Josh Hawkins 24ac9f3e5a Use sqlite-vec extension instead of chromadb for embeddings (#14163)
* swap sqlite_vec for chroma in requirements

* load sqlite_vec in embeddings manager

* remove chroma and revamp Embeddings class for sqlite_vec

* manual minilm onnx inference

* remove chroma in clip model

* migrate api from chroma to sqlite_vec

* migrate event cleanup from chroma to sqlite_vec

* migrate embedding maintainer from chroma to sqlite_vec

* genai description for sqlite_vec

* load sqlite_vec in main thread db

* extend the SqliteQueueDatabase class and use peewee db.execute_sql

* search with Event type for similarity

* fix similarity search

* install and add comment about transformers

* fix normalization

* add id filter

* clean up

* clean up

* fully remove chroma and add transformers env var

* readd uvicorn for fastapi

* readd tokenizer parallelism env var

* remove chroma from docs

* remove chroma from UI

* try removing custom pysqlite3 build

* hard code limit

* optimize queries

* revert explore query

* fix query

* keep building pysqlite3

* single pass fetch and process

* remove unnecessary re-embed

* update deps

* move SqliteVecQueueDatabase to db directory

* make search thumbnail take up full size of results box

* improve typing

* improve model downloading and add status screen

* daemon downloading thread

* catch case when semantic search is disabled

* fix typing

* build sqlite_vec from source

* resolve conflict

* file permissions

* try build deps

* remove sources

* sources

* fix thread start

* include git in build

* reorder embeddings after detectors are started

* build with sqlite amalgamation

* non-platform specific

* use wget instead of curl

* remove unzip -d

* remove sqlite_vec from requirements and load the compiled version

* fix build

* avoid race in db connection

* add scale_factor and bias to description zscore normalization
2024-10-07 14:30:45 -06:00
2021-02-25 07:01:59 -06:00
2023-07-01 08:18:33 -05:00
2023-11-18 08:04:43 -06:00
2023-01-06 07:03:16 -06:00
2020-07-26 12:07:47 -05:00
2024-09-17 07:39:44 -05:00
2023-11-18 08:04:43 -06:00
2023-11-18 08:04:43 -06:00
2024-06-08 15:37:16 -05:00

logo

Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.

  • Tight integration with Home Assistant via a custom component
  • Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
  • Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
  • Uses a very low overhead motion detection to determine where to run object detection
  • Object detection with TensorFlow runs in separate processes for maximum FPS
  • Communicates over MQTT for easy integration into other systems
  • Records video with retention settings based on detected objects
  • 24/7 recording
  • Re-streaming via RTSP to reduce the number of connections to your camera
  • WebRTC & MSE support for low-latency live view

Documentation

View the documentation at https://docs.frigate.video

Donations

If you would like to make a donation to support development, please use Github Sponsors.

Screenshots

Live dashboard

Live dashboard

Streamlined review workflow

Streamlined review workflow

Multi-camera scrubbing

Multi-camera scrubbing

Built-in mask and zone editor

Multi-camera scrubbing
Description
NVR with realtime local object detection for IP cameras
Readme 236 MiB
Languages
TypeScript 49.6%
Python 46.3%
CSS 1.1%
C++ 0.8%
Shell 0.7%
Other 1.3%