [ ] Integrate with homeassistant push camera
|
||||
- [ ] Merge bounding boxes that span multiple regions
|
||||
- [ ] Switch to a config file
|
||||
- [ ] Allow motion regions to be different than object detection regions
|
||||
- [ ] Implement mode to save labeled objects for training
|
||||
- [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about
|
||||
- [ ] Look into GPU accelerated decoding of RTSP stream
|
||||
- [ ] Send video over a socket and use JSMPEG
|
||||
- [ ] Look into neural compute stick
|
||||
|
||||
## Building Tensorflow from source for CPU optimizations
|
||||
https://www.tensorflow.org/install/source#docker_linux_builds
|
||||
used `tensorflow/tensorflow:1.12.0-devel-py3`
|
||||
|
||||
## Optimizing the graph (cant say I saw much difference in CPU usage)
|
||||
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md#optimizing-for-deployment
|
||||
```
|
||||
docker run -it -v ${PWD}:/lab -v ${PWD}/../back_camera_model/models/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb:/frozen_inference_graph.pb:ro tensorflow/tensorflow:1.12.0-devel-py3 bash
|
||||
|
||||
bazel build tensorflow/tools/graph_transforms:transform_graph
|
||||
|
||||
bazel-bin/tensorflow/tools/graph_transforms/transform_graph \
|
||||
--in_graph=/frozen_inference_graph.pb \
|
||||
--out_graph=/lab/optimized_inception_graph.pb \
|
||||
--inputs='image_tensor' \
|
||||
--outputs='num_detections,detection_scores,detection_boxes,detection_classes' \
|
||||
--transforms='
|
||||
strip_unused_nodes(type=float, shape="1,300,300,3")
|
||||
remove_nodes(op=Identity, op=CheckNumerics)
|
||||
fold_constants(ignore_errors=true)
|
||||
fold_batch_norms
|
||||
fold_old_batch_norms'
|
||||
```
|
||||
- [x] Look into neural compute stick
|
||||
|
||||
20
benchmark.py
Normal file
20
benchmark.py
Normal file
@@ -0,0 +1,20 @@
|
||||
import statistics
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
engine = DetectionEngine(PATH_TO_CKPT)
|
||||
|
||||
frame = np.zeros((300,300,3), np.uint8)
|
||||
flattened_frame = np.expand_dims(frame, axis=0).flatten()
|
||||
|
||||
detection_times = []
|
||||
|
||||
for x in range(0, 1000):
|
||||
objects = engine.detect_with_input_tensor(flattened_frame, threshold=0.1, top_k=3)
|
||||
detection_times.append(engine.get_inference_time())
|
||||
|
||||
print("Average inference time: " + str(statistics.mean(detection_times)))
|
||||
BIN
config/back-mask.bmp
Normal file
BIN
config/back-mask.bmp
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.8 MiB |
130
config/config.example.yml
Normal file
130
config/config.example.yml
Normal file
@@ -0,0 +1,130 @@
|
||||
web_port: 5000
|
||||
|
||||
mqtt:
|
||||
host: mqtt.server.com
|
||||
topic_prefix: frigate
|
||||
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
|
||||
# user: username # Optional -- Uncomment for use
|
||||
# password: password # Optional -- Uncomment for use
|
||||
|
||||
#################
|
||||
# Default ffmpeg args. Optional and can be overwritten per camera.
|
||||
# Should work with most RTSP cameras that send h264 video
|
||||
# Built from the properties below with:
|
||||
# "ffmpeg" + global_args + input_args + "-i" + input + output_args
|
||||
#################
|
||||
# ffmpeg:
|
||||
# global_args:
|
||||
# - -hide_banner
|
||||
# - -loglevel
|
||||
# - panic
|
||||
# hwaccel_args: []
|
||||
# input_args:
|
||||
# - -avoid_negative_ts
|
||||
# - make_zero
|
||||
# - -fflags
|
||||
# - nobuffer
|
||||
# - -flags
|
||||
# - low_delay
|
||||
# - -strict
|
||||
# - experimental
|
||||
# - -fflags
|
||||
# - +genpts+discardcorrupt
|
||||
# - -vsync
|
||||
# - drop
|
||||
# - -rtsp_transport
|
||||
# - tcp
|
||||
# - -stimeout
|
||||
# - '5000000'
|
||||
# - -use_wallclock_as_timestamps
|
||||
# - '1'
|
||||
# output_args:
|
||||
# - -vf
|
||||
# - mpdecimate
|
||||
# - -f
|
||||
# - rawvideo
|
||||
# - -pix_fmt
|
||||
# - rgb24
|
||||
|
||||
####################
|
||||
# Global object configuration. Applies to all cameras
|
||||
# unless overridden at the camera levels.
|
||||
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
|
||||
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
|
||||
# min_area (optional): minimum width*height of the bounding box for the detected person
|
||||
# max_area (optional): maximum width*height of the bounding box for the detected person
|
||||
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
|
||||
####################
|
||||
objects:
|
||||
track:
|
||||
- person
|
||||
- car
|
||||
- truck
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
|
||||
cameras:
|
||||
back:
|
||||
ffmpeg:
|
||||
################
|
||||
# Source passed to ffmpeg after the -i parameter. Supports anything compatible with OpenCV and FFmpeg.
|
||||
# Environment variables that begin with 'FRIGATE_' may be referenced in {}
|
||||
################
|
||||
input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
#################
|
||||
# These values will override default values for just this camera
|
||||
#################
|
||||
# global_args: []
|
||||
# hwaccel_args: []
|
||||
# input_args: []
|
||||
# output_args: []
|
||||
|
||||
################
|
||||
## Optional mask. Must be the same dimensions as your video feed.
|
||||
## The mask works by looking at the bottom center of the bounding box for the detected
|
||||
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
|
||||
## false positive. In my mask, the grass and driveway visible from my backdoor camera
|
||||
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
|
||||
## person to stand) are black.
|
||||
################
|
||||
# mask: back-mask.bmp
|
||||
|
||||
################
|
||||
# Allows you to limit the framerate within frigate for cameras that do not support
|
||||
# custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,
|
||||
# 3 every 3rd frame, etc.
|
||||
################
|
||||
take_frame: 1
|
||||
|
||||
################
|
||||
# Overrides for global object config
|
||||
################
|
||||
objects:
|
||||
track:
|
||||
- person
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
|
||||
################
|
||||
# size: size of the region in pixels
|
||||
# x_offset/y_offset: position of the upper left corner of your region (top left of image is 0,0)
|
||||
# Tips: All regions are resized to 300x300 before detection because the model is trained on that size.
|
||||
# Resizing regions takes CPU power. Ideally, all regions should be as close to 300x300 as possible.
|
||||
# Defining a region that goes outside the bounds of the image will result in errors.
|
||||
################
|
||||
regions:
|
||||
- size: 350
|
||||
x_offset: 0
|
||||
y_offset: 300
|
||||
- size: 400
|
||||
x_offset: 350
|
||||
y_offset: 250
|
||||
- size: 400
|
||||
x_offset: 750
|
||||
y_offset: 250
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 239 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 313 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 313 KiB |
@@ -1,247 +1,155 @@
|
||||
import os
|
||||
import cv2
|
||||
import imutils
|
||||
import time
|
||||
import datetime
|
||||
import ctypes
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import threading
|
||||
import json
|
||||
from contextlib import closing
|
||||
import queue
|
||||
import yaml
|
||||
import numpy as np
|
||||
from object_detection.utils import visualization_utils as vis_util
|
||||
from flask import Flask, Response, make_response, send_file
|
||||
from flask import Flask, Response, make_response, jsonify
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
from frigate.util import tonumpyarray
|
||||
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
|
||||
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
|
||||
from frigate.motion import detect_motion
|
||||
from frigate.video import fetch_frames, FrameTracker
|
||||
from frigate.object_detection import detect_objects
|
||||
from frigate.video import Camera
|
||||
from frigate.object_detection import PreppedQueueProcessor
|
||||
from frigate.util import EventsPerSecond
|
||||
|
||||
RTSP_URL = os.getenv('RTSP_URL')
|
||||
with open('/config/config.yml') as f:
|
||||
CONFIG = yaml.safe_load(f)
|
||||
|
||||
MQTT_HOST = os.getenv('MQTT_HOST')
|
||||
MQTT_USER = os.getenv('MQTT_USER')
|
||||
MQTT_PASS = os.getenv('MQTT_PASS')
|
||||
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
|
||||
MQTT_HOST = CONFIG['mqtt']['host']
|
||||
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
|
||||
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
||||
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
||||
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
||||
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
|
||||
|
||||
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
|
||||
# REGIONS = "400,350,250,50"
|
||||
REGIONS = os.getenv('REGIONS')
|
||||
# Set the default FFmpeg config
|
||||
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
|
||||
FFMPEG_DEFAULT_CONFIG = {
|
||||
'global_args': FFMPEG_CONFIG.get('global_args',
|
||||
['-hide_banner','-loglevel','panic']),
|
||||
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
|
||||
[]),
|
||||
'input_args': FFMPEG_CONFIG.get('input_args',
|
||||
['-avoid_negative_ts', 'make_zero',
|
||||
'-fflags', 'nobuffer',
|
||||
'-flags', 'low_delay',
|
||||
'-strict', 'experimental',
|
||||
'-fflags', '+genpts+discardcorrupt',
|
||||
'-vsync', 'drop',
|
||||
'-rtsp_transport', 'tcp',
|
||||
'-stimeout', '5000000',
|
||||
'-use_wallclock_as_timestamps', '1']),
|
||||
'output_args': FFMPEG_CONFIG.get('output_args',
|
||||
['-vf', 'mpdecimate',
|
||||
'-f', 'rawvideo',
|
||||
'-pix_fmt', 'rgb24'])
|
||||
}
|
||||
|
||||
DEBUG = (os.getenv('DEBUG') == '1')
|
||||
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
|
||||
|
||||
WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||
|
||||
def main():
|
||||
DETECTED_OBJECTS = []
|
||||
recent_motion_frames = {}
|
||||
# Parse selected regions
|
||||
regions = []
|
||||
for region_string in REGIONS.split(':'):
|
||||
region_parts = region_string.split(',')
|
||||
region_mask_image = cv2.imread("/config/{}".format(region_parts[5]), cv2.IMREAD_GRAYSCALE)
|
||||
region_mask = np.where(region_mask_image==[0])
|
||||
regions.append({
|
||||
'size': int(region_parts[0]),
|
||||
'x_offset': int(region_parts[1]),
|
||||
'y_offset': int(region_parts[2]),
|
||||
'min_person_area': int(region_parts[3]),
|
||||
'min_object_size': int(region_parts[4]),
|
||||
'mask': region_mask,
|
||||
# Event for motion detection signaling
|
||||
'motion_detected': mp.Event(),
|
||||
# create shared array for storing 10 detected objects
|
||||
# note: this must be a double even though the value you are storing
|
||||
# is a float. otherwise it stops updating the value in shared
|
||||
# memory. probably something to do with the size of the memory block
|
||||
'output_array': mp.Array(ctypes.c_double, 6*10)
|
||||
})
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
# size can be allocated in memory
|
||||
video = cv2.VideoCapture(RTSP_URL)
|
||||
ret, frame = video.read()
|
||||
if ret:
|
||||
frame_shape = frame.shape
|
||||
else:
|
||||
print("Unable to capture video stream")
|
||||
exit(1)
|
||||
video.release()
|
||||
|
||||
# compute the flattened array length from the array shape
|
||||
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
# create shared array for storing the full frame image data
|
||||
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
||||
# create shared value for storing the frame_time
|
||||
shared_frame_time = mp.Value('d', 0.0)
|
||||
# Lock to control access to the frame
|
||||
frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
frame_ready = mp.Condition()
|
||||
# Condition for notifying that motion status changed globally
|
||||
motion_changed = mp.Condition()
|
||||
# Condition for notifying that objects were parsed
|
||||
objects_parsed = mp.Condition()
|
||||
# Queue for detected objects
|
||||
object_queue = mp.Queue()
|
||||
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
# start the process to capture frames from the RTSP stream and store in a shared array
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
|
||||
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
|
||||
capture_process.daemon = True
|
||||
|
||||
# for each region, start a separate process for motion detection and object detection
|
||||
detection_processes = []
|
||||
motion_processes = []
|
||||
for region in regions:
|
||||
detection_process = mp.Process(target=detect_objects, args=(shared_arr,
|
||||
object_queue,
|
||||
shared_frame_time,
|
||||
frame_lock, frame_ready,
|
||||
region['motion_detected'],
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
region['min_person_area'],
|
||||
DEBUG))
|
||||
detection_process.daemon = True
|
||||
detection_processes.append(detection_process)
|
||||
|
||||
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
||||
shared_frame_time,
|
||||
frame_lock, frame_ready,
|
||||
region['motion_detected'],
|
||||
motion_changed,
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
region['min_object_size'], region['mask'],
|
||||
DEBUG))
|
||||
motion_process.daemon = True
|
||||
motion_processes.append(motion_process)
|
||||
|
||||
# start a thread to store recent motion frames for processing
|
||||
frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
|
||||
recent_motion_frames, motion_changed, [region['motion_detected'] for region in regions])
|
||||
frame_tracker.start()
|
||||
|
||||
# start a thread to store the highest scoring recent person frame
|
||||
best_person_frame = BestPersonFrame(objects_parsed, recent_motion_frames, DETECTED_OBJECTS,
|
||||
motion_changed, [region['motion_detected'] for region in regions])
|
||||
best_person_frame.start()
|
||||
|
||||
# start a thread to parse objects from the queue
|
||||
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
|
||||
object_parser.start()
|
||||
# start a thread to expire objects from the detected objects list
|
||||
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS)
|
||||
object_cleaner.start()
|
||||
|
||||
# connect to mqtt and setup last will
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
print("On connect called")
|
||||
if rc != 0:
|
||||
if rc == 3:
|
||||
print ("MQTT Server unavailable")
|
||||
elif rc == 4:
|
||||
print ("MQTT Bad username or password")
|
||||
elif rc == 5:
|
||||
print ("MQTT Not authorized")
|
||||
else:
|
||||
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
|
||||
# publish a message to signal that the service is running
|
||||
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
||||
client = mqtt.Client()
|
||||
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
|
||||
client.on_connect = on_connect
|
||||
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
||||
if not MQTT_USER is None:
|
||||
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
|
||||
|
||||
client.connect(MQTT_HOST, 1883, 60)
|
||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||
client.loop_start()
|
||||
|
||||
# start a thread to publish object scores (currently only person)
|
||||
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed, DETECTED_OBJECTS)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# start thread to publish motion status
|
||||
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
|
||||
[region['motion_detected'] for region in regions])
|
||||
mqtt_motion_publisher.start()
|
||||
|
||||
# start the process of capturing frames
|
||||
capture_process.start()
|
||||
print("capture_process pid ", capture_process.pid)
|
||||
|
||||
# start the object detection processes
|
||||
for detection_process in detection_processes:
|
||||
detection_process.start()
|
||||
print("detection_process pid ", detection_process.pid)
|
||||
|
||||
# start the motion detection processes
|
||||
for motion_process in motion_processes:
|
||||
motion_process.start()
|
||||
print("motion_process pid ", motion_process.pid)
|
||||
# Queue for prepped frames, max size set to number of regions * 3
|
||||
prepped_frame_queue = queue.Queue()
|
||||
|
||||
cameras = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config,
|
||||
prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
|
||||
fps_tracker = EventsPerSecond()
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
cameras,
|
||||
prepped_frame_queue,
|
||||
fps_tracker
|
||||
)
|
||||
prepped_queue_processor.start()
|
||||
fps_tracker.start()
|
||||
|
||||
for name, camera in cameras.items():
|
||||
camera.start()
|
||||
print("Capture process for {}: {}".format(name, camera.get_capture_pid()))
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
app = Flask(__name__)
|
||||
|
||||
@app.route('/best_person.jpg')
|
||||
def best_person():
|
||||
frame = np.zeros(frame_shape, np.uint8) if best_person_frame.best_frame is None else best_person_frame.best_frame
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
|
||||
@app.route('/')
|
||||
def index():
|
||||
# return a multipart response
|
||||
return Response(imagestream(),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
def imagestream():
|
||||
def ishealthy():
|
||||
# return a healh
|
||||
return "Frigate is running. Alive and healthy!"
|
||||
|
||||
@app.route('/debug/stats')
|
||||
def stats():
|
||||
stats = {
|
||||
'coral': {
|
||||
'fps': fps_tracker.eps(),
|
||||
'inference_speed': prepped_queue_processor.avg_inference_speed,
|
||||
'queue_length': prepped_frame_queue.qsize()
|
||||
}
|
||||
}
|
||||
|
||||
for name, camera in cameras.items():
|
||||
stats[name] = camera.stats()
|
||||
|
||||
return jsonify(stats)
|
||||
|
||||
@app.route('/<camera_name>/<label>/best.jpg')
|
||||
def best(camera_name, label):
|
||||
if camera_name in cameras:
|
||||
best_frame = cameras[camera_name].get_best(label)
|
||||
if best_frame is None:
|
||||
best_frame = np.zeros((720,1280,3), np.uint8)
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
@app.route('/<camera_name>')
|
||||
def mjpeg_feed(camera_name):
|
||||
if camera_name in cameras:
|
||||
# return a multipart response
|
||||
return Response(imagestream(camera_name),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
def imagestream(camera_name):
|
||||
while True:
|
||||
# max out at 5 FPS
|
||||
time.sleep(0.2)
|
||||
# make a copy of the current detected objects
|
||||
detected_objects = DETECTED_OBJECTS.copy()
|
||||
# lock and make a copy of the current frame
|
||||
with frame_lock:
|
||||
frame = frame_arr.copy()
|
||||
# convert to RGB for drawing
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in detected_objects:
|
||||
vis_util.draw_bounding_box_on_image_array(frame,
|
||||
obj['ymin'],
|
||||
obj['xmin'],
|
||||
obj['ymax'],
|
||||
obj['xmax'],
|
||||
color='red',
|
||||
thickness=2,
|
||||
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
||||
use_normalized_coordinates=False)
|
||||
|
||||
for region in regions:
|
||||
color = (255,255,255)
|
||||
if region['motion_detected'].is_set():
|
||||
color = (0,255,0)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
|
||||
# convert back to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
# max out at 1 FPS
|
||||
time.sleep(1)
|
||||
frame = cameras[camera_name].get_current_frame_with_objects()
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
|
||||
|
||||
app.run(host='0.0.0.0', debug=False)
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
capture_process.join()
|
||||
for detection_process in detection_processes:
|
||||
detection_process.join()
|
||||
for motion_process in motion_processes:
|
||||
motion_process.join()
|
||||
frame_tracker.join()
|
||||
best_person_frame.join()
|
||||
object_parser.join()
|
||||
object_cleaner.join()
|
||||
mqtt_publisher.join()
|
||||
camera.join()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
main()
|
||||
|
||||
BIN
diagram.png
BIN
diagram.png
Binary file not shown.
|
Before Width: | Height: | Size: 308 KiB After Width: | Height: | Size: 283 KiB |
74
docs/DEVICES.md
Normal file
74
docs/DEVICES.md
Normal file
@@ -0,0 +1,74 @@
|
||||
# Configuration Examples
|
||||
|
||||
### Default (most RTSP cameras)
|
||||
This is the default ffmpeg command and should work with most RTSP cameras that send h264 video
|
||||
```yaml
|
||||
ffmpeg:
|
||||
global_args:
|
||||
- -hide_banner
|
||||
- -loglevel
|
||||
- panic
|
||||
hwaccel_args: []
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -fflags
|
||||
- nobuffer
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -vsync
|
||||
- drop
|
||||
- -rtsp_transport
|
||||
- tcp
|
||||
- -stimeout
|
||||
- '5000000'
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
output_args:
|
||||
- -vf
|
||||
- mpdecimate
|
||||
- -f
|
||||
- rawvideo
|
||||
- -pix_fmt
|
||||
- rgb24
|
||||
```
|
||||
|
||||
### RTMP Cameras
|
||||
The input parameters need to be adjusted for RTMP cameras
|
||||
```yaml
|
||||
ffmpeg:
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -fflags
|
||||
- nobuffer
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -vsync
|
||||
- drop
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
```
|
||||
|
||||
|
||||
### Hardware Acceleration
|
||||
|
||||
Intel Quicksync
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- vaapi
|
||||
- -hwaccel_device
|
||||
- /dev/dri/renderD128
|
||||
- -hwaccel_output_format
|
||||
- yuv420p
|
||||
```
|
||||
@@ -1,109 +0,0 @@
|
||||
import datetime
|
||||
import numpy as np
|
||||
import cv2
|
||||
import imutils
|
||||
from . util import tonumpyarray
|
||||
|
||||
# do the actual motion detection
|
||||
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
|
||||
frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, mask, debug):
|
||||
# shape shared input array into frame for processing
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
avg_frame = None
|
||||
avg_delta = None
|
||||
frame_time = 0.0
|
||||
motion_frames = 0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
with frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
||||
frame_ready.wait()
|
||||
|
||||
# lock and make a copy of the cropped frame
|
||||
with frame_lock:
|
||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
||||
frame_time = shared_frame_time.value
|
||||
|
||||
# convert to grayscale
|
||||
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# apply image mask to remove areas from motion detection
|
||||
gray[mask] = [255]
|
||||
|
||||
# apply gaussian blur
|
||||
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
||||
|
||||
if avg_frame is None:
|
||||
avg_frame = gray.copy().astype("float")
|
||||
continue
|
||||
|
||||
# look at the delta from the avg_frame
|
||||
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
|
||||
|
||||
if avg_delta is None:
|
||||
avg_delta = frameDelta.copy().astype("float")
|
||||
|
||||
# compute the average delta over the past few frames
|
||||
# the alpha value can be modified to configure how sensitive the motion detection is.
|
||||
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
||||
# register as motion, too low and a fast moving person wont be detected as motion
|
||||
# this also assumes that a person is in the same location across more than a single frame
|
||||
cv2.accumulateWeighted(frameDelta, avg_delta, 0.2)
|
||||
|
||||
# compute the threshold image for the current frame
|
||||
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# black out everything in the avg_delta where there isnt motion in the current frame
|
||||
avg_delta_image = cv2.convertScaleAbs(avg_delta)
|
||||
avg_delta_image[np.where(current_thresh==[0])] = [0]
|
||||
|
||||
# then look for deltas above the threshold, but only in areas where there is a delta
|
||||
# in the current frame. this prevents deltas from previous frames from being included
|
||||
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
motion_found = False
|
||||
|
||||
# loop over the contours
|
||||
for c in cnts:
|
||||
# if the contour is big enough, count it as motion
|
||||
contour_area = cv2.contourArea(c)
|
||||
if contour_area > min_motion_area:
|
||||
motion_found = True
|
||||
if debug:
|
||||
cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
cv2.putText(cropped_frame, str(contour_area), (x, y),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
|
||||
else:
|
||||
break
|
||||
|
||||
if motion_found:
|
||||
motion_frames += 1
|
||||
# if there have been enough consecutive motion frames, report motion
|
||||
if motion_frames >= 3:
|
||||
# only average in the current frame if the difference persists for at least 3 frames
|
||||
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
||||
motion_detected.set()
|
||||
with motion_changed:
|
||||
motion_changed.notify_all()
|
||||
else:
|
||||
# when no motion, just keep averaging the frames together
|
||||
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
||||
motion_frames = 0
|
||||
if motion_detected.is_set():
|
||||
motion_detected.clear()
|
||||
with motion_changed:
|
||||
motion_changed.notify_all()
|
||||
|
||||
if debug and motion_frames == 3:
|
||||
cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
||||
cv2.imwrite("/lab/debug/avg_delta-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), avg_delta_image)
|
||||
@@ -1,56 +1,54 @@
|
||||
import json
|
||||
import cv2
|
||||
import threading
|
||||
|
||||
class MqttMotionPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, motion_changed, motion_flags):
|
||||
threading.Thread.__init__(self)
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.motion_changed = motion_changed
|
||||
self.motion_flags = motion_flags
|
||||
|
||||
def run(self):
|
||||
last_sent_motion = ""
|
||||
while True:
|
||||
with self.motion_changed:
|
||||
self.motion_changed.wait()
|
||||
|
||||
# send message for motion
|
||||
motion_status = 'OFF'
|
||||
if any(obj.is_set() for obj in self.motion_flags):
|
||||
motion_status = 'ON'
|
||||
|
||||
if last_sent_motion != motion_status:
|
||||
last_sent_motion = motion_status
|
||||
self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
|
||||
import prctl
|
||||
from collections import Counter, defaultdict
|
||||
import itertools
|
||||
|
||||
class MqttObjectPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, objects_parsed, detected_objects):
|
||||
def __init__(self, client, topic_prefix, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
last_sent_payload = ""
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
current_object_status = defaultdict(lambda: 'OFF')
|
||||
while True:
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
|
||||
# initialize the payload
|
||||
payload = {}
|
||||
# count objects with more than 2 entries in history by type
|
||||
obj_counter = Counter()
|
||||
for obj in self.camera.object_tracker.tracked_objects.values():
|
||||
if len(obj['history']) > 1:
|
||||
obj_counter[obj['name']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != current_object_status[obj_name]:
|
||||
current_object_status[obj_name] = new_status
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
|
||||
# send the snapshot over mqtt if we have it as well
|
||||
if obj_name in self.camera.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
|
||||
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
|
||||
# add all the person scores in detected objects and
|
||||
# average over past 1 seconds (5fps)
|
||||
detected_objects = self._detected_objects.copy()
|
||||
avg_person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])/5
|
||||
payload['person'] = int(avg_person_score*100)
|
||||
|
||||
# send message for objects if different
|
||||
new_payload = json.dumps(payload, sort_keys=True)
|
||||
if new_payload != last_sent_payload:
|
||||
last_sent_payload = new_payload
|
||||
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
|
||||
# expire any objects that are ON and no longer detected
|
||||
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
current_object_status[obj_name] = 'OFF'
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
|
||||
# send updated snapshot snapshot over mqtt if we have it as well
|
||||
if obj_name in self.camera.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
|
||||
@@ -1,114 +1,139 @@
|
||||
import datetime
|
||||
import time
|
||||
import cv2
|
||||
import threading
|
||||
import copy
|
||||
import prctl
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from object_detection.utils import label_map_util
|
||||
from object_detection.utils import visualization_utils as vis_util
|
||||
from . util import tonumpyarray
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
|
||||
# TODO: make dynamic?
|
||||
NUM_CLASSES = 90
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
# List of the strings that is used to add correct label for each box.
|
||||
PATH_TO_LABELS = '/label_map.pbtext'
|
||||
from frigate.util import tonumpyarray, LABELS, PATH_TO_CKPT, calculate_region
|
||||
|
||||
# Loading label map
|
||||
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
||||
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
||||
use_display_name=True)
|
||||
category_index = label_map_util.create_category_index(categories)
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, cameras, prepped_frame_queue, fps):
|
||||
|
||||
# do the actual object detection
|
||||
def tf_detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
|
||||
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
||||
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
||||
|
||||
# Each box represents a part of the image where a particular object was detected.
|
||||
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
||||
|
||||
# Each score represent how level of confidence for each of the objects.
|
||||
# Score is shown on the result image, together with the class label.
|
||||
scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
||||
classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
||||
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
||||
|
||||
# Actual detection.
|
||||
(boxes, scores, classes, num_detections) = sess.run(
|
||||
[boxes, scores, classes, num_detections],
|
||||
feed_dict={image_tensor: image_np_expanded})
|
||||
|
||||
if debug:
|
||||
if len([value for index,value in enumerate(classes[0]) if str(category_index.get(value).get('name')) == 'person' and scores[0,index] > 0.5]) > 0:
|
||||
vis_util.visualize_boxes_and_labels_on_image_array(
|
||||
cropped_frame,
|
||||
np.squeeze(boxes),
|
||||
np.squeeze(classes).astype(np.int32),
|
||||
np.squeeze(scores),
|
||||
category_index,
|
||||
use_normalized_coordinates=True,
|
||||
line_thickness=4)
|
||||
cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
||||
|
||||
|
||||
# build an array of detected objects
|
||||
objects = []
|
||||
for index, value in enumerate(classes[0]):
|
||||
score = scores[0, index]
|
||||
if score > 0.5:
|
||||
box = boxes[0, index].tolist()
|
||||
objects.append({
|
||||
'name': str(category_index.get(value).get('name')),
|
||||
'score': float(score),
|
||||
'ymin': int((box[0] * region_size) + region_y_offset),
|
||||
'xmin': int((box[1] * region_size) + region_x_offset),
|
||||
'ymax': int((box[2] * region_size) + region_y_offset),
|
||||
'xmax': int((box[3] * region_size) + region_x_offset)
|
||||
})
|
||||
|
||||
return objects
|
||||
|
||||
def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, frame_ready,
|
||||
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
||||
min_person_area, debug):
|
||||
# shape shared input array into frame for processing
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
# Load a (frozen) Tensorflow model into memory before the processing loop
|
||||
detection_graph = tf.Graph()
|
||||
with detection_graph.as_default():
|
||||
od_graph_def = tf.GraphDef()
|
||||
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
||||
serialized_graph = fid.read()
|
||||
od_graph_def.ParseFromString(serialized_graph)
|
||||
tf.import_graph_def(od_graph_def, name='')
|
||||
sess = tf.Session(graph=detection_graph)
|
||||
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
# wait until motion is detected
|
||||
motion_detected.wait()
|
||||
|
||||
with frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
||||
frame_ready.wait()
|
||||
threading.Thread.__init__(self)
|
||||
self.cameras = cameras
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
# make a copy of the cropped frame
|
||||
with frame_lock:
|
||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||
frame_time = shared_frame_time.value
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
self.labels = LABELS
|
||||
self.fps = fps
|
||||
self.avg_inference_speed = 10
|
||||
|
||||
# convert to RGB
|
||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||
# do the object detection
|
||||
objects = tf_detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
|
||||
for obj in objects:
|
||||
# ignore persons below the size threshold
|
||||
if obj['name'] == 'person' and (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) < min_person_area:
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
# process queue...
|
||||
while True:
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
frame['detected_objects'] = self.engine.detect_with_input_tensor(frame['frame'], threshold=0.2, top_k=5)
|
||||
self.fps.update()
|
||||
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
|
||||
|
||||
self.cameras[frame['camera_name']].detected_objects_queue.put(frame)
|
||||
|
||||
class RegionRequester(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
with self.camera.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5:
|
||||
self.camera.frame_ready.wait()
|
||||
|
||||
# make a copy of the frame_time
|
||||
frame_time = self.camera.frame_time.value
|
||||
|
||||
# grab the current tracked objects
|
||||
with self.camera.object_tracker.tracked_objects_lock:
|
||||
tracked_objects = copy.deepcopy(self.camera.object_tracker.tracked_objects).values()
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
|
||||
self.camera.regions_in_process[frame_time] += len(tracked_objects)
|
||||
|
||||
for index, region in enumerate(self.camera.config['regions']):
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': index,
|
||||
'size': region['size'],
|
||||
'x_offset': region['x_offset'],
|
||||
'y_offset': region['y_offset']
|
||||
})
|
||||
|
||||
# request a region for tracked objects
|
||||
for tracked_object in tracked_objects:
|
||||
box = tracked_object['box']
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
box['xmin'], box['ymin'],
|
||||
box['xmax'], box['ymax'])
|
||||
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': -1,
|
||||
'size': size,
|
||||
'x_offset': x_offset,
|
||||
'y_offset': y_offset
|
||||
})
|
||||
|
||||
|
||||
class RegionPrepper(threading.Thread):
|
||||
def __init__(self, camera, frame_cache, resize_request_queue, prepped_frame_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.frame_cache = frame_cache
|
||||
self.resize_request_queue = resize_request_queue
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
|
||||
resize_request = self.resize_request_queue.get()
|
||||
|
||||
# if the queue is over 100 items long, only prep dynamic regions
|
||||
if resize_request['region_id'] != -1 and self.prepped_frame_queue.qsize() > 100:
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[resize_request['frame_time']] -= 1
|
||||
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[resize_request['frame_time']]
|
||||
self.camera.skipped_region_tracker.update()
|
||||
continue
|
||||
obj['frame_time'] = frame_time
|
||||
object_queue.put(obj)
|
||||
|
||||
frame = self.frame_cache.get(resize_request['frame_time'], None)
|
||||
|
||||
if frame is None:
|
||||
print("RegionPrepper: frame_time not in frame_cache")
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[resize_request['frame_time']] -= 1
|
||||
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[resize_request['frame_time']]
|
||||
self.camera.skipped_region_tracker.update()
|
||||
continue
|
||||
|
||||
# make a copy of the region
|
||||
cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
# TODO: use Pillow-SIMD?
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
resize_request['frame'] = frame_expanded.flatten().copy()
|
||||
self.prepped_frame_queue.put(resize_request)
|
||||
@@ -2,122 +2,404 @@ import time
|
||||
import datetime
|
||||
import threading
|
||||
import cv2
|
||||
from object_detection.utils import visualization_utils as vis_util
|
||||
class ObjectParser(threading.Thread):
|
||||
def __init__(self, object_queue, objects_parsed, detected_objects):
|
||||
threading.Thread.__init__(self)
|
||||
self._object_queue = object_queue
|
||||
self._objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
obj = self._object_queue.get()
|
||||
self._detected_objects.append(obj)
|
||||
|
||||
# notify that objects were parsed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
import prctl
|
||||
import itertools
|
||||
import copy
|
||||
import numpy as np
|
||||
import multiprocessing as mp
|
||||
from collections import defaultdict
|
||||
from scipy.spatial import distance as dist
|
||||
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, objects_parsed, detected_objects):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self._objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("ObjectCleaner")
|
||||
while True:
|
||||
|
||||
# expire the objects that are more than 1 second old
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# look for the first object found within the last second
|
||||
# (newest objects are appended to the end)
|
||||
detected_objects = self._detected_objects.copy()
|
||||
num_to_delete = 0
|
||||
for obj in detected_objects:
|
||||
if now-obj['frame_time']<1:
|
||||
break
|
||||
num_to_delete += 1
|
||||
if num_to_delete > 0:
|
||||
del self._detected_objects[:num_to_delete]
|
||||
|
||||
# notify that parsed objects were changed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
|
||||
# wait a bit before checking for more expired frames
|
||||
# wait a bit before checking for expired frames
|
||||
time.sleep(0.2)
|
||||
|
||||
# Maintains the frame and person with the highest score from the most recent
|
||||
# motion event
|
||||
class BestPersonFrame(threading.Thread):
|
||||
def __init__(self, objects_parsed, recent_frames, detected_objects, motion_changed, motion_regions):
|
||||
for frame_time in list(self.camera.detected_objects.keys()).copy():
|
||||
if not frame_time in self.camera.frame_cache:
|
||||
del self.camera.detected_objects[frame_time]
|
||||
|
||||
objects_deregistered = False
|
||||
with self.camera.object_tracker.tracked_objects_lock:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
|
||||
# if the object is more than 10 seconds old
|
||||
# and not in the most recent frame, deregister
|
||||
if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
|
||||
self.camera.object_tracker.deregister(id)
|
||||
objects_deregistered = True
|
||||
|
||||
if objects_deregistered:
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.notify_all()
|
||||
|
||||
class DetectedObjectsProcessor(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.objects_parsed = objects_parsed
|
||||
self.recent_frames = recent_frames
|
||||
self.detected_objects = detected_objects
|
||||
self.motion_changed = motion_changed
|
||||
self.motion_regions = motion_regions
|
||||
self.best_person = None
|
||||
self.best_frame = None
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
motion_start = 0.0
|
||||
motion_end = 0.0
|
||||
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame = self.camera.detected_objects_queue.get()
|
||||
|
||||
# while there is motion
|
||||
while len([r for r in self.motion_regions if r.is_set()]) > 0:
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
objects = frame['detected_objects']
|
||||
|
||||
# make a copy of detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
|
||||
# make a copy of the recent frames
|
||||
recent_frames = self.recent_frames.copy()
|
||||
for raw_obj in objects:
|
||||
name = str(LABELS[raw_obj.label_id])
|
||||
|
||||
# get the highest scoring person
|
||||
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
|
||||
|
||||
# if there isnt a person, continue
|
||||
if new_best_person is None:
|
||||
if not name in self.camera.objects_to_track:
|
||||
continue
|
||||
|
||||
# if there is no current best_person
|
||||
if self.best_person is None:
|
||||
self.best_person = new_best_person
|
||||
# if there is already a best_person
|
||||
else:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the new best person is a higher score than the current best person
|
||||
# or the current person is more than 1 minute old, use the new best person
|
||||
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
|
||||
self.best_person = new_best_person
|
||||
obj = {
|
||||
'name': name,
|
||||
'score': float(raw_obj.score),
|
||||
'box': {
|
||||
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
|
||||
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
|
||||
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
|
||||
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
|
||||
},
|
||||
'region': {
|
||||
'xmin': frame['x_offset'],
|
||||
'ymin': frame['y_offset'],
|
||||
'xmax': frame['x_offset']+frame['size'],
|
||||
'ymax': frame['y_offset']+frame['size']
|
||||
},
|
||||
'frame_time': frame['frame_time'],
|
||||
'region_id': frame['region_id']
|
||||
}
|
||||
|
||||
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||
# consider the object to be clipped
|
||||
obj['clipped'] = False
|
||||
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
|
||||
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
|
||||
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
|
||||
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
|
||||
obj['clipped'] = True
|
||||
|
||||
# Compute the area
|
||||
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
|
||||
|
||||
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
|
||||
best_frame = recent_frames[self.best_person['frame_time']]
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding box on the frame
|
||||
vis_util.draw_bounding_box_on_image_array(best_frame,
|
||||
self.best_person['ymin'],
|
||||
self.best_person['xmin'],
|
||||
self.best_person['ymax'],
|
||||
self.best_person['xmax'],
|
||||
color='red',
|
||||
thickness=2,
|
||||
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
|
||||
use_normalized_coordinates=False)
|
||||
|
||||
# convert back to BGR
|
||||
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
motion_end = datetime.datetime.now().timestamp()
|
||||
|
||||
# wait for the global motion flag to change
|
||||
with self.motion_changed:
|
||||
self.motion_changed.wait()
|
||||
self.camera.detected_objects[frame['frame_time']].append(obj)
|
||||
|
||||
motion_start = datetime.datetime.now().timestamp()
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame['frame_time']] -= 1
|
||||
# print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
|
||||
|
||||
if self.camera.regions_in_process[frame['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[frame['frame_time']]
|
||||
# print(f"{frame['frame_time']} no remaining regions")
|
||||
self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
|
||||
# Thread that checks finished frames for clipped objects and sends back
|
||||
# for processing if needed
|
||||
class RegionRefiner(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame_time = self.camera.finished_frame_queue.get()
|
||||
|
||||
detected_objects = self.camera.detected_objects[frame_time].copy()
|
||||
# print(f"{frame_time} finished")
|
||||
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for obj in detected_objects:
|
||||
detected_object_groups[obj['name']].append(obj)
|
||||
|
||||
look_again = False
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
|
||||
for o in group]
|
||||
confidences = [o['score'] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
selected_objects.append(obj)
|
||||
if obj['clipped']:
|
||||
box = obj['box']
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
box['xmin'], box['ymin'],
|
||||
box['xmax'], box['ymax'])
|
||||
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
if not frame_time in self.camera.regions_in_process:
|
||||
self.camera.regions_in_process[frame_time] = 1
|
||||
else:
|
||||
self.camera.regions_in_process[frame_time] += 1
|
||||
|
||||
# add it to the queue
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': -1,
|
||||
'size': size,
|
||||
'x_offset': x_offset,
|
||||
'y_offset': y_offset
|
||||
})
|
||||
self.camera.dynamic_region_fps.update()
|
||||
look_again = True
|
||||
|
||||
# if we are looking again, then this frame is not ready for processing
|
||||
if look_again:
|
||||
# remove the clipped objects
|
||||
self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
|
||||
continue
|
||||
|
||||
# filter objects based on camera settings
|
||||
selected_objects = [o for o in selected_objects if not self.filtered(o)]
|
||||
|
||||
self.camera.detected_objects[frame_time] = selected_objects
|
||||
|
||||
# print(f"{frame_time} is actually finished")
|
||||
|
||||
# keep adding frames to the refined queue as long as they are finished
|
||||
with self.camera.regions_in_process_lock:
|
||||
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
|
||||
self.camera.last_processed_frame = self.camera.frame_queue.get()
|
||||
self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
|
||||
|
||||
def filtered(self, obj):
|
||||
object_name = obj['name']
|
||||
|
||||
if object_name in self.camera.object_filters:
|
||||
obj_settings = self.camera.object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj['area']:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['score']:
|
||||
return True
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
|
||||
x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if self.camera.mask[y_location][x_location] == [0]:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def has_overlap(self, new_obj, obj, overlap=.7):
|
||||
# compute intersection rectangle with existing object and new objects region
|
||||
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
|
||||
|
||||
# compute intersection rectangle with new object and existing objects region
|
||||
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
|
||||
|
||||
# compute iou for the two intersection rectangles that were just computed
|
||||
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
||||
|
||||
# if intersection is greater than overlap
|
||||
if iou > overlap:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def find_group(self, new_obj, groups):
|
||||
for index, group in enumerate(groups):
|
||||
for obj in group:
|
||||
if self.has_overlap(new_obj, obj):
|
||||
return index
|
||||
return None
|
||||
|
||||
class ObjectTracker(threading.Thread):
|
||||
def __init__(self, camera, max_disappeared):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.tracked_objects = {}
|
||||
self.tracked_objects_lock = mp.Lock()
|
||||
self.most_recent_frame_time = None
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame_time = self.camera.refined_frame_queue.get()
|
||||
with self.tracked_objects_lock:
|
||||
self.match_and_update(self.camera.detected_objects[frame_time])
|
||||
self.most_recent_frame_time = frame_time
|
||||
self.camera.frame_output_queue.put((frame_time, copy.deepcopy(self.tracked_objects)))
|
||||
if len(self.tracked_objects) > 0:
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.notify_all()
|
||||
|
||||
def register(self, index, obj):
|
||||
id = "{}-{}".format(str(obj['frame_time']), index)
|
||||
obj['id'] = id
|
||||
obj['top_score'] = obj['score']
|
||||
self.add_history(obj)
|
||||
self.tracked_objects[id] = obj
|
||||
|
||||
def deregister(self, id):
|
||||
del self.tracked_objects[id]
|
||||
|
||||
def update(self, id, new_obj):
|
||||
self.tracked_objects[id].update(new_obj)
|
||||
self.add_history(self.tracked_objects[id])
|
||||
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
||||
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
|
||||
|
||||
def add_history(self, obj):
|
||||
entry = {
|
||||
'score': obj['score'],
|
||||
'box': obj['box'],
|
||||
'region': obj['region'],
|
||||
'centroid': obj['centroid'],
|
||||
'frame_time': obj['frame_time']
|
||||
}
|
||||
if 'history' in obj:
|
||||
obj['history'].append(entry)
|
||||
else:
|
||||
obj['history'] = [entry]
|
||||
|
||||
def match_and_update(self, new_objects):
|
||||
if len(new_objects) == 0:
|
||||
return
|
||||
|
||||
# group by name
|
||||
new_object_groups = defaultdict(lambda: [])
|
||||
for obj in new_objects:
|
||||
new_object_groups[obj['name']].append(obj)
|
||||
|
||||
# track objects for each label type
|
||||
for label, group in new_object_groups.items():
|
||||
current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
|
||||
current_ids = [o['id'] for o in current_objects]
|
||||
current_centroids = np.array([o['centroid'] for o in current_objects])
|
||||
|
||||
# compute centroids of new objects
|
||||
for obj in group:
|
||||
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
|
||||
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
|
||||
obj['centroid'] = (centroid_x, centroid_y)
|
||||
|
||||
if len(current_objects) == 0:
|
||||
for index, obj in enumerate(group):
|
||||
self.register(index, obj)
|
||||
return
|
||||
|
||||
new_centroids = np.array([o['centroid'] for o in group])
|
||||
|
||||
# compute the distance between each pair of tracked
|
||||
# centroids and new centroids, respectively -- our
|
||||
# goal will be to match each new centroid to an existing
|
||||
# object centroid
|
||||
D = dist.cdist(current_centroids, new_centroids)
|
||||
|
||||
# in order to perform this matching we must (1) find the
|
||||
# smallest value in each row and then (2) sort the row
|
||||
# indexes based on their minimum values so that the row
|
||||
# with the smallest value is at the *front* of the index
|
||||
# list
|
||||
rows = D.min(axis=1).argsort()
|
||||
|
||||
# next, we perform a similar process on the columns by
|
||||
# finding the smallest value in each column and then
|
||||
# sorting using the previously computed row index list
|
||||
cols = D.argmin(axis=1)[rows]
|
||||
|
||||
# in order to determine if we need to update, register,
|
||||
# or deregister an object we need to keep track of which
|
||||
# of the rows and column indexes we have already examined
|
||||
usedRows = set()
|
||||
usedCols = set()
|
||||
|
||||
# loop over the combination of the (row, column) index
|
||||
# tuples
|
||||
for (row, col) in zip(rows, cols):
|
||||
# if we have already examined either the row or
|
||||
# column value before, ignore it
|
||||
if row in usedRows or col in usedCols:
|
||||
continue
|
||||
|
||||
# otherwise, grab the object ID for the current row,
|
||||
# set its new centroid, and reset the disappeared
|
||||
# counter
|
||||
objectID = current_ids[row]
|
||||
self.update(objectID, group[col])
|
||||
|
||||
# indicate that we have examined each of the row and
|
||||
# column indexes, respectively
|
||||
usedRows.add(row)
|
||||
usedCols.add(col)
|
||||
|
||||
# compute the column index we have NOT yet examined
|
||||
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
||||
|
||||
# if the number of input centroids is greater
|
||||
# than the number of existing object centroids we need to
|
||||
# register each new input centroid as a trackable object
|
||||
# if D.shape[0] < D.shape[1]:
|
||||
for col in unusedCols:
|
||||
self.register(col, group[col])
|
||||
|
||||
# Maintains the frame and object with the highest score
|
||||
class BestFrames(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.best_objects = {}
|
||||
self.best_frames = {}
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
|
||||
# make a copy of tracked objects
|
||||
tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
|
||||
|
||||
for obj in tracked_objects:
|
||||
if obj['name'] in self.best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is more than 1 minute old, use the new object
|
||||
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
|
||||
self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
else:
|
||||
self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
|
||||
for name, obj in self.best_objects.items():
|
||||
if obj['frame_time'] in self.camera.frame_cache:
|
||||
best_frame = self.camera.frame_cache[obj['frame_time']]
|
||||
|
||||
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
|
||||
obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
self.best_frames[name] = best_frame
|
||||
158
frigate/util.py
158
frigate/util.py
@@ -1,5 +1,161 @@
|
||||
import datetime
|
||||
import collections
|
||||
import numpy as np
|
||||
import cv2
|
||||
import threading
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Function to read labels from text files.
|
||||
def ReadLabelFile(file_path):
|
||||
with open(file_path, 'r') as f:
|
||||
lines = f.readlines()
|
||||
ret = {}
|
||||
for line in lines:
|
||||
pair = line.strip().split(maxsplit=1)
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*2)
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
# if outside the image
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = (frame_shape[1]-size)
|
||||
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
elif y_offset > (frame_shape[0]-size):
|
||||
y_offset = (frame_shape[0]-size)
|
||||
|
||||
return (size, x_offset, y_offset)
|
||||
|
||||
def compute_intersection_rectangle(box_a, box_b):
|
||||
return {
|
||||
'xmin': max(box_a['xmin'], box_b['xmin']),
|
||||
'ymin': max(box_a['ymin'], box_b['ymin']),
|
||||
'xmax': min(box_a['xmax'], box_b['xmax']),
|
||||
'ymax': min(box_a['ymax'], box_b['ymax'])
|
||||
}
|
||||
|
||||
def compute_intersection_over_union(box_a, box_b):
|
||||
# determine the (x, y)-coordinates of the intersection rectangle
|
||||
intersect = compute_intersection_rectangle(box_a, box_b)
|
||||
|
||||
# compute the area of intersection rectangle
|
||||
inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
|
||||
|
||||
if inter_area == 0:
|
||||
return 0.0
|
||||
|
||||
# compute the area of both the prediction and ground-truth
|
||||
# rectangles
|
||||
box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
|
||||
box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
|
||||
|
||||
# compute the intersection over union by taking the intersection
|
||||
# area and dividing it by the sum of prediction + ground-truth
|
||||
# areas - the interesection area
|
||||
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
||||
|
||||
# return the intersection over union value
|
||||
return iou
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
def tonumpyarray(mp_arr):
|
||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
|
||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
||||
if color is None:
|
||||
color = COLOR_MAP[label]
|
||||
display_text = "{}: {}".format(label, info)
|
||||
cv2.rectangle(frame, (x_min, y_min),
|
||||
(x_max, y_max),
|
||||
color, thickness)
|
||||
font_scale = 0.5
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
# get the width and height of the text box
|
||||
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
|
||||
text_width = size[0][0]
|
||||
text_height = size[0][1]
|
||||
line_height = text_height + size[1]
|
||||
# set the text start position
|
||||
if position == 'ul':
|
||||
text_offset_x = x_min
|
||||
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||
elif position == 'ur':
|
||||
text_offset_x = x_max - (text_width+8)
|
||||
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||
elif position == 'bl':
|
||||
text_offset_x = x_min
|
||||
text_offset_y = y_max
|
||||
elif position == 'br':
|
||||
text_offset_x = x_max - (text_width+8)
|
||||
text_offset_y = y_max
|
||||
# make the coords of the box with a small padding of two pixels
|
||||
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
|
||||
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
|
||||
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
# List of the strings that is used to add correct label for each box.
|
||||
PATH_TO_LABELS = '/label_map.pbtext'
|
||||
|
||||
LABELS = ReadLabelFile(PATH_TO_LABELS)
|
||||
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
||||
|
||||
COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
|
||||
class QueueMerger():
|
||||
def __init__(self, from_queues, to_queue):
|
||||
self.from_queues = from_queues
|
||||
self.to_queue = to_queue
|
||||
self.merge_threads = []
|
||||
|
||||
def start(self):
|
||||
for from_q in self.from_queues:
|
||||
self.merge_threads.append(QueueTransfer(from_q,self.to_queue))
|
||||
|
||||
class QueueTransfer(threading.Thread):
|
||||
def __init__(self, from_queue, to_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.from_queue = from_queue
|
||||
self.to_queue = to_queue
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
self.to_queue.put(self.from_queue.get())
|
||||
|
||||
class EventsPerSecond:
|
||||
def __init__(self, max_events=1000):
|
||||
self._start = None
|
||||
self._max_events = max_events
|
||||
self._timestamps = []
|
||||
|
||||
def start(self):
|
||||
self._start = datetime.datetime.now().timestamp()
|
||||
|
||||
def update(self):
|
||||
self._timestamps.append(datetime.datetime.now().timestamp())
|
||||
# truncate the list when it goes 100 over the max_size
|
||||
if len(self._timestamps) > self._max_events+100:
|
||||
self._timestamps = self._timestamps[(1-self._max_events):]
|
||||
|
||||
def eps(self, last_n_seconds=10):
|
||||
# compute the (approximate) events in the last n seconds
|
||||
now = datetime.datetime.now().timestamp()
|
||||
seconds = min(now-self._start, last_n_seconds)
|
||||
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
|
||||
|
||||
441
frigate/video.py
441
frigate/video.py
@@ -1,95 +1,376 @@
|
||||
import os
|
||||
import time
|
||||
import datetime
|
||||
import cv2
|
||||
import queue
|
||||
import threading
|
||||
from . util import tonumpyarray
|
||||
import ctypes
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import prctl
|
||||
import copy
|
||||
import itertools
|
||||
from collections import defaultdict
|
||||
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
|
||||
from frigate.object_detection import RegionPrepper, RegionRequester
|
||||
from frigate.objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
|
||||
from frigate.mqtt import MqttObjectPublisher
|
||||
|
||||
# fetch the frames as fast a possible, only decoding the frames when the
|
||||
# detection_process has consumed the current frame
|
||||
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url):
|
||||
# convert shared memory array into numpy and shape into image array
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
# start the video capture
|
||||
video = cv2.VideoCapture()
|
||||
video.open(rtsp_url)
|
||||
# keep the buffer small so we minimize old data
|
||||
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
||||
|
||||
bad_frame_counter = 0
|
||||
while True:
|
||||
# check if the video stream is still open, and reopen if needed
|
||||
if not video.isOpened():
|
||||
success = video.open(rtsp_url)
|
||||
if not success:
|
||||
time.sleep(1)
|
||||
continue
|
||||
# grab the frame, but dont decode it yet
|
||||
ret = video.grab()
|
||||
# snapshot the time the frame was grabbed
|
||||
frame_time = datetime.datetime.now()
|
||||
if ret:
|
||||
# go ahead and decode the current frame
|
||||
ret, frame = video.retrieve()
|
||||
if ret:
|
||||
# Lock access and update frame
|
||||
with frame_lock:
|
||||
arr[:] = frame
|
||||
shared_frame_time.value = frame_time.timestamp()
|
||||
# Notify with the condition that a new frame is ready
|
||||
with frame_ready:
|
||||
frame_ready.notify_all()
|
||||
bad_frame_counter = 0
|
||||
else:
|
||||
print("Unable to decode frame")
|
||||
bad_frame_counter += 1
|
||||
else:
|
||||
print("Unable to grab a frame")
|
||||
bad_frame_counter += 1
|
||||
|
||||
if bad_frame_counter > 100:
|
||||
video.release()
|
||||
|
||||
video.release()
|
||||
|
||||
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
||||
# Stores 2 seconds worth of frames so they can be used for other threads
|
||||
class FrameTracker(threading.Thread):
|
||||
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames, motion_changed, motion_regions):
|
||||
def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
|
||||
threading.Thread.__init__(self)
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.recent_frames = recent_frames
|
||||
self.motion_changed = motion_changed
|
||||
self.motion_regions = motion_regions
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait for a frame
|
||||
with self.frame_ready:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
stored_frame_times.sort(reverse=True)
|
||||
if len(stored_frame_times) > 100:
|
||||
frames_to_delete = stored_frame_times[50:]
|
||||
for k in frames_to_delete:
|
||||
del self.recent_frames[k]
|
||||
|
||||
def get_frame_shape(source):
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
# size can be allocated in memory
|
||||
video = cv2.VideoCapture(source)
|
||||
ret, frame = video.read()
|
||||
frame_shape = frame.shape
|
||||
video.release()
|
||||
return frame_shape
|
||||
|
||||
def get_ffmpeg_input(ffmpeg_input):
|
||||
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||
return ffmpeg_input.format(**frigate_vars)
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
frame_time = 0.0
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# while there is motion
|
||||
while len([r for r in self.motion_regions if r.is_set()]) > 0:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# wait for a frame
|
||||
with self.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# lock and make a copy of the frame
|
||||
with self.frame_lock:
|
||||
frame = self.shared_frame.copy().astype('uint8')
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
# add the frame to recent frames
|
||||
self.recent_frames[frame_time] = frame
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
for k in stored_frame_times:
|
||||
if (now - k) > 2:
|
||||
del self.recent_frames[k]
|
||||
|
||||
# wait for the global motion flag to change
|
||||
with self.motion_changed:
|
||||
self.motion_changed.wait()
|
||||
if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
|
||||
print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
|
||||
self.camera.start_or_restart_capture()
|
||||
time.sleep(5)
|
||||
|
||||
# Thread to read the stdout of the ffmpeg process and update the current frame
|
||||
class CameraCapture(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
frame_num = 0
|
||||
while True:
|
||||
if self.camera.ffmpeg_process.poll() != None:
|
||||
print(self.camera.name + ": ffmpeg process is not running. exiting capture thread...")
|
||||
break
|
||||
|
||||
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
|
||||
|
||||
if len(raw_image) == 0:
|
||||
print(self.camera.name + ": ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
|
||||
break
|
||||
|
||||
frame_num += 1
|
||||
if (frame_num % self.camera.take_frame) != 0:
|
||||
continue
|
||||
|
||||
with self.camera.frame_lock:
|
||||
# TODO: use frame_queue instead
|
||||
self.camera.frame_time.value = datetime.datetime.now().timestamp()
|
||||
self.camera.frame_cache[self.camera.frame_time.value] = (
|
||||
np
|
||||
.frombuffer(raw_image, np.uint8)
|
||||
.reshape(self.camera.frame_shape)
|
||||
)
|
||||
self.camera.frame_queue.put(self.camera.frame_time.value)
|
||||
# Notify with the condition that a new frame is ready
|
||||
with self.camera.frame_ready:
|
||||
self.camera.frame_ready.notify_all()
|
||||
|
||||
self.camera.fps.update()
|
||||
|
||||
class VideoWriter(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
(frame_time, tracked_objects) = self.camera.frame_output_queue.get()
|
||||
# if len(tracked_objects) == 0:
|
||||
# continue
|
||||
# f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
|
||||
# f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
|
||||
# f.close()
|
||||
|
||||
class Camera:
|
||||
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.detected_objects = defaultdict(lambda: [])
|
||||
self.frame_cache = {}
|
||||
self.last_processed_frame = None
|
||||
# queue for re-assembling frames in order
|
||||
self.frame_queue = queue.Queue()
|
||||
# track how many regions have been requested for a frame so we know when a frame is complete
|
||||
self.regions_in_process = {}
|
||||
# Lock to control access
|
||||
self.regions_in_process_lock = mp.Lock()
|
||||
self.finished_frame_queue = queue.Queue()
|
||||
self.refined_frame_queue = queue.Queue()
|
||||
self.frame_output_queue = queue.Queue()
|
||||
|
||||
self.ffmpeg = config.get('ffmpeg', {})
|
||||
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
|
||||
self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
|
||||
self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
|
||||
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
|
||||
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
|
||||
|
||||
camera_objects_config = config.get('objects', {})
|
||||
|
||||
self.take_frame = self.config.get('take_frame', 1)
|
||||
self.regions = self.config['regions']
|
||||
self.frame_shape = get_frame_shape(self.ffmpeg_input)
|
||||
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
|
||||
self.mqtt_client = mqtt_client
|
||||
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
||||
|
||||
# create shared value for storing the frame_time
|
||||
self.frame_time = mp.Value('d', 0.0)
|
||||
# Lock to control access to the frame
|
||||
self.frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
self.frame_ready = mp.Condition()
|
||||
# Condition for notifying that objects were tracked
|
||||
self.objects_tracked = mp.Condition()
|
||||
|
||||
# Queue for prepped frames, max size set to (number of regions * 5)
|
||||
self.resize_queue = queue.Queue()
|
||||
|
||||
# Queue for raw detected objects
|
||||
self.detected_objects_queue = queue.Queue()
|
||||
self.detected_objects_processor = DetectedObjectsProcessor(self)
|
||||
self.detected_objects_processor.start()
|
||||
|
||||
# initialize the frame cache
|
||||
self.cached_frame_with_objects = {
|
||||
'frame_bytes': [],
|
||||
'frame_time': 0
|
||||
}
|
||||
|
||||
self.ffmpeg_process = None
|
||||
self.capture_thread = None
|
||||
self.fps = EventsPerSecond()
|
||||
self.skipped_region_tracker = EventsPerSecond()
|
||||
|
||||
# combine tracked objects lists
|
||||
self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
||||
|
||||
# merge object filters
|
||||
global_object_filters = global_objects_config.get('filters', {})
|
||||
camera_object_filters = camera_objects_config.get('filters', {})
|
||||
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
||||
self.object_filters = {}
|
||||
for obj in objects_with_config:
|
||||
self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
||||
|
||||
# start a thread to track objects
|
||||
self.object_tracker = ObjectTracker(self, 10)
|
||||
self.object_tracker.start()
|
||||
|
||||
# start a thread to write tracked frames to disk
|
||||
self.video_writer = VideoWriter(self)
|
||||
self.video_writer.start()
|
||||
|
||||
# start a thread to queue resize requests for regions
|
||||
self.region_requester = RegionRequester(self)
|
||||
self.region_requester.start()
|
||||
|
||||
# start a thread to cache recent frames for processing
|
||||
self.frame_tracker = FrameTracker(self.frame_time,
|
||||
self.frame_ready, self.frame_lock, self.frame_cache)
|
||||
self.frame_tracker.start()
|
||||
|
||||
# start a thread to resize regions
|
||||
self.region_prepper = RegionPrepper(self, self.frame_cache, self.resize_queue, prepped_frame_queue)
|
||||
self.region_prepper.start()
|
||||
|
||||
# start a thread to store the highest scoring recent frames for monitored object types
|
||||
self.best_frames = BestFrames(self)
|
||||
self.best_frames.start()
|
||||
|
||||
# start a thread to expire objects from the detected objects list
|
||||
self.object_cleaner = ObjectCleaner(self)
|
||||
self.object_cleaner.start()
|
||||
|
||||
# start a thread to refine regions when objects are clipped
|
||||
self.dynamic_region_fps = EventsPerSecond()
|
||||
self.region_refiner = RegionRefiner(self)
|
||||
self.region_refiner.start()
|
||||
self.dynamic_region_fps.start()
|
||||
|
||||
# start a thread to publish object scores
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# create a watchdog thread for capture process
|
||||
self.watchdog = CameraWatchdog(self)
|
||||
|
||||
# load in the mask for object detection
|
||||
if 'mask' in self.config:
|
||||
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
self.mask = None
|
||||
|
||||
if self.mask is None:
|
||||
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
self.mask[:] = 255
|
||||
|
||||
|
||||
def start_or_restart_capture(self):
|
||||
if not self.ffmpeg_process is None:
|
||||
print("Terminating the existing ffmpeg process...")
|
||||
self.ffmpeg_process.terminate()
|
||||
try:
|
||||
print("Waiting for ffmpeg to exit gracefully...")
|
||||
self.ffmpeg_process.wait(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
print("FFmpeg didnt exit. Force killing...")
|
||||
self.ffmpeg_process.kill()
|
||||
self.ffmpeg_process.wait()
|
||||
|
||||
print("Waiting for the capture thread to exit...")
|
||||
self.capture_thread.join()
|
||||
self.ffmpeg_process = None
|
||||
self.capture_thread = None
|
||||
|
||||
# create the process to capture frames from the input stream and store in a shared array
|
||||
print("Creating a new ffmpeg process...")
|
||||
self.start_ffmpeg()
|
||||
|
||||
print("Creating a new capture thread...")
|
||||
self.capture_thread = CameraCapture(self)
|
||||
print("Starting a new capture thread...")
|
||||
self.capture_thread.start()
|
||||
self.fps.start()
|
||||
self.skipped_region_tracker.start()
|
||||
|
||||
def start_ffmpeg(self):
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
self.ffmpeg_global_args +
|
||||
self.ffmpeg_hwaccel_args +
|
||||
self.ffmpeg_input_args +
|
||||
['-i', self.ffmpeg_input] +
|
||||
self.ffmpeg_output_args +
|
||||
['pipe:'])
|
||||
|
||||
print(" ".join(ffmpeg_cmd))
|
||||
|
||||
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
|
||||
|
||||
def start(self):
|
||||
self.start_or_restart_capture()
|
||||
self.watchdog.start()
|
||||
|
||||
def join(self):
|
||||
self.capture_thread.join()
|
||||
|
||||
def get_capture_pid(self):
|
||||
return self.ffmpeg_process.pid
|
||||
|
||||
def get_best(self, label):
|
||||
return self.best_frames.best_frames.get(label)
|
||||
|
||||
def stats(self):
|
||||
return {
|
||||
'camera_fps': self.fps.eps(60),
|
||||
'resize_queue': self.resize_queue.qsize(),
|
||||
'frame_queue': self.frame_queue.qsize(),
|
||||
'finished_frame_queue': self.finished_frame_queue.qsize(),
|
||||
'refined_frame_queue': self.refined_frame_queue.qsize(),
|
||||
'regions_in_process': self.regions_in_process,
|
||||
'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
|
||||
'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
|
||||
}
|
||||
|
||||
def frame_with_objects(self, frame_time, tracked_objects=None):
|
||||
if not frame_time in self.frame_cache:
|
||||
frame = np.zeros(self.frame_shape, np.uint8)
|
||||
else:
|
||||
frame = self.frame_cache[frame_time].copy()
|
||||
|
||||
detected_objects = self.detected_objects[frame_time].copy()
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
|
||||
if tracked_objects is None:
|
||||
with self.object_tracker.tracked_objects_lock:
|
||||
tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
|
||||
|
||||
for obj in detected_objects:
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
|
||||
|
||||
for id, obj in tracked_objects.items():
|
||||
color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
# print fps
|
||||
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
# convert to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
|
||||
return jpg.tobytes()
|
||||
|
||||
def get_current_frame_with_objects(self):
|
||||
frame_time = self.last_processed_frame
|
||||
if frame_time == self.cached_frame_with_objects['frame_time']:
|
||||
return self.cached_frame_with_objects['frame_bytes']
|
||||
|
||||
frame_bytes = self.frame_with_objects(frame_time)
|
||||
|
||||
self.cached_frame_with_objects = {
|
||||
'frame_bytes': frame_bytes,
|
||||
'frame_time': frame_time
|
||||
}
|
||||
|
||||
return frame_bytes
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user