forked from Github/frigate
b33094207cbda9fc918a031258add897c7cd2ebd
* Initial commit to enable Yolox models with OpenVINO in Frigate * Fix ModelEnumtType import error in openvino.py * Initial edit of the docs to include verbage about yolox * Initial edit of the docs to include verbage about yolox * Elaborate configuration and limitations in docs. * Add capability to dynamically determine number of classes in yolox model * Further refinements * Removed unnecesarry comments, improved documentation, addressed PR items * Fixed lint formatting issues
Frigate - NVR With Realtime Object Detection for IP Cameras
A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
- Tight integration with Home Assistant via a custom component
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- Records video with retention settings based on detected objects
- 24/7 recording
- Re-streaming via RTSP to reduce the number of connections to your camera
- WebRTC & MSE support for low-latency live view
Documentation
View the documentation at https://docs.frigate.video
Donations
If you would like to make a donation to support development, please use Github Sponsors.
Screenshots
Integration into Home Assistant
Also comes with a builtin UI:
Description
Languages
TypeScript
49.6%
Python
46.3%
CSS
1.1%
C++
0.8%
Shell
0.7%
Other
1.3%





