Compare commits

...

92 Commits

Author SHA1 Message Date
Blake Blackshear
8ea0eeda06 update config example 2020-01-15 07:28:12 -06:00
Blake Blackshear
94878315ae remove region in process when skipping 2020-01-14 20:39:42 -06:00
Blake Blackshear
8dab9e17dd switch to opencv headless 2020-01-14 20:39:07 -06:00
Blake Blackshear
5b2470e91e add camera name to ffmpeg log messages 2020-01-14 20:38:55 -06:00
Blake Blackshear
3d5faa956c skip regions when the queue is too full and add more locks 2020-01-14 07:00:53 -06:00
Blake Blackshear
b615b84f57 switch back to stretch for hwaccel issues 2020-01-12 12:48:43 -06:00
Blake Blackshear
6f7b70665b check correct object 2020-01-12 07:51:49 -06:00
Blake Blackshear
3a5cb465fe cleanup 2020-01-12 07:50:43 -06:00
Blake Blackshear
205b8b413f add a label position arg for bounding boxes 2020-01-12 07:50:21 -06:00
Blake Blackshear
1b74d7a19f let the queues get as big as needed 2020-01-12 07:49:52 -06:00
Blake Blackshear
b18e8ca468 notify mqtt when objects deregistered 2020-01-12 07:14:42 -06:00
Blake Blackshear
9ebe186443 fix multiple object type tracking 2020-01-11 13:22:56 -06:00
Blake Blackshear
e580aca440 switch everything to run off of tracked objects 2020-01-09 20:53:04 -06:00
Blake Blackshear
191f293037 group by label before tracking objects 2020-01-09 06:52:28 -06:00
Blake Blackshear
d31ba69b1b fix mask filtering 2020-01-09 06:50:53 -06:00
Blake Blackshear
02e1035826 make a copy 2020-01-09 06:49:39 -06:00
Blake Blackshear
3d419a39a8 fix object filters 2020-01-08 06:40:40 -06:00
Blake Blackshear
474a3e604d group by label before suppressing boxes 2020-01-07 20:44:00 -06:00
Blake Blackshear
fc757ad04f update all obj props 2020-01-07 20:43:25 -06:00
Blake Blackshear
2a86d3e2e8 add thread to write frames to disk 2020-01-06 20:36:38 -06:00
Blake Blackshear
3e374ceb5f merge boxes by label 2020-01-06 20:36:04 -06:00
Blake Blackshear
0b8f2cadf3 fix color of best image 2020-01-06 20:34:53 -06:00
Blake Blackshear
42f666491a remove unused current frame variable 2020-01-06 07:38:37 -06:00
Blake Blackshear
35771b3444 removing pillow-simd for now 2020-01-06 06:48:11 -06:00
Blake Blackshear
2010ae8f87 revamp dockerfile 2020-01-05 17:43:14 -06:00
Blake Blackshear
fb0f6bcfae track objects and add config for tracked objects 2020-01-04 18:13:53 -06:00
Blake Blackshear
7b1da388d9 implement filtering and switch to NMS with OpenCV 2020-01-04 12:02:06 -06:00
Blake Blackshear
5d0c12fbd4 cleanup imports 2020-01-04 12:00:29 -06:00
Blake Blackshear
a43fd96349 fixing a few things 2020-01-02 07:43:46 -06:00
Blake Blackshear
bf94fdc54d dedupe detected objects 2020-01-02 07:43:46 -06:00
Blake Blackshear
48b3f22866 working dynamic regions, but messy 2020-01-02 07:43:46 -06:00
Blake Blackshear
36443980ea process detected objects in a queue 2020-01-02 07:43:46 -06:00
Blake Blackshear
0f8f8fa3b3 label threads and implements stats endpoint 2020-01-02 07:43:46 -06:00
Blake Blackshear
d8a3f8fc9d refactor resizing into generic priority queues 2020-01-02 07:43:46 -06:00
Blake Blackshear
ab3e70b4db check to see if we have a frame before trying to send 2020-01-02 07:39:57 -06:00
Blake Blackshear
d90e408d50 set the current object status to off when expired 2020-01-02 07:39:57 -06:00
Blake Blackshear
6c87ce0879 cache the computed jpg bytes to reduce cpu usage 2020-01-02 07:39:57 -06:00
Blake Blackshear
b7b4e38f62 slow down the preview feed to lower cpu usage 2020-01-02 07:39:57 -06:00
Blake Blackshear
480175d70f add color map to use different colors for different objects 2020-01-02 07:39:57 -06:00
Blake Blackshear
bee99ca6ff track and report all detected object types 2020-01-02 07:39:57 -06:00
Blake Blackshear
5c01720567 Update README.md 2019-12-12 08:08:32 -06:00
Blake Blackshear
262f45c8bc Update sponsorship option 2019-12-11 06:35:17 -06:00
tubalainen
22bb17b2fd Filename updated but not the reference 2019-12-09 06:01:27 -06:00
Blake Blackshear
3a3afe14bf change the ffmpeg config for global defaults and overrides 2019-12-08 16:03:23 -06:00
Blake Blackshear
01f058a482 clarify optional properties 2019-12-08 16:03:23 -06:00
Blake Blackshear
d899ef158e fix datestamp positioning 2019-12-08 16:03:23 -06:00
Blake Blackshear
39d64f7ba7 add health check and handle bad camera names 2019-12-08 16:03:23 -06:00
Blake Blackshear
f148eb5a7b add some comments for regions 2019-12-08 16:03:23 -06:00
Blake Blackshear
297e2f1c0c allow mqtt client_id to be set for multi frigate setups 2019-12-08 16:03:23 -06:00
Blake Blackshear
e818744d81 print the frame time on the image 2019-12-08 08:55:54 -06:00
Blake Blackshear
ceedfae993 add max person area 2019-12-08 07:17:18 -06:00
Blake Blackshear
e13563770d allow full customization of input 2019-12-08 07:06:52 -06:00
Blake Blackshear
a659019d1a move config example 2019-12-08 07:06:52 -06:00
blakeblackshear
ba71927d53 allow setting custom output params and setting the log level for ffmpeg 2019-08-25 08:54:19 -05:00
blakeblackshear
04fed31eac increase watchdog timeout to 10 seconds 2019-08-25 08:54:19 -05:00
blakeblackshear
ebaa8fac01 tweak input params and gracefully kill ffmpeg 2019-08-25 08:54:19 -05:00
blakeblackshear
2ec45cd1b6 send the best person frame over mqtt for faster updates in homeassistant 2019-08-25 08:54:19 -05:00
blakeblackshear
700bd1e3ef use a thread to capture frames from the subprocess so it can be killed properly 2019-07-30 19:11:22 -05:00
Alexis Birkill
c9e9f7a735 Fix comparison of object x-coord against mask (#52) 2019-07-30 19:11:22 -05:00
blakeblackshear
aea4dc8724 a few fixes 2019-07-30 19:11:22 -05:00
blakeblackshear
12d5007b90 add required packages for VAAPI 2019-07-30 19:11:22 -05:00
blakeblackshear
8970e73f75 comment formatting and comment out mask in example config 2019-07-30 19:11:22 -05:00
blakeblackshear
1ba006b24f add some comments to the sample config 2019-07-30 19:11:22 -05:00
blakeblackshear
4a58f16637 tweak the label position 2019-07-30 19:11:22 -05:00
blakeblackshear
436b876b24 add support for ffmpeg hwaccel params and better mask handling 2019-07-30 19:11:22 -05:00
blakeblackshear
a770ab7f69 specify a client id for frigate 2019-07-30 19:11:22 -05:00
blakeblackshear
806acaf445 update dockerignore and debug option 2019-07-30 19:11:22 -05:00
Kyle Niewiada
c653567cc1 Add area labels to bounding boxes (#47)
* Add object size to the bounding box

Remove script from Dockerfile

Fix framerate command

Move default value for framerate

update dockerfile

dockerfile changes

Add person_area label to surrounding box


Update dockerfile


ffmpeg config bug


Add `person_area` label to `best_person` frame


Resolve debug view showing area label for non-persons


Add object size to the bounding box


Add object size to the bounding box

* Move object area outside of conditional to work with all object types
2019-07-30 19:11:22 -05:00
blakeblackshear
8fee8f86a2 take_frame config example 2019-07-30 19:11:22 -05:00
blakeblackshear
59a4b0e650 add ability to process every nth frame 2019-07-30 19:11:22 -05:00
blakeblackshear
834a3df0bc added missing scripts 2019-07-30 19:11:22 -05:00
blakeblackshear
c41b104997 extra ffmpeg params to reduce latency 2019-07-30 19:11:22 -05:00
blakeblackshear
7028b05856 add a benchmark script 2019-07-30 19:11:22 -05:00
blakeblackshear
2d22a04391 reduce verbosity of ffmpeg 2019-07-30 19:11:22 -05:00
blakeblackshear
baa587028b use a regular subprocess for ffmpeg, refactor bounding box drawing 2019-07-30 19:11:22 -05:00
blakeblackshear
2b51dc3e5b experimental: running ffmpeg directly and capturing raw frames 2019-07-30 19:11:22 -05:00
blakeblackshear
9f8278ea8f working odroid build, still needs hwaccel 2019-07-30 19:11:22 -05:00
Blake Blackshear
56b9c754f5 Update README.md 2019-06-18 06:19:13 -07:00
Blake Blackshear
5c4f5ef3f0 Create FUNDING.yml 2019-06-18 06:15:05 -07:00
Blake Blackshear
8c924896c5 Merge pull request #36 from drcrimzon/patch-1
Add MQTT connection error handling
2019-05-15 07:10:53 -05:00
Mike Wilkinson
2c2f0044b9 Remove error redundant check 2019-05-14 11:09:57 -04:00
Mike Wilkinson
874e9085a7 Add MQTT connection error handling 2019-05-14 08:34:14 -04:00
Blake Blackshear
e791d6646b Merge pull request #34 from blakeblackshear/watchdog
0.1.2
2019-05-11 07:43:09 -05:00
blakeblackshear
3019b0218c make the threshold configurable per region. fixes #31 2019-05-11 07:39:27 -05:00
blakeblackshear
6900e140d5 add a watchdog to the capture process to detect silent failures. fixes #27 2019-05-11 07:16:15 -05:00
Blake Blackshear
911c1b2bfa Merge pull request #32 from tubalainen/patch-2
Clarification on username and password for MQTT
2019-05-11 07:14:19 -05:00
Blake Blackshear
f4587462cf Merge pull request #33 from tubalainen/patch-3
Update of the home assistant integration example
2019-05-11 07:14:01 -05:00
tubalainen
cac1faa8ac Update of the home assistant integration example
sensor to binary_sensor
device_class type "moving" does not exist, update to "motion"
2019-05-10 16:47:40 +02:00
tubalainen
9525bae5a3 Clarification on username and password for MQTT 2019-05-10 16:36:22 +02:00
blakeblackshear
dbcfd109f6 fix missing import 2019-05-10 06:19:39 -05:00
Blake Blackshear
f95d8b6210 Merge pull request #26 from blakeblackshear/mask
add the ability to mask the standing location of a person
2019-05-01 06:43:32 -05:00
blakeblackshear
4dacf02ef9 add the ability to mask the standing location of a person 2019-04-30 20:35:22 -05:00
16 changed files with 1382 additions and 525 deletions

View File

@@ -1 +1,6 @@
README.md
README.md
diagram.png
.gitignore
debug
config/
*.pyc

1
.github/FUNDING.yml vendored Normal file
View File

@@ -0,0 +1 @@
github: blakeblackshear

2
.gitignore vendored
View File

@@ -1,2 +1,4 @@
*.pyc
debug
.vscode
config/config.yml

View File

@@ -1,107 +1,53 @@
FROM ubuntu:16.04
FROM debian:stretch-slim
LABEL maintainer "blakeb@blakeshome.com"
# Install system packages
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y python3 \
python3-dev \
python-pil \
python-lxml \
python-tk \
build-essential \
cmake \
git \
libgtk2.0-dev \
pkg-config \
libavcodec-dev \
libavformat-dev \
libswscale-dev \
libtbb2 \
libtbb-dev \
libjpeg-dev \
libpng-dev \
libtiff-dev \
libjasper-dev \
libdc1394-22-dev \
x11-apps \
wget \
vim \
ffmpeg \
unzip \
libusb-1.0-0-dev \
python3-setuptools \
python3-numpy \
zlib1g-dev \
libgoogle-glog-dev \
swig \
libunwind-dev \
libc++-dev \
libc++abi-dev \
build-essential \
&& rm -rf /var/lib/apt/lists/*
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt -qq update && apt -qq install --no-install-recommends -y \
apt-transport-https ca-certificates \
gnupg wget \
ffmpeg \
python3 \
python3-pip \
python3-dev \
python3-numpy \
# python-prctl
build-essential libcap-dev \
# pillow-simd
# zlib1g-dev libjpeg-dev \
# VAAPI drivers for Intel hardware accel
i965-va-driver vainfo \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
&& apt -qq update \
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
&& apt -qq install --no-install-recommends -y \
libedgetpu1-max \
python3-edgetpu \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
# Install core packages
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
RUN pip install -U pip \
numpy \
pillow \
matplotlib \
notebook \
Flask \
imutils \
paho-mqtt \
PyYAML
# needs to be installed before others
RUN pip3 install -U wheel setuptools
# Install tensorflow models object detection
RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/google/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.tar.gz
# Download & build protobuf-python
RUN cd /usr/local/src/ \
&& tar xf protobuf-python-3.5.1.tar.gz \
&& rm protobuf-python-3.5.1.tar.gz \
&& cd /usr/local/src/protobuf-3.5.1/ \
&& ./configure \
&& make \
&& make install \
&& ldconfig \
&& rm -rf /usr/local/src/protobuf-3.5.1/
# Download & build OpenCV
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
RUN cd /usr/local/src/ \
&& unzip 4.0.1.zip \
&& rm 4.0.1.zip \
&& cd /usr/local/src/opencv-4.0.1/ \
&& mkdir build \
&& cd /usr/local/src/opencv-4.0.1/build \
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
&& make -j4 \
&& make install \
&& rm -rf /usr/local/src/opencv-4.0.1
# Download and install EdgeTPU libraries
RUN wget -q -O edgetpu_api.tar.gz --no-check-certificate http://storage.googleapis.com/cloud-iot-edge-pretrained-models/edgetpu_api.tar.gz
RUN tar xzf edgetpu_api.tar.gz \
&& cd python-tflite-source \
&& cp -p libedgetpu/libedgetpu_x86_64.so /lib/x86_64-linux-gnu/libedgetpu.so \
&& cp edgetpu/swig/compiled_so/_edgetpu_cpp_wrapper_x86_64.so edgetpu/swig/_edgetpu_cpp_wrapper.so \
&& cp edgetpu/swig/compiled_so/edgetpu_cpp_wrapper.py edgetpu/swig/ \
&& python3 setup.py develop --user
# Minimize image size
RUN (apt-get autoremove -y; \
apt-get autoclean -y)
RUN pip3 install -U \
opencv-python-headless \
python-prctl \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
scipy
# symlink the model and labels
RUN ln -s /python-tflite-source/edgetpu/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
RUN ln -s /python-tflite-source/edgetpu/test_data/coco_labels.txt /label_map.pbtext
# Set TF object detection available
ENV PYTHONPATH "$PYTHONPATH:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research/slim"
RUN cd /usr/local/lib/python3.5/dist-packages/tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=.
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
RUN ln -s mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
RUN ln -s /coco_labels.txt /label_map.pbtext
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
CMD ["python3", "-u", "detect_objects.py"]

View File

@@ -1,7 +1,7 @@
# Frigate - Realtime Object Detection for RTSP Cameras
# Frigate - Realtime Object Detection for IP Cameras
**Note:** This version requires the use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/)
Uses OpenCV and Tensorflow to perform realtime object detection locally for RTSP cameras. Designed for integration with HomeAssistant or others via MQTT.
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
- Leverages multiprocessing and threads heavily with an emphasis on realtime over processing every frame
- Allows you to define specific regions (squares) in the image to look for objects
@@ -30,8 +30,9 @@ docker run --rm \
--privileged \
-v /dev/bus/usb:/dev/bus/usb \
-v <path_to_config_dir>:/config:ro \
-v /etc/localtime:/etc/localtime:ro \
-p 5000:5000 \
-e RTSP_PASSWORD='password' \
-e FRIGATE_RTSP_PASSWORD='password' \
frigate:latest
```
@@ -44,35 +45,58 @@ Example docker-compose:
image: frigate:latest
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
- <path_to_config>:/config
ports:
- "5000:5000"
environment:
RTSP_PASSWORD: "password"
FRIGATE_RTSP_PASSWORD: "password"
```
A `config.yml` file must exist in the `config` directory. See example [here](config/config.yml).
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best person snapshot at `http://localhost:5000/<camera_name>/best_person.jpg`
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
## Integration with HomeAssistant
```
camera:
- name: Camera Last Person
platform: generic
still_image_url: http://<ip>:5000/<camera_name>/best_person.jpg
platform: mqtt
topic: frigate/<camera_name>/person/snapshot
- name: Camera Last Car
platform: mqtt
topic: frigate/<camera_name>/car/snapshot
sensor:
binary_sensor:
- name: Camera Person
platform: mqtt
state_topic: "frigate/<camera_name>/objects"
value_template: '{{ value_json.person }}'
device_class: moving
state_topic: "frigate/<camera_name>/person"
device_class: motion
availability_topic: "frigate/available"
automation:
- alias: Alert me if a person is detected while armed away
trigger:
platform: state
entity_id: binary_sensor.camera_person
from: 'off'
to: 'on'
condition:
- condition: state
entity_id: alarm_control_panel.home_alarm
state: armed_away
action:
- service: notify.user_telegram
data:
message: "A person was detected."
data:
photo:
- url: http://<ip>:5000/<camera_name>/person/best.jpg
caption: A person was detected.
```
## Tips
- Lower the framerate of the RTSP feed on the camera to reduce the CPU usage for capturing the feed
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
## Future improvements
- [x] Remove motion detection for now

20
benchmark.py Normal file
View File

@@ -0,0 +1,20 @@
import statistics
import numpy as np
from edgetpu.detection.engine import DetectionEngine
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# Load the edgetpu engine and labels
engine = DetectionEngine(PATH_TO_CKPT)
frame = np.zeros((300,300,3), np.uint8)
flattened_frame = np.expand_dims(frame, axis=0).flatten()
detection_times = []
for x in range(0, 1000):
objects = engine.detect_with_input_tensor(flattened_frame, threshold=0.1, top_k=3)
detection_times.append(engine.get_inference_time())
print("Average inference time: " + str(statistics.mean(detection_times)))

BIN
config/back-mask.bmp Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

130
config/config.example.yml Normal file
View File

@@ -0,0 +1,130 @@
web_port: 5000
mqtt:
host: mqtt.server.com
topic_prefix: frigate
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
# user: username # Optional -- Uncomment for use
# password: password # Optional -- Uncomment for use
#################
# Default ffmpeg args. Optional and can be overwritten per camera.
# Should work with most RTSP cameras that send h264 video
# Built from the properties below with:
# "ffmpeg" + global_args + input_args + "-i" + input + output_args
#################
# ffmpeg:
# global_args:
# - -hide_banner
# - -loglevel
# - panic
# hwaccel_args: []
# input_args:
# - -avoid_negative_ts
# - make_zero
# - -fflags
# - nobuffer
# - -flags
# - low_delay
# - -strict
# - experimental
# - -fflags
# - +genpts+discardcorrupt
# - -vsync
# - drop
# - -rtsp_transport
# - tcp
# - -stimeout
# - '5000000'
# - -use_wallclock_as_timestamps
# - '1'
# output_args:
# - -vf
# - mpdecimate
# - -f
# - rawvideo
# - -pix_fmt
# - rgb24
####################
# Global object configuration. Applies to all cameras
# unless overridden at the camera levels.
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
# min_area (optional): minimum width*height of the bounding box for the detected person
# max_area (optional): maximum width*height of the bounding box for the detected person
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
####################
objects:
track:
- person
- car
- truck
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
cameras:
back:
ffmpeg:
################
# Source passed to ffmpeg after the -i parameter. Supports anything compatible with OpenCV and FFmpeg.
# Environment variables that begin with 'FRIGATE_' may be referenced in {}
################
input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
#################
# These values will override default values for just this camera
#################
# global_args: []
# hwaccel_args: []
# input_args: []
# output_args: []
################
## Optional mask. Must be the same dimensions as your video feed.
## The mask works by looking at the bottom center of the bounding box for the detected
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
## false positive. In my mask, the grass and driveway visible from my backdoor camera
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
## person to stand) are black.
################
# mask: back-mask.bmp
################
# Allows you to limit the framerate within frigate for cameras that do not support
# custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,
# 3 every 3rd frame, etc.
################
take_frame: 1
################
# Overrides for global object config
################
objects:
track:
- person
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
################
# size: size of the region in pixels
# x_offset/y_offset: position of the upper left corner of your region (top left of image is 0,0)
# Tips: All regions are resized to 300x300 before detection because the model is trained on that size.
# Resizing regions takes CPU power. Ideally, all regions should be as close to 300x300 as possible.
# Defining a region that goes outside the bounds of the image will result in errors.
################
regions:
- size: 350
x_offset: 0
y_offset: 300
- size: 400
x_offset: 350
y_offset: 250
- size: 400
x_offset: 750
y_offset: 250

View File

@@ -1,49 +0,0 @@
web_port: 5000
mqtt:
host: mqtt.server.com
topic_prefix: frigate
cameras:
back:
rtsp:
user: viewer
host: 10.0.10.10
port: 554
# values that begin with a "$" will be replaced with environment variable
password: $RTSP_PASSWORD
path: /cam/realmonitor?channel=1&subtype=2
regions:
- size: 350
x_offset: 0
y_offset: 300
min_person_area: 5000
- size: 400
x_offset: 350
y_offset: 250
min_person_area: 2000
- size: 400
x_offset: 750
y_offset: 250
min_person_area: 2000
back2:
rtsp:
user: viewer
host: 10.0.10.10
port: 554
# values that begin with a "$" will be replaced with environment variable
password: $RTSP_PASSWORD
path: /cam/realmonitor?channel=1&subtype=2
regions:
- size: 350
x_offset: 0
y_offset: 300
min_person_area: 5000
- size: 400
x_offset: 350
y_offset: 250
min_person_area: 2000
- size: 400
x_offset: 750
y_offset: 250
min_person_area: 2000

View File

@@ -3,11 +3,12 @@ import time
import queue
import yaml
import numpy as np
from flask import Flask, Response, make_response
from flask import Flask, Response, make_response, jsonify
import paho.mqtt.client as mqtt
from frigate.video import Camera
from frigate.object_detection import PreppedQueueProcessor
from frigate.util import EventsPerSecond
with open('/config/config.yml') as f:
CONFIG = yaml.safe_load(f)
@@ -17,6 +18,32 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
# Set the default FFmpeg config
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
FFMPEG_DEFAULT_CONFIG = {
'global_args': FFMPEG_CONFIG.get('global_args',
['-hide_banner','-loglevel','panic']),
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
[]),
'input_args': FFMPEG_CONFIG.get('input_args',
['-avoid_negative_ts', 'make_zero',
'-fflags', 'nobuffer',
'-flags', 'low_delay',
'-strict', 'experimental',
'-fflags', '+genpts+discardcorrupt',
'-vsync', 'drop',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
'output_args': FFMPEG_CONFIG.get('output_args',
['-vf', 'mpdecimate',
'-f', 'rawvideo',
'-pix_fmt', 'rgb24'])
}
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
@@ -25,9 +52,18 @@ def main():
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
if rc != 0:
if rc == 3:
print ("MQTT Server unavailable")
elif rc == 4:
print ("MQTT Bad username or password")
elif rc == 5:
print ("MQTT Not authorized")
else:
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
client = mqtt.Client()
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
client.on_connect = on_connect
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
if not MQTT_USER is None:
@@ -35,19 +71,23 @@ def main():
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
# Queue for prepped frames, max size set to (number of cameras * 5)
max_queue_size = len(CONFIG['cameras'].items())*5
prepped_frame_queue = queue.Queue(max_queue_size)
# Queue for prepped frames, max size set to number of regions * 3
prepped_frame_queue = queue.Queue()
cameras = {}
for name, config in CONFIG['cameras'].items():
cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config,
prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
fps_tracker = EventsPerSecond()
prepped_queue_processor = PreppedQueueProcessor(
cameras,
prepped_frame_queue
prepped_frame_queue,
fps_tracker
)
prepped_queue_processor.start()
fps_tracker.start()
for name, camera in cameras.items():
camera.start()
@@ -56,35 +96,60 @@ def main():
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@app.route('/<camera_name>/best_person.jpg')
def best_person(camera_name):
best_person_frame = cameras[camera_name].get_best_person()
if best_person_frame is None:
best_person_frame = np.zeros((720,1280,3), np.uint8)
ret, jpg = cv2.imencode('.jpg', best_person_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
@app.route('/')
def ishealthy():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/debug/stats')
def stats():
stats = {
'coral': {
'fps': fps_tracker.eps(),
'inference_speed': prepped_queue_processor.avg_inference_speed,
'queue_length': prepped_frame_queue.qsize()
}
}
for name, camera in cameras.items():
stats[name] = camera.stats()
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in cameras:
best_frame = cameras[camera_name].get_best(label)
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
# return a multipart response
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
if camera_name in cameras:
# return a multipart response
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name):
while True:
# max out at 5 FPS
time.sleep(0.2)
# max out at 1 FPS
time.sleep(1)
frame = cameras[camera_name].get_current_frame_with_objects()
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
camera.join()
if __name__ == '__main__':
main()
main()

74
docs/DEVICES.md Normal file
View File

@@ -0,0 +1,74 @@
# Configuration Examples
### Default (most RTSP cameras)
This is the default ffmpeg command and should work with most RTSP cameras that send h264 video
```yaml
ffmpeg:
global_args:
- -hide_banner
- -loglevel
- panic
hwaccel_args: []
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -rtsp_transport
- tcp
- -stimeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
output_args:
- -vf
- mpdecimate
- -f
- rawvideo
- -pix_fmt
- rgb24
```
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -use_wallclock_as_timestamps
- '1'
```
### Hardware Acceleration
Intel Quicksync
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```

View File

@@ -1,33 +1,54 @@
import json
import cv2
import threading
import prctl
from collections import Counter, defaultdict
import itertools
class MqttObjectPublisher(threading.Thread):
def __init__(self, client, topic_prefix, objects_parsed, detected_objects):
def __init__(self, client, topic_prefix, camera):
threading.Thread.__init__(self)
self.client = client
self.topic_prefix = topic_prefix
self.objects_parsed = objects_parsed
self._detected_objects = detected_objects
self.camera = camera
def run(self):
last_sent_payload = ""
prctl.set_name(self.__class__.__name__)
current_object_status = defaultdict(lambda: 'OFF')
while True:
# wait until objects have been tracked
with self.camera.objects_tracked:
self.camera.objects_tracked.wait()
# initialize the payload
payload = {}
# count objects with more than 2 entries in history by type
obj_counter = Counter()
for obj in self.camera.object_tracker.tracked_objects.values():
if len(obj['history']) > 1:
obj_counter[obj['name']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
# send the snapshot over mqtt if we have it as well
if obj_name in self.camera.best_frames.best_frames:
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# add all the person scores in detected objects
detected_objects = self._detected_objects.copy()
person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])
# if the person score is more than 100, set person to ON
payload['person'] = 'ON' if int(person_score*100) > 100 else 'OFF'
# send message for objects if different
new_payload = json.dumps(payload, sort_keys=True)
if new_payload != last_sent_payload:
last_sent_payload = new_payload
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
# send updated snapshot snapshot over mqtt if we have it as well
if obj_name in self.camera.best_frames.best_frames:
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)

View File

@@ -2,27 +2,15 @@ import datetime
import time
import cv2
import threading
import copy
import prctl
import numpy as np
from edgetpu.detection.engine import DetectionEngine
from . util import tonumpyarray
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
from frigate.util import tonumpyarray, LABELS, PATH_TO_CKPT, calculate_region
class PreppedQueueProcessor(threading.Thread):
def __init__(self, cameras, prepped_frame_queue):
def __init__(self, cameras, prepped_frame_queue, fps):
threading.Thread.__init__(self)
self.cameras = cameras
@@ -30,81 +18,122 @@ class PreppedQueueProcessor(threading.Thread):
# Load the edgetpu engine and labels
self.engine = DetectionEngine(PATH_TO_CKPT)
self.labels = ReadLabelFile(PATH_TO_LABELS)
self.labels = LABELS
self.fps = fps
self.avg_inference_speed = 10
def run(self):
prctl.set_name(self.__class__.__name__)
# process queue...
while True:
frame = self.prepped_frame_queue.get()
# Actual detection.
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
# parse and pass detected objects back to the camera
parsed_objects = []
for obj in objects:
box = obj.bounding_box.flatten().tolist()
parsed_objects.append({
'frame_time': frame['frame_time'],
'name': str(self.labels[obj.label_id]),
'score': float(obj.score),
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
})
self.cameras[frame['camera_name']].add_objects(parsed_objects)
frame['detected_objects'] = self.engine.detect_with_input_tensor(frame['frame'], threshold=0.2, top_k=5)
self.fps.update()
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
self.cameras[frame['camera_name']].detected_objects_queue.put(frame)
# should this be a region class?
class FramePrepper(threading.Thread):
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
frame_lock,
region_size, region_x_offset, region_y_offset,
prepped_frame_queue):
class RegionRequester(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera_name = camera_name
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.region_size = region_size
self.region_x_offset = region_x_offset
self.region_y_offset = region_y_offset
self.prepped_frame_queue = prepped_frame_queue
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
with self.frame_ready:
with self.camera.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5:
self.camera.frame_ready.wait()
# make a copy of the cropped frame
with self.frame_lock:
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
frame_time = self.frame_time.value
# make a copy of the frame_time
frame_time = self.camera.frame_time.value
# grab the current tracked objects
with self.camera.object_tracker.tracked_objects_lock:
tracked_objects = copy.deepcopy(self.camera.object_tracker.tracked_objects).values()
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
self.camera.regions_in_process[frame_time] += len(tracked_objects)
for index, region in enumerate(self.camera.config['regions']):
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': index,
'size': region['size'],
'x_offset': region['x_offset'],
'y_offset': region['y_offset']
})
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# request a region for tracked objects
for tracked_object in tracked_objects:
box = tracked_object['box']
# calculate a new region that will hopefully get the entire object
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
box['xmin'], box['ymin'],
box['xmax'], box['ymax'])
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': -1,
'size': size,
'x_offset': x_offset,
'y_offset': y_offset
})
class RegionPrepper(threading.Thread):
def __init__(self, camera, frame_cache, resize_request_queue, prepped_frame_queue):
threading.Thread.__init__(self)
self.camera = camera
self.frame_cache = frame_cache
self.resize_request_queue = resize_request_queue
self.prepped_frame_queue = prepped_frame_queue
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
resize_request = self.resize_request_queue.get()
# if the queue is over 100 items long, only prep dynamic regions
if resize_request['region_id'] != -1 and self.prepped_frame_queue.qsize() > 100:
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[resize_request['frame_time']] -= 1
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
del self.camera.regions_in_process[resize_request['frame_time']]
self.camera.skipped_region_tracker.update()
continue
frame = self.frame_cache.get(resize_request['frame_time'], None)
if frame is None:
print("RegionPrepper: frame_time not in frame_cache")
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[resize_request['frame_time']] -= 1
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
del self.camera.regions_in_process[resize_request['frame_time']]
self.camera.skipped_region_tracker.update()
continue
# make a copy of the region
cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
# Resize to 300x300 if needed
if cropped_frame_rgb.shape != (300, 300, 3):
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
if cropped_frame.shape != (300, 300, 3):
# TODO: use Pillow-SIMD?
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
frame_expanded = np.expand_dims(cropped_frame, axis=0)
# add the frame to the queue
if not self.prepped_frame_queue.full():
self.prepped_frame_queue.put({
'camera_name': self.camera_name,
'frame_time': frame_time,
'frame': frame_expanded.flatten().copy(),
'region_size': self.region_size,
'region_x_offset': self.region_x_offset,
'region_y_offset': self.region_y_offset
})
else:
print("queue full. moving on")
resize_request['frame'] = frame_expanded.flatten().copy()
self.prepped_frame_queue.put(resize_request)

View File

@@ -2,95 +2,404 @@ import time
import datetime
import threading
import cv2
from object_detection.utils import visualization_utils as vis_util
import prctl
import itertools
import copy
import numpy as np
import multiprocessing as mp
from collections import defaultdict
from scipy.spatial import distance as dist
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
class ObjectCleaner(threading.Thread):
def __init__(self, objects_parsed, detected_objects):
def __init__(self, camera):
threading.Thread.__init__(self)
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
self.camera = camera
def run(self):
prctl.set_name("ObjectCleaner")
while True:
# wait a bit before checking for expired frames
time.sleep(0.2)
# expire the objects that are more than 1 second old
now = datetime.datetime.now().timestamp()
# look for the first object found within the last second
# (newest objects are appended to the end)
detected_objects = self._detected_objects.copy()
for frame_time in list(self.camera.detected_objects.keys()).copy():
if not frame_time in self.camera.frame_cache:
del self.camera.detected_objects[frame_time]
objects_deregistered = False
with self.camera.object_tracker.tracked_objects_lock:
now = datetime.datetime.now().timestamp()
for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
# if the object is more than 10 seconds old
# and not in the most recent frame, deregister
if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
self.camera.object_tracker.deregister(id)
objects_deregistered = True
if objects_deregistered:
with self.camera.objects_tracked:
self.camera.objects_tracked.notify_all()
num_to_delete = 0
for obj in detected_objects:
if now-obj['frame_time']<2:
break
num_to_delete += 1
if num_to_delete > 0:
del self._detected_objects[:num_to_delete]
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
# Maintains the frame and person with the highest score from the most recent
# motion event
class BestPersonFrame(threading.Thread):
def __init__(self, objects_parsed, recent_frames, detected_objects):
class DetectedObjectsProcessor(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.objects_parsed = objects_parsed
self.recent_frames = recent_frames
self.detected_objects = detected_objects
self.best_person = None
self.best_frame = None
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame = self.camera.detected_objects_queue.get()
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
objects = frame['detected_objects']
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
for raw_obj in objects:
name = str(LABELS[raw_obj.label_id])
# get the highest scoring person
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
if not name in self.camera.objects_to_track:
continue
# if there isnt a person, continue
if new_best_person is None:
obj = {
'name': name,
'score': float(raw_obj.score),
'box': {
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
},
'region': {
'xmin': frame['x_offset'],
'ymin': frame['y_offset'],
'xmax': frame['x_offset']+frame['size'],
'ymax': frame['y_offset']+frame['size']
},
'frame_time': frame['frame_time'],
'region_id': frame['region_id']
}
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
obj['clipped'] = False
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
obj['clipped'] = True
# Compute the area
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
self.camera.detected_objects[frame['frame_time']].append(obj)
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[frame['frame_time']] -= 1
# print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
if self.camera.regions_in_process[frame['frame_time']] == 0:
del self.camera.regions_in_process[frame['frame_time']]
# print(f"{frame['frame_time']} no remaining regions")
self.camera.finished_frame_queue.put(frame['frame_time'])
# Thread that checks finished frames for clipped objects and sends back
# for processing if needed
class RegionRefiner(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame_time = self.camera.finished_frame_queue.get()
detected_objects = self.camera.detected_objects[frame_time].copy()
# print(f"{frame_time} finished")
# group by name
detected_object_groups = defaultdict(lambda: [])
for obj in detected_objects:
detected_object_groups[obj['name']].append(obj)
look_again = False
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
for o in group]
confidences = [o['score'] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
selected_objects.append(obj)
if obj['clipped']:
box = obj['box']
# calculate a new region that will hopefully get the entire object
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
box['xmin'], box['ymin'],
box['xmax'], box['ymax'])
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
with self.camera.regions_in_process_lock:
if not frame_time in self.camera.regions_in_process:
self.camera.regions_in_process[frame_time] = 1
else:
self.camera.regions_in_process[frame_time] += 1
# add it to the queue
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': -1,
'size': size,
'x_offset': x_offset,
'y_offset': y_offset
})
self.camera.dynamic_region_fps.update()
look_again = True
# if we are looking again, then this frame is not ready for processing
if look_again:
# remove the clipped objects
self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
continue
# if there is no current best_person
if self.best_person is None:
self.best_person = new_best_person
# if there is already a best_person
else:
now = datetime.datetime.now().timestamp()
# if the new best person is a higher score than the current best person
# or the current person is more than 1 minute old, use the new best person
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
self.best_person = new_best_person
# make a copy of the recent frames
recent_frames = self.recent_frames.copy()
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
best_frame = recent_frames[self.best_person['frame_time']]
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
# draw the bounding box on the frame
vis_util.draw_bounding_box_on_image_array(best_frame,
self.best_person['ymin'],
self.best_person['xmin'],
self.best_person['ymax'],
self.best_person['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
use_normalized_coordinates=False)
# filter objects based on camera settings
selected_objects = [o for o in selected_objects if not self.filtered(o)]
# convert back to BGR
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
self.camera.detected_objects[frame_time] = selected_objects
# print(f"{frame_time} is actually finished")
# keep adding frames to the refined queue as long as they are finished
with self.camera.regions_in_process_lock:
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
self.camera.last_processed_frame = self.camera.frame_queue.get()
self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
def filtered(self, obj):
object_name = obj['name']
if object_name in self.camera.object_filters:
obj_settings = self.camera.object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if self.camera.mask[y_location][x_location] == [0]:
return True
return False
def has_overlap(self, new_obj, obj, overlap=.7):
# compute intersection rectangle with existing object and new objects region
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
# compute intersection rectangle with new object and existing objects region
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
# compute iou for the two intersection rectangles that were just computed
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
# if intersection is greater than overlap
if iou > overlap:
return True
else:
return False
def find_group(self, new_obj, groups):
for index, group in enumerate(groups):
for obj in group:
if self.has_overlap(new_obj, obj):
return index
return None
class ObjectTracker(threading.Thread):
def __init__(self, camera, max_disappeared):
threading.Thread.__init__(self)
self.camera = camera
self.tracked_objects = {}
self.tracked_objects_lock = mp.Lock()
self.most_recent_frame_time = None
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame_time = self.camera.refined_frame_queue.get()
with self.tracked_objects_lock:
self.match_and_update(self.camera.detected_objects[frame_time])
self.most_recent_frame_time = frame_time
self.camera.frame_output_queue.put((frame_time, copy.deepcopy(self.tracked_objects)))
if len(self.tracked_objects) > 0:
with self.camera.objects_tracked:
self.camera.objects_tracked.notify_all()
def register(self, index, obj):
id = "{}-{}".format(str(obj['frame_time']), index)
obj['id'] = id
obj['top_score'] = obj['score']
self.add_history(obj)
self.tracked_objects[id] = obj
def deregister(self, id):
del self.tracked_objects[id]
def update(self, id, new_obj):
self.tracked_objects[id].update(new_obj)
self.add_history(self.tracked_objects[id])
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def add_history(self, obj):
entry = {
'score': obj['score'],
'box': obj['box'],
'region': obj['region'],
'centroid': obj['centroid'],
'frame_time': obj['frame_time']
}
if 'history' in obj:
obj['history'].append(entry)
else:
obj['history'] = [entry]
def match_and_update(self, new_objects):
if len(new_objects) == 0:
return
# group by name
new_object_groups = defaultdict(lambda: [])
for obj in new_objects:
new_object_groups[obj['name']].append(obj)
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
current_ids = [o['id'] for o in current_objects]
current_centroids = np.array([o['centroid'] for o in current_objects])
# compute centroids of new objects
for obj in group:
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
obj['centroid'] = (centroid_x, centroid_y)
if len(current_objects) == 0:
for index, obj in enumerate(group):
self.register(index, obj)
return
new_centroids = np.array([o['centroid'] for o in group])
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
if row in usedRows or col in usedCols:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = current_ids[row]
self.update(objectID, group[col])
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute the column index we have NOT yet examined
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
# if D.shape[0] < D.shape[1]:
for col in unusedCols:
self.register(col, group[col])
# Maintains the frame and object with the highest score
class BestFrames(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
self.best_objects = {}
self.best_frames = {}
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
# wait until objects have been tracked
with self.camera.objects_tracked:
self.camera.objects_tracked.wait()
# make a copy of tracked objects
tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
for obj in tracked_objects:
if obj['name'] in self.best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
self.best_objects[obj['name']] = copy.deepcopy(obj)
else:
self.best_objects[obj['name']] = copy.deepcopy(obj)
for name, obj in self.best_objects.items():
if obj['frame_time'] in self.camera.frame_cache:
best_frame = self.camera.frame_cache[obj['frame_time']]
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
self.best_frames[name] = best_frame

View File

@@ -1,5 +1,161 @@
import datetime
import collections
import numpy as np
import cv2
import threading
import matplotlib.pyplot as plt
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*2)
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1]-size):
x_offset = (frame_shape[1]-size)
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0]-size):
y_offset = (frame_shape[0]-size)
return (size, x_offset, y_offset)
def compute_intersection_rectangle(box_a, box_b):
return {
'xmin': max(box_a['xmin'], box_b['xmin']),
'ymin': max(box_a['ymin'], box_b['ymin']),
'xmax': min(box_a['xmax'], box_b['xmax']),
'ymax': min(box_a['ymax'], box_b['ymax'])
}
def compute_intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = compute_intersection_rectangle(box_a, box_b)
# compute the area of intersection rectangle
inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = inter_area / float(box_a_area + box_b_area - inter_area)
# return the intersection over union value
return iou
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
color = COLOR_MAP[label]
display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min),
(x_max, y_max),
color, thickness)
font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
if position == 'ul':
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'ur':
text_offset_x = x_max - (text_width+8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'bl':
text_offset_x = x_min
text_offset_y = y_max
elif position == 'br':
text_offset_x = x_max - (text_width+8)
text_offset_y = y_max
# make the coords of the box with a small padding of two pixels
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
LABELS = ReadLabelFile(PATH_TO_LABELS)
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
class QueueMerger():
def __init__(self, from_queues, to_queue):
self.from_queues = from_queues
self.to_queue = to_queue
self.merge_threads = []
def start(self):
for from_q in self.from_queues:
self.merge_threads.append(QueueTransfer(from_q,self.to_queue))
class QueueTransfer(threading.Thread):
def __init__(self, from_queue, to_queue):
threading.Thread.__init__(self)
self.from_queue = from_queue
self.to_queue = to_queue
def run(self):
while True:
self.to_queue.put(self.from_queue.get())
class EventsPerSecond:
def __init__(self, max_events=1000):
self._start = None
self._max_events = max_events
self._timestamps = []
def start(self):
self._start = datetime.datetime.now().timestamp()
def update(self):
self._timestamps.append(datetime.datetime.now().timestamp())
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events+100:
self._timestamps = self._timestamps[(1-self._max_events):]
def eps(self, last_n_seconds=10):
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now-self._start, last_n_seconds)
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds

View File

@@ -2,239 +2,326 @@ import os
import time
import datetime
import cv2
import queue
import threading
import ctypes
import multiprocessing as mp
from object_detection.utils import visualization_utils as vis_util
from . util import tonumpyarray
from . object_detection import FramePrepper
from . objects import ObjectCleaner, BestPersonFrame
from . mqtt import MqttObjectPublisher
import subprocess as sp
import numpy as np
import prctl
import copy
import itertools
from collections import defaultdict
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
from frigate.object_detection import RegionPrepper, RegionRequester
from frigate.objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
from frigate.mqtt import MqttObjectPublisher
# fetch the frames as fast a possible and store current frame in a shared memory array
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the video capture
video = cv2.VideoCapture()
video.open(rtsp_url)
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
bad_frame_counter = 0
while True:
# check if the video stream is still open, and reopen if needed
if not video.isOpened():
success = video.open(rtsp_url)
if not success:
time.sleep(1)
continue
# grab the frame, but dont decode it yet
ret = video.grab()
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# Lock access and update frame
with frame_lock:
arr[:] = frame
shared_frame_time.value = frame_time.timestamp()
# Notify with the condition that a new frame is ready
with frame_ready:
frame_ready.notify_all()
bad_frame_counter = 0
else:
print("Unable to decode frame")
bad_frame_counter += 1
else:
print("Unable to grab a frame")
bad_frame_counter += 1
if bad_frame_counter > 100:
video.release()
video.release()
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
# Stores 2 seconds worth of frames so they can be used for other threads
class FrameTracker(threading.Thread):
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
threading.Thread.__init__(self)
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.recent_frames = recent_frames
def run(self):
frame_time = 0.0
prctl.set_name(self.__class__.__name__)
while True:
now = datetime.datetime.now().timestamp()
# wait for a frame
with self.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a signal
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# lock and make a copy of the frame
with self.frame_lock:
frame = self.shared_frame.copy()
frame_time = self.frame_time.value
# add the frame to recent frames
self.recent_frames[frame_time] = frame
self.frame_ready.wait()
# delete any old frames
stored_frame_times = list(self.recent_frames.keys())
for k in stored_frame_times:
if (now - k) > 2:
stored_frame_times.sort(reverse=True)
if len(stored_frame_times) > 100:
frames_to_delete = stored_frame_times[50:]
for k in frames_to_delete:
del self.recent_frames[k]
def get_frame_shape(rtsp_url):
def get_frame_shape(source):
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(rtsp_url)
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
def get_rtsp_url(rtsp_config):
if (rtsp_config['password'].startswith('$')):
rtsp_config['password'] = os.getenv(rtsp_config['password'][1:])
return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'],
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
rtsp_config['path'])
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
class CameraWatchdog(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
# wait a bit before checking
time.sleep(10)
if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
self.camera.start_or_restart_capture()
time.sleep(5)
# Thread to read the stdout of the ffmpeg process and update the current frame
class CameraCapture(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
frame_num = 0
while True:
if self.camera.ffmpeg_process.poll() != None:
print(self.camera.name + ": ffmpeg process is not running. exiting capture thread...")
break
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
if len(raw_image) == 0:
print(self.camera.name + ": ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
break
frame_num += 1
if (frame_num % self.camera.take_frame) != 0:
continue
with self.camera.frame_lock:
# TODO: use frame_queue instead
self.camera.frame_time.value = datetime.datetime.now().timestamp()
self.camera.frame_cache[self.camera.frame_time.value] = (
np
.frombuffer(raw_image, np.uint8)
.reshape(self.camera.frame_shape)
)
self.camera.frame_queue.put(self.camera.frame_time.value)
# Notify with the condition that a new frame is ready
with self.camera.frame_ready:
self.camera.frame_ready.notify_all()
self.camera.fps.update()
class VideoWriter(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
(frame_time, tracked_objects) = self.camera.frame_output_queue.get()
# if len(tracked_objects) == 0:
# continue
# f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
# f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
# f.close()
class Camera:
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
self.name = name
self.config = config
self.detected_objects = []
self.recent_frames = {}
self.rtsp_url = get_rtsp_url(self.config['rtsp'])
self.detected_objects = defaultdict(lambda: [])
self.frame_cache = {}
self.last_processed_frame = None
# queue for re-assembling frames in order
self.frame_queue = queue.Queue()
# track how many regions have been requested for a frame so we know when a frame is complete
self.regions_in_process = {}
# Lock to control access
self.regions_in_process_lock = mp.Lock()
self.finished_frame_queue = queue.Queue()
self.refined_frame_queue = queue.Queue()
self.frame_output_queue = queue.Queue()
self.ffmpeg = config.get('ffmpeg', {})
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
camera_objects_config = config.get('objects', {})
self.take_frame = self.config.get('take_frame', 1)
self.regions = self.config['regions']
self.frame_shape = get_frame_shape(self.rtsp_url)
self.frame_shape = get_frame_shape(self.ffmpeg_input)
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
self.mqtt_client = mqtt_client
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
# compute the flattened array length from the shape of the frame
flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
# create shared array for storing the full frame image data
self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length)
# create shared value for storing the frame_time
self.shared_frame_time = mp.Value('d', 0.0)
self.frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame
self.frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
self.frame_ready = mp.Condition()
# Condition for notifying that objects were parsed
self.objects_parsed = mp.Condition()
# Condition for notifying that objects were tracked
self.objects_tracked = mp.Condition()
# shape current frame so it can be treated as a numpy image
self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
# Queue for prepped frames, max size set to (number of regions * 5)
self.resize_queue = queue.Queue()
# create the process to capture frames from the RTSP stream and store in a shared array
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
self.capture_process.daemon = True
# Queue for raw detected objects
self.detected_objects_queue = queue.Queue()
self.detected_objects_processor = DetectedObjectsProcessor(self)
self.detected_objects_processor.start()
# for each region, create a separate thread to resize the region and prep for detection
self.detection_prep_threads = []
for region in self.config['regions']:
self.detection_prep_threads.append(FramePrepper(
self.name,
self.shared_frame_np,
self.shared_frame_time,
self.frame_ready,
self.frame_lock,
region['size'], region['x_offset'], region['y_offset'],
prepped_frame_queue
))
# start a thread to store recent motion frames for processing
self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time,
self.frame_ready, self.frame_lock, self.recent_frames)
# initialize the frame cache
self.cached_frame_with_objects = {
'frame_bytes': [],
'frame_time': 0
}
self.ffmpeg_process = None
self.capture_thread = None
self.fps = EventsPerSecond()
self.skipped_region_tracker = EventsPerSecond()
# combine tracked objects lists
self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# merge object filters
global_object_filters = global_objects_config.get('filters', {})
camera_object_filters = camera_objects_config.get('filters', {})
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
self.object_filters = {}
for obj in objects_with_config:
self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
# start a thread to track objects
self.object_tracker = ObjectTracker(self, 10)
self.object_tracker.start()
# start a thread to write tracked frames to disk
self.video_writer = VideoWriter(self)
self.video_writer.start()
# start a thread to queue resize requests for regions
self.region_requester = RegionRequester(self)
self.region_requester.start()
# start a thread to cache recent frames for processing
self.frame_tracker = FrameTracker(self.frame_time,
self.frame_ready, self.frame_lock, self.frame_cache)
self.frame_tracker.start()
# start a thread to store the highest scoring recent person frame
self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
self.best_person_frame.start()
# start a thread to resize regions
self.region_prepper = RegionPrepper(self, self.frame_cache, self.resize_queue, prepped_frame_queue)
self.region_prepper.start()
# start a thread to store the highest scoring recent frames for monitored object types
self.best_frames = BestFrames(self)
self.best_frames.start()
# start a thread to expire objects from the detected objects list
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
self.object_cleaner = ObjectCleaner(self)
self.object_cleaner.start()
# start a thread to publish object scores (currently only person)
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
# start a thread to refine regions when objects are clipped
self.dynamic_region_fps = EventsPerSecond()
self.region_refiner = RegionRefiner(self)
self.region_refiner.start()
self.dynamic_region_fps.start()
# start a thread to publish object scores
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
mqtt_publisher.start()
# create a watchdog thread for capture process
self.watchdog = CameraWatchdog(self)
# load in the mask for object detection
if 'mask' in self.config:
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
else:
self.mask = None
if self.mask is None:
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
self.mask[:] = 255
def start_or_restart_capture(self):
if not self.ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
self.ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_process.wait(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
self.ffmpeg_process.kill()
self.ffmpeg_process.wait()
print("Waiting for the capture thread to exit...")
self.capture_thread.join()
self.ffmpeg_process = None
self.capture_thread = None
# create the process to capture frames from the input stream and store in a shared array
print("Creating a new ffmpeg process...")
self.start_ffmpeg()
print("Creating a new capture thread...")
self.capture_thread = CameraCapture(self)
print("Starting a new capture thread...")
self.capture_thread.start()
self.fps.start()
self.skipped_region_tracker.start()
def start_ffmpeg(self):
ffmpeg_cmd = (['ffmpeg'] +
self.ffmpeg_global_args +
self.ffmpeg_hwaccel_args +
self.ffmpeg_input_args +
['-i', self.ffmpeg_input] +
self.ffmpeg_output_args +
['pipe:'])
print(" ".join(ffmpeg_cmd))
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
def start(self):
self.capture_process.start()
# start the object detection prep threads
for detection_prep_thread in self.detection_prep_threads:
detection_prep_thread.start()
self.start_or_restart_capture()
self.watchdog.start()
def join(self):
self.capture_process.join()
self.capture_thread.join()
def get_capture_pid(self):
return self.capture_process.pid
return self.ffmpeg_process.pid
def add_objects(self, objects):
if len(objects) == 0:
return
def get_best(self, label):
return self.best_frames.best_frames.get(label)
for obj in objects:
if obj['name'] == 'person':
person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
# find the matching region
region = None
for r in self.regions:
if (
obj['xmin'] >= r['x_offset'] and
obj['ymin'] >= r['y_offset'] and
obj['xmax'] <= r['x_offset']+r['size'] and
obj['ymax'] <= r['y_offset']+r['size']
):
region = r
break
# if the min person area is larger than the
# detected person, don't add it to detected objects
if region and region['min_person_area'] > person_area:
continue
self.detected_objects.append(obj)
with self.objects_parsed:
self.objects_parsed.notify_all()
def get_best_person(self):
return self.best_person_frame.best_frame
def stats(self):
return {
'camera_fps': self.fps.eps(60),
'resize_queue': self.resize_queue.qsize(),
'frame_queue': self.frame_queue.qsize(),
'finished_frame_queue': self.finished_frame_queue.qsize(),
'refined_frame_queue': self.refined_frame_queue.qsize(),
'regions_in_process': self.regions_in_process,
'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
}
def get_current_frame_with_objects(self):
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# lock and make a copy of the current frame
with self.frame_lock:
frame = self.shared_frame_np.copy()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in detected_objects:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
def frame_with_objects(self, frame_time, tracked_objects=None):
if not frame_time in self.frame_cache:
frame = np.zeros(self.frame_shape, np.uint8)
else:
frame = self.frame_cache[frame_time].copy()
detected_objects = self.detected_objects[frame_time].copy()
for region in self.regions:
color = (255,255,255)
@@ -242,11 +329,48 @@ class Camera:
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# convert back to BGR
# draw the bounding boxes on the screen
if tracked_objects is None:
with self.object_tracker.tracked_objects_lock:
tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
for obj in detected_objects:
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
for id, obj in tracked_objects.items():
color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# print fps
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# convert to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
return frame
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
return jpg.tobytes()
def get_current_frame_with_objects(self):
frame_time = self.last_processed_frame
if frame_time == self.cached_frame_with_objects['frame_time']:
return self.cached_frame_with_objects['frame_bytes']
frame_bytes = self.frame_with_objects(frame_time)
self.cached_frame_with_objects = {
'frame_bytes': frame_bytes,
'frame_time': frame_time
}
return frame_bytes