Compare commits

..

190 Commits

Author SHA1 Message Date
Blake Blackshear
fcc9cd56cc update index.js to use baseUrl 2021-01-19 21:31:17 -06:00
Blake Blackshear
b981a3110b first pass at subfilter for ingress support 2021-01-19 19:58:42 -06:00
Paul Armstrong
2da50cc538 fix(web): dark mode text color fixes
fixes #544
2021-01-19 18:02:08 -06:00
Blake Blackshear
cb4a0aa594 ensure error message with missing config is printed 2021-01-19 18:00:26 -06:00
Blake Blackshear
52da1fddc7 update notification example 2021-01-19 07:41:45 -06:00
Blake Blackshear
14645ce4f8 fix mqtt switch handling 2021-01-19 07:41:17 -06:00
Blake Blackshear
97ce7f3028 initialize detection correctly from config 2021-01-19 07:40:51 -06:00
Blake Blackshear
3b5302f6ea update wheels version 2021-01-19 06:19:28 -06:00
Blake Blackshear
74eb16f213 pin numpy 2021-01-19 06:16:44 -06:00
Paul Armstrong
a3d6bf214c feat(web): layout & auto-update debug page 2021-01-18 12:57:09 -06:00
Paul Armstrong
16121ffd00 fix(web): ensure button bg colors show in prod builds 2021-01-18 11:39:42 -06:00
Blake Blackshear
91628bd5d8 fix zone config 2021-01-18 06:38:26 -06:00
Blake Blackshear
b10b64bf57 no longer need special aarch64 wheels build 2021-01-17 08:18:54 -06:00
Blake Blackshear
749c34be9f versioning wheels image 2021-01-16 20:03:42 -06:00
Blake Blackshear
8cfdfab985 move wheels to build container 2021-01-16 19:56:21 -06:00
Paul Armstrong
ef25f8a31e fix(web): mask zone editor to handle object filter masks
Includes additional handlers for adding/removing masks, as well as click to copy configs

fixes #523
2021-01-16 19:09:18 -06:00
Paul Armstrong
2a0551a08a feat(web): hash build files to avoid cache issues 2021-01-16 19:09:18 -06:00
Paul Armstrong
0b80419f15 fix(web): ensure mask editing works in firefox 2021-01-16 19:09:18 -06:00
Blake Blackshear
0dc81117aa docs updates for notification changes 2021-01-16 19:09:18 -06:00
Blake Blackshear
49b29d72a7 rename snapshot endpoint to thumbnail 2021-01-16 19:09:18 -06:00
Blake Blackshear
21ece238ff mqtt tweaks for switches 2021-01-16 19:09:18 -06:00
Blake Blackshear
f6ba3f2daa allow summary data to be filtered 2021-01-16 19:09:18 -06:00
Blake Blackshear
bb0d3cb59a update readme 2021-01-16 19:09:18 -06:00
Blake Blackshear
ca9b6d6c5c snapshots config typo 2021-01-16 19:09:18 -06:00
Blake Blackshear
3103ad2bfe update object filters to inherit like motion settings 2021-01-16 19:09:18 -06:00
Blake Blackshear
eab3998ad0 remove support for image masks 2021-01-16 19:09:18 -06:00
Blake Blackshear
a3dfd3a8e0 don't fallback to the CPU
fixes #381
2021-01-16 19:09:18 -06:00
Blake Blackshear
f1c3087775 add change type to events topic
#476
2021-01-16 19:09:18 -06:00
Blake Blackshear
1be91ed3f2 ensure each camera has a detect role set 2021-01-16 19:09:18 -06:00
Blake Blackshear
fd83c4f229 add detection enable to config
fixes #482
2021-01-16 19:09:18 -06:00
Blake Blackshear
de99221ad5 add env vars to config
fixes #509
2021-01-16 19:09:18 -06:00
Blake Blackshear
6892ce56ac enable and disable detection via mqtt 2021-01-16 19:09:18 -06:00
Blake Blackshear
41cea6f62e move setproctitle to prebuilt wheel location 2021-01-16 19:09:18 -06:00
Blake Blackshear
4bbffa97df switch to docker based web builds 2021-01-16 19:09:18 -06:00
Blake Blackshear
614f8abfef handle null thumbnail data 2021-01-16 19:09:18 -06:00
Blake Blackshear
14289b5fd1 add mask as object filter 2021-01-16 19:09:18 -06:00
Blake Blackshear
4164beff1c add object masks and move moton mask 2021-01-16 19:09:18 -06:00
Blake Blackshear
9b3ab486de add missing global shapshots config 2021-01-16 19:09:18 -06:00
Patrick Decat
232a49814a Add missing migrations in docker images 2021-01-16 19:09:18 -06:00
Paul Armstrong
6c61f0b135 fix(web): ensure postcss and postcss-cli are marked as deps 2021-01-16 19:09:18 -06:00
Patrick Decat
c572cec253 Fix Makefile to ignore gpg signatures in commits 2021-01-16 19:09:18 -06:00
Paul Armstrong
d4941f2a5f feat!: web user interface 2021-01-16 19:09:18 -06:00
Blake Blackshear
bf5ec2f65f try to cleanup some migration logging 2021-01-16 19:09:18 -06:00
Blake Blackshear
f8e21584b6 add retention settings for snapshots 2021-01-16 19:09:18 -06:00
Blake Blackshear
3cba83f84b init variables on camera state 2021-01-16 19:09:18 -06:00
Blake Blackshear
dcb4255d7e handle process exit exceptions 2021-01-16 19:09:18 -06:00
Blake Blackshear
9fc3c0dc2f store has_clip and has_snapshot on events 2021-01-16 19:09:18 -06:00
Blake Blackshear
a78830b48e add database migrations 2021-01-16 19:09:18 -06:00
Nat Morris
949fbadcdc Set titles for forked processes 2021-01-16 19:09:18 -06:00
Nat Morris
12c9e63b13 New stats module, refactor stats generation out of http module.
StatsEmitter thread to send stats to MQTT every 60 seconds by default, optional stats_interval config value.

New service stats attribute, containing uptime in seconds and version.
2021-01-16 19:09:18 -06:00
Blake Blackshear
157b230702 turn off snapshots via mqtt 2021-01-16 19:09:18 -06:00
Blake Blackshear
c69299d659 enable turning clips on and off via mqtt 2021-01-16 19:09:18 -06:00
Blake Blackshear
285d630770 cleanup save_Clips/clips inconsistency 2021-01-16 19:09:18 -06:00
Blake Blackshear
b9318092f4 add jpg snapshots to disk and clean up config 2021-01-16 19:09:18 -06:00
Paul Armstrong
905c361d52 fix: ensure timestamp is drawn above mask 2021-01-13 06:55:10 -06:00
Leonardo Merza
4443abbc49 add notes for Blue Iris RTSP support 2020-12-31 08:36:03 -06:00
yllar
dabb36ad93 Update README.md
change tmpfs size from 100MB to 1GB
2020-12-31 08:33:31 -06:00
kluszczyn
2bc8736fd9 Recordings - fix expire_file 2020-12-22 09:58:26 -05:00
Blake Blackshear
e9b3b09cc2 add clips endpoint to readme 2020-12-22 09:58:26 -05:00
Blake Blackshear
ca337c32b4 better mask error handling 2020-12-22 09:58:26 -05:00
Blake Blackshear
24b8bd7c85 fix tmpfs 2020-12-22 09:58:26 -05:00
Blake Blackshear
3ad75a441d remove redundant error output 2020-12-20 08:04:54 -06:00
Blake Blackshear
f006e9be8d use CACHE_DIR constant 2020-12-20 08:04:54 -06:00
Blake Blackshear
03f3ba8008 enable mounting tmpfs volume on start 2020-12-20 08:04:54 -06:00
Blake Blackshear
96a44eb7bf docs and issue template 2020-12-20 07:37:44 -06:00
Blake Blackshear
006782fe3d update process clip for latest changes 2020-12-20 07:37:44 -06:00
Blake Blackshear
ff3e95bbf7 publish event updates on zone change 2020-12-20 07:37:44 -06:00
Blake Blackshear
4b95a37e65 readme updates 2020-12-20 07:37:44 -06:00
Blake Blackshear
38c661b3a8 handle scenario with empty cache 2020-12-20 07:37:44 -06:00
Blake Blackshear
0d6e4f6a66 add qsv support to amd64 image 2020-12-20 07:37:44 -06:00
Blake Blackshear
1ad2219f1c add num_threads fixes #322 2020-12-20 07:37:44 -06:00
Blake Blackshear
dfcdd289c3 optimize clips fixes #299 2020-12-20 07:37:44 -06:00
Blake Blackshear
32f5f2cca9 add post_capture option 2020-12-20 07:37:44 -06:00
Blake Blackshear
24bfe9f3e8 re-crop to the object rather than the region 2020-12-20 07:37:44 -06:00
Blake Blackshear
004667dc99 allow runtime drawing settings for mjpeg and latest 2020-12-20 07:37:44 -06:00
Blake Blackshear
9d785dc781 allow the mask to be a list of masks 2020-12-20 07:37:44 -06:00
Blake Blackshear
cbba5a7af0 adding version endpoint 2020-12-20 07:37:44 -06:00
Blake Blackshear
29b29ee349 configurable motion and detect settings 2020-12-20 07:37:44 -06:00
Blake Blackshear
9ad53e09af update gitignore 2020-12-20 07:37:44 -06:00
Blake Blackshear
c9278991c9 fix test 2020-12-20 07:37:44 -06:00
Blake Blackshear
729de48934 switch default threshold to .7 2020-12-20 07:37:44 -06:00
Blake Blackshear
7476bff5fb allow process clips to output a csv of scores 2020-12-20 07:37:44 -06:00
Blake Blackshear
1e9eae8d9a allow db path to be customized 2020-12-20 07:37:44 -06:00
Blake Blackshear
8113a53381 add telegram example 2020-12-20 07:37:44 -06:00
Blake Blackshear
72833686f1 fix process clip 2020-12-20 07:37:44 -06:00
Blake Blackshear
096c21f105 handle empty string args 2020-12-20 07:37:44 -06:00
Blake Blackshear
181f66357b allow region to extend beyond the frame 2020-12-20 07:37:44 -06:00
tubalainen
a54fbc483c Updated file
ref: https://github.com/blakeblackshear/frigate/issues/373
2020-12-12 10:38:02 -06:00
Blake Blackshear
92d5a002d3 swap width and height to reduce confusion 2020-12-10 19:22:03 -06:00
Blake Blackshear
f9184903d7 updating compose example to reduce confusion 2020-12-10 19:02:08 -06:00
Blake Blackshear
91cde6ce7b allow defining model shape and switch to mobiledet as default model 2020-12-09 07:22:26 -06:00
Blake Blackshear
186a4587c7 add model dimensions to config 2020-12-09 07:22:26 -06:00
Patrick Decat
6049acb1f3 Document beta addon host 2020-12-08 07:25:13 -06:00
Blake Blackshear
2d2ebf313c make shm consistent with compose 2020-12-08 07:24:37 -06:00
tubalainen
3d329dcb52 Updated docker command line...
...to correspond with 0.8.0 feature set.
2020-12-08 07:24:37 -06:00
Blake Blackshear
06854fc34f readme cleanup fixes #332 2020-12-07 18:00:12 -06:00
Blake Blackshear
e01e14d866 handle and warn if roles dont match enabled features 2020-12-07 08:07:35 -06:00
Blake Blackshear
3dfd251ebb camera recommendations 2020-12-07 07:36:29 -06:00
Blake Blackshear
dcea807f77 catch all psutil errors 2020-12-07 07:16:48 -06:00
Blake Blackshear
87d83ff33a clarify height width and fps 2020-12-07 07:16:28 -06:00
Blake Blackshear
1d31cbdf0d readme updates 2020-12-06 14:25:28 -06:00
Blake Blackshear
e05b27b8dc tweak screenshots 2020-12-06 08:27:03 -06:00
Blake Blackshear
7111bd208e readme updates 2020-12-06 08:25:25 -06:00
Blake Blackshear
04a80280da set ffmpeg image versions 2020-12-06 07:09:14 -06:00
Blake Blackshear
3bda092140 comment you zeroconf 2020-12-06 07:05:45 -06:00
Blake Blackshear
9086820479 fix flask logger config 2020-12-05 19:05:03 -06:00
Blake Blackshear
d1da57aedc fix graceful exits 2020-12-05 12:06:07 -06:00
Blake Blackshear
6ded12c566 better exception handling 2020-12-05 12:06:07 -06:00
Blake Blackshear
70352566a7 fix default args 2020-12-05 12:06:07 -06:00
Blake Blackshear
cf5cc86588 fix fontconfig issue 2020-12-05 08:48:46 -06:00
Blake Blackshear
e41db49ab8 doc updates 2020-12-05 08:48:46 -06:00
Blake Blackshear
1b7effafee update some default config values 2020-12-05 08:48:46 -06:00
Blake Blackshear
69e9e0b0bf log level configuration 2020-12-05 08:48:46 -06:00
Blake Blackshear
89624df411 no need to write jpg disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1a7405211 dont delete the recordings directory 2020-12-05 08:48:46 -06:00
Blake Blackshear
040f8c7c20 default save_clips objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
6d7acabf4c add logging for directory creation 2020-12-05 08:48:46 -06:00
Blake Blackshear
45a8b42157 exit on config errors 2020-12-05 08:48:46 -06:00
Blake Blackshear
8785be24b7 add zeroconf discovery 2020-12-05 08:48:46 -06:00
Blake Blackshear
cc0812540c optional android notification aspect ratio 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cf38ca4f7 reduce min timestamp size 2020-12-05 08:48:46 -06:00
Blake Blackshear
7e4395c30e publish object counts rather than on/off 2020-12-05 08:48:46 -06:00
Blake Blackshear
598d3aeda2 make directories constants 2020-12-05 08:48:46 -06:00
Blake Blackshear
012dbf81f7 cleanup empty directories 2020-12-05 08:48:46 -06:00
Blake Blackshear
f869def12e serve up recordings with nginx 2020-12-05 08:48:46 -06:00
Blake Blackshear
31f7666337 add recording maintenance 2020-12-05 08:48:46 -06:00
Blake Blackshear
9e339acbca add record settings to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
8f8054a299 fix log timeout 2020-12-05 08:48:46 -06:00
Blake Blackshear
f7021eec4c ensure zones dont have the same name as a camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
c124153da4 graceful exit of subprocesses 2020-12-05 08:48:46 -06:00
Blake Blackshear
706c2f921e add multiple streams per camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
de1d66bcb9 fix fontconfig error 2020-12-05 08:48:46 -06:00
Blake Blackshear
4502ca8e80 add support for rebroadcasting as rtmp 2020-12-05 08:48:46 -06:00
Blake Blackshear
32a66fe5e8 avoid null error 2020-12-05 08:48:46 -06:00
Blake Blackshear
e1251aafdb minimize logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
587494068c oops 2020-12-05 08:48:46 -06:00
Blake Blackshear
7a4d90a47a only publish end events for true positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
d06b587d33 ensure all events are cleaned up 2020-12-05 08:48:46 -06:00
Blake Blackshear
eef70e434b publish events like a change feed 2020-12-05 08:48:46 -06:00
Blake Blackshear
b39da3ee01 pull from memory if event in progress 2020-12-05 08:48:46 -06:00
Blake Blackshear
e07c4e0d8c add endpoint for event thumbnail 2020-12-05 08:48:46 -06:00
Blake Blackshear
2f41ba6f77 add service to get by id 2020-12-05 08:48:46 -06:00
Blake Blackshear
bf95af0f22 add zones to summary data 2020-12-05 08:48:46 -06:00
Blake Blackshear
2e15847f86 sleep in the right place 2020-12-05 08:48:46 -06:00
Blake Blackshear
5992e85dc8 manage events for unlisted cameras 2020-12-05 08:48:46 -06:00
Blake Blackshear
24d416b869 add event cleanup thread 2020-12-05 08:48:46 -06:00
Blake Blackshear
5dbf368c4b add clip retention to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
7d56fe105f use localtime in group by 2020-12-05 08:48:46 -06:00
Blake Blackshear
e9327aa18c new http endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
df56e079de add parameters to event query 2020-12-05 08:48:46 -06:00
Blake Blackshear
8c5bfbd187 only save events when a clip is created 2020-12-05 08:48:46 -06:00
Blake Blackshear
2613e74f97 add bas64 encoded thumbnail to the database 2020-12-05 08:48:46 -06:00
Blake Blackshear
9a7fb96357 check for None value thumbnail_data 2020-12-05 08:48:46 -06:00
Blake Blackshear
37f9dfed92 only set thumbnail data if object is a true positive 2020-12-05 08:48:46 -06:00
Blake Blackshear
68c1544808 add some debug logging to frame cache 2020-12-05 08:48:46 -06:00
Blake Blackshear
2b3d3c5824 dont use a property 2020-12-05 08:48:46 -06:00
Blake Blackshear
efea87a3ea attempt to fix missing thumbs 2020-12-05 08:48:46 -06:00
Blake Blackshear
977785fb10 better frame handling for best images 2020-12-05 08:48:46 -06:00
Blake Blackshear
4e113e62c0 cleanup false_positive attribute 2020-12-05 08:48:46 -06:00
Blake Blackshear
5080b2d781 ensure some valid thumbnail is available 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cfd6d1edb don't save thumbnails for false positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
27ae4d8ab0 cleanup 2020-12-05 08:48:46 -06:00
Blake Blackshear
3db33302ec reduce logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
f2910d48e0 fixes 2020-12-05 08:48:46 -06:00
Blake Blackshear
cf0f8892e2 update nginx config 2020-12-05 08:48:46 -06:00
Blake Blackshear
4d22e172ff stop writing json file to disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
8874a55b0f create tracked object class and save thumbnails 2020-12-05 08:48:46 -06:00
Blake Blackshear
24b703a875 maintain thumbnail frames for tracked objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
8b8f5b5c40 sort imports 2020-12-05 08:48:46 -06:00
Blake Blackshear
eac81136d2 naming threads and processes for logs 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1e27b43ea use a queue for logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
105dcb7094 create typed config classes 2020-12-05 08:48:46 -06:00
Blake Blackshear
c0a16efdc1 add nginx and change default file locations 2020-12-05 08:48:46 -06:00
Blake Blackshear
2800c54743 config setup 2020-12-05 08:48:46 -06:00
Blake Blackshear
2a24e8abcb add watchdog 2020-12-05 08:48:46 -06:00
Blake Blackshear
37ee746ebb add back all endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
7ee6bfe855 add event processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
40f57a8754 add capture processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
e0da462223 add camera processors 2020-12-05 08:48:46 -06:00
Blake Blackshear
47a9fc4292 add detected_frames_processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
03fe5158db add detector processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
72be6b480d init db/http/mqtt 2020-12-05 08:48:46 -06:00
Blake Blackshear
a8964dcc1f app container and config schema 2020-12-05 08:48:46 -06:00
Blake Blackshear
732e91ee42 move primary script into the module 2020-12-05 08:48:46 -06:00
Blake Blackshear
27da080ce6 saving events and simple endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
075d06b108 basic database model and api endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
95dc17ffcd store events in tinydb 2020-12-05 08:48:46 -06:00
Blake Blackshear
408b53f8b4 update events model 2020-12-05 08:48:46 -06:00
Marc Seeger
3ef68a297a Add support for AMD Ryzen iGPU (fixes #311)
This package will add support for the iGPU of AMD Ryzen and presumably a few more AMD cards.
See details of the package here: https://packages.ubuntu.com/focal/mesa-va-drivers
It also adds support for the open source Nvidia Nouveau driver according to https://wiki.debian.org/HardwareVideoAcceleration
2020-12-05 07:00:07 -06:00
Michael Wei
3e9b3711dc Use cv2.bitwise_and instead of numpy.where 2020-12-05 06:59:28 -06:00
212 changed files with 9315 additions and 36415 deletions

View File

@@ -1,27 +0,0 @@
{
"name": "Frigate Dev",
"dockerComposeFile": "../docker-compose.yml",
"service": "dev",
"workspaceFolder": "/lab/frigate",
"extensions": [
"ms-python.python",
"visualstudioexptteam.vscodeintellicode",
"mhutchie.git-graph",
"ms-azuretools.vscode-docker",
"streetsidesoftware.code-spell-checker",
"eamodio.gitlens",
"esbenp.prettier-vscode",
"ms-python.vscode-pylance"
],
"settings": {
"python.pythonPath": "/usr/bin/python3",
"python.linting.pylintEnabled": true,
"python.linting.enabled": true,
"python.formatting.provider": "black",
"editor.formatOnPaste": false,
"editor.formatOnSave": true,
"editor.formatOnType": true,
"files.trimTrailingWhitespace": true,
"terminal.integrated.shell.linux": "/bin/bash"
}
}

View File

@@ -4,7 +4,4 @@ docs/
debug
config/
*.pyc
.git
core
*.mp4
*.db
.git

4
.github/FUNDING.yml vendored
View File

@@ -1,3 +1 @@
github:
- blakeblackshear
- paularmstrong
github: blakeblackshear

View File

@@ -1,6 +1,6 @@
---
name: Bug report or Support request
about: Bug report or Support request
about: ''
title: ''
labels: ''
assignees: ''
@@ -11,7 +11,7 @@ assignees: ''
A clear and concise description of what your issue is.
**Version of frigate**
Output from `/api/version`
Output from `/version`
**Config file**
Include your full config file wrapped in triple back ticks.
@@ -26,7 +26,7 @@ Include relevant log output here
**Frigate stats**
```json
Output from frigate's /api/stats endpoint
Output from frigate's /stats endpoint
```
**FFprobe from your camera**

17
.github/stale.yml vendored
View File

@@ -1,17 +0,0 @@
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 30
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 3
# Issues with these labels will never be considered stale
exemptLabels:
- pinned
- security
# Label to use when marking an issue as stale
staleLabel: stale
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Thank you
for your contributions.
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: false

View File

@@ -1,46 +0,0 @@
name: On pull request
on: pull_request
jobs:
web_lint:
name: Web - Lint
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 14.x
- run: npm install
working-directory: ./web
- name: Lint
run: npm run lint:cmd
working-directory: ./web
web_build:
name: Web - Build
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 14.x
- run: npm install
working-directory: ./web
- name: Build
run: npm run build
working-directory: ./web
web_test:
name: Web - Test
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 14.x
- run: npm install
working-directory: ./web
- name: Test
run: npm run test
working-directory: ./web

View File

@@ -1,28 +0,0 @@
name: On push
on:
push:
branches:
- master
- release-0.8.0
jobs:
deploy-docs:
name: Deploy docs
runs-on: ubuntu-latest
defaults:
run:
working-directory: ./docs
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 12.x
- run: npm install
- name: Build docs
run: npm run build
- name: Deploy documentation
uses: peaceiris/actions-gh-pages@v3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./docs/build

3
.gitignore vendored
View File

@@ -1,6 +1,5 @@
.DS_Store
*.pyc
*.swp
debug
.vscode
config/config.yml
@@ -10,5 +9,3 @@ models
frigate/version.py
web/build
web/node_modules
web/coverage
core

588
.pylintrc
View File

@@ -1,588 +0,0 @@
[MASTER]
# A comma-separated list of package or module names from where C extensions may
# be loaded. Extensions are loading into the active Python interpreter and may
# run arbitrary code.
extension-pkg-whitelist=
# Specify a score threshold to be exceeded before program exits with error.
fail-under=10.0
# Add files or directories to the blacklist. They should be base names, not
# paths.
ignore=CVS
# Add files or directories matching the regex patterns to the blacklist. The
# regex matches against base names, not paths.
ignore-patterns=
# Python code to execute, usually for sys.path manipulation such as
# pygtk.require().
#init-hook=
# Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the
# number of processors available to use.
jobs=1
# Control the amount of potential inferred values when inferring a single
# object. This can help the performance when dealing with large functions or
# complex, nested conditions.
limit-inference-results=100
# List of plugins (as comma separated values of python module names) to load,
# usually to register additional checkers.
load-plugins=
# Pickle collected data for later comparisons.
persistent=yes
# When enabled, pylint would attempt to guess common misconfiguration and emit
# user-friendly hints instead of false-positive error messages.
suggestion-mode=yes
# Allow loading of arbitrary C extensions. Extensions are imported into the
# active Python interpreter and may run arbitrary code.
unsafe-load-any-extension=no
[MESSAGES CONTROL]
# Only show warnings with the listed confidence levels. Leave empty to show
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED.
confidence=
# Disable the message, report, category or checker with the given id(s). You
# can either give multiple identifiers separated by comma (,) or put this
# option multiple times (only on the command line, not in the configuration
# file where it should appear only once). You can also use "--disable=all" to
# disable everything first and then reenable specific checks. For example, if
# you want to run only the similarities checker, you can use "--disable=all
# --enable=similarities". If you want to run only the classes checker, but have
# no Warning level messages displayed, use "--disable=all --enable=classes
# --disable=W".
disable=print-statement,
parameter-unpacking,
unpacking-in-except,
old-raise-syntax,
backtick,
long-suffix,
old-ne-operator,
old-octal-literal,
import-star-module-level,
non-ascii-bytes-literal,
raw-checker-failed,
bad-inline-option,
locally-disabled,
file-ignored,
suppressed-message,
useless-suppression,
deprecated-pragma,
use-symbolic-message-instead,
apply-builtin,
basestring-builtin,
buffer-builtin,
cmp-builtin,
coerce-builtin,
execfile-builtin,
file-builtin,
long-builtin,
raw_input-builtin,
reduce-builtin,
standarderror-builtin,
unicode-builtin,
xrange-builtin,
coerce-method,
delslice-method,
getslice-method,
setslice-method,
no-absolute-import,
old-division,
dict-iter-method,
dict-view-method,
next-method-called,
metaclass-assignment,
indexing-exception,
raising-string,
reload-builtin,
oct-method,
hex-method,
nonzero-method,
cmp-method,
input-builtin,
round-builtin,
intern-builtin,
unichr-builtin,
map-builtin-not-iterating,
zip-builtin-not-iterating,
range-builtin-not-iterating,
filter-builtin-not-iterating,
using-cmp-argument,
eq-without-hash,
div-method,
idiv-method,
rdiv-method,
exception-message-attribute,
invalid-str-codec,
sys-max-int,
bad-python3-import,
deprecated-string-function,
deprecated-str-translate-call,
deprecated-itertools-function,
deprecated-types-field,
next-method-defined,
dict-items-not-iterating,
dict-keys-not-iterating,
dict-values-not-iterating,
deprecated-operator-function,
deprecated-urllib-function,
xreadlines-attribute,
deprecated-sys-function,
exception-escape,
comprehension-escape
# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option
# multiple time (only on the command line, not in the configuration file where
# it should appear only once). See also the "--disable" option for examples.
enable=c-extension-no-member
[REPORTS]
# Python expression which should return a score less than or equal to 10. You
# have access to the variables 'error', 'warning', 'refactor', and 'convention'
# which contain the number of messages in each category, as well as 'statement'
# which is the total number of statements analyzed. This score is used by the
# global evaluation report (RP0004).
evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
# Template used to display messages. This is a python new-style format string
# used to format the message information. See doc for all details.
#msg-template=
# Set the output format. Available formats are text, parseable, colorized, json
# and msvs (visual studio). You can also give a reporter class, e.g.
# mypackage.mymodule.MyReporterClass.
output-format=text
# Tells whether to display a full report or only the messages.
reports=no
# Activate the evaluation score.
score=yes
[REFACTORING]
# Maximum number of nested blocks for function / method body
max-nested-blocks=5
# Complete name of functions that never returns. When checking for
# inconsistent-return-statements if a never returning function is called then
# it will be considered as an explicit return statement and no message will be
# printed.
never-returning-functions=sys.exit
[SPELLING]
# Limits count of emitted suggestions for spelling mistakes.
max-spelling-suggestions=4
# Spelling dictionary name. Available dictionaries: none. To make it work,
# install the python-enchant package.
spelling-dict=
# List of comma separated words that should not be checked.
spelling-ignore-words=
# A path to a file that contains the private dictionary; one word per line.
spelling-private-dict-file=
# Tells whether to store unknown words to the private dictionary (see the
# --spelling-private-dict-file option) instead of raising a message.
spelling-store-unknown-words=no
[TYPECHECK]
# List of decorators that produce context managers, such as
# contextlib.contextmanager. Add to this list to register other decorators that
# produce valid context managers.
contextmanager-decorators=contextlib.contextmanager
# List of members which are set dynamically and missed by pylint inference
# system, and so shouldn't trigger E1101 when accessed. Python regular
# expressions are accepted.
generated-members=
# Tells whether missing members accessed in mixin class should be ignored. A
# mixin class is detected if its name ends with "mixin" (case insensitive).
ignore-mixin-members=yes
# Tells whether to warn about missing members when the owner of the attribute
# is inferred to be None.
ignore-none=yes
# This flag controls whether pylint should warn about no-member and similar
# checks whenever an opaque object is returned when inferring. The inference
# can return multiple potential results while evaluating a Python object, but
# some branches might not be evaluated, which results in partial inference. In
# that case, it might be useful to still emit no-member and other checks for
# the rest of the inferred objects.
ignore-on-opaque-inference=yes
# List of class names for which member attributes should not be checked (useful
# for classes with dynamically set attributes). This supports the use of
# qualified names.
ignored-classes=optparse.Values,thread._local,_thread._local
# List of module names for which member attributes should not be checked
# (useful for modules/projects where namespaces are manipulated during runtime
# and thus existing member attributes cannot be deduced by static analysis). It
# supports qualified module names, as well as Unix pattern matching.
ignored-modules=
# Show a hint with possible names when a member name was not found. The aspect
# of finding the hint is based on edit distance.
missing-member-hint=yes
# The minimum edit distance a name should have in order to be considered a
# similar match for a missing member name.
missing-member-hint-distance=1
# The total number of similar names that should be taken in consideration when
# showing a hint for a missing member.
missing-member-max-choices=1
# List of decorators that change the signature of a decorated function.
signature-mutators=
[STRING]
# This flag controls whether inconsistent-quotes generates a warning when the
# character used as a quote delimiter is used inconsistently within a module.
check-quote-consistency=no
# This flag controls whether the implicit-str-concat should generate a warning
# on implicit string concatenation in sequences defined over several lines.
check-str-concat-over-line-jumps=no
[FORMAT]
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
expected-line-ending-format=
# Regexp for a line that is allowed to be longer than the limit.
ignore-long-lines=^\s*(# )?<?https?://\S+>?$
# Number of spaces of indent required inside a hanging or continued line.
indent-after-paren=4
# String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
# tab).
indent-string=' '
# Maximum number of characters on a single line.
max-line-length=100
# Maximum number of lines in a module.
max-module-lines=1000
# Allow the body of a class to be on the same line as the declaration if body
# contains single statement.
single-line-class-stmt=no
# Allow the body of an if to be on the same line as the test if there is no
# else.
single-line-if-stmt=no
[SIMILARITIES]
# Ignore comments when computing similarities.
ignore-comments=yes
# Ignore docstrings when computing similarities.
ignore-docstrings=yes
# Ignore imports when computing similarities.
ignore-imports=no
# Minimum lines number of a similarity.
min-similarity-lines=4
[MISCELLANEOUS]
# List of note tags to take in consideration, separated by a comma.
notes=FIXME,
XXX,
TODO
# Regular expression of note tags to take in consideration.
#notes-rgx=
[BASIC]
# Naming style matching correct argument names.
argument-naming-style=snake_case
# Regular expression matching correct argument names. Overrides argument-
# naming-style.
#argument-rgx=
# Naming style matching correct attribute names.
attr-naming-style=snake_case
# Regular expression matching correct attribute names. Overrides attr-naming-
# style.
#attr-rgx=
# Bad variable names which should always be refused, separated by a comma.
bad-names=foo,
bar,
baz,
toto,
tutu,
tata
# Bad variable names regexes, separated by a comma. If names match any regex,
# they will always be refused
bad-names-rgxs=
# Naming style matching correct class attribute names.
class-attribute-naming-style=any
# Regular expression matching correct class attribute names. Overrides class-
# attribute-naming-style.
#class-attribute-rgx=
# Naming style matching correct class names.
class-naming-style=PascalCase
# Regular expression matching correct class names. Overrides class-naming-
# style.
#class-rgx=
# Naming style matching correct constant names.
const-naming-style=UPPER_CASE
# Regular expression matching correct constant names. Overrides const-naming-
# style.
#const-rgx=
# Minimum line length for functions/classes that require docstrings, shorter
# ones are exempt.
docstring-min-length=-1
# Naming style matching correct function names.
function-naming-style=snake_case
# Regular expression matching correct function names. Overrides function-
# naming-style.
#function-rgx=
# Good variable names which should always be accepted, separated by a comma.
good-names=i,
j,
k,
ex,
Run,
_
# Good variable names regexes, separated by a comma. If names match any regex,
# they will always be accepted
good-names-rgxs=
# Include a hint for the correct naming format with invalid-name.
include-naming-hint=no
# Naming style matching correct inline iteration names.
inlinevar-naming-style=any
# Regular expression matching correct inline iteration names. Overrides
# inlinevar-naming-style.
#inlinevar-rgx=
# Naming style matching correct method names.
method-naming-style=snake_case
# Regular expression matching correct method names. Overrides method-naming-
# style.
#method-rgx=
# Naming style matching correct module names.
module-naming-style=snake_case
# Regular expression matching correct module names. Overrides module-naming-
# style.
#module-rgx=
# Colon-delimited sets of names that determine each other's naming style when
# the name regexes allow several styles.
name-group=
# Regular expression which should only match function or class names that do
# not require a docstring.
no-docstring-rgx=^_
# List of decorators that produce properties, such as abc.abstractproperty. Add
# to this list to register other decorators that produce valid properties.
# These decorators are taken in consideration only for invalid-name.
property-classes=abc.abstractproperty
# Naming style matching correct variable names.
variable-naming-style=snake_case
# Regular expression matching correct variable names. Overrides variable-
# naming-style.
#variable-rgx=
[VARIABLES]
# List of additional names supposed to be defined in builtins. Remember that
# you should avoid defining new builtins when possible.
additional-builtins=
# Tells whether unused global variables should be treated as a violation.
allow-global-unused-variables=yes
# List of strings which can identify a callback function by name. A callback
# name must start or end with one of those strings.
callbacks=cb_,
_cb
# A regular expression matching the name of dummy variables (i.e. expected to
# not be used).
dummy-variables-rgx=_+$|(_[a-zA-Z0-9_]*[a-zA-Z0-9]+?$)|dummy|^ignored_|^unused_
# Argument names that match this expression will be ignored. Default to name
# with leading underscore.
ignored-argument-names=_.*|^ignored_|^unused_
# Tells whether we should check for unused import in __init__ files.
init-import=no
# List of qualified module names which can have objects that can redefine
# builtins.
redefining-builtins-modules=six.moves,past.builtins,future.builtins,builtins,io
[LOGGING]
# The type of string formatting that logging methods do. `old` means using %
# formatting, `new` is for `{}` formatting.
logging-format-style=fstr
# Logging modules to check that the string format arguments are in logging
# function parameter format.
logging-modules=logging
[DESIGN]
# Maximum number of arguments for function / method.
max-args=5
# Maximum number of attributes for a class (see R0902).
max-attributes=7
# Maximum number of boolean expressions in an if statement (see R0916).
max-bool-expr=5
# Maximum number of branch for function / method body.
max-branches=12
# Maximum number of locals for function / method body.
max-locals=15
# Maximum number of parents for a class (see R0901).
max-parents=7
# Maximum number of public methods for a class (see R0904).
max-public-methods=20
# Maximum number of return / yield for function / method body.
max-returns=6
# Maximum number of statements in function / method body.
max-statements=50
# Minimum number of public methods for a class (see R0903).
min-public-methods=2
[CLASSES]
# List of method names used to declare (i.e. assign) instance attributes.
defining-attr-methods=__init__,
__new__,
setUp,
__post_init__
# List of member names, which should be excluded from the protected access
# warning.
exclude-protected=_asdict,
_fields,
_replace,
_source,
_make
# List of valid names for the first argument in a class method.
valid-classmethod-first-arg=cls
# List of valid names for the first argument in a metaclass class method.
valid-metaclass-classmethod-first-arg=cls
[IMPORTS]
# List of modules that can be imported at any level, not just the top level
# one.
allow-any-import-level=
# Allow wildcard imports from modules that define __all__.
allow-wildcard-with-all=no
# Analyse import fallback blocks. This can be used to support both Python 2 and
# 3 compatible code, which means that the block might have code that exists
# only in one or another interpreter, leading to false positives when analysed.
analyse-fallback-blocks=no
# Deprecated modules which should not be used, separated by a comma.
deprecated-modules=optparse,tkinter.tix
# Create a graph of external dependencies in the given file (report RP0402 must
# not be disabled).
ext-import-graph=
# Create a graph of every (i.e. internal and external) dependencies in the
# given file (report RP0402 must not be disabled).
import-graph=
# Create a graph of internal dependencies in the given file (report RP0402 must
# not be disabled).
int-import-graph=
# Force import order to recognize a module as part of the standard
# compatibility libraries.
known-standard-library=
# Force import order to recognize a module as part of a third party library.
known-third-party=enchant
# Couples of modules and preferred modules, separated by a comma.
preferred-modules=
[EXCEPTIONS]
# Exceptions that will emit a warning when being caught. Defaults to
# "BaseException, Exception".
overgeneral-exceptions=BaseException,
Exception

View File

@@ -3,59 +3,56 @@ default_target: amd64_frigate
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
version:
echo "VERSION='0.9.0-$(COMMIT_HASH)'" > frigate/version.py
echo "VERSION='0.8.0-$(COMMIT_HASH)'" > frigate/version.py
web:
docker build --tag frigate-web --file docker/Dockerfile.web web/
amd64_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-amd64 --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64 --file docker/Dockerfile.wheels .
amd64_ffmpeg:
docker build --no-cache --pull --tag blakeblackshear/frigate-ffmpeg:1.2.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
nginx_frigate:
docker buildx build --push --platform linux/arm/v7,linux/arm64/v8,linux/amd64 --tag blakeblackshear/frigate-nginx:1.0.2 --file docker/Dockerfile.nginx .
docker build --tag blakeblackshear/frigate-ffmpeg:1.1.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
amd64_frigate: version web
docker build --no-cache --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --build-arg WHEELS_VERSION=1.0.3 --build-arg NGINX_VERSION=1.0.2 --file docker/Dockerfile.base .
docker build --no-cache --tag frigate --file docker/Dockerfile.amd64 .
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64 .
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
amd64nvidia_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-amd64nvidia --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64nvidia --file docker/Dockerfile.wheels .
amd64nvidia_ffmpeg:
docker build --no-cache --pull --tag blakeblackshear/frigate-ffmpeg:1.2.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
amd64nvidia_frigate: version web
docker build --no-cache --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.3 --build-arg NGINX_VERSION=1.0.2 --file docker/Dockerfile.base .
docker build --no-cache --tag frigate --file docker/Dockerfile.amd64nvidia .
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64nvidia .
amd64nvidia_all: amd64nvidia_wheels amd64nvidia_ffmpeg amd64nvidia_frigate
aarch64_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-aarch64 --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:1.0.1-aarch64 --file docker/Dockerfile.wheels .
aarch64_ffmpeg:
docker build --no-cache --pull --tag blakeblackshear/frigate-ffmpeg:1.2.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
aarch64_frigate: version web
docker build --no-cache --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.3 --build-arg NGINX_VERSION=1.0.2 --file docker/Dockerfile.base .
docker build --no-cache --tag frigate --file docker/Dockerfile.aarch64 .
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.aarch64 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
armv7_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-armv7 --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:1.0.1-armv7 --file docker/Dockerfile.wheels .
armv7_ffmpeg:
docker build --no-cache --pull --tag blakeblackshear/frigate-ffmpeg:1.2.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
armv7_frigate: version web
docker build --no-cache --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.3 --build-arg NGINX_VERSION=1.0.2 --file docker/Dockerfile.base .
docker build --no-cache --tag frigate --file docker/Dockerfile.armv7 .
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.armv7 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate

1122
README.md

File diff suppressed because it is too large Load Diff

View File

@@ -1,29 +0,0 @@
version: "3"
services:
dev:
container_name: frigate-dev
user: vscode
privileged: true
shm_size: "256mb"
build:
context: .
dockerfile: docker/Dockerfile.dev
volumes:
- /etc/localtime:/etc/localtime:ro
- .:/lab/frigate:cached
- ./config/config.yml:/config/config.yml:ro
- ./debug:/media/frigate
- /dev/bus/usb:/dev/bus/usb
- /dev/dri:/dev/dri # for intel hwaccel, needs to be updated for your hardware
ports:
- "1935:1935"
- "5000:5000"
- "5001:5001"
- "8080:8080"
entrypoint: ["sudo", "/init"]
command: /bin/sh -c "while sleep 1000; do :; done"
mqtt:
container_name: mqtt
image: eclipse-mosquitto:1.6
ports:
- "1883:1883"

View File

@@ -5,24 +5,18 @@ ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
## Tensorflow lite
&& pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_aarch64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
# s6-overlay
ADD https://github.com/just-containers/s6-overlay/releases/download/v2.2.0.3/s6-overlay-aarch64-installer /tmp/
RUN chmod +x /tmp/s6-overlay-aarch64-installer && /tmp/s6-overlay-aarch64-installer /
ENTRYPOINT ["/init"]
CMD ["python3", "-u", "-m", "frigate"]
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -4,25 +4,15 @@ LABEL maintainer "blakeb@blakeshome.com"
# By default, use the i965 driver
ENV LIBVA_DRIVER_NAME=i965
# Install packages for apt repo
RUN wget -qO - https://repositories.intel.com/graphics/intel-graphics.key | apt-key add - \
&& echo 'deb [arch=amd64] https://repositories.intel.com/graphics/ubuntu focal main' > /etc/apt/sources.list.d/intel-graphics.list \
&& apt-key adv --keyserver keyserver.ubuntu.com --recv-keys F63F0F2B90935439 \
&& echo 'deb http://ppa.launchpad.net/kisak/kisak-mesa/ubuntu focal main' > /etc/apt/sources.list.d/kisak-mesa-focal.list
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg dependencies
libgomp1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 libmfx1 i965-va-driver vainfo intel-media-va-driver-non-free mesa-vdpau-drivers mesa-va-drivers mesa-vdpau-drivers libdrm-radeon1 \
# ffmpeg dependencies
libgomp1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 libmfx1 i965-va-driver vainfo intel-media-va-driver mesa-va-drivers \
## Tensorflow lite
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
# s6-overlay
ADD https://github.com/just-containers/s6-overlay/releases/download/v2.2.0.3/s6-overlay-amd64-installer /tmp/
RUN chmod +x /tmp/s6-overlay-amd64-installer && /tmp/s6-overlay-amd64-installer /
ENTRYPOINT ["/init"]
CMD ["python3", "-u", "-m", "frigate"]
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -4,8 +4,12 @@ LABEL maintainer "blakeb@blakeshome.com"
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg dependencies
libgomp1 \
# ffmpeg dependencies
libgomp1 \
## Tensorflow lite
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
@@ -41,11 +45,3 @@ ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
ENV NVIDIA_REQUIRE_CUDA "cuda>=11.1 brand=tesla,driver>=418,driver<419 brand=tesla,driver>=440,driver<441 brand=tesla,driver>=450,driver<451"
# s6-overlay
ADD https://github.com/just-containers/s6-overlay/releases/download/v2.2.0.3/s6-overlay-amd64-installer /tmp/
RUN chmod +x /tmp/s6-overlay-amd64-installer && /tmp/s6-overlay-amd64-installer /
ENTRYPOINT ["/init"]
CMD ["python3", "-u", "-m", "frigate"]

View File

@@ -5,26 +5,20 @@ ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
libaom0 \
libx265-179 \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
libaom0 \
libx265-179 \
## Tensorflow lite
&& pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_armv7l.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
# s6-overlay
ADD https://github.com/just-containers/s6-overlay/releases/download/v2.2.0.3/s6-overlay-armhf-installer /tmp/
RUN chmod +x /tmp/s6-overlay-armhf-installer && /tmp/s6-overlay-armhf-installer /
ENTRYPOINT ["/init"]
CMD ["python3", "-u", "-m", "frigate"]
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -1,10 +1,8 @@
ARG ARCH=amd64
ARG WHEELS_VERSION
ARG FFMPEG_VERSION
ARG NGINX_VERSION
FROM blakeblackshear/frigate-wheels:${WHEELS_VERSION}-${ARCH} as wheels
FROM blakeblackshear/frigate-ffmpeg:${FFMPEG_VERSION}-${ARCH} as ffmpeg
FROM blakeblackshear/frigate-nginx:${NGINX_VERSION} as nginx
FROM frigate-web as web
FROM ubuntu:20.04
@@ -20,28 +18,30 @@ ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get upgrade -y \
&& apt-get -qq install --no-install-recommends -y gnupg wget unzip tzdata libxml2 \
&& apt-get -qq install --no-install-recommends -y python3-pip \
&& apt-get -qq install --no-install-recommends -y \
gnupg wget unzip tzdata nginx libnginx-mod-rtmp \
&& apt-get -qq install --no-install-recommends -y \
python3-pip \
&& pip3 install -U /wheels/*.whl \
&& APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn apt-key adv --fetch-keys https://packages.cloud.google.com/apt/doc/apt-key.gpg \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections \
&& apt-get -qq update && apt-get -qq install --no-install-recommends -y libedgetpu1-max python3-tflite-runtime python3-pycoral \
&& apt-get -qq update && apt-get -qq install --no-install-recommends -y \
libedgetpu1-max=15.0 \
&& rm -rf /var/lib/apt/lists/* /wheels \
&& (apt-get autoremove -y; apt-get autoclean -y)
RUN pip3 install \
peewee_migrate \
pydantic \
zeroconf \
ws4py
voluptuous
COPY --from=nginx /usr/local/nginx/ /usr/local/nginx/
COPY nginx/nginx.conf /etc/nginx/nginx.conf
# get model and labels
COPY labelmap.txt /labelmap.txt
RUN wget -q https://github.com/google-coral/test_data/raw/release-frogfish/ssdlite_mobiledet_coco_qat_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/test_data/raw/release-frogfish/ssdlite_mobiledet_coco_qat_postprocess.tflite -O /cpu_model.tflite
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess.tflite -O /cpu_model.tflite
WORKDIR /opt/frigate/
ADD frigate frigate/
@@ -49,7 +49,10 @@ ADD migrations migrations/
COPY --from=web /opt/frigate/build web/
COPY docker/rootfs/ /
COPY run.sh /run.sh
RUN chmod +x /run.sh
EXPOSE 5000
EXPOSE 1935
CMD ["/run.sh"]

View File

@@ -1,24 +0,0 @@
FROM frigate:latest
ARG USERNAME=vscode
ARG USER_UID=1000
ARG USER_GID=$USER_UID
# Create the user
RUN groupadd --gid $USER_GID $USERNAME \
&& useradd --uid $USER_UID --gid $USER_GID -m $USERNAME \
#
# [Optional] Add sudo support. Omit if you don't need to install software after connecting.
&& apt-get update \
&& apt-get install -y sudo \
&& echo $USERNAME ALL=\(root\) NOPASSWD:ALL > /etc/sudoers.d/$USERNAME \
&& chmod 0440 /etc/sudoers.d/$USERNAME
RUN apt-get update \
&& apt-get install -y git curl vim htop
RUN pip3 install pylint black
# Install Node 14
RUN curl -sL https://deb.nodesource.com/setup_14.x | bash - \
&& apt-get install -y nodejs

View File

@@ -15,33 +15,33 @@ RUN apt-get -yqq update && \
FROM base as build
ENV FFMPEG_VERSION=4.3.2 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
@@ -61,27 +61,27 @@ ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
zlib1g-dev" && \
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
@@ -459,7 +459,7 @@ RUN \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release

View File

@@ -14,33 +14,33 @@ RUN apt-get -yqq update && \
FROM base as build
ENV FFMPEG_VERSION=4.3.2 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
@@ -60,27 +60,27 @@ ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
libva-dev \
libmfx-dev \
zlib1g-dev" && \
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
libva-dev \
libmfx-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
@@ -450,7 +450,7 @@ RUN \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
@@ -463,6 +463,6 @@ ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/
RUN \
apt-get update -y && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver mesa-va-drivers && \
rm -rf /var/lib/apt/lists/*
apt-get update -y && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver mesa-va-drivers && \
rm -rf /var/lib/apt/lists/*

View File

@@ -37,36 +37,36 @@ FROM devel-base as build
ENV NVIDIA_HEADERS_VERSION=9.1.23.1
ENV FFMPEG_VERSION=4.3.2 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
LIBSRT_VERSION=1.4.1 \
LIBARIBB24_VERSION=1.0.3 \
LIBPNG_VERSION=1.6.9 \
SRC=/usr/local
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
LIBSRT_VERSION=1.4.1 \
LIBARIBB24_VERSION=1.0.3 \
LIBPNG_VERSION=1.6.9 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
@@ -87,35 +87,35 @@ ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
zlib1g-dev" && \
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
RUN \
DIR=/tmp/nv-codec-headers && \
git clone https://github.com/FFmpeg/nv-codec-headers ${DIR} && \
cd ${DIR} && \
git checkout n${NVIDIA_HEADERS_VERSION} && \
make PREFIX="${PREFIX}" && \
make install PREFIX="${PREFIX}" && \
DIR=/tmp/nv-codec-headers && \
git clone https://github.com/FFmpeg/nv-codec-headers ${DIR} && \
cd ${DIR} && \
git checkout n${NVIDIA_HEADERS_VERSION} && \
make PREFIX="${PREFIX}" && \
make install PREFIX="${PREFIX}" && \
rm -rf ${DIR}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
@@ -527,7 +527,7 @@ RUN \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g; s:/lib64:/lib:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
sed "s:${PREFIX}:/usr/local:g; s:/lib64:/lib:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
@@ -539,7 +539,7 @@ ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
# copy only needed files, without copying nvidia dev files
# copy only needed files, without copying nvidia dev files
COPY --from=build /usr/local/bin /usr/local/bin/
COPY --from=build /usr/local/share /usr/local/share/
COPY --from=build /usr/local/lib /usr/local/lib/

View File

@@ -15,33 +15,33 @@ RUN apt-get -yqq update && \
FROM base as build
ENV FFMPEG_VERSION=4.3.2 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.3 \
SRC=/usr/local
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.3 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
@@ -60,30 +60,30 @@ ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib:/opt/vc/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
sudo \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
libx265-dev \
libaom-dev \
zlib1g-dev" && \
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
sudo \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
libx265-dev \
libaom-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
@@ -471,7 +471,7 @@ RUN \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release

View File

@@ -1,52 +0,0 @@
FROM ubuntu:20.04 AS base
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ARG NGINX_VERSION=1.18.0
ARG VOD_MODULE_VERSION=1.28
ARG SECURE_TOKEN_MODULE_VERSION=1.4
ARG RTMP_MODULE_VERSION=1.2.1
RUN cp /etc/apt/sources.list /etc/apt/sources.list~ \
&& sed -Ei 's/^# deb-src /deb-src /' /etc/apt/sources.list \
&& apt-get update
RUN apt-get -yqq build-dep nginx
RUN apt-get -yqq install --no-install-recommends curl \
&& mkdir /tmp/nginx \
&& curl -sL https://nginx.org/download/nginx-${NGINX_VERSION}.tar.gz | tar -C /tmp/nginx -zx --strip-components=1 \
&& mkdir /tmp/nginx-vod-module \
&& curl -sL https://github.com/kaltura/nginx-vod-module/archive/refs/tags/${VOD_MODULE_VERSION}.tar.gz | tar -C /tmp/nginx-vod-module -zx --strip-components=1 \
# Patch MAX_CLIPS to allow more clips to be added than the default 128
&& sed -i 's/MAX_CLIPS (128)/MAX_CLIPS (1080)/g' /tmp/nginx-vod-module/vod/media_set.h \
&& mkdir /tmp/nginx-secure-token-module \
&& curl -sL https://github.com/kaltura/nginx-secure-token-module/archive/refs/tags/${SECURE_TOKEN_MODULE_VERSION}.tar.gz | tar -C /tmp/nginx-secure-token-module -zx --strip-components=1 \
&& mkdir /tmp/nginx-rtmp-module \
&& curl -sL https://github.com/arut/nginx-rtmp-module/archive/refs/tags/v${RTMP_MODULE_VERSION}.tar.gz | tar -C /tmp/nginx-rtmp-module -zx --strip-components=1
WORKDIR /tmp/nginx
RUN ./configure --prefix=/usr/local/nginx \
--with-file-aio \
--with-http_sub_module \
--with-http_ssl_module \
--with-threads \
--add-module=../nginx-vod-module \
--add-module=../nginx-secure-token-module \
--add-module=../nginx-rtmp-module \
--with-cc-opt="-O3 -Wno-error=implicit-fallthrough"
RUN make && make install
RUN rm -rf /usr/local/nginx/html /usr/local/nginx/conf/*.default
FROM base
COPY --from=build /usr/local/nginx /usr/local/nginx
ENTRYPOINT ["/usr/local/nginx/sbin/nginx"]
CMD ["-g", "daemon off;"]

View File

@@ -24,7 +24,8 @@ RUN pip3 install scikit-build
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
# pinning due to issue in 1.19.5 https://github.com/numpy/numpy/issues/18131
numpy==1.19.4 \
imutils \
scipy \
psutil \

View File

@@ -1,5 +0,0 @@
#!/usr/bin/execlineb -S1
if { s6-test ${1} -ne 0 }
if { s6-test ${1} -ne 256 }
s6-svscanctl -t /var/run/s6/services

View File

@@ -1,2 +0,0 @@
#!/usr/bin/execlineb -P
/usr/local/nginx/sbin/nginx

20
docs/.gitignore vendored
View File

@@ -1,20 +0,0 @@
# Dependencies
/node_modules
# Production
/build
# Generated files
.docusaurus
.cache-loader
# Misc
.DS_Store
.env.local
.env.development.local
.env.test.local
.env.production.local
npm-debug.log*
yarn-debug.log*
yarn-error.log*

View File

@@ -1,5 +0,0 @@
# Website
This website is built using [Docusaurus 2](https://v2.docusaurus.io/), a modern static website generator.
For installation and contributing instructions, please follow the [Contributing Docs](https://blakeblackshear.github.io/frigate/contributing).

View File

@@ -1,3 +0,0 @@
module.exports = {
presets: [require.resolve('@docusaurus/core/lib/babel/preset')],
};

42
docs/cameras.md Normal file
View File

@@ -0,0 +1,42 @@
# Camera Specific Configuration
Frigate should work with most RTSP cameras and h264 feeds such as Dahua.
## RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- '1'
```
## Blue Iris RTSP Cameras
You will need to remove `nobuffer` flag for Blue Iris RTSP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rtsp_transport
- tcp
- -stimeout
- "5000000"
- -use_wallclock_as_timestamps
- "1"
```

View File

Before

Width:  |  Height:  |  Size: 132 KiB

After

Width:  |  Height:  |  Size: 132 KiB

View File

@@ -1,126 +0,0 @@
---
id: advanced
title: Advanced
sidebar_label: Advanced
---
## Advanced configuration
### `motion`
Global motion detection config. These may also be defined at the camera level.
```yaml
motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 25
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: ~0.17% of the motion frame area)
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
# moving objects.
contour_area: 100
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
# Too low and a fast moving person wont be detected as motion.
delta_alpha: 0.2
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.2
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height, but no less than 180)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
# Lower values result in less CPU, but small changes may not register as motion.
frame_height: 180
```
### `detect`
Global object detection settings. These may also be defined at the camera level.
```yaml
detect:
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
```
### `logger`
Change the default log level for troubleshooting purposes.
```yaml
logger:
# Optional: default log level (default: shown below)
default: info
# Optional: module by module log level configuration
logs:
frigate.mqtt: error
```
Available log levels are: `debug`, `info`, `warning`, `error`, `critical`
Examples of available modules are:
- `frigate.app`
- `frigate.mqtt`
- `frigate.edgetpu`
- `frigate.zeroconf`
- `detector.<detector_name>`
- `watchdog.<camera_name>`
- `ffmpeg.<camera_name>.<sorted_roles>` NOTE: All FFmpeg logs are sent as `error` level.
### `environment_vars`
This section can be used to set environment variables for those unable to modify the environment of the container (ie. within Hass.io)
```yaml
environment_vars:
EXAMPLE_VAR: value
```
### `database`
Event and recording information is managed in a sqlite database at `/media/frigate/frigate.db`. If that database is deleted, recordings will be orphaned and will need to be cleaned up manually. They also won't show up in the Media Browser within Home Assistant.
If you are storing your database on a network share (SMB, NFS, etc), you may get a `database is locked` error message on startup. You can customize the location of the database in the config if necessary.
This may need to be in a custom location if network storage is used for the media folder.
```yaml
database:
path: /media/frigate/frigate.db
```
### `detectors`
```yaml
detectors:
# Required: name of the detector
coral:
# Required: type of the detector
# Valid values are 'edgetpu' (requires device property below) and 'cpu'.
type: edgetpu
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
device: usb
# Optional: num_threads value passed to the tflite.Interpreter (default: shown below)
# This value is only used for CPU types
num_threads: 3
```
### `model`
If using a custom model, the width and height will need to be specified.
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. By default, truck is renamed to car because they are often confused. You cannot add new object types, but you can change the names of existing objects in the model.
```yaml
model:
# Required: height of the trained model
height: 320
# Required: width of the trained model
width: 320
# Optional: labelmap overrides
labelmap:
7: car
```

View File

@@ -1,557 +0,0 @@
---
id: cameras
title: Cameras
---
## Setting Up Camera Inputs
Up to 4 inputs can be configured for each camera and the role of each input can be mixed and matched based on your needs. This allows you to use a lower resolution stream for object detection, but create recordings from a higher resolution stream, or vice versa.
Each role can only be assigned to one input per camera. The options for roles are as follows:
| Role | Description |
| -------- | ------------------------------------------------------------------------------------- |
| `detect` | Main feed for object detection |
| `record` | Saves segments of the video feed based on configuration settings. [docs](#recordings) |
| `rtmp` | Broadcast as an RTMP feed for other services to consume. [docs](#rtmp-streams) |
### Example
```yaml
mqtt:
host: mqtt.server.com
cameras:
back:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/live
roles:
- record
detect:
width: 1280
height: 720
fps: 5
```
`width`, `height`, and `fps` are only used for the `detect` role. Other streams are passed through, so there is no need to specify the resolution.
## Masks & Zones
### Masks
Masks are used to ignore initial detection in areas of your camera's field of view.
There are two types of masks available:
- **Motion masks**: Motion masks are used to prevent unwanted types of motion from triggering detection. Try watching the video feed with `Motion Boxes` enabled to see what may be regularly detected as motion. For example, you want to mask out your timestamp, the sky, rooftops, etc. Keep in mind that this mask only prevents motion from being detected and does not prevent objects from being detected if object detection was started due to motion in unmasked areas. Motion is also used during object tracking to refine the object detection area in the next frame. Over masking will make it more difficult for objects to be tracked. To see this effect, create a mask, and then watch the video feed with `Motion Boxes` enabled again.
- **Object filter masks**: Object filter masks are used to filter out false positives for a given object type. These should be used to filter any areas where it is not possible for an object of that type to be. The bottom center of the detected object's bounding box is evaluated against the mask. If it is in a masked area, it is assumed to be a false positive. For example, you may want to mask out rooftops, walls, the sky, treetops for people. For cars, masking locations other than the street or your driveway will tell frigate that anything in your yard is a false positive.
To create a poly mask:
1. Visit the [web UI](/usage/web)
1. Click the camera you wish to create a mask for
1. Click "Mask & Zone creator"
1. Click "Add" on the type of mask or zone you would like to create
1. Click on the camera's latest image to create a masked area. The yaml representation will be updated in real-time
1. When you've finished creating your mask, click "Copy" and paste the contents into your `config.yaml` file and restart Frigate
Example of a finished row corresponding to the below example image:
```yaml
motion:
mask: "0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432"
```
![poly](/img/example-mask-poly.png)
```yaml
# Optional: camera level motion config
motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
```
### Zones
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
During testing, `draw_zones` should be set in the config to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
To create a zone, follow the same steps above for a "Motion mask", but use the section of the web UI for creating a zone instead.
```yaml
# Optional: zones for this camera
zones:
# Required: name of the zone
# NOTE: This must be different than any camera names, but can match with another zone on another
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: List of objects that can trigger this zone (default: all tracked objects)
objects:
- person
# Optional: Zone level object filters.
# NOTE: The global and camera filters are applied upstream.
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.7
```
## Objects
For a list of available objects, see the [objects documentation](./objects.mdx).
```yaml
# Optional: Camera level object filters config.
objects:
track:
- person
- car
# Optional: mask to prevent all object types from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object.
# NOTE: This mask is COMBINED with the object type specific mask below
mask: 0,0,1000,0,1000,200,0,200
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.7
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object
mask: 0,0,1000,0,1000,200,0,200
```
## Recordings
24/7 recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding and are available in Home Assistant's media browser. Each camera supports a configurable retention policy in the config.
Exported clips are also created off of these recordings. Frigate chooses the largest matching retention value between the recording retention and the event retention when determining if a recording should be removed.
These recordings will not be playable in the web UI or in Home Assistant's media browser unless your camera sends video as h264.
:::caution
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
:::
```yaml
record:
# Optional: Enable recording (default: shown below)
enabled: False
# Optional: Number of days to retain (default: shown below)
retain_days: 0
# Optional: Event recording settings
events:
# Optional: Enable event recording retention settings (default: shown below)
enabled: False
# Optional: Maximum length of time to retain video during long events. (default: shown below)
# NOTE: If an object is being tracked for longer than this amount of time, the cache
# will begin to expire and the resulting clip will be the last x seconds of the event unless retain_days under record is > 0.
max_seconds: 300
# Optional: Number of seconds before the event to include in the event (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include in the event (default: shown below)
post_capture: 5
# Optional: Objects to save event for. (default: all tracked objects)
objects:
- person
# Optional: Restrict event to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Retention settings for event
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
## Snapshots
Frigate can save a snapshot image to `/media/frigate/clips` for each event named as `<camera>-<id>.jpg`.
```yaml
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
snapshots:
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: Enable writing a clean copy png snapshot to /media/frigate/clips (default: shown below)
# Only works if snapshots are enabled. This image is intended to be used for training purposes.
clean_copy: True
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: False
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: False
# Optional: crop the snapshot (default: shown below)
crop: False
# Optional: height to resize the snapshot to (default: original size)
height: 175
# Optional: jpeg encode quality (default: shown below)
quality: 70
# Optional: Restrict snapshots to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
## RTMP streams
Frigate can re-stream your video feed as a RTMP feed for other applications such as Home Assistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and Home Assistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.
## Timestamp style configuration
For the debug view and snapshots it is possible to embed a timestamp in the feed. In some instances the default position obstructs important space, visibility or contrast is too low because of color or the datetime format does not match ones desire.
```yaml
# Optional: in-feed timestamp style configuration
timestamp_style:
# Optional: Position of the timestamp (default: shown below)
# "tl" (top left), "tr" (top right), "bl" (bottom left), "br" (bottom right)
position: "tl"
# Optional: Format specifier conform to the Python package "datetime" (default: shown below)
# Additional Examples:
# german: "%d.%m.%Y %H:%M:%S"
format: "%m/%d/%Y %H:%M:%S"
# Optional: Color of font
color:
# All Required when color is specified (default: shown below)
red: 255
green: 255
blue: 255
# Optional: Scale factor for font (default: shown below)
scale: 1.0
# Optional: Line thickness of font (default: shown below)
thickness: 2
# Optional: Effect of lettering (default: shown below)
# None (No effect),
# "solid" (solid background in inverse color of font)
# "shadow" (shadow for font)
effect: None
```
## Full example
The following is a full example of all of the options together for a camera configuration
```yaml
cameras:
# Required: name of the camera
back:
# Required: ffmpeg settings for the camera
ffmpeg:
# Required: A list of input streams for the camera. See documentation for more information.
inputs:
# Required: the path to the stream
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
# Required: list of roles for this stream. valid values are: detect,record,rtmp
# NOTICE: In addition to assigning the record, and rtmp roles,
# they must also be enabled in the camera config.
roles:
- detect
- rtmp
# Optional: stream specific global args (default: inherit)
global_args:
# Optional: stream specific hwaccel args (default: inherit)
hwaccel_args:
# Optional: stream specific input args (default: inherit)
input_args:
# Optional: camera specific global args (default: inherit)
global_args:
# Optional: camera specific hwaccel args (default: inherit)
hwaccel_args:
# Optional: camera specific input args (default: inherit)
input_args:
# Optional: camera specific output args (default: inherit)
output_args:
# Required: Camera level detect settings
detect:
# Optional: width of the frame for the input with the detect role (default: shown below)
width: 1280
# Optional: height of the frame for the input with the detect role (default: shown below)
height: 720
# Optional: desired fps for your camera for the input with the detect role (default: shown below)
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
fps: 5
# Optional: enables detection for the camera (default: True)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: True
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
# Optional: camera level motion config
motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
# Optional: timeout for highest scoring image before allowing it
# to be replaced by a newer image. (default: shown below)
best_image_timeout: 60
# Optional: zones for this camera
zones:
# Required: name of the zone
# NOTE: This must be different than any camera names, but can match with another zone on another
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: List of objects that can trigger this zone (default: all tracked objects)
objects:
- person
# Optional: Zone level object filters.
# NOTE: The global and camera filters are applied upstream.
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.7
# Optional: 24/7 recording configuration
record:
# Optional: Enable recording (default: global setting)
enabled: False
# Optional: Number of days to retain (default: global setting)
retain_days: 30
# Optional: Event recording settings
events:
# Required: enables event recordings for the camera (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: Number of seconds before the event to include (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include (default: shown below)
post_capture: 5
# Optional: Objects to save events for. (default: all tracked objects)
objects:
- person
# Optional: Restrict events to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: RTMP re-stream configuration
rtmp:
# Required: Enable the RTMP stream (default: True)
enabled: True
# Optional: Live stream configuration for WebUI
live:
# Optional: Set the height of the live stream. (default: 720)
# This must be less than or equal to the height of the detect stream. Lower resolutions
# reduce bandwidth required for viewing the live stream. Width is computed to match known aspect ratio.
height: 720
# Optional: Set the encode quality of the live stream (default: shown below)
# 1 is the highest quality, and 31 is the lowest. Lower quality feeds utilize less CPU resources.
quality: 8
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
snapshots:
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: False
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: False
# Optional: crop the snapshot (default: shown below)
crop: False
# Optional: height to resize the snapshot to (default: original size)
height: 175
# Optional: Restrict snapshots to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: Configuration for the jpg snapshots published via MQTT
mqtt:
# Optional: Enable publishing snapshot via mqtt for camera (default: shown below)
# NOTE: Only applies to publishing image data to MQTT via 'frigate/<camera_name>/<object_name>/snapshot'.
# All other messages will still be published.
enabled: True
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: True
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: True
# Optional: crop the snapshot (default: shown below)
crop: True
# Optional: height to resize the snapshot to (default: shown below)
height: 270
# Optional: jpeg encode quality (default: shown below)
quality: 70
# Optional: Restrict mqtt messages to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera level object filters config.
objects:
track:
- person
- car
# Optional: mask to prevent all object types from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object.
# NOTE: This mask is COMBINED with the object type specific mask below
mask: 0,0,1000,0,1000,200,0,200
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.7
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object
mask: 0,0,1000,0,1000,200,0,200
# Optional: In-feed timestamp style configuration
timestamp_style:
# Optional: Position of the timestamp (default: shown below)
# "tl" (top left), "tr" (top right), "bl" (bottom left), "br" (bottom right)
position: "tl"
# Optional: Format specifier conform to the Python package "datetime" (default: shown below)
# Additional Examples:
# german: "%d.%m.%Y %H:%M:%S"
format: "%m/%d/%Y %H:%M:%S"
# Optional: Color of font
color:
# All Required when color is specified (default: shown below)
red: 255
green: 255
blue: 255
# Optional: Scale factor for font (default: shown below)
scale: 1.0
# Optional: Line thickness of font (default: shown below)
thickness: 2
# Optional: Effect of lettering (default: shown below)
# None (No effect),
# "solid" (solid background in inverse color of font)
# "shadow" (shadow for font)
effect: None
```
## Camera specific configuration
### MJPEG Cameras
The input and output parameters need to be adjusted for MJPEG cameras
```yaml
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -r
- "3" # <---- adjust depending on your desired frame rate from the mjpeg image
- -use_wallclock_as_timestamps
- "1"
```
Note that mjpeg cameras require encoding the video into h264 for recording, and rtmp roles. This will use significantly more CPU than if the cameras supported h264 feeds directly.
```yaml
output_args:
record: -f segment -segment_time 60 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c:v libx264 -an
rtmp: -c:v libx264 -an -f flv
```
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- "1"
```
### Reolink 410/520 (possibly others)
Several users have reported success with the rtmp video from Reolink cameras.
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rw_timeout
- "5000000"
- -use_wallclock_as_timestamps
- "1"
```
### Blue Iris RTSP Cameras
You will need to remove `nobuffer` flag for Blue Iris RTSP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rtsp_transport
- tcp
- -stimeout
- "5000000"
- -use_wallclock_as_timestamps
- "1"
```

View File

@@ -1,74 +0,0 @@
---
id: detectors
title: Detectors
---
The default config will look for a USB Coral device. If you do not have a Coral, you will need to configure a CPU detector. If you have PCI or multiple Coral devices, you need to configure your detector devices in the config file. When using multiple detectors, they run in dedicated processes, but pull from a common queue of requested detections across all cameras.
Frigate supports `edgetpu` and `cpu` as detector types. The device value should be specified according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api).
**Note**: There is no support for Nvidia GPUs to perform object detection with tensorflow. It can be used for ffmpeg decoding, but not object detection.
Single USB Coral:
```yaml
detectors:
coral:
type: edgetpu
device: usb
```
Multiple USB Corals:
```yaml
detectors:
coral1:
type: edgetpu
device: usb:0
coral2:
type: edgetpu
device: usb:1
```
Native Coral (Dev Board):
```yaml
detectors:
coral:
type: edgetpu
device: ''
```
Multiple PCIE/M.2 Corals:
```yaml
detectors:
coral1:
type: edgetpu
device: pci:0
coral2:
type: edgetpu
device: pci:1
```
Mixing Corals:
```yaml
detectors:
coral_usb:
type: edgetpu
device: usb
coral_pci:
type: edgetpu
device: pci
```
CPU Detectors (not recommended):
```yaml
detectors:
cpu1:
type: cpu
cpu2:
type: cpu
```

View File

@@ -1,19 +0,0 @@
---
id: false_positives
title: Reducing false positives
---
Tune your object filters to adjust false positives: `min_area`, `max_area`, `min_score`, `threshold`.
For object filters in your configuration, any single detection below `min_score` will be ignored as a false positive. `threshold` is based on the median of the history of scores (padded to 3 values) for a tracked object. Consider the following frames when `min_score` is set to 0.6 and threshold is set to 0.85:
| Frame | Current Score | Score History | Computed Score | Detected Object |
| ----- | ------------- | --------------------------------- | -------------- | --------------- |
| 1 | 0.7 | 0.0, 0, 0.7 | 0.0 | No |
| 2 | 0.55 | 0.0, 0.7, 0.0 | 0.0 | No |
| 3 | 0.85 | 0.7, 0.0, 0.85 | 0.7 | No |
| 4 | 0.90 | 0.7, 0.85, 0.95, 0.90 | 0.875 | Yes |
| 5 | 0.88 | 0.7, 0.85, 0.95, 0.90, 0.88 | 0.88 | Yes |
| 6 | 0.95 | 0.7, 0.85, 0.95, 0.90, 0.88, 0.95 | 0.89 | Yes |
In frame 2, the score is below the `min_score` value, so frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.

View File

@@ -1,235 +0,0 @@
---
id: index
title: Configuration
---
For HassOS installations, the default location for the config file is `/config/frigate.yml`.
For all other installations, the default location for the config file is '/config/config.yml'. This can be overridden with the `CONFIG_FILE` environment variable. Camera specific ffmpeg parameters are documented [here](cameras.md).
It is recommended to start with a minimal configuration and add to it:
```yaml
mqtt:
host: mqtt.server.com
cameras:
back:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
detect:
width: 1280
height: 720
fps: 5
```
## Required
## `mqtt`
```yaml
mqtt:
# Required: host name
host: mqtt.server.com
# Optional: port (default: shown below)
port: 1883
# Optional: topic prefix (default: shown below)
# WARNING: must be unique if you are running multiple instances
topic_prefix: frigate
# Optional: client id (default: shown below)
# WARNING: must be unique if you are running multiple instances
client_id: frigate
# Optional: user
user: mqtt_user
# Optional: password
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}.
# eg. password: '{FRIGATE_MQTT_PASSWORD}'
password: password
# Optional: tls_ca_certs for enabling TLS using self-signed certs (default: None)
tls_ca_certs: /path/to/ca.crt
# Optional: tls_client_cert and tls_client key in order to use self-signed client
# certificates (default: None)
# NOTE: certificate must not be password-protected
# do not set user and password when using a client certificate
tls_client_cert: /path/to/client.crt
tls_client_key: /path/to/client.key
# Optional: tls_insecure (true/false) for enabling TLS verification of
# the server hostname in the server certificate (default: None)
tls_insecure: false
# Optional: interval in seconds for publishing stats (default: shown below)
stats_interval: 60
```
## `cameras`
Each of your cameras must be configured. The following is the minimum required to register a camera in Frigate. Check the [camera configuration page](cameras.md) for a complete list of options.
```yaml
cameras:
# Name of your camera
front_door:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
detect:
width: 1280
height: 720
fps: 5
```
## Optional
### `database`
```yaml
database:
# The path to store the SQLite DB (default: shown below)
path: /media/frigate/frigate.db
```
### `model`
```yaml
# Optional: model modifications
model:
# Required: Object detection model input width (default: shown below)
width: 320
# Required: Object detection model input height (default: shown below)
height: 320
# Optional: Label name modifications
labelmap:
2: vehicle # previously "car"
```
### `detectors`
Check the [detectors configuration page](detectors.md) for a complete list of options.
### `logger`
```yaml
# Optional: logger verbosity settings
logger:
# Optional: Default log verbosity (default: shown below)
default: info
# Optional: Component specific logger overrides
logs:
frigate.event: debug
```
### `record`
Can be overridden at the camera level. 24/7 recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding and are available in Home Assistant's media browser. Each camera supports a configurable retention policy in the config.
Exported clips are also created off of these recordings. Frigate chooses the largest matching retention value between the recording retention and the event retention when determining if a recording should be removed.
These recordings will not be playable in the web UI or in Home Assistant's media browser unless your camera sends video as h264.
:::caution
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
:::
```yaml
record:
# Optional: Enable recording (default: shown below)
enabled: False
# Optional: Number of days to retain (default: shown below)
retain_days: 0
# Optional: Event recording settings
events:
# Optional: Enable event recording retention settings (default: shown below)
enabled: False
# Optional: Maximum length of time to retain video during long events. (default: shown below)
# NOTE: If an object is being tracked for longer than this amount of time, the cache
# will begin to expire and the resulting clip will be the last x seconds of the event unless retain_days under record is > 0.
max_seconds: 300
# Optional: Number of seconds before the event to include (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include (default: shown below)
post_capture: 5
# Optional: Objects to save recordings for. (default: all tracked objects)
objects:
- person
# Optional: Restrict recordings to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Retention settings for events
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
### `ffmpeg`
Can be overridden at the camera level.
```yaml
ffmpeg:
# Optional: global ffmpeg args (default: shown below)
global_args: -hide_banner -loglevel warning
# Optional: global hwaccel args (default: shown below)
# NOTE: See hardware acceleration docs for your specific device
hwaccel_args: []
# Optional: global input args (default: shown below)
input_args: -avoid_negative_ts make_zero -fflags +genpts+discardcorrupt -rtsp_transport tcp -stimeout 5000000 -use_wallclock_as_timestamps 1
# Optional: global output args
output_args:
# Optional: output args for detect streams (default: shown below)
detect: -f rawvideo -pix_fmt yuv420p
# Optional: output args for record streams (default: shown below)
record: -f segment -segment_time 60 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
# Optional: output args for rtmp streams (default: shown below)
rtmp: -c copy -f flv
```
### `objects`
Can be overridden at the camera level. For a list of available objects, see the [objects documentation](./objects.mdx).
```yaml
objects:
# Optional: list of objects to track from labelmap.txt (default: shown below)
track:
- person
# Optional: filters to reduce false positives for specific object types
filters:
person:
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
min_area: 5000
# Optional: maximum width*height of the bounding box for the detected object (default: 24000000)
max_area: 100000
# Optional: minimum score for the object to initiate tracking (default: shown below)
min_score: 0.5
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
threshold: 0.7
```
### `birdseye`
A dynamic combined camera view of all tracked cameras. This is optimized for minimal bandwidth and server resource utilization. Encoding is only performed when actively viewing the video feed, and only active (defined by the mode) cameras are included in the view.
```yaml
birdseye:
# Optional: Enable birdseye view (default: shown below)
enabled: True
# Optional: Width of the output resolution (default: shown below)
width: 1280
# Optional: Height of the output resolution (default: shown below)
height: 720
# Optional: Encoding quality of the mpeg1 feed (default: shown below)
# 1 is the highest quality, and 31 is the lowest. Lower quality feeds utilize less CPU resources.
quality: 8
# Optional: Mode of the view. Available options are: objects, motion, and continuous
# objects - cameras are included if they have had a tracked object within the last 30 seconds
# motion - cameras are included if motion was detected in the last 30 seconds
# continuous - all cameras are included always
mode: objects
```

View File

@@ -1,25 +0,0 @@
---
id: objects
title: Default available objects
sidebar_label: Available objects
---
import labels from "../../../labelmap.txt";
By default, Frigate includes the following object models from the Google Coral test data.
<ul>
{labels.split("\n").map((label) => (
<li>{label.replace(/^\d+\s+/, "")}</li>
))}
</ul>
## Custom Models
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
You also need to update the model width/height in the config if they differ from the defaults.

View File

@@ -1,72 +0,0 @@
---
id: optimizing
title: Optimizing performance
---
- **Google Coral**: It is strongly recommended to use a Google Coral, Frigate will no longer fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU. Frigate should work with any supported Coral device from https://coral.ai
- **Resolution**: For the `detect` input, choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
- **FPS**: 5 frames per second should be adequate. Higher frame rates will require more CPU usage without improving detections or accuracy. Reducing the frame rate on your camera will have the greatest improvement on system resources.
- **Hardware Acceleration**: Make sure you configure the `hwaccel_args` for your hardware. They provide a significant reduction in CPU usage if they are available.
- **Masks**: Masks can be used to ignore motion and reduce your idle CPU load. If you have areas with regular motion such as timestamps or trees blowing in the wind, frigate will constantly try to determine if that motion is from a person or other object you are tracking. Those detections not only increase your average CPU usage, but also clog the pipeline for detecting objects elsewhere. If you are experiencing high values for `detection_fps` when no objects of interest are in the cameras, you should use masks to tell frigate to ignore movement from trees, bushes, timestamps, or any part of the image where detections should not be wasted looking for objects.
### FFmpeg Hardware Acceleration
Frigate works on Raspberry Pi 3b/4 and x86 machines. It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible.
Raspberry Pi 3/4 (32-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_mmal
```
Raspberry Pi 3/4 (64-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_v4l2m2m
```
Intel-based CPUs (<10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```
Intel-based CPUs (>=10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- qsv
- -qsv_device
- /dev/dri/renderD128
```
AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
**Note:** You also need to set `LIBVA_DRIVER_NAME=radeonsi` as an environment variable on the container.
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
```
Nvidia GPU based decoding via NVDEC is supported, but requires special configuration. See the [nvidia NVDEC documentation](/configuration/nvdec) for more details.

View File

@@ -1,184 +0,0 @@
---
id: contributing
title: Contributing
---
## Getting the source
### Core, Web, Docker, and Documentation
This repository holds the main Frigate application and all of its dependencies.
Fork [blakeblackshear/frigate](https://github.com/blakeblackshear/frigate.git) to your own GitHub profile, then clone the forked repo to your local machine.
From here, follow the guides for:
- [Core](#core)
- [Web Interface](#web-interface)
- [Documentation](#documentation)
### Frigate Home Assistant Addon
This repository holds the Home Assistant Addon, for use with Home Assistant OS and compatible installations. It is the piece that allows you to run Frigate from your Home Assistant Supervisor tab.
Fork [blakeblackshear/frigate-hass-addons](https://github.com/blakeblackshear/frigate-hass-addons) to your own Github profile, then clone the forked repo to your local machine.
### Frigate Home Assistant Integration
This repository holds the custom integration that allows your Home Assistant installation to automatically create entities for your Frigate instance, whether you run that with the [addon](#frigate-home-assistant-addon) or in a separate Docker instance.
Fork [blakeblackshear/frigate-hass-integration](https://github.com/blakeblackshear/frigate-hass-integration) to your own GitHub profile, then clone the forked repo to your local machine.
## Core
### Prerequisites
- [Frigate source code](#frigate-core-web-and-docs)
- GNU make
- Docker
- Extra Coral device (optional, but very helpful to simulate real world performance)
### Setup
#### 1. Build the docker container locally with the appropriate make command
For x86 machines, use `make amd64_frigate`
#### 2. Create a local config file for testing
Place the file at `config/config.yml` in the root of the repo.
Here is an example, but modify for your needs:
```yaml
mqtt:
host: mqtt
cameras:
test:
ffmpeg:
inputs:
- path: /media/frigate/car-stopping.mp4
input_args: -re -stream_loop -1 -fflags +genpts
roles:
- detect
- rtmp
detect:
height: 1080
width: 1920
fps: 5
```
These input args tell ffmpeg to read the mp4 file in an infinite loop. You can use any valid ffmpeg input here.
#### 3. Gather some mp4 files for testing
Create and place these files in a `debug` folder in the root of the repo. This is also where recordings will be created if you enable them in your test config. Update your config from step 2 above to point at the right file. You can check the `docker-compose.yml` file in the repo to see how the volumes are mapped.
#### 4. Open the repo with Visual Studio Code
Upon opening, you should be prompted to open the project in a remote container. This will build a container on top of the base frigate container with all the development dependencies installed. This ensures everyone uses a consistent development environment without the need to install any dependencies on your host machine.
#### 5. Run frigate from the command line
VSCode will start the docker compose file for you and open a terminal window connected to `frigate-dev`.
- Run `python3 -m frigate` to start the backend.
- In a separate terminal window inside VS Code, change into the `web` directory and run `npm install && npm start` to start the frontend.
#### 6. Teardown
After closing VSCode, you may still have containers running. To close everything down, just run `docker-compose down -v` to cleanup all containers.
## Web Interface
### Prerequisites
- [Frigate source code](#frigate-core-web-and-docs)
- All [core](#core) prerequisites _or_ another running Frigate instance locally available
- Node.js 14
### Making changes
#### 1. Set up a Frigate instance
The Web UI requires an instance of Frigate to interact with for all of its data. You can either run an instance locally (recommended) or attach to a separate instance accessible on your network.
To run the local instance, follow the [core](#core) development instructions.
If you won't be making any changes to the Frigate HTTP API, you can attach the web development server to any Frigate instance on your network. Skip this step and go to [3a](#3a-run-the-development-server-against-a-non-local-instance).
#### 2. Install dependencies
```console
cd web && npm install
```
#### 3. Run the development server
```console
cd web && npm run start
```
#### 3a. Run the development server against a non-local instance
To run the development server against a non-local instance, you will need to provide an environment variable, `SNOWPACK_PUBLIC_API_HOST` that tells the web application how to connect to the Frigate API:
```console
cd web && SNOWPACK_PUBLIC_API_HOST=http://<ip-address-to-your-frigate-instance>:5000 npm run start
```
#### 4. Making changes
The Web UI is built using [Snowpack](https://www.snowpack.dev/), [Preact](https://preactjs.com), and [Tailwind CSS](https://tailwindcss.com).
Light guidelines and advice:
- Avoid adding more dependencies. The web UI intends to be lightweight and fast to load.
- Do not make large sweeping changes. [Open a discussion on GitHub](https://github.com/blakeblackshear/frigate/discussions/new) for any large or architectural ideas.
- Ensure `lint` passes. This command will ensure basic conformance to styles, applying as many automatic fixes as possible, including Prettier formatting.
```console
npm run lint
```
- Add to unit tests and ensure they pass. As much as possible, you should strive to _increase_ test coverage whenever making changes. This will help ensure features do not accidentally become broken in the future.
```console
npm run test
```
- Test in different browsers. Firefox, Chrome, and Safari all have different quirks that make them unique targets to interact with.
## Documentation
### Prerequisites
- [Frigate source code](#frigate-core-web-and-docs)
- Node.js 14
### Making changes
#### 1. Installation
```console
npm install
```
#### 2. Local Development
```console
npm run start
```
This command starts a local development server and open up a browser window. Most changes are reflected live without having to restart the server.
The docs are built using [Docusaurus v2](https://v2.docusaurus.io). Please refer to the Docusaurus docs for more information on how to modify Frigate's documentation.
#### 3. Build (optional)
```console
npm run build
```
This command generates static content into the `build` directory and can be served using any static contents hosting service.

View File

@@ -1,29 +0,0 @@
---
id: hardware
title: Recommended hardware
---
## Cameras
Cameras that output H.264 video and AAC audio will offer the most compatibility with all features of Frigate and Home Assistant. It is also helpful if your camera supports multiple substreams to allow different resolutions to be used for detection, streaming, and recordings without re-encoding.
## Computer
| Name | Inference Speed | Notes |
| ----------------------- | --------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| Atomic Pi | 16ms | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
| Intel NUC NUC7i3BNK | 8-10ms | Great performance. Can handle many cameras at 5fps depending on typical amounts of motion. |
| BMAX B2 Plus | 10-12ms | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
| Minisforum GK41 | 9-10ms | Great alternative to a NUC with dual Gigabit NICs. Easily handles several 1080p cameras. |
| Raspberry Pi 3B (32bit) | 60ms | Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0. |
| Raspberry Pi 4 (32bit) | 15-20ms | Can handle a small number of cameras. The 2GB version runs fine. |
| Raspberry Pi 4 (64bit) | 10-15ms | Can handle a small number of cameras. The 2GB version runs fine. |
## Unraid
Many people have powerful enough NAS devices or home servers to also run docker. There is a Unraid Community App.
To install make sure you have the [community app plugin here](https://forums.unraid.net/topic/38582-plug-in-community-applications/). Then search for "Frigate" in the apps section within Unraid - you can see the online store [here](https://unraid.net/community/apps?q=frigate#r)
| Name | Inference Speed | Notes |
| ------------------------------------ | --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [M2 Coral Edge TPU](http://coral.ai) | 6.2ms | Install the Coral plugin from Unraid Community App Center [info here](https://forums.unraid.net/topic/98064-support-blakeblackshear-frigate/?do=findComment&comment=949789) |

View File

@@ -1,13 +0,0 @@
---
id: how-it-works
title: How Frigate Works
sidebar_label: How it works
---
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
![Diagram](/img/diagram.png)
1. Look for Motion
2. Calculate Detection Regions
3. Run Object Detection

View File

@@ -1,25 +0,0 @@
---
id: index
title: Frigate
sidebar_label: Features
slug: /
---
A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
- Tight integration with Home Assistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- 24/7 recording
- Re-streaming via RTMP to reduce the number of connections to your camera
## Screenshots
![Media Browser](/img/media_browser.png)
![Notification](/img/notification.png)

View File

@@ -1,124 +0,0 @@
---
id: installation
title: Installation
---
Frigate is a Docker container that can be run on any Docker host including as a [HassOS Addon](https://www.home-assistant.io/addons/). See instructions below for installing the HassOS addon.
For Home Assistant users, there is also a [custom component (aka integration)](https://github.com/blakeblackshear/frigate-hass-integration). This custom component adds tighter integration with Home Assistant by automatically setting up camera entities, sensors, media browser for recordings, and a public API to simplify notifications.
Note that HassOS Addons and custom components are different things. If you are already running Frigate with Docker directly, you do not need the Addon since the Addon would run another instance of Frigate.
## HassOS Addon
HassOS users can install via the addon repository. Frigate requires an MQTT server.
1. Navigate to Supervisor > Add-on Store > Repositories
2. Add https://github.com/blakeblackshear/frigate-hass-addons
3. Setup your network configuration in the `Configuration` tab if deisred
4. Create the file `frigate.yml` in your `config` directory with your detailed Frigate configuration
5. Start the addon container
6. If you are using hardware acceleration for ffmpeg, you will need to disable "Protection mode"
## Docker
Make sure you choose the right image for your architecture:
| Arch | Image Name |
| ----------- | ------------------------------------------ |
| amd64 | blakeblackshear/frigate:stable-amd64 |
| amd64nvidia | blakeblackshear/frigate:stable-amd64nvidia |
| armv7 | blakeblackshear/frigate:stable-armv7 |
| aarch64 | blakeblackshear/frigate:stable-aarch64 |
It is recommended to run with docker-compose:
```yaml
version: "3.9"
services:
frigate:
container_name: frigate
privileged: true # this may not be necessary for all setups
restart: unless-stopped
image: blakeblackshear/frigate:<specify_version_tag>
devices:
- /dev/bus/usb:/dev/bus/usb
- /dev/dri/renderD128 # for intel hwaccel, needs to be updated for your hardware
volumes:
- /etc/localtime:/etc/localtime:ro
- <path_to_config_file>:/config/config.yml:ro
- <path_to_directory_for_media>:/media/frigate
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
target: /tmp/cache
tmpfs:
size: 1000000000
ports:
- "5000:5000"
- "1935:1935" # RTMP feeds
environment:
FRIGATE_RTSP_PASSWORD: "password"
```
If you can't use docker compose, you can run the container with something similar to this:
```bash
docker run -d \
--name frigate \
--restart=unless-stopped \
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
--device /dev/bus/usb:/dev/bus/usb \
--device /dev/dri/renderD128 \
-v <path_to_directory_for_media>:/media/frigate \
-v <path_to_config_file>:/config/config.yml:ro \
-v /etc/localtime:/etc/localtime:ro \
-e FRIGATE_RTSP_PASSWORD='password' \
-p 5000:5000 \
-p 1935:1935 \
blakeblackshear/frigate:<specify_version_tag>
```
### Calculating shm-size
The default shm-size of 64m is fine for setups with 3 or less 1080p cameras. If frigate is exiting with "Bus error" messages, it could be because you have too many high resolution cameras and you need to specify a higher shm size.
You can calculate the necessary shm-size for each camera with the following formula:
```
(width * height * 1.5 * 7 + 270480)/1048576 = <shm size in mb>
```
The shm size cannot be set per container for Home Assistant Addons. You must set `default-shm-size` in `/etc/docker/daemon.json` to increase the default shm size. This will increase the shm size for all of your docker containers. This may or may not cause issues with your setup. https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
## Kubernetes
Use the [helm chart](https://github.com/blakeblackshear/blakeshome-charts/tree/master/charts/frigate).
## Virtualization
For ideal performance, Frigate needs access to underlying hardware for the Coral and GPU devices for ffmpeg decoding. Running Frigate in a VM on top of Proxmox, ESXi, Virtualbox, etc. is not recommended. The virtualization layer typically introduces a sizable amount of overhead for communication with Coral devices.
### Proxmox
Some people have had success running Frigate in LXC directly with the following config:
```
arch: amd64
cores: 2
features: nesting=1
hostname: FrigateLXC
memory: 4096
net0: name=eth0,bridge=vmbr0,firewall=1,hwaddr=2E:76:AE:5A:58:48,ip=dhcp,ip6=auto,type=veth
ostype: debian
rootfs: local-lvm:vm-115-disk-0,size=12G
swap: 512
lxc.cgroup.devices.allow: c 189:385 rwm
lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file
lxc.mount.entry: /dev/bus/usb/004/002 dev/bus/usb/004/002 none bind,optional,create=file
lxc.apparmor.profile: unconfined
lxc.cgroup.devices.allow: a
lxc.cap.drop:
```
### ESX
For details on running Frigate under ESX, see details [here](https://github.com/blakeblackshear/frigate/issues/305).

View File

@@ -1,17 +0,0 @@
---
id: mdx
title: Powered by MDX
---
You can write JSX and use React components within your Markdown thanks to [MDX](https://mdxjs.com/).
export const Highlight = ({children, color}) => ( <span style={{
backgroundColor: color,
borderRadius: '2px',
color: '#fff',
padding: '0.2rem',
}}>{children}</span> );
<Highlight color="#25c2a0">Docusaurus green</Highlight> and <Highlight color="#1877F2">Facebook blue</Highlight> are my favorite colors.
I can write **Markdown** alongside my _JSX_!

View File

@@ -1,30 +0,0 @@
---
id: troubleshooting
title: Troubleshooting and FAQ
---
### I am seeing a solid green image for my camera.
A solid green image means that frigate has not received any frames from ffmpeg. Check the logs to see why ffmpeg is exiting and adjust your ffmpeg args accordingly.
### How can I get sound or audio in my recordings?
By default, Frigate removes audio from recordings to reduce the likelihood of failing for invalid data. If you would like to include audio, you need to override the output args to remove `-an` for where you want to include audio. The recommended audio codec is `aac`. Not all audio codecs are supported by RTMP, so you may need to re-encode your audio with `-c:a aac`. The default ffmpeg args are shown [here](/frigate/configuration/index#ffmpeg).
### My mjpeg stream or snapshots look green and crazy
This almost always means that the width/height defined for your camera are not correct. Double check the resolution with vlc or another player. Also make sure you don't have the width and height values backwards.
![mismatched-resolution](/img/mismatched-resolution.jpg)
### I can't view events or recordings in the Web UI.
Ensure your cameras send h264 encoded video
### "[mov,mp4,m4a,3gp,3g2,mj2 @ 0x5639eeb6e140] moov atom not found"
These messages in the logs are expected in certain situations. Frigate checks the integrity of the recordings before storing. Occasionally these cached files will be invalid and cleaned up automatically.
### "On connect called"
If you see repeated "On connect called" messages in your config, check for another instance of frigate. This happens when multiple frigate containers are trying to connect to mqtt with the same client_id.

View File

@@ -1,215 +0,0 @@
---
id: api
title: HTTP API
---
A web server is available on port 5000 with the following endpoints.
### `GET /api/<camera_name>`
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
Accepts the following query string parameters:
| param | Type | Description |
| ----------- | ---- | ------------------------------------------------------------------ |
| `fps` | int | Frame rate |
| `h` | int | Height in pixels |
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
| `zones` | int | Draw the zones on the image (0 or 1) |
| `mask` | int | Overlay the mask on the image (0 or 1) |
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/api/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/api/back?fps=10` or both with `?fps=10&h=1000`.
### `GET /api/<camera_name>/<object_name>/best.jpg[?h=300&crop=1&quality=70]`
The best snapshot for any object type. It is a full resolution image by default.
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
- `crop=1`: crops the image to the region of the detection rather than returning the entire image
- `quality=70`: sets the jpeg encoding quality (0-100)
### `GET /api/<camera_name>/latest.jpg[?h=300]`
The most recent frame that frigate has finished processing. It is a full resolution image by default.
Accepts the following query string parameters:
| param | Type | Description |
| ----------- | ---- | ------------------------------------------------------------------ |
| `h` | int | Height in pixels |
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
| `zones` | int | Draw the zones on the image (0 or 1) |
| `mask` | int | Overlay the mask on the image (0 or 1) |
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
| `quality` | int | Jpeg encoding quality (0-100). Defaults to 70. |
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
### `GET /api/stats`
Contains some granular debug info that can be used for sensors in Home Assistant.
Sample response:
```json
{
/* Per Camera Stats */
"back": {
/***************
* Frames per second being consumed from your camera. If this is higher
* than it is supposed to be, you should set -r FPS in your input_args.
* camera_fps = process_fps + skipped_fps
***************/
"camera_fps": 5.0,
/***************
* Number of times detection is run per second. This can be higher than
* your camera FPS because frigate often looks at the same frame multiple times
* or in multiple locations
***************/
"detection_fps": 1.5,
/***************
* PID for the ffmpeg process that consumes this camera
***************/
"capture_pid": 27,
/***************
* PID for the process that runs detection for this camera
***************/
"pid": 34,
/***************
* Frames per second being processed by frigate.
***************/
"process_fps": 5.1,
/***************
* Frames per second skip for processing by frigate.
***************/
"skipped_fps": 0.0
},
/***************
* Sum of detection_fps across all cameras and detectors.
* This should be the sum of all detection_fps values from cameras.
***************/
"detection_fps": 5.0,
/* Detectors Stats */
"detectors": {
"coral": {
/***************
* Timestamp when object detection started. If this value stays non-zero and constant
* for a long time, that means the detection process is stuck.
***************/
"detection_start": 0.0,
/***************
* Time spent running object detection in milliseconds.
***************/
"inference_speed": 10.48,
/***************
* PID for the shared process that runs object detection on the Coral.
***************/
"pid": 25321
}
},
"service": {
/* Uptime in seconds */
"uptime": 10,
"version": "0.8.0-8883709",
/* Storage data in MB for important locations */
"storage": {
"/media/frigate/clips": {
"total": 1000,
"used": 700,
"free": 300,
"mnt_type": "ext4"
},
"/media/frigate/recordings": {
"total": 1000,
"used": 700,
"free": 300,
"mnt_type": "ext4"
},
"/tmp/cache": {
"total": 256,
"used": 100,
"free": 156,
"mnt_type": "tmpfs"
},
"/dev/shm": {
"total": 256,
"used": 100,
"free": 156,
"mnt_type": "tmpfs"
}
}
}
}
```
### `GET /api/config`
A json representation of your configuration
### `GET /api/version`
Version info
### `GET /api/events`
Events from the database. Accepts the following query string parameters:
| param | Type | Description |
| -------------------- | ---- | --------------------------------------------- |
| `before` | int | Epoch time |
| `after` | int | Epoch time |
| `camera` | str | Camera name |
| `label` | str | Label name |
| `zone` | str | Zone name |
| `limit` | int | Limit the number of events returned |
| `has_snapshot` | int | Filter to events that have snapshots (0 or 1) |
| `has_clip` | int | Filter to events that have clips (0 or 1) |
| `include_thumbnails` | int | Include thumbnails in the response (0 or 1) |
### `GET /api/events/summary`
Returns summary data for events in the database. Used by the Home Assistant integration.
### `GET /api/events/<id>`
Returns data for a single event.
### `DELETE /api/events/<id>`
Permanently deletes the event along with any clips/snapshots.
### `GET /api/events/<id>/thumbnail.jpg`
Returns a thumbnail for the event id optimized for notifications. Works while the event is in progress and after completion. Passing `?format=android` will convert the thumbnail to 2:1 aspect ratio.
### `GET /api/events/<id>/snapshot.jpg`
Returns the snapshot image for the event id. Works while the event is in progress and after completion.
Accepts the following query string parameters, but they are only applied when an event is in progress. After the event is completed, the saved snapshot is returned from disk without modification:
| param | Type | Description |
| ----------- | ---- | ------------------------------------------------- |
| `h` | int | Height in pixels |
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
| `crop` | int | Crop the snapshot to the (0 or 1) |
| `quality` | int | Jpeg encoding quality (0-100). Defaults to 70. |
### `/clips/<camera>-<id>.jpg`
JPG snapshot for the given camera and event id.
### `/vod/<year>-<month>/<day>/<hour>/<camera>/master.m3u8`
HTTP Live Streaming Video on Demand URL for the specified hour and camera. Can be viewed in an application like VLC.

View File

@@ -1,281 +0,0 @@
---
id: home-assistant
title: Integration with Home Assistant
sidebar_label: Home Assistant
---
The best way to integrate with Home Assistant is to use the [official integration](https://github.com/blakeblackshear/frigate-hass-integration).
## Installation
Available via HACS as a [custom repository](https://hacs.xyz/docs/faq/custom_repositories). To install:
- Add the custom repository:
```
Home Assistant > HACS > Integrations > [...] > Custom Repositories
```
| Key | Value |
| -------------- | ----------------------------------------------------------- |
| Repository URL | https://github.com/blakeblackshear/frigate-hass-integration |
| Category | Integration |
- Use [HACS](https://hacs.xyz/) to install the integration:
```
Home Assistant > HACS > Integrations > "Explore & Add Integrations" > Frigate
```
- Restart Home Assistant.
- Then add/configure the integration:
```
Home Assistant > Configuration > Integrations > Add Integration > Frigate
```
Note: You will also need
[media_source](https://www.home-assistant.io/integrations/media_source/) enabled
in your Home Assistant configuration for the Media Browser to appear.
## Configuration
When configuring the integration, you will be asked for the following parameters:
| Variable | Description |
| -------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| URL | The `URL` of your frigate instance, the URL you use to access Frigate in the browser. This may look like `http://<host>:5000/`. If you are using HassOS with the addon, the URL should be `http://ccab4aaf-frigate:5000` (or `http://ccab4aaf-frigate-beta:5000` if your are using the beta version of the addon). Live streams required port 1935, see [RTMP streams](#streams) |
<a name="options"></a>
## Options
```
Home Assistant > Configuration > Integrations > Frigate > Options
```
| Option | Description |
| ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| RTMP URL Template | A [jinja2](https://jinja.palletsprojects.com/) template that is used to override the standard RTMP stream URL (e.g. for use with reverse proxies). This option is only shown to users who have [advanced mode](https://www.home-assistant.io/blog/2019/07/17/release-96/#advanced-mode) enabled. See [RTMP streams](#streams) below. |
## Entities Provided
| Platform | Description |
| --------------- | --------------------------------------------------------------------------------- |
| `camera` | Live camera stream (requires RTMP), camera for image of the last detected object. |
| `sensor` | States to monitor Frigate performance, object counts for all zones and cameras. |
| `switch` | Switch entities to toggle detection, recordings and snapshots. |
| `binary_sensor` | A "motion" binary sensor entity per camera/zone/object. |
## Media Browser Support
The integration provides:
- Rich UI with thumbnails for browsing event recordings
- Rich UI for browsing 24/7 recordings by month, day, camera, time
This is accessible via "Media Browser" on the left menu panel in Home Assistant.
<a name="api"></a>
## API
- Notification API with public facing endpoints for images in notifications
### Notifications
Frigate publishes event information in the form of a change feed via MQTT. This
allows lots of customization for notifications to meet your needs. Event changes
are published with `before` and `after` information as shown
[here](#frigateevents). Note that some people may not want to expose frigate to
the web, so you can leverage the HA API that frigate custom_integration ties
into (which is exposed to the web, and thus can be used for mobile notifications
etc):
To load an image taken by frigate from Home Assistants API see below:
```
https://HA_URL/api/frigate/notifications/<event-id>/thumbnail.jpg
```
To load a video clip taken by frigate from Home Assistants API :
```
https://HA_URL/api/frigate/notifications/<event-id>/<camera>/clip.mp4
```
Here is a simple example of a notification automation of events which will update the existing notification for each change. This means the image you see in the notification will update as frigate finds a "better" image.
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
image: 'https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg?format=android'
tag: '{{trigger.payload_json["after"]["id"]}}'
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
```yaml
automation:
- alias: When a person enters a zone named yard
trigger:
platform: mqtt
topic: frigate/events
condition:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
```yaml
- alias: When a person leaves a zone named yard
trigger:
platform: mqtt
topic: frigate/events
condition:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
```yaml
- alias: Notify for dogs in the front with a high top score
trigger:
platform: mqtt
topic: frigate/events
condition:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "High confidence dog detection."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
when: '{{trigger.payload_json["after"]["start_time"]|int}}'
```
If you are using telegram, you can fetch the image directly from Frigate:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.telegram_full
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
# this url should work for addon users
- url: 'http://ccab4aaf-frigate:5000/api/events/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg'
caption: 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
```
<a name="streams"></a>
## RTMP stream
In order for the live streams to function they need to be accessible on the RTMP
port (default: `1935`) at `<frigatehost>:1935`. Home Assistant will directly
connect to that streaming port when the live camera is viewed.
#### RTMP URL Template
For advanced usecases, this behavior can be changed with the [RTMP URL
template](#options) option. When set, this string will override the default stream
address that is derived from the default behavior described above. This option supports
[jinja2 templates](https://jinja.palletsprojects.com/) and has the `camera` dict
variables from [Frigate API](https://blakeblackshear.github.io/frigate/usage/api#apiconfig)
available for the template. Note that no Home Assistant state is available to the
template, only the camera dict from Frigate.
This is potentially useful when Frigate is behind a reverse proxy, and/or when
the default stream port is otherwise not accessible to Home Assistant (e.g.
firewall rules).
###### RTMP URL Template Examples
Use a different port number:
```
rtmp://<frigate_host>:2000/live/front_door
```
Use the camera name in the stream URL:
```
rtmp://<frigate_host>:2000/live/{{ name }}
```
Use the camera name in the stream URL, converting it to lowercase first:
```
rtmp://<frigate_host>:2000/live/{{ name|lower }}
```
## Multiple Instance Support
The Frigate integration seamlessly supports the use of multiple Frigate servers.
### Requirements for Multiple Instances
In order for multiple Frigate instances to function correctly, the
`topic_prefix` and `client_id` parameters must be set differently per server.
See [MQTT
configuration](https://blakeblackshear.github.io/frigate/configuration/index#mqtt)
for how to set these.
#### API URLs
When multiple Frigate instances are configured, [API](#api) URLs should include an
identifier to tell Home Assistant which Frigate instance to refer to. The
identifier used is the MQTT `client_id` paremeter included in the configuration,
and is used like so:
```
https://HA_URL/api/frigate/<client-id>/notifications/<event-id>/thumbnail.jpg
```
```
https://HA_URL/api/frigate/<client-id>/clips/front_door-1624599978.427826-976jaa.mp4
```
#### Default Treatment
When a single Frigate instance is configured, the `client-id` parameter need not
be specified in URLs/identifiers -- that single instance is assumed. When
multiple Frigate instances are configured, the user **must** explicitly specify
which server they are referring to.
## FAQ
### If I am detecting multiple objects, how do I assign the correct `binary_sensor` to the camera in HomeKit?
The [HomeKit integration](https://www.home-assistant.io/integrations/homekit/) randomly links one of the binary sensors (motion sensor entities) grouped with the camera device in Home Assistant. You can specify a `linked_motion_sensor` in the Home Assistant [HomeKit configuration](https://www.home-assistant.io/integrations/homekit/#linked_motion_sensor) for each camera.

View File

@@ -1,11 +0,0 @@
---
id: howtos
title: Community Guides
sidebar_label: Community Guides
---
## Communitiy Guides/How-To's
- Best Camera AI Person & Object Detection - How to Setup Frigate w/ Home Assistant - digiblurDIY [YouTube](https://youtu.be/V8vGdoYO6-Y) - [Article](https://www.digiblur.com/2021/05/how-to-setup-frigate-home-assistant.html)
- Even More Free Local Object Detection with Home Assistant - Frigate Install - Everything Smart Home [YouTube](https://youtu.be/pqDCEZSVeRk)
- Home Assistant Frigate integration for local image recognition - KPeyanski [YouTube](https://youtu.be/Q2UT78lFQpo) - [Article](https://peyanski.com/home-assistant-frigate-integration/)

View File

@@ -1,105 +0,0 @@
---
id: mqtt
title: MQTT
---
These are the MQTT messages generated by Frigate. The default topic_prefix is `frigate`, but can be changed in the config file.
### `frigate/available`
Designed to be used as an availability topic with Home Assistant. Possible message are:
"online": published when frigate is running (on startup)
"offline": published right before frigate stops
### `frigate/restart`
Causes frigate to exit. Docker should be configured to automatically restart the container on exit.
### `frigate/<camera_name>/<object_name>`
Publishes the count of objects for the camera for use as a sensor in Home Assistant.
### `frigate/<zone_name>/<object_name>`
Publishes the count of objects for the zone for use as a sensor in Home Assistant.
### `frigate/<camera_name>/<object_name>/snapshot`
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
is published again.
The height and crop of snapshots can be configured in the config.
### `frigate/events`
Message published for each changed event. The first message is published when the tracked object is no longer marked as a false_positive. When frigate finds a better snapshot of the tracked object or when a zone change occurs, it will publish a message with the same id. When the event ends, a final message is published with `end_time` set.
```json
{
"type": "update", // new, update, end or clip_ready
"before": {
"id": "1607123955.475377-mxklsc",
"camera": "front_door",
"frame_time": 1607123961.837752,
"snapshot_time": 1607123961.837752,
"label": "person",
"top_score": 0.958984375,
"false_positive": false,
"start_time": 1607123955.475377,
"end_time": null,
"score": 0.7890625,
"box": [424, 500, 536, 712],
"area": 23744,
"region": [264, 450, 667, 853],
"current_zones": ["driveway"],
"entered_zones": ["yard", "driveway"],
"thumbnail": null
},
"after": {
"id": "1607123955.475377-mxklsc",
"camera": "front_door",
"frame_time": 1607123962.082975,
"snapshot_time": 1607123961.837752,
"label": "person",
"top_score": 0.958984375,
"false_positive": false,
"start_time": 1607123955.475377,
"end_time": null,
"score": 0.87890625,
"box": [432, 496, 544, 854],
"area": 40096,
"region": [218, 440, 693, 915],
"current_zones": ["yard", "driveway"],
"entered_zones": ["yard", "driveway"],
"thumbnail": null
}
}
```
### `frigate/stats`
Same data available at `/api/stats` published at a configurable interval.
### `frigate/<camera_name>/detect/set`
Topic to turn detection for a camera on and off. Expected values are `ON` and `OFF`.
### `frigate/<camera_name>/detect/state`
Topic with current state of detection for a camera. Published values are `ON` and `OFF`.
### `frigate/<camera_name>/recordings/set`
Topic to turn recordings for a camera on and off. Expected values are `ON` and `OFF`.
### `frigate/<camera_name>/recordings/state`
Topic with current state of recordings for a camera. Published values are `ON` and `OFF`.
### `frigate/<camera_name>/snapshots/set`
Topic to turn snapshots for a camera on and off. Expected values are `ON` and `OFF`.
### `frigate/<camera_name>/snapshots/state`
Topic with current state of snapshots for a camera. Published values are `ON` and `OFF`.

View File

@@ -1,10 +0,0 @@
---
id: web
title: Web Interface
---
Frigate comes bundled with a simple web ui that supports the following:
- Show cameras
- Browse events
- Mask helper

View File

@@ -1,79 +0,0 @@
const path = require('path');
module.exports = {
title: 'Frigate',
tagline: 'NVR With Realtime Object Detection for IP Cameras',
url: 'https://blakeblackshear.github.io',
baseUrl: '/frigate/',
onBrokenLinks: 'throw',
onBrokenMarkdownLinks: 'warn',
favicon: 'img/favicon.ico',
organizationName: 'blakeblackshear',
projectName: 'frigate',
themeConfig: {
algolia: {
apiKey: '81ec882db78f7fed05c51daf973f0362',
indexName: 'frigate',
},
navbar: {
title: 'Frigate',
logo: {
alt: 'Frigate',
src: 'img/logo.svg',
srcDark: 'img/logo-dark.svg',
},
items: [
{
to: '/',
activeBasePath: 'docs',
label: 'Docs',
position: 'left',
},
{
href: 'https://github.com/blakeblackshear/frigate',
label: 'GitHub',
position: 'right',
},
],
},
sidebarCollapsible: false,
hideableSidebar: true,
footer: {
style: 'dark',
links: [
{
title: 'Community',
items: [
{
label: 'GitHub',
href: 'https://github.com/blakeblackshear/frigate',
},
{
label: 'Discussions',
href: 'https://github.com/blakeblackshear/frigate/discussions',
},
],
},
],
copyright: `Copyright © ${new Date().getFullYear()} Blake Blackshear`,
},
},
plugins: [path.resolve(__dirname, 'plugins', 'raw-loader')],
presets: [
[
'@docusaurus/preset-classic',
{
docs: {
routeBasePath: '/',
sidebarPath: require.resolve('./sidebars.js'),
// Please change this to your repo.
editUrl: 'https://github.com/blakeblackshear/frigate/edit/master/docs/',
},
theme: {
customCss: require.resolve('./src/css/custom.css'),
},
},
],
],
};

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

BIN
docs/example-mask-poly.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

BIN
docs/example-mask.bmp Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 MiB

View File

Before

Width:  |  Height:  |  Size: 12 KiB

After

Width:  |  Height:  |  Size: 12 KiB

10
docs/how-frigate-works.md Normal file
View File

@@ -0,0 +1,10 @@
# How Frigate Works
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
![Diagram](diagram.png)
## 1. Look for Motion
## 2. Calculate Detection Regions
## 3. Run Object Detection

View File

Before

Width:  |  Height:  |  Size: 781 KiB

After

Width:  |  Height:  |  Size: 781 KiB

View File

@@ -0,0 +1,71 @@
# Notification examples
Here are some examples of notifications for the HomeAssistant android companion app:
```yaml
automation:
- alias: When a person enters a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: When a person leaves a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: Notify for dogs in the front with a high top score
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'High confidence dog detection.'
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
If you are using telegram, you can fetch the image directly from Frigate:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.telegram_full
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
# this url should work for addon users
- url: 'http://ccab4aaf-frigate:5000/api/events/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg'
caption : 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
```

View File

Before

Width:  |  Height:  |  Size: 1.5 MiB

After

Width:  |  Height:  |  Size: 1.5 MiB

View File

@@ -1,18 +1,14 @@
---
id: nvdec
title: nVidia hardware decoder
---
# nVidia hardware decoder (NVDEC)
Certain nvidia cards include a hardware decoder, which can greatly improve the
performance of video decoding. In order to use NVDEC, a special build of
performance of video decoding. In order to use NVDEC, a special build of
ffmpeg with NVDEC support is required. The special docker architecture 'amd64nvidia'
includes this support for amd64 platforms. An aarch64 for the Jetson, which
includes this support for amd64 platforms. An aarch64 for the Jetson, which
also includes NVDEC may be added in the future.
## Docker setup
### Requirements
[nVidia closed source driver](https://www.nvidia.com/en-us/drivers/unix/) required to access NVDEC.
[nvidia-docker](https://github.com/NVIDIA/nvidia-docker) required to pass NVDEC to docker.
@@ -22,7 +18,6 @@ In order to pass NVDEC, the docker engine must be set to `nvidia` and the enviro
`NVIDIA_VISIBLE_DEVICES=all` and `NVIDIA_DRIVER_CAPABILITIES=compute,utility,video` must be set.
In a docker compose file, these lines need to be set:
```
services:
frigate:
@@ -31,16 +26,15 @@ services:
runtime: nvidia
environment:
- NVIDIA_VISIBLE_DEVICES=all
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
```
### Setting up the configuration file
In your frigate config.yml, you'll need to set ffmpeg to use the hardware decoder.
The decoder you choose will depend on the input video.
In your frigate config.yml, you'll need to set ffmpeg to use the hardware decoder.
The decoder you choose will depend on the input video.
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get a list)
```
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
@@ -52,16 +46,16 @@ A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the c
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
```
```
For example, for H265 video (hevc), you'll select `hevc_cuvid`. Add
`-c:v hevc_cuvid` to your ffmpeg input arguments:
`-c:v hevc_covid` to your ffmpeg input arguments:
```
ffmpeg:
input_args:
...
- -c:v
- -c:v
- hevc_cuvid
```
@@ -81,7 +75,7 @@ processes:
| 38% 41C P2 36W / 125W | 2082MiB / 5942MiB | 5% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
@@ -102,9 +96,10 @@ using the fps filter:
```
output_args:
- -filter:v
- -filter:v
- fps=fps=5
```
This setting, for example, allows Frigate to consume my 10-15fps camera streams on
my relatively low powered Haswell machine with relatively low cpu usage.

14056
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,35 +0,0 @@
{
"name": "docs",
"version": "0.0.0",
"private": true,
"scripts": {
"docusaurus": "docusaurus",
"start": "docusaurus start",
"build": "docusaurus build",
"swizzle": "docusaurus swizzle",
"deploy": "docusaurus deploy",
"serve": "docusaurus serve",
"clear": "docusaurus clear"
},
"dependencies": {
"@docusaurus/core": "2.0.0-alpha.70",
"@docusaurus/preset-classic": "2.0.0-alpha.70",
"@mdx-js/react": "^1.6.21",
"clsx": "^1.1.1",
"raw-loader": "^4.0.2",
"react": "^16.8.4",
"react-dom": "^16.8.4"
},
"browserslist": {
"production": [
">0.5%",
"not dead",
"not op_mini all"
],
"development": [
"last 1 chrome version",
"last 1 firefox version",
"last 1 safari version"
]
}
}

View File

@@ -1,12 +0,0 @@
module.exports = function (context, options) {
return {
name: 'labelmap',
configureWebpack(config, isServer, utils) {
return {
module: {
rules: [{ test: /\.txt$/, use: 'raw-loader' }],
},
};
},
};
};

View File

@@ -1,16 +0,0 @@
module.exports = {
docs: {
Frigate: ['index', 'how-it-works', 'hardware', 'installation', 'troubleshooting'],
Configuration: [
'configuration/index',
'configuration/cameras',
'configuration/optimizing',
'configuration/detectors',
'configuration/false_positives',
'configuration/objects',
'configuration/advanced',
],
Usage: ['usage/home-assistant', 'usage/web', 'usage/api', 'usage/mqtt'],
Development: ['contributing'],
},
};

View File

@@ -1,25 +0,0 @@
/* stylelint-disable docusaurus/copyright-header */
/**
* Any CSS included here will be global. The classic template
* bundles Infima by default. Infima is a CSS framework designed to
* work well for content-centric websites.
*/
/* You can override the default Infima variables here. */
:root {
--ifm-color-primary: #3b82f7;
--ifm-color-primary-dark: #1d4ed8;
--ifm-color-primary-darker: #1e40af;
--ifm-color-primary-darkest: #1e3a8a;
--ifm-color-primary-light: #60a5fa;
--ifm-color-primary-lighter: #93c5fd;
--ifm-color-primary-lightest: #dbeafe;
--ifm-code-font-size: 95%;
}
.docusaurus-highlight-code-line {
background-color: rgb(72, 77, 91);
display: block;
margin: 0 calc(-1 * var(--ifm-pre-padding));
padding: 0 var(--ifm-pre-padding);
}

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 944 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.2 MiB

View File

@@ -1,3 +0,0 @@
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.4999 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="white"/>
</svg>

Before

Width:  |  Height:  |  Size: 936 B

View File

@@ -1,3 +0,0 @@
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.5 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="black"/>
</svg>

Before

Width:  |  Height:  |  Size: 933 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

BIN
docs/zone_example.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

View File

@@ -1,6 +1,4 @@
import faulthandler
faulthandler.enable()
import faulthandler; faulthandler.enable()
import sys
import threading
@@ -8,10 +6,10 @@ threading.current_thread().name = "frigate"
from frigate.app import FrigateApp
cli = sys.modules["flask.cli"]
cli = sys.modules['flask.cli']
cli.show_server_banner = lambda *x: None
if __name__ == "__main__":
if __name__ == '__main__':
frigate_app = FrigateApp()
frigate_app.start()

View File

@@ -2,28 +2,25 @@ import json
import logging
import multiprocessing as mp
import os
import signal
import sys
import threading
from logging.handlers import QueueHandler
from typing import Dict, List
import sys
import signal
import yaml
from peewee_migrate import Router
from playhouse.sqlite_ext import SqliteExtDatabase
from playhouse.sqliteq import SqliteQueueDatabase
from frigate.config import DetectorTypeEnum, FrigateConfig
from frigate.const import CACHE_DIR, CLIPS_DIR, RECORD_DIR
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.edgetpu import EdgeTPUProcess
from frigate.events import EventCleanup, EventProcessor
from frigate.events import EventProcessor, EventCleanup
from frigate.http import create_app
from frigate.log import log_process, root_configurer
from frigate.models import Event, Recordings
from frigate.mqtt import create_mqtt_client, MqttSocketRelay
from frigate.models import Event
from frigate.mqtt import create_mqtt_client
from frigate.object_processing import TrackedObjectProcessor
from frigate.output import output_frames
from frigate.record import RecordingCleanup, RecordingMaintainer
from frigate.record import RecordingMaintainer
from frigate.stats import StatsEmitter, stats_init
from frigate.video import capture_camera, track_camera
from frigate.watchdog import FrigateWatchdog
@@ -31,11 +28,9 @@ from frigate.zeroconf import broadcast_zeroconf
logger = logging.getLogger(__name__)
class FrigateApp:
class FrigateApp():
def __init__(self):
self.stop_event = mp.Event()
self.base_config: FrigateConfig = None
self.config: FrigateConfig = None
self.detection_queue = mp.Queue()
self.detectors: Dict[str, EdgeTPUProcess] = {}
@@ -56,254 +51,145 @@ class FrigateApp:
else:
logger.debug(f"Skipping directory: {d}")
tmpfs_size = self.config.clips.tmpfs_cache_size
if tmpfs_size:
logger.info(f"Creating tmpfs of size {tmpfs_size}")
rc = os.system(f"mount -t tmpfs -o size={tmpfs_size} tmpfs {CACHE_DIR}")
if rc != 0:
logger.error(f"Failed to create tmpfs, error code: {rc}")
def init_logger(self):
self.log_process = mp.Process(
target=log_process, args=(self.log_queue,), name="log_process"
)
self.log_process = mp.Process(target=log_process, args=(self.log_queue,), name='log_process')
self.log_process.daemon = True
self.log_process.start()
root_configurer(self.log_queue)
def init_config(self):
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
user_config = FrigateConfig.parse_file(config_file)
self.config = user_config.runtime_config
config_file = os.environ.get('CONFIG_FILE', '/config/config.yml')
self.config = FrigateConfig(config_file=config_file)
for camera_name in self.config.cameras.keys():
# create camera_metrics
self.camera_metrics[camera_name] = {
"camera_fps": mp.Value("d", 0.0),
"skipped_fps": mp.Value("d", 0.0),
"process_fps": mp.Value("d", 0.0),
"detection_enabled": mp.Value(
"i", self.config.cameras[camera_name].detect.enabled
),
"detection_fps": mp.Value("d", 0.0),
"detection_frame": mp.Value("d", 0.0),
"read_start": mp.Value("d", 0.0),
"ffmpeg_pid": mp.Value("i", 0),
"frame_queue": mp.Queue(maxsize=2),
'camera_fps': mp.Value('d', 0.0),
'skipped_fps': mp.Value('d', 0.0),
'process_fps': mp.Value('d', 0.0),
'detection_enabled': mp.Value('i', self.config.cameras[camera_name].detect.enabled),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0),
'frame_queue': mp.Queue(maxsize=2),
}
def check_config(self):
for name, camera in self.config.cameras.items():
assigned_roles = list(
set([r for i in camera.ffmpeg.inputs for r in i.roles])
)
if not camera.record.enabled and "record" in assigned_roles:
logger.warning(
f"Camera {name} has record assigned to an input, but record is not enabled."
)
elif camera.record.enabled and not "record" in assigned_roles:
logger.warning(
f"Camera {name} has record enabled, but record is not assigned to an input."
)
assigned_roles = list(set([r for i in camera.ffmpeg.inputs for r in i.roles]))
if not camera.clips.enabled and 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips assigned to an input, but clips is not enabled.")
elif camera.clips.enabled and not 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips enabled, but clips is not assigned to an input.")
if not camera.rtmp.enabled and "rtmp" in assigned_roles:
logger.warning(
f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled."
)
elif camera.rtmp.enabled and not "rtmp" in assigned_roles:
logger.warning(
f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input."
)
if not camera.record.enabled and 'record' in assigned_roles:
logger.warning(f"Camera {name} has record assigned to an input, but record is not enabled.")
elif camera.record.enabled and not 'record' in assigned_roles:
logger.warning(f"Camera {name} has record enabled, but record is not assigned to an input.")
if not camera.rtmp.enabled and 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled.")
elif camera.rtmp.enabled and not 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input.")
def set_log_levels(self):
logging.getLogger().setLevel(self.config.logger.default.value.upper())
logging.getLogger().setLevel(self.config.logger.default)
for log, level in self.config.logger.logs.items():
logging.getLogger(log).setLevel(level.value.upper())
if not "werkzeug" in self.config.logger.logs:
logging.getLogger("werkzeug").setLevel("ERROR")
logging.getLogger(log).setLevel(level)
if not 'werkzeug' in self.config.logger.logs:
logging.getLogger('werkzeug').setLevel('ERROR')
def init_queues(self):
# Queues for clip processing
self.event_queue = mp.Queue()
self.event_processed_queue = mp.Queue()
self.video_output_queue = mp.Queue(maxsize=len(self.config.cameras.keys()) * 2)
# Queue for cameras to push tracked objects to
self.detected_frames_queue = mp.Queue(
maxsize=len(self.config.cameras.keys()) * 2
)
self.detected_frames_queue = mp.Queue(maxsize=len(self.config.cameras.keys())*2)
def init_database(self):
# Migrate DB location
old_db_path = os.path.join(CLIPS_DIR, "frigate.db")
if not os.path.isfile(self.config.database.path) and os.path.isfile(
old_db_path
):
os.rename(old_db_path, self.config.database.path)
# Migrate DB schema
migrate_db = SqliteExtDatabase(self.config.database.path)
self.db = SqliteExtDatabase(self.config.database.path)
# Run migrations
del logging.getLogger("peewee_migrate").handlers[:]
router = Router(migrate_db)
del(logging.getLogger('peewee_migrate').handlers[:])
router = Router(self.db)
router.run()
migrate_db.close()
self.db = SqliteQueueDatabase(self.config.database.path)
models = [Event, Recordings]
models = [Event]
self.db.bind(models)
def init_stats(self):
self.stats_tracking = stats_init(self.camera_metrics, self.detectors)
def init_web_server(self):
self.flask_app = create_app(
self.config,
self.db,
self.stats_tracking,
self.detected_frames_processor,
)
self.flask_app = create_app(self.config, self.db, self.stats_tracking, self.detected_frames_processor)
def init_mqtt(self):
self.mqtt_client = create_mqtt_client(self.config, self.camera_metrics)
def start_mqtt_relay(self):
self.mqtt_relay = MqttSocketRelay(
self.mqtt_client, self.config.mqtt.topic_prefix
)
self.mqtt_relay.start()
def start_detectors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name in self.config.cameras.keys():
self.detection_out_events[name] = mp.Event()
try:
shm_in = mp.shared_memory.SharedMemory(
name=name,
create=True,
size=self.config.model.height * self.config.model.width * 3,
)
except FileExistsError:
shm_in = mp.shared_memory.SharedMemory(name=name)
try:
shm_out = mp.shared_memory.SharedMemory(
name=f"out-{name}", create=True, size=20 * 6 * 4
)
except FileExistsError:
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}")
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=self.config.model.height*self.config.model.width*3)
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
self.detection_shms.append(shm_in)
self.detection_shms.append(shm_out)
for name, detector in self.config.detectors.items():
if detector.type == DetectorTypeEnum.cpu:
self.detectors[name] = EdgeTPUProcess(
name,
self.detection_queue,
self.detection_out_events,
model_shape,
"cpu",
detector.num_threads,
)
if detector.type == DetectorTypeEnum.edgetpu:
self.detectors[name] = EdgeTPUProcess(
name,
self.detection_queue,
self.detection_out_events,
model_shape,
detector.device,
detector.num_threads,
)
if detector.type == 'cpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, 'cpu', detector.num_threads)
if detector.type == 'edgetpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads)
def start_detected_frames_processor(self):
self.detected_frames_processor = TrackedObjectProcessor(
self.config,
self.mqtt_client,
self.config.mqtt.topic_prefix,
self.detected_frames_queue,
self.event_queue,
self.event_processed_queue,
self.video_output_queue,
self.stop_event,
)
self.detected_frames_processor = TrackedObjectProcessor(self.config, self.mqtt_client, self.config.mqtt.topic_prefix,
self.detected_frames_queue, self.event_queue, self.event_processed_queue, self.stop_event)
self.detected_frames_processor.start()
def start_video_output_processor(self):
output_processor = mp.Process(
target=output_frames,
name=f"output_processor",
args=(
self.config,
self.video_output_queue,
),
)
output_processor.daemon = True
self.output_processor = output_processor
output_processor.start()
logger.info(f"Output process started: {output_processor.pid}")
def start_camera_processors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name, config in self.config.cameras.items():
camera_process = mp.Process(
target=track_camera,
name=f"camera_processor:{name}",
args=(
name,
config,
model_shape,
self.config.model.merged_labelmap,
self.detection_queue,
self.detection_out_events[name],
self.detected_frames_queue,
self.camera_metrics[name],
),
)
camera_process = mp.Process(target=track_camera, name=f"camera_processor:{name}", args=(name, config, model_shape,
self.detection_queue, self.detection_out_events[name], self.detected_frames_queue,
self.camera_metrics[name]))
camera_process.daemon = True
self.camera_metrics[name]["process"] = camera_process
self.camera_metrics[name]['process'] = camera_process
camera_process.start()
logger.info(f"Camera processor started for {name}: {camera_process.pid}")
def start_camera_capture_processes(self):
for name, config in self.config.cameras.items():
capture_process = mp.Process(
target=capture_camera,
name=f"camera_capture:{name}",
args=(name, config, self.camera_metrics[name]),
)
capture_process = mp.Process(target=capture_camera, name=f"camera_capture:{name}", args=(name, config,
self.camera_metrics[name]))
capture_process.daemon = True
self.camera_metrics[name]["capture_process"] = capture_process
self.camera_metrics[name]['capture_process'] = capture_process
capture_process.start()
logger.info(f"Capture process started for {name}: {capture_process.pid}")
def start_event_processor(self):
self.event_processor = EventProcessor(
self.config,
self.camera_metrics,
self.event_queue,
self.event_processed_queue,
self.stop_event,
)
self.event_processor = EventProcessor(self.config, self.camera_metrics, self.event_queue, self.event_processed_queue, self.stop_event)
self.event_processor.start()
def start_event_cleanup(self):
self.event_cleanup = EventCleanup(self.config, self.stop_event)
self.event_cleanup.start()
def start_recording_maintainer(self):
self.recording_maintainer = RecordingMaintainer(self.config, self.stop_event)
self.recording_maintainer.start()
def start_recording_cleanup(self):
self.recording_cleanup = RecordingCleanup(self.config, self.stop_event)
self.recording_cleanup.start()
def start_stats_emitter(self):
self.stats_emitter = StatsEmitter(
self.config,
self.stats_tracking,
self.mqtt_client,
self.config.mqtt.topic_prefix,
self.stop_event,
)
self.stats_emitter = StatsEmitter(self.config, self.stats_tracking, self.mqtt_client, self.config.mqtt.topic_prefix, self.stop_event)
self.stats_emitter.start()
def start_watchdog(self):
@@ -331,17 +217,14 @@ class FrigateApp:
self.log_process.terminate()
sys.exit(1)
self.start_detectors()
self.start_video_output_processor()
self.start_detected_frames_processor()
self.start_camera_processors()
self.start_camera_capture_processes()
self.init_stats()
self.init_web_server()
self.start_mqtt_relay()
self.start_event_processor()
self.start_event_cleanup()
self.start_recording_maintainer()
self.start_recording_cleanup()
self.start_stats_emitter()
self.start_watchdog()
# self.zeroconf = broadcast_zeroconf(self.config.mqtt.client_id)
@@ -349,29 +232,22 @@ class FrigateApp:
def receiveSignal(signalNumber, frame):
self.stop()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
try:
self.flask_app.run(host="127.0.0.1", port=5001, debug=False)
except KeyboardInterrupt:
pass
self.flask_app.run(host='127.0.0.1', port=5001, debug=False)
self.stop()
def stop(self):
logger.info(f"Stopping...")
self.stop_event.set()
self.mqtt_relay.stop()
self.detected_frames_processor.join()
self.event_processor.join()
self.event_cleanup.join()
self.recording_maintainer.join()
self.recording_cleanup.join()
self.stats_emitter.join()
self.frigate_watchdog.join()
self.db.stop()
for detector in self.detectors.values():
detector.stop()

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,3 @@
BASE_DIR = "/media/frigate"
CLIPS_DIR = f"{BASE_DIR}/clips"
RECORD_DIR = f"{BASE_DIR}/recordings"
CACHE_DIR = "/tmp/cache"
CLIPS_DIR = '/media/frigate/clips'
RECORD_DIR = '/media/frigate/recordings'
CACHE_DIR = '/tmp/cache'

View File

@@ -1,49 +1,48 @@
import datetime
import hashlib
import logging
import multiprocessing as mp
import os
import queue
import signal
import threading
import signal
from abc import ABC, abstractmethod
from multiprocessing.connection import Connection
from setproctitle import setproctitle
from typing import Dict
import numpy as np
import tflite_runtime.interpreter as tflite
from setproctitle import setproctitle
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
logger = logging.getLogger(__name__)
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
with open(path, 'r', encoding=encoding) as f:
lines = f.readlines()
if not lines:
return {}
def load_labels(path, encoding="utf-8"):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
with open(path, "r", encoding=encoding) as f:
lines = f.readlines()
if not lines:
return {}
if lines[0].split(" ", maxsplit=1)[0].isdigit():
pairs = [line.split(" ", maxsplit=1) for line in lines]
return {int(index): label.strip() for index, label in pairs}
else:
return {index: line.strip() for index, line in enumerate(lines)}
if lines[0].split(' ', maxsplit=1)[0].isdigit():
pairs = [line.split(' ', maxsplit=1) for line in lines]
return {int(index): label.strip() for index, label in pairs}
else:
return {index: line.strip() for index, line in enumerate(lines)}
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold=0.4):
def detect(self, tensor_input, threshold = .4):
pass
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, num_threads=3, labels=None):
self.fps = EventsPerSecond()
@@ -58,34 +57,27 @@ class LocalObjectDetector(ObjectDetector):
edge_tpu_delegate = None
if tf_device != "cpu":
if tf_device != 'cpu':
try:
logger.info(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
logger.info("TPU found")
self.interpreter = tflite.Interpreter(
model_path="/edgetpu_model.tflite",
experimental_delegates=[edge_tpu_delegate],
)
model_path='/edgetpu_model.tflite',
experimental_delegates=[edge_tpu_delegate])
except ValueError:
logger.error(
"No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
)
logger.info("No EdgeTPU detected.")
raise
else:
logger.warning(
"CPU detectors are not recommended and should only be used for testing or for trial purposes."
)
self.interpreter = tflite.Interpreter(
model_path="/cpu_model.tflite", num_threads=num_threads
)
model_path='/cpu_model.tflite', num_threads=num_threads)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect(self, tensor_input, threshold=0.4):
def detect(self, tensor_input, threshold=.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
@@ -93,50 +85,28 @@ class LocalObjectDetector(ObjectDetector):
for d in raw_detections:
if d[1] < threshold:
break
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
self.interpreter.invoke()
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
count = int(
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
)
detections = np.zeros((20, 6), np.float32)
for i in range(count):
if scores[i] < 0.4 or i == 20:
break
detections[i] = [
class_ids[i],
float(scores[i]),
boxes[i][0],
boxes[i][1],
boxes[i][2],
boxes[i][3],
]
detections = np.zeros((20,6), np.float32)
for i, score in enumerate(scores):
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
return detections
def run_detector(
name: str,
detection_queue: mp.Queue,
out_events: Dict[str, mp.Event],
avg_speed,
start,
model_shape,
tf_device,
num_threads,
):
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, model_shape, tf_device, num_threads):
threading.current_thread().name = f"detector:{name}"
logger = logging.getLogger(f"detector.{name}")
logger.info(f"Starting detection process: {os.getpid()}")
@@ -144,10 +114,9 @@ def run_detector(
listen()
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
@@ -157,17 +126,21 @@ def run_detector(
outputs = {}
for name in out_events.keys():
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {"shm": out_shm, "np": out_np}
out_np = np.ndarray((20,6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {
'shm': out_shm,
'np': out_np
}
while True:
if stop_event.is_set():
break
while not stop_event.is_set():
try:
connection_id = detection_queue.get(timeout=5)
except queue.Empty:
continue
input_frame = frame_manager.get(
connection_id, (1, model_shape[0], model_shape[1], 3)
)
input_frame = frame_manager.get(connection_id, (1,model_shape[0],model_shape[1],3))
if input_frame is None:
continue
@@ -175,35 +148,26 @@ def run_detector(
# detect and send the output
start.value = datetime.datetime.now().timestamp()
detections = object_detector.detect_raw(input_frame)
duration = datetime.datetime.now().timestamp() - start.value
outputs[connection_id]["np"][:] = detections[:]
duration = datetime.datetime.now().timestamp()-start.value
outputs[connection_id]['np'][:] = detections[:]
out_events[connection_id].set()
start.value = 0.0
avg_speed.value = (avg_speed.value * 9 + duration) / 10
class EdgeTPUProcess:
def __init__(
self,
name,
detection_queue,
out_events,
model_shape,
tf_device=None,
num_threads=3,
):
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self, name, detection_queue, out_events, model_shape, tf_device=None, num_threads=3):
self.name = name
self.out_events = out_events
self.detection_queue = detection_queue
self.avg_inference_speed = mp.Value("d", 0.01)
self.detection_start = mp.Value("d", 0.0)
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.model_shape = model_shape
self.tf_device = tf_device
self.num_threads = num_threads
self.start_or_restart()
def stop(self):
self.detect_process.terminate()
logging.info("Waiting for detection process to exit gracefully...")
@@ -217,41 +181,23 @@ class EdgeTPUProcess:
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.stop()
self.detect_process = mp.Process(
target=run_detector,
name=f"detector:{self.name}",
args=(
self.name,
self.detection_queue,
self.out_events,
self.avg_inference_speed,
self.detection_start,
self.model_shape,
self.tf_device,
self.num_threads,
),
)
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.model_shape, self.tf_device, self.num_threads))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector:
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue, event, model_shape):
self.labels = labels
self.labels = load_labels(labels)
self.name = name
self.fps = EventsPerSecond()
self.detection_queue = detection_queue
self.event = event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray(
(1, model_shape[0], model_shape[1], 3), dtype=np.uint8, buffer=self.shm.buf
)
self.out_shm = mp.shared_memory.SharedMemory(
name=f"out-{self.name}", create=False
)
self.out_np_shm = np.ndarray((20, 6), dtype=np.float32, buffer=self.out_shm.buf)
def detect(self, tensor_input, threshold=0.4):
self.np_shm = np.ndarray((1,model_shape[0],model_shape[1],3), dtype=np.uint8, buffer=self.shm.buf)
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
def detect(self, tensor_input, threshold=.4):
detections = []
# copy input to shared memory
@@ -267,12 +213,14 @@ class RemoteObjectDetector:
for d in self.out_np_shm:
if d[1] < threshold:
break
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections
def cleanup(self):
self.shm.unlink()
self.out_shm.unlink()

View File

@@ -1,26 +1,28 @@
import datetime
import json
import logging
import os
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
from frigate.config import FrigateConfig, RecordConfig
from frigate.const import CLIPS_DIR
from frigate.models import Event, Recordings
import psutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.models import Event
from peewee import fn
logger = logging.getLogger(__name__)
class EventProcessor(threading.Thread):
def __init__(
self, config, camera_processes, event_queue, event_processed_queue, stop_event
):
def __init__(self, config, camera_processes, event_queue, event_processed_queue, stop_event):
threading.Thread.__init__(self)
self.name = "event_processor"
self.name = 'event_processor'
self.config = config
self.camera_processes = camera_processes
self.cached_clips = {}
@@ -28,227 +30,277 @@ class EventProcessor(threading.Thread):
self.event_processed_queue = event_processed_queue
self.events_in_process = {}
self.stop_event = stop_event
def refresh_cache(self):
cached_files = os.listdir(CACHE_DIR)
def should_create_clip(self, camera, event_data):
if event_data["false_positive"]:
files_in_use = []
for process in psutil.process_iter():
try:
if process.name() != 'ffmpeg':
continue
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(CACHE_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in cached_files:
if f in files_in_use or f in self.cached_clips:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(CACHE_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
logger.info(f"bad file: {f}")
os.remove(os.path.join(CACHE_DIR,f))
continue
self.cached_clips[f] = {
'path': f,
'camera': camera,
'start_time': start_time.timestamp(),
'duration': duration
}
if len(self.events_in_process) > 0:
earliest_event = min(self.events_in_process.values(), key=lambda x:x['start_time'])['start_time']
else:
earliest_event = datetime.datetime.now().timestamp()
# if the earliest event exceeds the max seconds, cap it
max_seconds = self.config.clips.max_seconds
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
earliest_event = datetime.datetime.now().timestamp()-max_seconds
for f, data in list(self.cached_clips.items()):
if earliest_event-90 > data['start_time']+data['duration']:
del self.cached_clips[f]
os.remove(os.path.join(CACHE_DIR,f))
def create_clip(self, camera, event_data, pre_capture, post_capture):
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
while len(sorted_clips) == 0 or sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']+post_capture:
logger.debug(f"No cache clips for {camera}. Waiting...")
time.sleep(5)
self.refresh_cache()
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
playlist_start = event_data['start_time']-pre_capture
playlist_end = event_data['end_time']+post_capture
playlist_lines = []
for clip in sorted_clips:
# clip ends before playlist start time, skip
if clip['start_time']+clip['duration'] < playlist_start:
continue
# clip starts after playlist ends, finish
if clip['start_time'] > playlist_end:
break
playlist_lines.append(f"file '{os.path.join(CACHE_DIR,clip['path'])}'")
# if this is the starting clip, add an inpoint
if clip['start_time'] < playlist_start:
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
# if this is the ending clip, add an outpoint
if clip['start_time']+clip['duration'] > playlist_end:
playlist_lines.append(f"outpoint {int(playlist_end-clip['start_time'])}")
clip_name = f"{camera}-{event_data['id']}"
ffmpeg_cmd = [
'ffmpeg',
'-y',
'-protocol_whitelist',
'pipe,file',
'-f',
'concat',
'-safe',
'0',
'-i',
'-',
'-c',
'copy',
'-movflags',
'+faststart',
f"{os.path.join(CLIPS_DIR, clip_name)}.mp4"
]
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
if p.returncode != 0:
logger.error(p.stderr)
return False
record_config: RecordConfig = self.config.cameras[camera].record
# Recording clips is disabled
if not record_config.enabled or (
record_config.retain_days == 0 and not record_config.events.enabled
):
return False
# If there are required zones and there is no overlap
required_zones = record_config.events.required_zones
if len(required_zones) > 0 and not set(event_data["entered_zones"]) & set(
required_zones
):
logger.debug(
f"Not creating clip for {event_data['id']} because it did not enter required zones"
)
return False
# If the required objects are not present
if (
record_config.events.objects is not None
and event_data["label"] not in record_config.events.objects
):
logger.debug(
f"Not creating clip for {event_data['id']} because it did not contain required objects"
)
return False
return True
def run(self):
while not self.stop_event.is_set():
while True:
if self.stop_event.is_set():
logger.info(f"Exiting event processor...")
break
try:
event_type, camera, event_data = self.event_queue.get(timeout=10)
except queue.Empty:
if not self.stop_event.is_set():
self.refresh_cache()
continue
logger.debug(f"Event received: {event_type} {camera} {event_data['id']}")
self.refresh_cache()
if event_type == "start":
self.events_in_process[event_data["id"]] = event_data
if event_type == 'start':
self.events_in_process[event_data['id']] = event_data
if event_type == "end":
record_config: RecordConfig = self.config.cameras[camera].record
if event_type == 'end':
clips_config = self.config.cameras[camera].clips
has_clip = self.should_create_clip(camera, event_data)
if has_clip or event_data["has_snapshot"]:
if not event_data['false_positive']:
clip_created = False
if clips_config.enabled and (clips_config.objects is None or event_data['label'] in clips_config.objects):
clip_created = self.create_clip(camera, event_data, clips_config.pre_capture, clips_config.post_capture)
Event.create(
id=event_data["id"],
label=event_data["label"],
id=event_data['id'],
label=event_data['label'],
camera=camera,
start_time=event_data["start_time"],
end_time=event_data["end_time"],
top_score=event_data["top_score"],
false_positive=event_data["false_positive"],
zones=list(event_data["entered_zones"]),
thumbnail=event_data["thumbnail"],
has_clip=has_clip,
has_snapshot=event_data["has_snapshot"],
start_time=event_data['start_time'],
end_time=event_data['end_time'],
top_score=event_data['top_score'],
false_positive=event_data['false_positive'],
zones=list(event_data['entered_zones']),
thumbnail=event_data['thumbnail'],
has_clip=clip_created,
has_snapshot=event_data['has_snapshot'],
)
del self.events_in_process[event_data["id"]]
self.event_processed_queue.put((event_data["id"], camera, has_clip))
logger.info(f"Exiting event processor...")
del self.events_in_process[event_data['id']]
self.event_processed_queue.put((event_data['id'], camera))
class EventCleanup(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = "event_cleanup"
self.name = 'event_cleanup'
self.config = config
self.stop_event = stop_event
self.camera_keys = list(self.config.cameras.keys())
def expire(self, media_type):
def expire(self, media):
## Expire events from unlisted cameras based on the global config
if media_type == "clips":
retain_config = self.config.record.events.retain
file_extension = "mp4"
update_params = {"has_clip": False}
if media == 'clips':
retain_config = self.config.clips.retain
file_extension = 'mp4'
update_params = {'has_clip': False}
else:
retain_config = self.config.snapshots.retain
file_extension = "jpg"
update_params = {"has_snapshot": False}
distinct_labels = (
Event.select(Event.label)
.where(Event.camera.not_in(self.camera_keys))
.distinct()
)
file_extension = 'jpg'
update_params = {'has_snapshot': False}
distinct_labels = (Event.select(Event.label)
.where(Event.camera.not_in(self.camera_keys))
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = Event.select().where(
Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label,
expired_events = (
Event.select()
.where(Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the media from disk
for event in expired_events:
media_name = f"{event.camera}-{event.id}"
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}"
)
media_path.unlink(missing_ok=True)
if file_extension == "jpg":
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"
)
media_path.unlink(missing_ok=True)
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
media.unlink(missing_ok=True)
# update the clips attribute for the db entry
update_query = Event.update(update_params).where(
Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label,
update_query = (
Event.update(update_params)
.where(Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
update_query.execute()
## Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
if media_type == "clips":
retain_config = camera.record.events.retain
if media == 'clips':
retain_config = camera.clips.retain
else:
retain_config = camera.snapshots.retain
# get distinct objects in database for this camera
distinct_labels = (
Event.select(Event.label).where(Event.camera == name).distinct()
)
distinct_labels = (Event.select(Event.label)
.where(Event.camera == name)
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = Event.select().where(
Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label,
expired_events = (
Event.select()
.where(Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
media_name = f"{event.camera}-{event.id}"
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}"
)
media_path.unlink(missing_ok=True)
if file_extension == "jpg":
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"
)
media_path.unlink(missing_ok=True)
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
media.unlink(missing_ok=True)
# update the clips attribute for the db entry
update_query = Event.update(update_params).where(
Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label,
update_query = (
Event.update(update_params)
.where( Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
update_query.execute()
def purge_duplicates(self):
duplicate_query = """with grouped_events as (
select id,
label,
camera,
has_snapshot,
has_clip,
row_number() over (
partition by label, camera, round(start_time/5,0)*5
order by end_time-start_time desc
) as copy_number
from event
)
select distinct id, camera, has_snapshot, has_clip from grouped_events
where copy_number > 1;"""
duplicate_events = Event.raw(duplicate_query)
for event in duplicate_events:
logger.debug(f"Removing duplicate: {event.id}")
media_name = f"{event.camera}-{event.id}"
if event.has_snapshot:
media_path = Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg")
media_path.unlink(missing_ok=True)
if event.has_clip:
media_path = Path(f"{os.path.join(CLIPS_DIR, media_name)}.mp4")
media_path.unlink(missing_ok=True)
(
Event.delete()
.where(Event.id << [event.id for event in duplicate_events])
.execute()
)
def run(self):
# only expire events every 5 minutes
while not self.stop_event.wait(300):
self.expire("clips")
self.expire("snapshots")
self.purge_duplicates()
counter = 0
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting event cleanup...")
break
# only expire events every 10 minutes, but check for stop events every 10 seconds
time.sleep(10)
counter = counter + 1
if counter < 60:
continue
counter = 0
self.expire('clips')
self.expire('snapshots')
# drop events from db where has_clip and has_snapshot are false
delete_query = Event.delete().where(
Event.has_clip == False, Event.has_snapshot == False
delete_query = (
Event.delete()
.where( Event.has_clip == False,
Event.has_snapshot == False)
)
delete_query.execute()
logger.info(f"Exiting event cleanup...")

View File

@@ -1,56 +1,32 @@
import base64
from collections import OrderedDict
from datetime import datetime, timedelta
import json
import glob
import datetime
import logging
import os
import re
import subprocess as sp
import time
from functools import reduce
from pathlib import Path
import cv2
from flask.helpers import send_file
import numpy as np
from flask import (
Blueprint,
Flask,
Response,
current_app,
jsonify,
make_response,
request,
)
from peewee import SqliteDatabase, operator, fn, DoesNotExist, Value
from flask import (Blueprint, Flask, Response, current_app, jsonify,
make_response, request)
from peewee import SqliteDatabase, operator, fn, DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.const import CLIPS_DIR, RECORD_DIR
from frigate.models import Event, Recordings
from frigate.models import Event
from frigate.stats import stats_snapshot
from frigate.util import calculate_region
from frigate.version import VERSION
logger = logging.getLogger(__name__)
bp = Blueprint("frigate", __name__)
bp = Blueprint('frigate', __name__)
def create_app(
frigate_config,
database: SqliteDatabase,
stats_tracking,
detected_frames_processor,
):
def create_app(frigate_config, database: SqliteDatabase, stats_tracking, detected_frames_processor):
app = Flask(__name__)
@app.before_request
def _db_connect():
if database.is_closed():
database.connect()
database.connect()
@app.teardown_request
def _db_close(exc):
@@ -65,86 +41,56 @@ def create_app(
return app
@bp.route("/")
@bp.route('/')
def is_healthy():
return "Frigate is running. Alive and healthy!"
@bp.route("/events/summary")
@bp.route('/events/summary')
def events_summary():
has_clip = request.args.get("has_clip", type=int)
has_snapshot = request.args.get("has_snapshot", type=int)
has_clip = request.args.get('has_clip', type=int)
has_snapshot = request.args.get('has_snapshot', type=int)
clauses = []
if not has_clip is None:
clauses.append((Event.has_clip == has_clip))
if not has_snapshot is None:
clauses.append((Event.has_snapshot == has_snapshot))
if len(clauses) == 0:
clauses.append((True))
clauses.append((1 == 1))
groups = (
Event.select(
Event.camera,
Event.label,
fn.strftime(
"%Y-%m-%d", fn.datetime(Event.start_time, "unixepoch", "localtime")
).alias("day"),
Event.zones,
fn.COUNT(Event.id).alias("count"),
Event
.select(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'),
Event.zones,
fn.COUNT(Event.id).alias('count')
)
.where(reduce(operator.and_, clauses))
.group_by(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')),
Event.zones
)
)
.where(reduce(operator.and_, clauses))
.group_by(
Event.camera,
Event.label,
fn.strftime(
"%Y-%m-%d", fn.datetime(Event.start_time, "unixepoch", "localtime")
),
Event.zones,
)
)
return jsonify([e for e in groups.dicts()])
@bp.route("/events/<id>", methods=("GET",))
@bp.route('/events/<id>')
def event(id):
try:
return model_to_dict(Event.get(Event.id == id))
except DoesNotExist:
return "Event not found", 404
@bp.route("/events/<id>", methods=("DELETE",))
def delete_event(id):
try:
event = Event.get(Event.id == id)
except DoesNotExist:
return make_response(
jsonify({"success": False, "message": "Event" + id + " not found"}), 404
)
media_name = f"{event.camera}-{event.id}"
if event.has_snapshot:
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg")
media.unlink(missing_ok=True)
if event.has_clip:
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.mp4")
media.unlink(missing_ok=True)
event.delete_instance()
return make_response(
jsonify({"success": True, "message": "Event" + id + " deleted"}), 200
)
@bp.route("/events/<id>/thumbnail.jpg")
def event_thumbnail(id):
format = request.args.get("format", "ios")
@bp.route('/events/<id>/thumbnail.jpg')
def event_snapshot(id):
format = request.args.get('format', 'ios')
thumbnail_bytes = None
try:
event = Event.get(Event.id == id)
@@ -152,12 +98,11 @@ def event_thumbnail(id):
except DoesNotExist:
# see if the object is currently being tracked
try:
camera_states = current_app.detected_frames_processor.camera_states.values()
for camera_state in camera_states:
for camera_state in current_app.detected_frames_processor.camera_states.values():
if id in camera_state.tracked_objects:
tracked_obj = camera_state.tracked_objects.get(id)
if not tracked_obj is None:
thumbnail_bytes = tracked_obj.get_thumbnail()
thumbnail_bytes = tracked_obj.get_jpg_bytes()
except:
return "Event not found", 404
@@ -165,120 +110,29 @@ def event_thumbnail(id):
return "Event not found", 404
# android notifications prefer a 2:1 ratio
if format == "android":
if format == 'android':
jpg_as_np = np.frombuffer(thumbnail_bytes, dtype=np.uint8)
img = cv2.imdecode(jpg_as_np, flags=1)
thumbnail = cv2.copyMakeBorder(
img,
0,
0,
int(img.shape[1] * 0.5),
int(img.shape[1] * 0.5),
cv2.BORDER_CONSTANT,
(0, 0, 0),
)
ret, jpg = cv2.imencode(".jpg", thumbnail, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
thumbnail = cv2.copyMakeBorder(img, 0, 0, int(img.shape[1]*0.5), int(img.shape[1]*0.5), cv2.BORDER_CONSTANT, (0,0,0))
ret, jpg = cv2.imencode('.jpg', thumbnail)
thumbnail_bytes = jpg.tobytes()
response = make_response(thumbnail_bytes)
response.headers["Content-Type"] = "image/jpg"
response.headers['Content-Type'] = 'image/jpg'
return response
@bp.route("/events/<id>/snapshot.jpg")
def event_snapshot(id):
download = request.args.get("download", type=bool)
jpg_bytes = None
try:
event = Event.get(Event.id == id)
if not event.has_snapshot:
return "Snapshot not available", 404
# read snapshot from disk
with open(
os.path.join(CLIPS_DIR, f"{event.camera}-{id}.jpg"), "rb"
) as image_file:
jpg_bytes = image_file.read()
except DoesNotExist:
# see if the object is currently being tracked
try:
camera_states = current_app.detected_frames_processor.camera_states.values()
for camera_state in camera_states:
if id in camera_state.tracked_objects:
tracked_obj = camera_state.tracked_objects.get(id)
if not tracked_obj is None:
jpg_bytes = tracked_obj.get_jpg_bytes(
timestamp=request.args.get("timestamp", type=int),
bounding_box=request.args.get("bbox", type=int),
crop=request.args.get("crop", type=int),
height=request.args.get("h", type=int),
quality=request.args.get("quality", default=70, type=int),
)
except:
return "Event not found", 404
except:
return "Event not found", 404
if jpg_bytes is None:
return "Event not found", 404
response = make_response(jpg_bytes)
response.headers["Content-Type"] = "image/jpg"
if download:
response.headers[
"Content-Disposition"
] = f"attachment; filename=snapshot-{id}.jpg"
return response
@bp.route("/events/<id>/clip.mp4")
def event_clip(id):
download = request.args.get("download", type=bool)
try:
event: Event = Event.get(Event.id == id)
except DoesNotExist:
return "Event not found.", 404
if not event.has_clip:
return "Clip not available", 404
event_config = current_app.frigate_config.cameras[event.camera].record.events
start_ts = event.start_time - event_config.pre_capture
end_ts = event.end_time + event_config.post_capture
file_name = f"{event.camera}-{id}.mp4"
clip_path = os.path.join(CLIPS_DIR, file_name)
if not os.path.isfile(clip_path):
return recording_clip(event.camera, start_ts, end_ts)
response = make_response()
response.headers["Content-Description"] = "File Transfer"
response.headers["Cache-Control"] = "no-cache"
response.headers["Content-Type"] = "video/mp4"
if download:
response.headers["Content-Disposition"] = "attachment; filename=%s" % file_name
response.headers["Content-Length"] = os.path.getsize(clip_path)
response.headers[
"X-Accel-Redirect"
] = f"/clips/{file_name}" # nginx: http://wiki.nginx.org/NginxXSendfile
return response
@bp.route("/events")
@bp.route('/events')
def events():
limit = request.args.get("limit", 100)
camera = request.args.get("camera")
label = request.args.get("label")
zone = request.args.get("zone")
after = request.args.get("after", type=float)
before = request.args.get("before", type=float)
has_clip = request.args.get("has_clip", type=int)
has_snapshot = request.args.get("has_snapshot", type=int)
include_thumbnails = request.args.get("include_thumbnails", default=1, type=int)
limit = request.args.get('limit', 100)
camera = request.args.get('camera')
label = request.args.get('label')
zone = request.args.get('zone')
after = request.args.get('after', type=int)
before = request.args.get('before', type=int)
has_clip = request.args.get('has_clip', type=int)
has_snapshot = request.args.get('has_snapshot', type=int)
clauses = []
excluded_fields = []
if camera:
clauses.append((Event.camera == camera))
@@ -287,7 +141,7 @@ def events():
clauses.append((Event.label == label))
if zone:
clauses.append((Event.zones.cast("text") % f'*"{zone}"*'))
clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*"))
if after:
clauses.append((Event.start_time >= after))
@@ -297,438 +151,118 @@ def events():
if not has_clip is None:
clauses.append((Event.has_clip == has_clip))
if not has_snapshot is None:
clauses.append((Event.has_snapshot == has_snapshot))
if not include_thumbnails:
excluded_fields.append(Event.thumbnail)
if len(clauses) == 0:
clauses.append((True))
clauses.append((1 == 1))
events = (
Event.select()
.where(reduce(operator.and_, clauses))
.order_by(Event.start_time.desc())
.limit(limit)
)
events = (Event.select()
.where(reduce(operator.and_, clauses))
.order_by(Event.start_time.desc())
.limit(limit))
return jsonify([model_to_dict(e, exclude=excluded_fields) for e in events])
return jsonify([model_to_dict(e) for e in events])
@bp.route("/config")
@bp.route('/config')
def config():
config = current_app.frigate_config.dict()
return jsonify(current_app.frigate_config.to_dict())
# add in the ffmpeg_cmds
for camera_name, camera in current_app.frigate_config.cameras.items():
camera_dict = config["cameras"][camera_name]
camera_dict["ffmpeg_cmds"] = camera.ffmpeg_cmds
for cmd in camera_dict["ffmpeg_cmds"]:
cmd["cmd"] = " ".join(cmd["cmd"])
return jsonify(config)
@bp.route("/config/schema")
def config_schema():
return current_app.response_class(
current_app.frigate_config.schema_json(), mimetype="application/json"
)
@bp.route("/version")
@bp.route('/version')
def version():
return VERSION
@bp.route("/stats")
@bp.route('/stats')
def stats():
stats = stats_snapshot(current_app.stats_tracking)
return jsonify(stats)
@bp.route("/<camera_name>/<label>/best.jpg")
@bp.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in current_app.frigate_config.cameras:
best_object = current_app.detected_frames_processor.get_best(camera_name, label)
best_frame = best_object.get("frame")
best_frame = best_object.get('frame')
if best_frame is None:
best_frame = np.zeros((720, 1280, 3), np.uint8)
best_frame = np.zeros((720,1280,3), np.uint8)
else:
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get("crop", 0, type=int))
crop = bool(request.args.get('crop', 0, type=int))
if crop:
box = best_object.get("box", (0, 0, 300, 300))
region = calculate_region(
best_frame.shape, box[0], box[1], box[2], box[3], 1.1
)
best_frame = best_frame[region[1] : region[3], region[0] : region[2]]
box = best_object.get('box', (0,0,300,300))
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get("h", str(best_frame.shape[0])))
width = int(height * best_frame.shape[1] / best_frame.shape[0])
resize_quality = request.args.get("quality", default=70, type=int)
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(
best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA
)
ret, jpg = cv2.imencode(
".jpg", best_frame, [int(cv2.IMWRITE_JPEG_QUALITY), resize_quality]
)
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers["Content-Type"] = "image/jpg"
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route("/<camera_name>")
@bp.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get("fps", "3"))
height = int(request.args.get("h", "360"))
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
draw_options = {
"bounding_boxes": request.args.get("bbox", type=int),
"timestamp": request.args.get("timestamp", type=int),
"zones": request.args.get("zones", type=int),
"mask": request.args.get("mask", type=int),
"motion_boxes": request.args.get("motion", type=int),
"regions": request.args.get("regions", type=int),
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
if camera_name in current_app.frigate_config.cameras:
# return a multipart response
return Response(
imagestream(
current_app.detected_frames_processor,
camera_name,
fps,
height,
draw_options,
),
mimetype="multipart/x-mixed-replace; boundary=frame",
)
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height, draw_options),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route("/<camera_name>/latest.jpg")
@bp.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
draw_options = {
"bounding_boxes": request.args.get("bbox", type=int),
"timestamp": request.args.get("timestamp", type=int),
"zones": request.args.get("zones", type=int),
"mask": request.args.get("mask", type=int),
"motion_boxes": request.args.get("motion", type=int),
"regions": request.args.get("regions", type=int),
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
resize_quality = request.args.get("quality", default=70, type=int)
if camera_name in current_app.frigate_config.cameras:
frame = current_app.detected_frames_processor.get_current_frame(
camera_name, draw_options
)
# max out at specified FPS
frame = current_app.detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((720, 1280, 3), np.uint8)
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get("h", str(frame.shape[0])))
width = int(height * frame.shape[1] / frame.shape[0])
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode(
".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), resize_quality]
)
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers["Content-Type"] = "image/jpg"
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route("/<camera_name>/recordings")
def recordings(camera_name):
dates = OrderedDict()
# Retrieve all recordings for this camera
recordings = (
Recordings.select()
.where(Recordings.camera == camera_name)
.order_by(Recordings.start_time.asc())
)
last_end = 0
recording: Recordings
for recording in recordings:
date = datetime.fromtimestamp(recording.start_time)
key = date.strftime("%Y-%m-%d")
hour = date.strftime("%H")
# Create Day Record
if key not in dates:
dates[key] = OrderedDict()
# Create Hour Record
if hour not in dates[key]:
dates[key][hour] = {"delay": {}, "events": []}
# Check for delay
the_hour = datetime.strptime(f"{key} {hour}", "%Y-%m-%d %H").timestamp()
# diff current recording start time and the greater of the previous end time or top of the hour
diff = recording.start_time - max(last_end, the_hour)
# Determine seconds into recording
seconds = 0
if datetime.fromtimestamp(last_end).strftime("%H") == hour:
seconds = int(last_end - the_hour)
# Determine the delay
delay = min(int(diff), 3600 - seconds)
if delay > 1:
# Add an offset for any delay greater than a second
dates[key][hour]["delay"][seconds] = delay
last_end = recording.end_time
# Packing intervals to return all events with same label and overlapping times as one row.
# See: https://blogs.solidq.com/en/sqlserver/packing-intervals/
events = Event.raw(
"""WITH C1 AS
(
SELECT id, label, camera, top_score, start_time AS ts, +1 AS type, 1 AS sub
FROM event
WHERE camera = ?
UNION ALL
SELECT id, label, camera, top_score, end_time + 15 AS ts, -1 AS type, 0 AS sub
FROM event
WHERE camera = ?
),
C2 AS
(
SELECT C1.*,
SUM(type) OVER(PARTITION BY label ORDER BY ts, type DESC
ROWS BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW) - sub AS cnt
FROM C1
),
C3 AS
(
SELECT id, label, camera, top_score, ts,
(ROW_NUMBER() OVER(PARTITION BY label ORDER BY ts) - 1) / 2 + 1
AS grpnum
FROM C2
WHERE cnt = 0
)
SELECT MIN(id) as id, label, camera, MAX(top_score) as top_score, MIN(ts) AS start_time, max(ts) AS end_time
FROM C3
GROUP BY label, grpnum
ORDER BY start_time;""",
camera_name,
camera_name,
)
event: Event
for event in events:
date = datetime.fromtimestamp(event.start_time)
key = date.strftime("%Y-%m-%d")
hour = date.strftime("%H")
if key in dates and hour in dates[key]:
dates[key][hour]["events"].append(
model_to_dict(
event,
exclude=[
Event.false_positive,
Event.zones,
Event.thumbnail,
Event.has_clip,
Event.has_snapshot,
],
)
)
return jsonify(
[
{
"date": date,
"events": sum([len(value["events"]) for value in hours.values()]),
"recordings": [
{"hour": hour, "delay": value["delay"], "events": value["events"]}
for hour, value in hours.items()
],
}
for date, hours in dates.items()
]
)
@bp.route("/<camera>/start/<int:start_ts>/end/<int:end_ts>/clip.mp4")
@bp.route("/<camera>/start/<float:start_ts>/end/<float:end_ts>/clip.mp4")
def recording_clip(camera, start_ts, end_ts):
download = request.args.get("download", type=bool)
recordings = (
Recordings.select()
.where(
(Recordings.start_time.between(start_ts, end_ts))
| (Recordings.end_time.between(start_ts, end_ts))
| ((start_ts > Recordings.start_time) & (end_ts < Recordings.end_time))
)
.where(Recordings.camera == camera)
.order_by(Recordings.start_time.asc())
)
playlist_lines = []
clip: Recordings
for clip in recordings:
playlist_lines.append(f"file '{clip.path}'")
# if this is the starting clip, add an inpoint
if clip.start_time < start_ts:
playlist_lines.append(f"inpoint {int(start_ts - clip.start_time)}")
# if this is the ending clip, add an outpoint
if clip.end_time > end_ts:
playlist_lines.append(f"outpoint {int(end_ts - clip.start_time)}")
file_name = f"clip_{camera}_{start_ts}-{end_ts}.mp4"
path = f"/tmp/cache/{file_name}"
ffmpeg_cmd = [
"ffmpeg",
"-y",
"-protocol_whitelist",
"pipe,file",
"-f",
"concat",
"-safe",
"0",
"-i",
"-",
"-c",
"copy",
"-movflags",
"+faststart",
path,
]
p = sp.run(
ffmpeg_cmd,
input="\n".join(playlist_lines),
encoding="ascii",
capture_output=True,
)
if p.returncode != 0:
logger.error(p.stderr)
return f"Could not create clip from recordings for {camera}.", 500
response = make_response()
response.headers["Content-Description"] = "File Transfer"
response.headers["Cache-Control"] = "no-cache"
response.headers["Content-Type"] = "video/mp4"
if download:
response.headers["Content-Disposition"] = "attachment; filename=%s" % file_name
response.headers["Content-Length"] = os.path.getsize(path)
response.headers[
"X-Accel-Redirect"
] = f"/cache/{file_name}" # nginx: http://wiki.nginx.org/NginxXSendfile
return response
@bp.route("/vod/<camera>/start/<int:start_ts>/end/<int:end_ts>")
@bp.route("/vod/<camera>/start/<float:start_ts>/end/<float:end_ts>")
def vod_ts(camera, start_ts, end_ts):
recordings = (
Recordings.select()
.where(
Recordings.start_time.between(start_ts, end_ts)
| Recordings.end_time.between(start_ts, end_ts)
| ((start_ts > Recordings.start_time) & (end_ts < Recordings.end_time))
)
.where(Recordings.camera == camera)
.order_by(Recordings.start_time.asc())
)
clips = []
durations = []
recording: Recordings
for recording in recordings:
clip = {"type": "source", "path": recording.path}
duration = int(recording.duration * 1000)
# Determine if offset is needed for first clip
if recording.start_time < start_ts:
offset = int((start_ts - recording.start_time) * 1000)
clip["clipFrom"] = offset
duration -= offset
# Determine if we need to end the last clip early
if recording.end_time > end_ts:
duration -= int((recording.end_time - end_ts) * 1000)
clips.append(clip)
durations.append(duration)
if not clips:
return "No recordings found.", 404
hour_ago = datetime.now() - timedelta(hours=1)
return jsonify(
{
"cache": hour_ago.timestamp() > start_ts,
"discontinuity": False,
"durations": durations,
"sequences": [{"clips": clips}],
}
)
@bp.route("/vod/<year_month>/<day>/<hour>/<camera>")
def vod_hour(year_month, day, hour, camera):
start_date = datetime.strptime(f"{year_month}-{day} {hour}", "%Y-%m-%d %H")
end_date = start_date + timedelta(hours=1) - timedelta(milliseconds=1)
start_ts = start_date.timestamp()
end_ts = end_date.timestamp()
return vod_ts(camera, start_ts, end_ts)
@bp.route("/vod/event/<id>")
def vod_event(id):
try:
event: Event = Event.get(Event.id == id)
except DoesNotExist:
return "Event not found.", 404
if not event.has_clip:
return "Clip not available", 404
event_config = current_app.frigate_config.cameras[event.camera].record.events
start_ts = event.start_time - event_config.pre_capture
end_ts = event.end_time + event_config.post_capture
clip_path = os.path.join(CLIPS_DIR, f"{event.camera}-{id}.mp4")
if not os.path.isfile(clip_path):
return vod_ts(event.camera, start_ts, end_ts)
duration = int((end_ts - start_ts) * 1000)
return jsonify(
{
"cache": True,
"discontinuity": False,
"durations": [duration],
"sequences": [{"clips": [{"type": "source", "path": clip_path}]}],
}
)
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
while True:
# max out at specified FPS
time.sleep(1 / fps)
time.sleep(1/fps)
frame = detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((height, int(height * 16 / 9), 3), np.uint8)
frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height * frame.shape[1] / frame.shape[0])
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
ret, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
yield (
b"--frame\r\n"
b"Content-Type: image/jpeg\r\n\r\n" + jpg.tobytes() + b"\r\n\r\n"
)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')

View File

@@ -7,40 +7,43 @@ import queue
import multiprocessing as mp
from logging import handlers
from setproctitle import setproctitle
from collections import deque
def listener_configurer():
root = logging.getLogger()
console_handler = logging.StreamHandler()
formatter = logging.Formatter(
"[%(asctime)s] %(name)-30s %(levelname)-8s: %(message)s", "%Y-%m-%d %H:%M:%S"
)
formatter = logging.Formatter('%(name)-30s %(levelname)-8s: %(message)s')
console_handler.setFormatter(formatter)
root.addHandler(console_handler)
root.setLevel(logging.INFO)
def root_configurer(queue):
h = handlers.QueueHandler(queue)
root = logging.getLogger()
root.addHandler(h)
root.setLevel(logging.INFO)
def log_process(log_queue):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"logger"
setproctitle("frigate.logger")
listener_configurer()
while True:
if stop_event.is_set() and log_queue.empty():
break
try:
record = log_queue.get(timeout=5)
except (queue.Empty, KeyboardInterrupt):
except queue.Empty:
continue
logger = logging.getLogger(record.name)
logger.handle(record)
# based on https://codereview.stackexchange.com/a/17959
class LogPipe(threading.Thread):
def __init__(self, log_name, level):
@@ -51,26 +54,24 @@ class LogPipe(threading.Thread):
self.daemon = False
self.logger = logging.getLogger(log_name)
self.level = level
self.deque = deque(maxlen=100)
self.fdRead, self.fdWrite = os.pipe()
self.pipeReader = os.fdopen(self.fdRead)
self.start()
def fileno(self):
"""Return the write file descriptor of the pipe"""
"""Return the write file descriptor of the pipe
"""
return self.fdWrite
def run(self):
"""Run the thread, logging everything."""
for line in iter(self.pipeReader.readline, ""):
self.deque.append(line.strip("\n"))
"""Run the thread, logging everything.
"""
for line in iter(self.pipeReader.readline, ''):
self.logger.log(self.level, line.strip('\n'))
self.pipeReader.close()
def dump(self):
while len(self.deque) > 0:
self.logger.log(self.level, self.deque.popleft())
def close(self):
"""Close the write end of the pipe."""
"""Close the write end of the pipe.
"""
os.close(self.fdWrite)

View File

@@ -1,4 +1,3 @@
from numpy import unique
from peewee import *
from playhouse.sqlite_ext import *
@@ -15,12 +14,3 @@ class Event(Model):
thumbnail = TextField()
has_clip = BooleanField(default=True)
has_snapshot = BooleanField(default=True)
class Recordings(Model):
id = CharField(null=False, primary_key=True, max_length=30)
camera = CharField(index=True, max_length=20)
path = CharField(unique=True)
start_time = DateTimeField()
end_time = DateTimeField()
duration = FloatField()

View File

@@ -4,37 +4,26 @@ import numpy as np
from frigate.config import MotionConfig
class MotionDetector:
class MotionDetector():
def __init__(self, frame_shape, config: MotionConfig):
self.config = config
self.frame_shape = frame_shape
self.resize_factor = frame_shape[0] / config.frame_height
self.motion_frame_size = (
config.frame_height,
config.frame_height * frame_shape[1] // frame_shape[0],
)
self.resize_factor = frame_shape[0]/config.frame_height
self.motion_frame_size = (config.frame_height, config.frame_height*frame_shape[1]//frame_shape[0])
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
self.motion_frame_count = 0
self.frame_counter = 0
resized_mask = cv2.resize(
config.mask,
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=cv2.INTER_LINEAR,
)
self.mask = np.where(resized_mask == [0])
resized_mask = cv2.resize(config.mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
self.mask = np.where(resized_mask==[0])
def detect(self, frame):
motion_boxes = []
gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
gray = frame[0:self.frame_shape[0], 0:self.frame_shape[1]]
# resize frame
resized_frame = cv2.resize(
gray,
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=cv2.INTER_LINEAR,
)
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
# TODO: can I improve the contrast of the grayscale image here?
@@ -59,9 +48,7 @@ class MotionDetector:
# compute the threshold image for the current frame
# TODO: threshold
current_thresh = cv2.threshold(
frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY
)[1]
current_thresh = cv2.threshold(frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
@@ -69,9 +56,7 @@ class MotionDetector:
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
thresh = cv2.threshold(
avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY
)[1]
thresh = cv2.threshold(avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
@@ -85,27 +70,16 @@ class MotionDetector:
contour_area = cv2.contourArea(c)
if contour_area > self.config.contour_area:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append(
(
int(x * self.resize_factor),
int(y * self.resize_factor),
int((x + w) * self.resize_factor),
int((y + h) * self.resize_factor),
)
)
motion_boxes.append((int(x*self.resize_factor), int(y*self.resize_factor), int((x+w)*self.resize_factor), int((y+h)*self.resize_factor)))
if len(motion_boxes) > 0:
self.motion_frame_count += 1
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for a bit
cv2.accumulateWeighted(
resized_frame, self.avg_frame, self.config.frame_alpha
)
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(
resized_frame, self.avg_frame, self.config.frame_alpha
)
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
self.motion_frame_count = 0
return motion_boxes

View File

@@ -1,42 +1,31 @@
import json
import logging
import threading
from wsgiref.simple_server import make_server
import paho.mqtt.client as mqtt
from ws4py.server.wsgirefserver import (
WebSocketWSGIHandler,
WebSocketWSGIRequestHandler,
WSGIServer,
)
from ws4py.server.wsgiutils import WebSocketWSGIApplication
from ws4py.websocket import WebSocket
from frigate.config import FrigateConfig
from frigate.util import restart_frigate
logger = logging.getLogger(__name__)
def create_mqtt_client(config: FrigateConfig, camera_metrics):
mqtt_config = config.mqtt
def on_recordings_command(client, userdata, message):
def on_clips_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_recordings_toggle: {message.topic} {payload}")
logger.debug(f"on_clips_toggle: {message.topic} {payload}")
camera_name = message.topic.split("/")[-3]
camera_name = message.topic.split('/')[-3]
record_settings = config.cameras[camera_name].record
clips_settings = config.cameras[camera_name].clips
if payload == "ON":
if not record_settings.enabled:
logger.info(f"Turning on recordings for {camera_name} via mqtt")
record_settings.enabled = True
elif payload == "OFF":
if record_settings.enabled:
logger.info(f"Turning off recordings for {camera_name} via mqtt")
record_settings.enabled = False
if payload == 'ON':
if not clips_settings.enabled:
logger.info(f"Turning on clips for {camera_name} via mqtt")
clips_settings._enabled = True
elif payload == 'OFF':
if clips_settings.enabled:
logger.info(f"Turning off clips for {camera_name} via mqtt")
clips_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
@@ -47,106 +36,73 @@ def create_mqtt_client(config: FrigateConfig, camera_metrics):
payload = message.payload.decode()
logger.debug(f"on_snapshots_toggle: {message.topic} {payload}")
camera_name = message.topic.split("/")[-3]
camera_name = message.topic.split('/')[-3]
snapshots_settings = config.cameras[camera_name].snapshots
if payload == "ON":
if payload == 'ON':
if not snapshots_settings.enabled:
logger.info(f"Turning on snapshots for {camera_name} via mqtt")
snapshots_settings.enabled = True
elif payload == "OFF":
snapshots_settings._enabled = True
elif payload == 'OFF':
if snapshots_settings.enabled:
logger.info(f"Turning off snapshots for {camera_name} via mqtt")
snapshots_settings.enabled = False
snapshots_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_detect_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_detect_toggle: {message.topic} {payload}")
camera_name = message.topic.split("/")[-3]
camera_name = message.topic.split('/')[-3]
detect_settings = config.cameras[camera_name].detect
if payload == "ON":
if payload == 'ON':
if not camera_metrics[camera_name]["detection_enabled"].value:
logger.info(f"Turning on detection for {camera_name} via mqtt")
camera_metrics[camera_name]["detection_enabled"].value = True
detect_settings.enabled = True
elif payload == "OFF":
detect_settings._enabled = True
elif payload == 'OFF':
if camera_metrics[camera_name]["detection_enabled"].value:
logger.info(f"Turning off detection for {camera_name} via mqtt")
camera_metrics[camera_name]["detection_enabled"].value = False
detect_settings.enabled = False
detect_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_restart_command(client, userdata, message):
restart_frigate()
def on_connect(client, userdata, flags, rc):
threading.current_thread().name = "mqtt"
if rc != 0:
if rc == 3:
logger.error("Unable to connect to MQTT server: MQTT Server unavailable")
logger.error("MQTT Server unavailable")
elif rc == 4:
logger.error("Unable to connect to MQTT server: MQTT Bad username or password")
logger.error("MQTT Bad username or password")
elif rc == 5:
logger.error("Unable to connect to MQTT server: MQTT Not authorized")
logger.error("MQTT Not authorized")
else:
logger.error(
"Unable to connect to MQTT server: Connection refused. Error code: "
+ str(rc)
)
logger.error("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
logger.info("MQTT connected")
client.subscribe(f"{mqtt_config.topic_prefix}/#")
client.publish(mqtt_config.topic_prefix + "/available", "online", retain=True)
client.publish(mqtt_config.topic_prefix+'/available', 'online', retain=True)
client = mqtt.Client(client_id=mqtt_config.client_id)
client = mqtt.Client(client_id=mqtt_config.client_id)
client.on_connect = on_connect
client.will_set(
mqtt_config.topic_prefix + "/available", payload="offline", qos=1, retain=True
)
client.will_set(mqtt_config.topic_prefix+'/available', payload='offline', qos=1, retain=True)
# register callbacks
for name in config.cameras.keys():
client.message_callback_add(
f"{mqtt_config.topic_prefix}/{name}/recordings/set", on_recordings_command
)
client.message_callback_add(
f"{mqtt_config.topic_prefix}/{name}/snapshots/set", on_snapshots_command
)
client.message_callback_add(
f"{mqtt_config.topic_prefix}/{name}/detect/set", on_detect_command
)
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/clips/set", on_clips_command)
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/snapshots/set", on_snapshots_command)
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/detect/set", on_detect_command)
client.message_callback_add(
f"{mqtt_config.topic_prefix}/restart", on_restart_command
)
if not mqtt_config.tls_ca_certs is None:
if (
not mqtt_config.tls_client_cert is None
and not mqtt_config.tls_client_key is None
):
client.tls_set(
mqtt_config.tls_ca_certs,
mqtt_config.tls_client_cert,
mqtt_config.tls_client_key,
)
else:
client.tls_set(mqtt_config.tls_ca_certs)
if not mqtt_config.tls_insecure is None:
client.tls_insecure_set(mqtt_config.tls_insecure)
if not mqtt_config.user is None:
client.username_pw_set(mqtt_config.user, password=mqtt_config.password)
try:
@@ -158,96 +114,12 @@ def create_mqtt_client(config: FrigateConfig, camera_metrics):
client.loop_start()
for name in config.cameras.keys():
client.publish(
f"{mqtt_config.topic_prefix}/{name}/recordings/state",
"ON" if config.cameras[name].record.enabled else "OFF",
retain=True,
)
client.publish(
f"{mqtt_config.topic_prefix}/{name}/snapshots/state",
"ON" if config.cameras[name].snapshots.enabled else "OFF",
retain=True,
)
client.publish(
f"{mqtt_config.topic_prefix}/{name}/detect/state",
"ON" if config.cameras[name].detect.enabled else "OFF",
retain=True,
)
client.publish(f"{mqtt_config.topic_prefix}/{name}/clips/state", 'ON' if config.cameras[name].clips.enabled else 'OFF', retain=True)
client.publish(f"{mqtt_config.topic_prefix}/{name}/snapshots/state", 'ON' if config.cameras[name].clips.enabled else 'OFF', retain=True)
client.publish(f"{mqtt_config.topic_prefix}/{name}/detect/state", 'ON' if config.cameras[name].clips.enabled else 'OFF', retain=True)
client.subscribe(f"{mqtt_config.topic_prefix}/+/clips/set")
client.subscribe(f"{mqtt_config.topic_prefix}/+/snapshots/set")
client.subscribe(f"{mqtt_config.topic_prefix}/+/detect/set")
return client
class MqttSocketRelay:
def __init__(self, mqtt_client, topic_prefix):
self.mqtt_client = mqtt_client
self.topic_prefix = topic_prefix
def start(self):
class MqttWebSocket(WebSocket):
topic_prefix = self.topic_prefix
mqtt_client = self.mqtt_client
def received_message(self, message):
try:
json_message = json.loads(message.data.decode("utf-8"))
json_message = {
"topic": f"{self.topic_prefix}/{json_message['topic']}",
"payload": json_message.get("payload"),
"retain": json_message.get("retain", False),
}
except Exception as e:
logger.warning("Unable to parse websocket message as valid json.")
return
logger.debug(
f"Publishing mqtt message from websockets at {json_message['topic']}."
)
self.mqtt_client.publish(
json_message["topic"],
json_message["payload"],
retain=json_message["retain"],
)
# start a websocket server on 5002
WebSocketWSGIHandler.http_version = "1.1"
self.websocket_server = make_server(
"127.0.0.1",
5002,
server_class=WSGIServer,
handler_class=WebSocketWSGIRequestHandler,
app=WebSocketWSGIApplication(handler_cls=MqttWebSocket),
)
self.websocket_server.initialize_websockets_manager()
self.websocket_thread = threading.Thread(
target=self.websocket_server.serve_forever
)
def send(client, userdata, message):
"""Sends mqtt messages to clients."""
try:
logger.debug(f"Received mqtt message on {message.topic}.")
ws_message = json.dumps(
{
"topic": message.topic.replace(f"{self.topic_prefix}/", ""),
"payload": message.payload.decode(),
}
)
except Exception as e:
# if the payload can't be decoded don't relay to clients
logger.debug(
f"MQTT payload for {message.topic} wasn't text. Skipping..."
)
return
self.websocket_server.manager.broadcast(ws_message)
self.mqtt_client.message_callback_add(f"{self.topic_prefix}/#", send)
self.websocket_thread.start()
def stop(self):
self.websocket_server.manager.close_all()
self.websocket_server.manager.stop()
self.websocket_server.manager.join()
self.websocket_server.shutdown()
self.websocket_thread.join()

View File

@@ -1,5 +1,5 @@
import base64
import copy
import base64
import datetime
import hashlib
import itertools
@@ -14,60 +14,57 @@ from statistics import mean, median
from typing import Callable, Dict
import cv2
import matplotlib.pyplot as plt
import numpy as np
from frigate.config import CameraConfig, FrigateConfig
from frigate.const import CACHE_DIR, CLIPS_DIR, RECORD_DIR
from frigate.config import FrigateConfig, CameraConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.edgetpu import load_labels
from frigate.util import (
SharedMemoryFrameManager,
calculate_region,
draw_box_with_label,
draw_timestamp,
)
from frigate.util import SharedMemoryFrameManager, draw_box_with_label, calculate_region
logger = logging.getLogger(__name__)
PATH_TO_LABELS = '/labelmap.txt'
LABELS = load_labels(PATH_TO_LABELS)
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
def on_edge(box, frame_shape):
if (
box[0] == 0
or box[1] == 0
or box[2] == frame_shape[1] - 1
or box[3] == frame_shape[0] - 1
box[0] == 0 or
box[1] == 0 or
box[2] == frame_shape[1]-1 or
box[3] == frame_shape[0]-1
):
return True
def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
# larger is better
# cutoff images are less ideal, but they should also be smaller?
# better scores are obviously better too
# if the new_thumb is on an edge, and the current thumb is not
if on_edge(new_obj["box"], frame_shape) and not on_edge(
current_thumb["box"], frame_shape
):
if on_edge(new_obj['box'], frame_shape) and not on_edge(current_thumb['box'], frame_shape):
return False
# if the score is better by more than 5%
if new_obj["score"] > current_thumb["score"] + 0.05:
if new_obj['score'] > current_thumb['score']+.05:
return True
# if the area is 10% larger
if new_obj["area"] > current_thumb["area"] * 1.1:
if new_obj['area'] > current_thumb['area']*1.1:
return True
return False
class TrackedObject:
def __init__(
self, camera, colormap, camera_config: CameraConfig, frame_cache, obj_data
):
class TrackedObject():
def __init__(self, camera, camera_config: CameraConfig, frame_cache, obj_data):
self.obj_data = obj_data
self.camera = camera
self.colormap = colormap
self.camera_config = camera_config
self.frame_cache = frame_cache
self.current_zones = []
@@ -75,38 +72,37 @@ class TrackedObject:
self.false_positive = True
self.top_score = self.computed_score = 0.0
self.thumbnail_data = None
self.last_updated = 0
self.last_published = 0
self.frame = None
self.previous = self.to_dict()
# start the score history
self.score_history = [self.obj_data["score"]]
self.score_history = [self.obj_data['score']]
def _is_false_positive(self):
# once a true positive, always a true positive
if not self.false_positive:
return False
threshold = self.camera_config.objects.filters[self.obj_data["label"]].threshold
return self.computed_score < threshold
threshold = self.camera_config.objects.filters[self.obj_data['label']].threshold
if self.computed_score < threshold:
return True
return False
def compute_score(self):
scores = self.score_history[:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0] * (3 - len(scores))
scores += [0.0]*(3 - len(scores))
return median(scores)
def update(self, current_frame_time, obj_data):
significant_update = False
zone_change = False
self.obj_data.update(obj_data)
# if the object is not in the current frame, add a 0.0 to the score history
if self.obj_data["frame_time"] != current_frame_time:
if self.obj_data['frame_time'] != current_frame_time:
self.score_history.append(0.0)
else:
self.score_history.append(self.obj_data["score"])
self.score_history.append(self.obj_data['score'])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
@@ -119,29 +115,27 @@ class TrackedObject:
if not self.false_positive:
# determine if this frame is a better thumbnail
if self.thumbnail_data is None or is_better_thumbnail(
self.thumbnail_data, self.obj_data, self.camera_config.frame_shape
if (
self.thumbnail_data is None
or is_better_thumbnail(self.thumbnail_data, self.obj_data, self.camera_config.frame_shape)
):
self.thumbnail_data = {
"frame_time": self.obj_data["frame_time"],
"box": self.obj_data["box"],
"area": self.obj_data["area"],
"region": self.obj_data["region"],
"score": self.obj_data["score"],
'frame_time': self.obj_data['frame_time'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'score': self.obj_data['score']
}
significant_update = True
# check zones
current_zones = []
bottom_center = (self.obj_data["centroid"][0], self.obj_data["box"][3])
bottom_center = (self.obj_data['centroid'][0], self.obj_data['box'][3])
# check each zone
for name, zone in self.camera_config.zones.items():
# if the zone is not for this object type, skip
if len(zone.objects) > 0 and not self.obj_data["label"] in zone.objects:
continue
contour = zone.contour
# check if the object is in the zone
if cv2.pointPolygonTest(contour, bottom_center, False) >= 0:
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
# if the object passed the filters once, dont apply again
if name in self.current_zones or not zone_filtered(self, zone.filters):
current_zones.append(name)
@@ -149,161 +143,94 @@ class TrackedObject:
# if the zones changed, signal an update
if not self.false_positive and set(self.current_zones) != set(current_zones):
zone_change = True
significant_update = True
self.current_zones = current_zones
return (significant_update, zone_change)
return significant_update
def to_dict(self, include_thumbnail: bool = False):
snapshot_time = (
self.thumbnail_data["frame_time"]
if not self.thumbnail_data is None
else 0.0
)
event = {
"id": self.obj_data["id"],
"camera": self.camera,
"frame_time": self.obj_data["frame_time"],
"snapshot_time": snapshot_time,
"label": self.obj_data["label"],
"top_score": self.top_score,
"false_positive": self.false_positive,
"start_time": self.obj_data["start_time"],
"end_time": self.obj_data.get("end_time", None),
"score": self.obj_data["score"],
"box": self.obj_data["box"],
"area": self.obj_data["area"],
"region": self.obj_data["region"],
"current_zones": self.current_zones.copy(),
"entered_zones": list(self.entered_zones).copy(),
return {
'id': self.obj_data['id'],
'camera': self.camera,
'frame_time': self.obj_data['frame_time'],
'label': self.obj_data['label'],
'top_score': self.top_score,
'false_positive': self.false_positive,
'start_time': self.obj_data['start_time'],
'end_time': self.obj_data.get('end_time', None),
'score': self.obj_data['score'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'current_zones': self.current_zones.copy(),
'entered_zones': list(self.entered_zones).copy(),
'thumbnail': base64.b64encode(self.get_thumbnail()).decode('utf-8') if include_thumbnail else None
}
if include_thumbnail:
event["thumbnail"] = base64.b64encode(self.get_thumbnail()).decode("utf-8")
return event
def get_thumbnail(self):
if (
self.thumbnail_data is None
or self.thumbnail_data["frame_time"] not in self.frame_cache
):
ret, jpg = cv2.imencode(".jpg", np.zeros((175, 175, 3), np.uint8))
if self.thumbnail_data is None or not self.thumbnail_data['frame_time'] in self.frame_cache:
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
jpg_bytes = self.get_jpg_bytes(
timestamp=False, bounding_box=False, crop=True, height=175
)
jpg_bytes = self.get_jpg_bytes(timestamp=False, bounding_box=False, crop=True, height=175)
if jpg_bytes:
return jpg_bytes
else:
ret, jpg = cv2.imencode(".jpg", np.zeros((175, 175, 3), np.uint8))
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
return jpg.tobytes()
def get_clean_png(self):
def get_jpg_bytes(self, timestamp=False, bounding_box=False, crop=False, height=None):
if self.thumbnail_data is None:
return None
try:
best_frame = cv2.cvtColor(
self.frame_cache[self.thumbnail_data["frame_time"]],
cv2.COLOR_YUV2BGR_I420,
)
except KeyError:
logger.warning(
f"Unable to create clean png because frame {self.thumbnail_data['frame_time']} is not in the cache"
)
return None
ret, png = cv2.imencode(".png", best_frame)
if ret:
return png.tobytes()
else:
return None
def get_jpg_bytes(
self, timestamp=False, bounding_box=False, crop=False, height=None, quality=70
):
if self.thumbnail_data is None:
return None
try:
best_frame = cv2.cvtColor(
self.frame_cache[self.thumbnail_data["frame_time"]],
cv2.COLOR_YUV2BGR_I420,
)
except KeyError:
logger.warning(
f"Unable to create jpg because frame {self.thumbnail_data['frame_time']} is not in the cache"
)
return None
best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
if bounding_box:
thickness = 2
color = self.colormap[self.obj_data["label"]]
color = COLOR_MAP[self.obj_data['label']]
# draw the bounding boxes on the frame
box = self.thumbnail_data["box"]
draw_box_with_label(
best_frame,
box[0],
box[1],
box[2],
box[3],
self.obj_data["label"],
f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}",
thickness=thickness,
color=color,
)
box = self.thumbnail_data['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'], f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
if crop:
box = self.thumbnail_data["box"]
region = calculate_region(
best_frame.shape, box[0], box[1], box[2], box[3], 1.1
)
best_frame = best_frame[region[1] : region[3], region[0] : region[2]]
box = self.thumbnail_data['box']
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if height:
width = int(height * best_frame.shape[1] / best_frame.shape[0])
best_frame = cv2.resize(
best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA
)
if timestamp:
color = self.camera_config.timestamp_style.color
draw_timestamp(
best_frame,
self.thumbnail_data["frame_time"],
self.camera_config.timestamp_style.format,
font_effect=self.camera_config.timestamp_style.effect,
font_scale=self.camera_config.timestamp_style.scale,
font_thickness=self.camera_config.timestamp_style.thickness,
font_color=(color.red, color.green, color.blue),
position=self.camera_config.timestamp_style.position,
)
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode(
".jpg", best_frame, [int(cv2.IMWRITE_JPEG_QUALITY), quality]
)
if timestamp:
time_to_show = datetime.datetime.fromtimestamp(self.thumbnail_data['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
desired_size = max(150, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale, color=(255, 255, 255), thickness=2)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
return jpg.tobytes()
else:
return None
def zone_filtered(obj: TrackedObject, object_config):
object_name = obj.obj_data["label"]
object_name = obj.obj_data['label']
if object_name in object_config:
obj_settings = object_config[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > obj.obj_data["area"]:
if obj_settings.min_area > obj.obj_data['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj.obj_data["area"]:
if obj_settings.max_area < obj.obj_data['area']:
return True
# if the score is lower than the threshold, skip
@@ -312,110 +239,70 @@ def zone_filtered(obj: TrackedObject, object_config):
return False
# Maintains the state of a camera
class CameraState:
def __init__(
self, name, config: FrigateConfig, frame_manager: SharedMemoryFrameManager
):
class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.camera_config = config.cameras[name]
self.frame_manager = frame_manager
self.best_objects: Dict[str, TrackedObject] = {}
self.object_counts = defaultdict(int)
self.object_counts = defaultdict(lambda: 0)
self.tracked_objects: Dict[str, TrackedObject] = {}
self.frame_cache = {}
self.zone_objects = defaultdict(list)
self.zone_objects = defaultdict(lambda: [])
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.motion_boxes = []
self.regions = []
self.previous_frame_id = None
self.callbacks = defaultdict(list)
self.callbacks = defaultdict(lambda: [])
def get_current_frame(self, draw_options={}):
with self.current_frame_lock:
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = {k: v.to_dict() for k, v in self.tracked_objects.items()}
tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
motion_boxes = self.motion_boxes.copy()
regions = self.regions.copy()
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw_options.get("bounding_boxes"):
if draw_options.get('bounding_boxes'):
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
if obj["frame_time"] == frame_time:
thickness = 2
color = self.config.model.colormap[obj["label"]]
else:
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255, 0, 0)
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
frame_copy,
box[0],
box[1],
box[2],
box[3],
obj["label"],
f"{obj['score']:.0%} {int(obj['area'])}",
thickness=thickness,
color=color,
)
box = obj['box']
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
if draw_options.get("regions"):
if draw_options.get('regions'):
for region in regions:
cv2.rectangle(
frame_copy,
(region[0], region[1]),
(region[2], region[3]),
(0, 255, 0),
2,
)
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
if draw_options.get("zones"):
if draw_options.get('zones'):
for name, zone in self.camera_config.zones.items():
thickness = (
8
if any(
name in obj["current_zones"] for obj in tracked_objects.values()
)
else 2
)
thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
if draw_options.get("mask"):
mask_overlay = np.where(self.camera_config.motion.mask == [0])
frame_copy[mask_overlay] = [0, 0, 0]
if draw_options.get('mask'):
mask_overlay = np.where(self.camera_config.motion.mask==[0])
frame_copy[mask_overlay] = [0,0,0]
if draw_options.get("motion_boxes"):
if draw_options.get('motion_boxes'):
for m_box in motion_boxes:
cv2.rectangle(
frame_copy,
(m_box[0], m_box[1]),
(m_box[2], m_box[3]),
(0, 0, 255),
2,
)
cv2.rectangle(frame_copy, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0,0,255), 2)
if draw_options.get("timestamp"):
color = self.camera_config.timestamp_style.color
draw_timestamp(
frame_copy,
frame_time,
self.camera_config.timestamp_style.format,
font_effect=self.camera_config.timestamp_style.effect,
font_scale=self.camera_config.timestamp_style.scale,
font_thickness=self.camera_config.timestamp_style.thickness,
font_color=(color.red, color.green, color.blue),
position=self.camera_config.timestamp_style.position,
)
if draw_options.get('timestamp'):
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
return frame_copy
@@ -426,164 +313,106 @@ class CameraState:
self.callbacks[event_type].append(callback)
def update(self, frame_time, current_detections, motion_boxes, regions):
self.current_frame_time = frame_time
self.motion_boxes = motion_boxes
self.regions = regions
# get the new frame
frame_id = f"{self.name}{frame_time}"
current_frame = self.frame_manager.get(
frame_id, self.camera_config.frame_shape_yuv
)
current_frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape_yuv)
tracked_objects = self.tracked_objects.copy()
current_ids = set(current_detections.keys())
previous_ids = set(tracked_objects.keys())
removed_ids = previous_ids.difference(current_ids)
new_ids = current_ids.difference(previous_ids)
updated_ids = current_ids.intersection(previous_ids)
current_ids = current_detections.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
new_obj = tracked_objects[id] = TrackedObject(
self.name,
self.config.model.colormap,
self.camera_config,
self.frame_cache,
current_detections[id],
)
new_obj = self.tracked_objects[id] = TrackedObject(self.name, self.camera_config, self.frame_cache, current_detections[id])
# call event handlers
for c in self.callbacks["start"]:
for c in self.callbacks['start']:
c(self.name, new_obj, frame_time)
for id in updated_ids:
updated_obj = tracked_objects[id]
significant_update, zone_change = updated_obj.update(
frame_time, current_detections[id]
)
updated_obj = self.tracked_objects[id]
significant_update = updated_obj.update(frame_time, current_detections[id])
if significant_update:
# ensure this frame is stored in the cache
if (
updated_obj.thumbnail_data["frame_time"] == frame_time
and frame_time not in self.frame_cache
):
if updated_obj.thumbnail_data['frame_time'] == frame_time and frame_time not in self.frame_cache:
self.frame_cache[frame_time] = np.copy(current_frame)
updated_obj.last_updated = frame_time
# if it has been more than 5 seconds since the last publish
# and the last update is greater than the last publish or
# the object has changed zones
if (
frame_time - updated_obj.last_published > 5
and updated_obj.last_updated > updated_obj.last_published
) or zone_change:
# call event handlers
for c in self.callbacks["update"]:
for c in self.callbacks['update']:
c(self.name, updated_obj, frame_time)
updated_obj.last_published = frame_time
for id in removed_ids:
# publish events to mqtt
removed_obj = tracked_objects[id]
if not "end_time" in removed_obj.obj_data:
removed_obj.obj_data["end_time"] = frame_time
for c in self.callbacks["end"]:
removed_obj = self.tracked_objects[id]
if not 'end_time' in removed_obj.obj_data:
removed_obj.obj_data['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, removed_obj, frame_time)
# TODO: can i switch to looking this up and only changing when an event ends?
# maintain best objects
for obj in tracked_objects.values():
object_type = obj.obj_data["label"]
for obj in self.tracked_objects.values():
object_type = obj.obj_data['label']
# if the object's thumbnail is not from the current frame
if obj.false_positive or obj.thumbnail_data["frame_time"] != frame_time:
if obj.false_positive or obj.thumbnail_data['frame_time'] != self.current_frame_time:
continue
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if (
is_better_thumbnail(
current_best.thumbnail_data,
obj.thumbnail_data,
self.camera_config.frame_shape,
)
or (now - current_best.thumbnail_data["frame_time"])
> self.camera_config.best_image_timeout
):
if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
or (now - current_best.thumbnail_data['frame_time']) > self.camera_config.best_image_timeout):
self.best_objects[object_type] = obj
for c in self.callbacks["snapshot"]:
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type], frame_time)
else:
self.best_objects[object_type] = obj
for c in self.callbacks["snapshot"]:
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type], frame_time)
# update overall camera state for each object type
obj_counter = Counter(
obj.obj_data["label"]
for obj in tracked_objects.values()
if not obj.false_positive
)
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
if count != self.object_counts[obj_name]:
self.object_counts[obj_name] = count
for c in self.callbacks["object_status"]:
for c in self.callbacks['object_status']:
c(self.name, obj_name, count)
# expire any objects that are >0 and no longer detected
expired_objects = [
obj_name
for obj_name, count in self.object_counts.items()
if count > 0 and obj_name not in obj_counter
]
expired_objects = [obj_name for obj_name, count in self.object_counts.items() if count > 0 and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_counts[obj_name] = 0
for c in self.callbacks["object_status"]:
for c in self.callbacks['object_status']:
c(self.name, obj_name, 0)
for c in self.callbacks["snapshot"]:
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[obj_name], frame_time)
# cleanup thumbnail frame cache
current_thumb_frames = {
obj.thumbnail_data["frame_time"]
for obj in tracked_objects.values()
if not obj.false_positive
}
current_best_frames = {
obj.thumbnail_data["frame_time"] for obj in self.best_objects.values()
}
thumb_frames_to_delete = [
t
for t in self.frame_cache.keys()
if t not in current_thumb_frames and t not in current_best_frames
]
current_thumb_frames = set([obj.thumbnail_data['frame_time'] for obj in self.tracked_objects.values() if not obj.false_positive])
current_best_frames = set([obj.thumbnail_data['frame_time'] for obj in self.best_objects.values()])
thumb_frames_to_delete = [t for t in self.frame_cache.keys() if not t in current_thumb_frames and not t in current_best_frames]
for t in thumb_frames_to_delete:
del self.frame_cache[t]
with self.current_frame_lock:
self.tracked_objects = tracked_objects
self.current_frame_time = frame_time
self.motion_boxes = motion_boxes
self.regions = regions
self._current_frame = current_frame
if self.previous_frame_id is not None:
self.frame_manager.close(self.previous_frame_id)
if not self.previous_frame_id is None:
self.frame_manager.delete(self.previous_frame_id)
self.previous_frame_id = frame_id
class TrackedObjectProcessor(threading.Thread):
def __init__(
self,
config: FrigateConfig,
client,
topic_prefix,
tracked_objects_queue,
event_queue,
event_processed_queue,
video_output_queue,
stop_event,
):
def __init__(self, config: FrigateConfig, client, topic_prefix, tracked_objects_queue, event_queue, event_processed_queue, stop_event):
threading.Thread.__init__(self)
self.name = "detected_frames_processor"
self.config = config
@@ -592,114 +421,60 @@ class TrackedObjectProcessor(threading.Thread):
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.video_output_queue = video_output_queue
self.stop_event = stop_event
self.camera_states: Dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
def start(camera, obj: TrackedObject, current_frame_time):
self.event_queue.put(("start", camera, obj.to_dict()))
self.event_queue.put(('start', camera, obj.to_dict()))
def update(camera, obj: TrackedObject, current_frame_time):
after = obj.to_dict()
message = {
"before": obj.previous,
"after": after,
"type": "new" if obj.previous["false_positive"] else "update",
}
self.client.publish(
f"{self.topic_prefix}/events", json.dumps(message), retain=False
)
message = { 'before': obj.previous, 'after': after, 'type': 'new' if obj.previous['false_positive'] else 'update' }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
obj.previous = after
def end(camera, obj: TrackedObject, current_frame_time):
snapshot_config = self.config.cameras[camera].snapshots
event_data = obj.to_dict(include_thumbnail=True)
event_data["has_snapshot"] = False
event_data['has_snapshot'] = False
if not obj.false_positive:
message = {
"before": obj.previous,
"after": obj.to_dict(),
"type": "end",
}
self.client.publish(
f"{self.topic_prefix}/events", json.dumps(message), retain=False
)
message = { 'before': obj.previous, 'after': obj.to_dict(), 'type': 'end' }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
# write snapshot to disk if enabled
if snapshot_config.enabled and self.should_save_snapshot(camera, obj):
if snapshot_config.enabled:
jpg_bytes = obj.get_jpg_bytes(
timestamp=snapshot_config.timestamp,
bounding_box=snapshot_config.bounding_box,
crop=snapshot_config.crop,
height=snapshot_config.height,
quality=snapshot_config.quality,
height=snapshot_config.height
)
if jpg_bytes is None:
logger.warning(
f"Unable to save snapshot for {obj.obj_data['id']}."
)
else:
with open(
os.path.join(
CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"
),
"wb",
) as j:
j.write(jpg_bytes)
event_data["has_snapshot"] = True
# write clean snapshot if enabled
if snapshot_config.clean_copy:
png_bytes = obj.get_clean_png()
if png_bytes is None:
logger.warning(
f"Unable to save clean snapshot for {obj.obj_data['id']}."
)
else:
with open(
os.path.join(
CLIPS_DIR,
f"{camera}-{obj.obj_data['id']}-clean.png",
),
"wb",
) as p:
p.write(png_bytes)
self.event_queue.put(("end", camera, event_data))
with open(os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"), 'wb') as j:
j.write(jpg_bytes)
event_data['has_snapshot'] = True
self.event_queue.put(('end', camera, event_data))
def snapshot(camera, obj: TrackedObject, current_frame_time):
mqtt_config = self.config.cameras[camera].mqtt
if mqtt_config.enabled and self.should_mqtt_snapshot(camera, obj):
if mqtt_config.enabled:
jpg_bytes = obj.get_jpg_bytes(
timestamp=mqtt_config.timestamp,
bounding_box=mqtt_config.bounding_box,
crop=mqtt_config.crop,
height=mqtt_config.height,
quality=mqtt_config.quality,
height=mqtt_config.height
)
if jpg_bytes is None:
logger.warning(
f"Unable to send mqtt snapshot for {obj.obj_data['id']}."
)
else:
self.client.publish(
f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot",
jpg_bytes,
retain=True,
)
self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", jpg_bytes, retain=True)
def object_status(camera, object_name, status):
self.client.publish(
f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False
)
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.config.cameras.keys():
camera_state = CameraState(camera, self.config, self.frame_manager)
camera_state.on("start", start)
camera_state.on("update", update)
camera_state.on("end", end)
camera_state.on("snapshot", snapshot)
camera_state.on("object_status", object_status)
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
camera_state.on('snapshot', snapshot)
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
# {
@@ -710,29 +485,7 @@ class TrackedObjectProcessor(threading.Thread):
# }
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(dict))
def should_save_snapshot(self, camera, obj: TrackedObject):
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].snapshots.required_zones
if len(required_zones) > 0 and not obj.entered_zones & set(required_zones):
logger.debug(
f"Not creating snapshot for {obj.obj_data['id']} because it did not enter required zones"
)
return False
return True
def should_mqtt_snapshot(self, camera, obj: TrackedObject):
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].mqtt.required_zones
if len(required_zones) > 0 and not obj.entered_zones & set(required_zones):
logger.debug(
f"Not sending mqtt for {obj.obj_data['id']} because it did not enter required zones"
)
return False
return True
self.zone_data = defaultdict(lambda: defaultdict(lambda: {}))
def get_best(self, camera, label):
# TODO: need a lock here
@@ -740,9 +493,7 @@ class TrackedObjectProcessor(threading.Thread):
if label in camera_state.best_objects:
best_obj = camera_state.best_objects[label]
best = best_obj.thumbnail_data.copy()
best["frame"] = camera_state.frame_cache.get(
best_obj.thumbnail_data["frame_time"]
)
best['frame'] = camera_state.frame_cache.get(best_obj.thumbnail_data['frame_time'])
return best
else:
return {}
@@ -751,83 +502,46 @@ class TrackedObjectProcessor(threading.Thread):
return self.camera_states[camera].get_current_frame(draw_options)
def run(self):
while not self.stop_event.is_set():
while True:
if self.stop_event.is_set():
logger.info(f"Exiting object processor...")
break
try:
(
camera,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = self.tracked_objects_queue.get(True, 10)
camera, frame_time, current_tracked_objects, motion_boxes, regions = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
camera_state = self.camera_states[camera]
camera_state.update(
frame_time, current_tracked_objects, motion_boxes, regions
)
self.video_output_queue.put(
(
camera,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
)
)
camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
# update zone counts for each label
# for each zone in the current camera
for zone in self.config.cameras[camera].zones.keys():
# count labels for the camera in the zone
obj_counter = Counter(
obj.obj_data["label"]
for obj in camera_state.tracked_objects.values()
if zone in obj.current_zones and not obj.false_positive
)
obj_counter = Counter()
for obj in camera_state.tracked_objects.values():
if zone in obj.current_zones and not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# update counts and publish status
for label in set(self.zone_data[zone].keys()) | set(obj_counter.keys()):
for label in set(list(self.zone_data[zone].keys()) + list(obj_counter.keys())):
# if we have previously published a count for this zone/label
zone_label = self.zone_data[zone][label]
if camera in zone_label:
current_count = sum(zone_label.values())
zone_label[camera] = (
obj_counter[label] if label in obj_counter else 0
)
zone_label[camera] = obj_counter[label] if label in obj_counter else 0
new_count = sum(zone_label.values())
if new_count != current_count:
self.client.publish(
f"{self.topic_prefix}/{zone}/{label}",
new_count,
retain=False,
)
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", new_count, retain=False)
# if this is a new zone/label combo for this camera
else:
if label in obj_counter:
zone_label[camera] = obj_counter[label]
self.client.publish(
f"{self.topic_prefix}/{zone}/{label}",
obj_counter[label],
retain=False,
)
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", obj_counter[label], retain=False)
# cleanup event finished queue
while not self.event_processed_queue.empty():
event_id, camera, clip_created = self.event_processed_queue.get()
if clip_created:
obj = self.camera_states[camera].tracked_objects[event_id]
message = {
"before": obj.previous,
"after": obj.to_dict(),
"type": "clip_ready",
}
self.client.publish(
f"{self.topic_prefix}/events", json.dumps(message), retain=False
)
event_id, camera = self.event_processed_queue.get()
self.camera_states[camera].finished(event_id)
logger.info(f"Exiting object processor...")

View File

@@ -16,24 +16,24 @@ from frigate.config import DetectConfig
from frigate.util import draw_box_with_label
class ObjectTracker:
class ObjectTracker():
def __init__(self, config: DetectConfig):
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = config.max_disappeared
def register(self, index, obj):
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
id = f"{obj['frame_time']}-{rand_id}"
obj["id"] = id
obj["start_time"] = obj["frame_time"]
obj['id'] = id
obj['start_time'] = obj['frame_time']
self.tracked_objects[id] = obj
self.disappeared[id] = 0
def deregister(self, id):
del self.tracked_objects[id]
del self.disappeared[id]
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
@@ -42,90 +42,97 @@ class ObjectTracker:
# group by name
new_object_groups = defaultdict(lambda: [])
for obj in new_objects:
new_object_groups[obj[0]].append(
{
"label": obj[0],
"score": obj[1],
"box": obj[2],
"area": obj[3],
"region": obj[4],
"frame_time": frame_time,
}
)
new_object_groups[obj[0]].append({
'label': obj[0],
'score': obj[1],
'box': obj[2],
'area': obj[3],
'region': obj[4],
'frame_time': frame_time
})
# update any tracked objects with labels that are not
# seen in the current objects and deregister if needed
for obj in list(self.tracked_objects.values()):
if not obj["label"] in new_object_groups:
if self.disappeared[obj["id"]] >= self.max_disappeared:
self.deregister(obj["id"])
if not obj['label'] in new_object_groups:
if self.disappeared[obj['id']] >= self.max_disappeared:
self.deregister(obj['id'])
else:
self.disappeared[obj["id"]] += 1
self.disappeared[obj['id']] += 1
if len(new_objects) == 0:
return
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [
o for o in self.tracked_objects.values() if o["label"] == label
]
current_ids = [o["id"] for o in current_objects]
current_centroids = np.array([o["centroid"] for o in current_objects])
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
current_ids = [o['id'] for o in current_objects]
current_centroids = np.array([o['centroid'] for o in current_objects])
# compute centroids of new objects
for obj in group:
centroid_x = int((obj["box"][0] + obj["box"][2]) / 2.0)
centroid_y = int((obj["box"][1] + obj["box"][3]) / 2.0)
obj["centroid"] = (centroid_x, centroid_y)
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
obj['centroid'] = (centroid_x, centroid_y)
if len(current_objects) == 0:
for index, obj in enumerate(group):
self.register(index, obj)
continue
new_centroids = np.array([o["centroid"] for o in group])
return
new_centroids = np.array([o['centroid'] for o in group])
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each current centroid to a new
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the smallest
# value in each row (i.e. the distance from each current object to
# the closest new object) and then (2) sort the row indexes based
# on their minimum values so that the row with the smallest
# distance (the best match) is at the *front* of the index list
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we determine which new object each existing object matched
# against, and apply the same sorting as was applied previously
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# many current objects may register with each new object, so only
# match the closest ones. unique returns the indices of the first
# occurrences of each value, and because the rows are sorted by
# distance, this will be index of the closest match
_, index = np.unique(cols, return_index=True)
rows = rows[index]
cols = cols[index]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index tuples
for row, col in zip(rows, cols):
# grab the object ID for the current row, set its new centroid,
# and reset the disappeared counter
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
if row in usedRows or col in usedCols:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = current_ids[row]
self.update(objectID, group[col])
# compute the row and column indices we have NOT yet examined
unusedRows = set(range(D.shape[0])).difference(rows)
unusedCols = set(range(D.shape[1])).difference(cols)
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute the column index we have NOT yet examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# in the event that the number of object centroids is
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
for row in unusedRows:
id = current_ids[row]

View File

@@ -1,455 +0,0 @@
import datetime
import glob
import logging
import math
import multiprocessing as mp
import queue
import signal
import subprocess as sp
import threading
from multiprocessing import shared_memory
from wsgiref.simple_server import make_server
import cv2
import numpy as np
from setproctitle import setproctitle
from ws4py.server.wsgirefserver import (
WebSocketWSGIHandler,
WebSocketWSGIRequestHandler,
WSGIServer,
)
from ws4py.server.wsgiutils import WebSocketWSGIApplication
from ws4py.websocket import WebSocket
from frigate.config import BirdseyeModeEnum, FrigateConfig
from frigate.util import SharedMemoryFrameManager, copy_yuv_to_position, get_yuv_crop
logger = logging.getLogger(__name__)
class FFMpegConverter:
def __init__(self, in_width, in_height, out_width, out_height, quality):
ffmpeg_cmd = f"ffmpeg -f rawvideo -pix_fmt yuv420p -video_size {in_width}x{in_height} -i pipe: -f mpegts -s {out_width}x{out_height} -codec:v mpeg1video -q {quality} -bf 0 pipe:".split(
" "
)
self.process = sp.Popen(
ffmpeg_cmd,
stdout=sp.PIPE,
stderr=sp.DEVNULL,
stdin=sp.PIPE,
start_new_session=True,
)
def write(self, b):
self.process.stdin.write(b)
def read(self, length):
try:
return self.process.stdout.read1(length)
except ValueError:
return False
def exit(self):
self.process.terminate()
try:
self.process.communicate(timeout=30)
except sp.TimeoutExpired:
self.process.kill()
self.process.communicate()
class BroadcastThread(threading.Thread):
def __init__(self, camera, converter, websocket_server):
super(BroadcastThread, self).__init__()
self.camera = camera
self.converter = converter
self.websocket_server = websocket_server
def run(self):
while True:
buf = self.converter.read(65536)
if buf:
manager = self.websocket_server.manager
with manager.lock:
websockets = manager.websockets.copy()
ws_iter = iter(websockets.values())
for ws in ws_iter:
if (
not ws.terminated
and ws.environ["PATH_INFO"] == f"/{self.camera}"
):
try:
ws.send(buf, binary=True)
except:
pass
elif self.converter.process.poll() is not None:
break
class BirdsEyeFrameManager:
def __init__(self, config, frame_manager: SharedMemoryFrameManager):
self.config = config
self.mode = config.birdseye.mode
self.frame_manager = frame_manager
width = config.birdseye.width
height = config.birdseye.height
self.frame_shape = (height, width)
self.yuv_shape = (height * 3 // 2, width)
self.frame = np.ndarray(self.yuv_shape, dtype=np.uint8)
# initialize the frame as black and with the frigate logo
self.blank_frame = np.zeros(self.yuv_shape, np.uint8)
self.blank_frame[:] = 128
self.blank_frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]] = 16
# find and copy the logo on the blank frame
logo_files = glob.glob("/opt/frigate/web/apple-touch-icon.*.png")
frigate_logo = None
if len(logo_files) > 0:
frigate_logo = cv2.imread(logo_files[0], cv2.IMREAD_UNCHANGED)
if not frigate_logo is None:
transparent_layer = frigate_logo[:, :, 3]
y_offset = height // 2 - transparent_layer.shape[0] // 2
x_offset = width // 2 - transparent_layer.shape[1] // 2
self.blank_frame[
y_offset : y_offset + transparent_layer.shape[1],
x_offset : x_offset + transparent_layer.shape[0],
] = transparent_layer
else:
logger.warning("Unable to read frigate logo")
self.frame[:] = self.blank_frame
self.cameras = {}
for camera, settings in self.config.cameras.items():
# precalculate the coordinates for all the channels
y, u1, u2, v1, v2 = get_yuv_crop(
settings.frame_shape_yuv,
(
0,
0,
settings.frame_shape[1],
settings.frame_shape[0],
),
)
self.cameras[camera] = {
"last_active_frame": 0.0,
"current_frame": 0.0,
"layout_frame": 0.0,
"channel_dims": {
"y": y,
"u1": u1,
"u2": u2,
"v1": v1,
"v2": v2,
},
}
self.camera_layout = []
self.active_cameras = set()
self.layout_dim = 0
self.last_output_time = 0.0
def clear_frame(self):
logger.debug(f"Clearing the birdseye frame")
self.frame[:] = self.blank_frame
def copy_to_position(self, position, camera=None, frame_time=None):
if camera is None:
frame = None
channel_dims = None
else:
try:
frame = self.frame_manager.get(
f"{camera}{frame_time}", self.config.cameras[camera].frame_shape_yuv
)
except FileNotFoundError:
# TODO: better frame management would prevent this edge case
logger.warning(
f"Unable to copy frame {camera}{frame_time} to birdseye."
)
return
channel_dims = self.cameras[camera]["channel_dims"]
copy_yuv_to_position(
self.frame,
self.layout_offsets[position],
self.layout_frame_shape,
frame,
channel_dims,
)
def camera_active(self, object_box_count, motion_box_count):
if self.mode == BirdseyeModeEnum.continuous:
return True
if (
self.mode == BirdseyeModeEnum.motion
and object_box_count + motion_box_count > 0
):
return True
if self.mode == BirdseyeModeEnum.objects and object_box_count > 0:
return True
def update_frame(self):
# determine how many cameras are tracking objects within the last 30 seconds
active_cameras = set(
[
cam
for cam, cam_data in self.cameras.items()
if cam_data["last_active_frame"] > 0
and cam_data["current_frame"] - cam_data["last_active_frame"] < 30
]
)
# if there are no active cameras
if len(active_cameras) == 0:
# if the layout is already cleared
if len(self.camera_layout) == 0:
return False
# if the layout needs to be cleared
else:
self.camera_layout = []
self.layout_dim = 0
self.clear_frame()
return True
# calculate layout dimensions
layout_dim = math.ceil(math.sqrt(len(active_cameras)))
# reset the layout if it needs to be different
if layout_dim != self.layout_dim:
logger.debug(f"Changing layout size from {self.layout_dim} to {layout_dim}")
self.layout_dim = layout_dim
self.camera_layout = [None] * layout_dim * layout_dim
# calculate resolution of each position in the layout
self.layout_frame_shape = (
self.frame_shape[0] // layout_dim, # height
self.frame_shape[1] // layout_dim, # width
)
self.clear_frame()
for cam_data in self.cameras.values():
cam_data["layout_frame"] = 0.0
self.active_cameras = set()
self.layout_offsets = []
# calculate the x and y offset for each position in the layout
for position in range(0, len(self.camera_layout)):
y_offset = self.layout_frame_shape[0] * math.floor(
position / self.layout_dim
)
x_offset = self.layout_frame_shape[1] * (position % self.layout_dim)
self.layout_offsets.append((y_offset, x_offset))
removed_cameras = self.active_cameras.difference(active_cameras)
added_cameras = active_cameras.difference(self.active_cameras)
self.active_cameras = active_cameras
# update each position in the layout
for position, camera in enumerate(self.camera_layout, start=0):
# if this camera was removed, replace it or clear it
if camera in removed_cameras:
# if replacing this camera with a newly added one
if len(added_cameras) > 0:
added_camera = added_cameras.pop()
self.camera_layout[position] = added_camera
self.copy_to_position(
position,
added_camera,
self.cameras[added_camera]["current_frame"],
)
self.cameras[added_camera]["layout_frame"] = self.cameras[
added_camera
]["current_frame"]
# if removing this camera with no replacement
else:
self.camera_layout[position] = None
self.copy_to_position(position)
removed_cameras.remove(camera)
# if an empty spot and there are cameras to add
elif camera is None and len(added_cameras) > 0:
added_camera = added_cameras.pop()
self.camera_layout[position] = added_camera
self.copy_to_position(
position,
added_camera,
self.cameras[added_camera]["current_frame"],
)
self.cameras[added_camera]["layout_frame"] = self.cameras[added_camera][
"current_frame"
]
# if not an empty spot and the camera has a newer frame, copy it
elif (
not camera is None
and self.cameras[camera]["current_frame"]
!= self.cameras[camera]["layout_frame"]
):
self.copy_to_position(
position, camera, self.cameras[camera]["current_frame"]
)
self.cameras[camera]["layout_frame"] = self.cameras[camera][
"current_frame"
]
return True
def update(self, camera, object_count, motion_count, frame_time, frame) -> bool:
# update the last active frame for the camera
self.cameras[camera]["current_frame"] = frame_time
if self.camera_active(object_count, motion_count):
self.cameras[camera]["last_active_frame"] = frame_time
now = datetime.datetime.now().timestamp()
# limit output to 10 fps
if (now - self.last_output_time) < 1 / 10:
return False
# if the frame was updated or the fps is too low, send frame
if self.update_frame() or (now - self.last_output_time) > 1:
self.last_output_time = now
return True
return False
def output_frames(config: FrigateConfig, video_output_queue):
threading.current_thread().name = f"output"
setproctitle(f"frigate.output")
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
previous_frames = {}
# start a websocket server on 8082
WebSocketWSGIHandler.http_version = "1.1"
websocket_server = make_server(
"127.0.0.1",
8082,
server_class=WSGIServer,
handler_class=WebSocketWSGIRequestHandler,
app=WebSocketWSGIApplication(handler_cls=WebSocket),
)
websocket_server.initialize_websockets_manager()
websocket_thread = threading.Thread(target=websocket_server.serve_forever)
converters = {}
broadcasters = {}
for camera, cam_config in config.cameras.items():
width = int(
cam_config.live.height
* (cam_config.frame_shape[1] / cam_config.frame_shape[0])
)
converters[camera] = FFMpegConverter(
cam_config.frame_shape[1],
cam_config.frame_shape[0],
width,
cam_config.live.height,
cam_config.live.quality,
)
broadcasters[camera] = BroadcastThread(
camera, converters[camera], websocket_server
)
if config.birdseye.enabled:
converters["birdseye"] = FFMpegConverter(
config.birdseye.width,
config.birdseye.height,
config.birdseye.width,
config.birdseye.height,
config.birdseye.quality,
)
broadcasters["birdseye"] = BroadcastThread(
"birdseye", converters["birdseye"], websocket_server
)
websocket_thread.start()
for t in broadcasters.values():
t.start()
birdseye_manager = BirdsEyeFrameManager(config, frame_manager)
while not stop_event.is_set():
try:
(
camera,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = video_output_queue.get(True, 10)
except queue.Empty:
continue
frame_id = f"{camera}{frame_time}"
frame = frame_manager.get(frame_id, config.cameras[camera].frame_shape_yuv)
# send camera frame to ffmpeg process if websockets are connected
if any(
ws.environ["PATH_INFO"].endswith(camera) for ws in websocket_server.manager
):
# write to the converter for the camera if clients are listening to the specific camera
converters[camera].write(frame.tobytes())
# update birdseye if websockets are connected
if config.birdseye.enabled and any(
ws.environ["PATH_INFO"].endswith("birdseye")
for ws in websocket_server.manager
):
if birdseye_manager.update(
camera,
len(current_tracked_objects),
len(motion_boxes),
frame_time,
frame,
):
converters["birdseye"].write(birdseye_manager.frame.tobytes())
if camera in previous_frames:
frame_manager.delete(f"{camera}{previous_frames[camera]}")
previous_frames[camera] = frame_time
while not video_output_queue.empty():
(
camera,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = video_output_queue.get(True, 10)
frame_id = f"{camera}{frame_time}"
frame = frame_manager.get(frame_id, config.cameras[camera].frame_shape_yuv)
frame_manager.delete(frame_id)
for c in converters.values():
c.exit()
for b in broadcasters.values():
b.join()
websocket_server.manager.close_all()
websocket_server.manager.stop()
websocket_server.manager.join()
websocket_server.shutdown()
websocket_thread.join()
logger.info("exiting output process...")

View File

@@ -14,41 +14,39 @@ import numpy as np
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
from frigate.edgetpu import LocalObjectDetector
from frigate.motion import MotionDetector
from frigate.object_processing import CameraState
from frigate.object_processing import COLOR_MAP, CameraState
from frigate.objects import ObjectTracker
from frigate.util import (
DictFrameManager,
EventsPerSecond,
SharedMemoryFrameManager,
draw_box_with_label,
)
from frigate.video import capture_frames, process_frames, start_or_restart_ffmpeg
from frigate.util import (DictFrameManager, EventsPerSecond,
SharedMemoryFrameManager, draw_box_with_label)
from frigate.video import (capture_frames, process_frames,
start_or_restart_ffmpeg)
logging.basicConfig()
logging.root.setLevel(logging.DEBUG)
logger = logging.getLogger(__name__)
def get_frame_shape(source):
ffprobe_cmd = [
"ffprobe",
"-v",
"panic",
"-show_error",
"-show_streams",
"-of",
"json",
source,
]
p = sp.run(ffprobe_cmd, capture_output=True)
info = json.loads(p.stdout)
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
video_info = [s for s in info["streams"] if s["codec_type"] == "video"][0]
if video_info["height"] != 0 and video_info["width"] != 0:
return (video_info["height"], video_info["width"], 3)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
@@ -56,17 +54,14 @@ def get_frame_shape(source):
video.release()
return frame_shape
class ProcessClip:
class ProcessClip():
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
self.clip_path = clip_path
self.camera_name = "camera"
self.camera_name = 'camera'
self.config = config
self.camera_config = self.config.cameras["camera"]
self.camera_config = self.config.cameras['camera']
self.frame_shape = self.camera_config.frame_shape
self.ffmpeg_cmd = [
c["cmd"] for c in self.camera_config.ffmpeg_cmds if "detect" in c["roles"]
][0]
self.ffmpeg_cmd = [c['cmd'] for c in self.camera_config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
@@ -75,66 +70,37 @@ class ProcessClip:
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
current_frame = mp.Value("d", 0.0)
frame_size = (
self.camera_config.frame_shape_yuv[0]
* self.camera_config.frame_shape_yuv[1]
)
ffmpeg_process = start_or_restart_ffmpeg(
self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size
)
capture_frames(
ffmpeg_process,
self.camera_name,
self.camera_config.frame_shape_yuv,
self.frame_manager,
self.frame_queue,
fps,
skipped_fps,
current_frame,
)
current_frame = mp.Value('d', 0.0)
frame_size = self.camera_config.frame_shape_yuv[0] * self.camera_config.frame_shape_yuv[1]
ffmpeg_process = start_or_restart_ffmpeg(self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size)
capture_frames(ffmpeg_process, self.camera_name, self.camera_config.frame_shape_yuv, self.frame_manager,
self.frame_queue, fps, skipped_fps, current_frame)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=["person"], object_filters={}):
def process_frames(self, objects_to_track=['person'], object_filters={}):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(
self.frame_shape, mask, self.camera_config.motion
)
motion_detector = MotionDetector(self.frame_shape, mask, self.camera_config.motion)
object_detector = LocalObjectDetector(labels="/labelmap.txt")
object_detector = LocalObjectDetector(labels='/labelmap.txt')
object_tracker = ObjectTracker(self.camera_config.detect)
process_info = {
"process_fps": mp.Value("d", 0.0),
"detection_fps": mp.Value("d", 0.0),
"detection_frame": mp.Value("d", 0.0),
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0)
}
stop_event = mp.Event()
model_shape = (self.config.model.height, self.config.model.width)
process_frames(
self.camera_name,
self.frame_queue,
self.frame_shape,
model_shape,
self.frame_manager,
motion_detector,
object_detector,
object_tracker,
self.detected_objects_queue,
process_info,
objects_to_track,
object_filters,
mask,
stop_event,
exit_on_empty=True,
)
process_frames(self.camera_name, self.frame_queue, self.frame_shape, model_shape,
self.frame_manager, motion_detector, object_detector, object_tracker,
self.detected_objects_queue, process_info,
objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
def top_object(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj, frame_time):
nonlocal obj_detected
nonlocal top_computed_score
@@ -142,85 +108,48 @@ class ProcessClip:
top_computed_score = obj.computed_score
if not obj.false_positive:
obj_detected = True
self.camera_state.on('new', handle_event)
self.camera_state.on('update', handle_event)
self.camera_state.on("new", handle_event)
self.camera_state.on("update", handle_event)
while not self.detected_objects_queue.empty():
(
camera_name,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = self.detected_objects_queue.get()
while(not self.detected_objects_queue.empty()):
camera_name, frame_time, current_tracked_objects, motion_boxes, regions = self.detected_objects_queue.get()
if not debug_path is None:
self.save_debug_frame(
debug_path, frame_time, current_tracked_objects.values()
)
self.camera_state.update(
frame_time, current_tracked_objects, motion_boxes, regions
)
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
self.camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {"object_detected": obj_detected, "top_score": top_computed_score}
return {
'object_detected': obj_detected,
'top_score': top_computed_score
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = cv2.cvtColor(
self.frame_manager.get(
f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv
),
cv2.COLOR_YUV2BGR_I420,
)
current_frame = cv2.cvtColor(self.frame_manager.get(f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv), cv2.COLOR_YUV2BGR_I420)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0, 0, 175)
color = (0,0,175)
if obj["frame_time"] != frame_time:
if obj['frame_time'] != frame_time:
thickness = 1
color = (255, 0, 0)
color = (255,0,0)
else:
color = (255, 255, 0)
color = (255,255,0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
current_frame,
box[0],
box[1],
box[2],
box[3],
obj["id"],
f"{int(obj['score']*100)}% {int(obj['area'])}",
thickness=thickness,
color=color,
)
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['id'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj["region"]
draw_box_with_label(
current_frame,
region[0],
region[1],
region[2],
region[3],
"region",
"",
thickness=1,
color=(0, 255, 0),
)
cv2.imwrite(
f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg",
current_frame,
)
region = obj['region']
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", current_frame)
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default="person", help="Label name to detect.")
@click.option("-l", "--label", default='person', help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("-s", "--scores", default=None, help="File to save csv of top scores")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
@@ -230,37 +159,34 @@ def process(path, label, threshold, scores, debug_path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
elif os.path.isfile(path):
clips.append(path)
json_config = {
"mqtt": {"host": "mqtt"},
"cameras": {
"camera": {
"ffmpeg": {
"inputs": [
{
"path": "path.mp4",
"global_args": "",
"input_args": "",
"roles": ["detect"],
}
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'camera': {
'ffmpeg': {
'inputs': [
{ 'path': 'path.mp4', 'global_args': '', 'input_args': '', 'roles': ['detect'] }
]
},
"height": 1920,
"width": 1080,
'height': 1920,
'width': 1080
}
},
}
}
results = []
for c in clips:
logger.info(c)
frame_shape = get_frame_shape(c)
json_config["cameras"]["camera"]["height"] = frame_shape[0]
json_config["cameras"]["camera"]["width"] = frame_shape[1]
json_config["cameras"]["camera"]["ffmpeg"]["inputs"][0]["path"] = c
json_config['cameras']['camera']['height'] = frame_shape[0]
json_config['cameras']['camera']['width'] = frame_shape[1]
json_config['cameras']['camera']['ffmpeg']['inputs'][0]['path'] = c
config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
@@ -271,15 +197,12 @@ def process(path, label, threshold, scores, debug_path):
results.append((c, process_clip.top_object(debug_path)))
if not scores is None:
with open(scores, "w") as writer:
with open(scores, 'w') as writer:
for result in results:
writer.write(f"{result[0]},{result[1]['top_score']}\n")
positive_count = sum(1 for result in results if result[1]['object_detected'])
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
positive_count = sum(1 for result in results if result[1]["object_detected"])
print(
f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s)."
)
if __name__ == "__main__":
if __name__ == '__main__':
process()

View File

@@ -1,301 +1,125 @@
import datetime
import itertools
import json
import logging
import os
import random
import shutil
import string
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
from peewee import JOIN
from frigate.config import FrigateConfig
from frigate.const import CACHE_DIR, RECORD_DIR
from frigate.models import Event, Recordings
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
logger = logging.getLogger(__name__)
SECONDS_IN_DAY = 60 * 60 * 24
def remove_empty_directories(directory):
# list all directories recursively and sort them by path,
# longest first
paths = sorted(
[x[0] for x in os.walk(RECORD_DIR)],
key=lambda p: len(str(p)),
reverse=True,
)
for path in paths:
# don't delete the parent
if path == RECORD_DIR:
continue
if len(os.listdir(path)) == 0:
os.rmdir(path)
# list all directories recursively and sort them by path,
# longest first
paths = sorted(
[x[0] for x in os.walk(RECORD_DIR)],
key=lambda p: len(str(p)),
reverse=True,
)
for path in paths:
# don't delete the parent
if path == RECORD_DIR:
continue
if len(os.listdir(path)) == 0:
os.rmdir(path)
class RecordingMaintainer(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = "recording_maint"
self.name = 'recording_maint'
self.config = config
self.stop_event = stop_event
def move_files(self):
recordings = [
d
for d in os.listdir(CACHE_DIR)
if os.path.isfile(os.path.join(CACHE_DIR, d))
and d.endswith(".mp4")
and not d.startswith("clip_")
]
recordings = [d for d in os.listdir(RECORD_DIR) if os.path.isfile(os.path.join(RECORD_DIR, d)) and d.endswith(".mp4")]
files_in_use = []
for process in psutil.process_iter():
try:
if process.name() != "ffmpeg":
if process.name() != 'ffmpeg':
continue
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(CACHE_DIR):
files_in_use.append(nt.path.split("/")[-1])
if nt.path.startswith(RECORD_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in recordings:
# Skip files currently in use
if f in files_in_use:
continue
cache_path = os.path.join(CACHE_DIR, f)
basename = os.path.splitext(f)[0]
camera, date = basename.rsplit("-", maxsplit=1)
start_time = datetime.datetime.strptime(date, "%Y%m%d%H%M%S")
# Just delete files if recordings are turned off
if (
not camera in self.config.cameras
or not self.config.cameras[camera].record.enabled
):
Path(cache_path).unlink(missing_ok=True)
continue
ffprobe_cmd = [
"ffprobe",
"-v",
"error",
"-show_entries",
"format=duration",
"-of",
"default=noprint_wrappers=1:nokey=1",
f"{cache_path}",
]
p = sp.run(ffprobe_cmd, capture_output=True)
if p.returncode == 0:
duration = float(p.stdout.decode().strip())
end_time = start_time + datetime.timedelta(seconds=duration)
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(RECORD_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
logger.info(f"bad file: {f}")
Path(cache_path).unlink(missing_ok=True)
os.remove(os.path.join(RECORD_DIR,f))
continue
directory = os.path.join(
RECORD_DIR, start_time.strftime("%Y-%m/%d/%H"), camera
)
directory = os.path.join(RECORD_DIR, start_time.strftime('%Y-%m/%d/%H'), camera)
if not os.path.exists(directory):
os.makedirs(directory)
file_name = f"{start_time.strftime('%M.%S.mp4')}"
file_path = os.path.join(directory, file_name)
# copy then delete is required when recordings are stored on some network drives
shutil.copyfile(cache_path, file_path)
os.remove(cache_path)
rand_id = "".join(
random.choices(string.ascii_lowercase + string.digits, k=6)
)
Recordings.create(
id=f"{start_time.timestamp()}-{rand_id}",
camera=camera,
path=file_path,
start_time=start_time.timestamp(),
end_time=end_time.timestamp(),
duration=duration,
)
def run(self):
# Check for new files every 5 seconds
while not self.stop_event.wait(5):
self.move_files()
logger.info(f"Exiting recording maintenance...")
class RecordingCleanup(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = "recording_cleanup"
self.config = config
self.stop_event = stop_event
def clean_tmp_clips(self):
# delete any clips more than 5 minutes old
for p in Path("/tmp/cache").rglob("clip_*.mp4"):
logger.debug(f"Checking tmp clip {p}.")
if p.stat().st_mtime < (datetime.datetime.now().timestamp() - 60 * 1):
logger.debug("Deleting tmp clip.")
p.unlink(missing_ok=True)
def expire_recordings(self):
logger.debug("Start expire recordings (new).")
logger.debug("Start deleted cameras.")
# Handle deleted cameras
no_camera_recordings: Recordings = Recordings.select().where(
Recordings.camera.not_in(list(self.config.cameras.keys())),
)
for recording in no_camera_recordings:
expire_days = self.config.record.retain_days
expire_before = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
if recording.end_time < expire_before:
Path(recording.path).unlink(missing_ok=True)
Recordings.delete_by_id(recording.id)
logger.debug("End deleted cameras.")
logger.debug("Start all cameras.")
for camera, config in self.config.cameras.items():
logger.debug(f"Start camera: {camera}.")
# When deleting recordings without events, we have to keep at LEAST the configured max clip duration
min_end = (
datetime.datetime.now()
- datetime.timedelta(seconds=config.record.events.max_seconds)
).timestamp()
expire_days = config.record.retain_days
expire_before = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
expire_date = min(min_end, expire_before)
# Get recordings to remove
recordings: Recordings = Recordings.select().where(
Recordings.camera == camera,
Recordings.end_time < expire_date,
)
for recording in recordings:
# See if there are any associated events
events: Event = Event.select().where(
Event.camera == recording.camera,
(
Event.start_time.between(
recording.start_time, recording.end_time
)
| Event.end_time.between(
recording.start_time, recording.end_time
)
| (
(recording.start_time > Event.start_time)
& (recording.end_time < Event.end_time)
)
),
)
keep = False
event_ids = set()
event: Event
for event in events:
event_ids.add(event.id)
# Check event/label retention and keep the recording if within window
expire_days_event = (
0
if not config.record.events.enabled
else config.record.events.retain.objects.get(
event.label, config.record.events.retain.default
)
)
expire_before_event = (
datetime.datetime.now()
- datetime.timedelta(days=expire_days_event)
).timestamp()
if recording.end_time >= expire_before_event:
keep = True
# Delete recordings outside of the retention window
if not keep:
Path(recording.path).unlink(missing_ok=True)
Recordings.delete_by_id(recording.id)
if event_ids:
# Update associated events
Event.update(has_clip=False).where(
Event.id.in_(list(event_ids))
).execute()
logger.debug(f"End camera: {camera}.")
logger.debug("End all cameras.")
logger.debug("End expire recordings (new).")
os.rename(os.path.join(RECORD_DIR,f), os.path.join(directory,file_name))
def expire_files(self):
logger.debug("Start expire files (legacy).")
default_expire = (
datetime.datetime.now().timestamp()
- SECONDS_IN_DAY * self.config.record.retain_days
)
delete_before = {}
for name, camera in self.config.cameras.items():
delete_before[name] = (
datetime.datetime.now().timestamp()
- SECONDS_IN_DAY * camera.record.retain_days
)
delete_before[name] = datetime.datetime.now().timestamp() - SECONDS_IN_DAY*camera.record.retain_days
# find all the recordings older than the oldest recording in the db
oldest_recording = (
Recordings.select().order_by(Recordings.start_time.desc()).get()
)
oldest_timestamp = (
oldest_recording.start_time
if oldest_recording
else datetime.datetime.now().timestamp()
)
logger.debug(f"Oldest recording in the db: {oldest_timestamp}")
process = sp.run(
["find", RECORD_DIR, "-type", "f", "-newermt", f"@{oldest_timestamp}"],
capture_output=True,
text=True,
)
files_to_check = process.stdout.splitlines()
for f in files_to_check:
p = Path(f)
if p.stat().st_mtime < delete_before.get(p.parent.name, default_expire):
for p in Path('/media/frigate/recordings').rglob("*.mp4"):
if not p.parent.name in delete_before:
continue
if p.stat().st_mtime < delete_before[p.parent.name]:
p.unlink(missing_ok=True)
logger.debug("End expire files (legacy).")
def run(self):
# Expire recordings every minute, clean directories every hour.
for counter in itertools.cycle(range(60)):
if self.stop_event.wait(60):
logger.info(f"Exiting recording cleanup...")
counter = 0
self.expire_files()
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting recording maintenance...")
break
self.expire_recordings()
self.clean_tmp_clips()
if counter == 0:
# only expire events every 10 minutes, but check for new files every 10 seconds
time.sleep(10)
counter = counter + 1
if counter > 60:
self.expire_files()
remove_empty_directories(RECORD_DIR)
counter = 0
self.move_files()

View File

@@ -2,90 +2,57 @@ import json
import logging
import threading
import time
import psutil
import shutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.version import VERSION
logger = logging.getLogger(__name__)
def stats_init(camera_metrics, detectors):
stats_tracking = {
"camera_metrics": camera_metrics,
"detectors": detectors,
"started": int(time.time()),
'camera_metrics': camera_metrics,
'detectors': detectors,
'started': int(time.time())
}
return stats_tracking
def get_fs_type(path):
bestMatch = ""
fsType = ""
for part in psutil.disk_partitions(all=True):
if path.startswith(part.mountpoint) and len(bestMatch) < len(part.mountpoint):
fsType = part.fstype
bestMatch = part.mountpoint
return fsType
def stats_snapshot(stats_tracking):
camera_metrics = stats_tracking["camera_metrics"]
camera_metrics = stats_tracking['camera_metrics']
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_metrics.items():
total_detection_fps += camera_stats["detection_fps"].value
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
"camera_fps": round(camera_stats["camera_fps"].value, 2),
"process_fps": round(camera_stats["process_fps"].value, 2),
"skipped_fps": round(camera_stats["skipped_fps"].value, 2),
"detection_fps": round(camera_stats["detection_fps"].value, 2),
"pid": camera_stats["process"].pid,
"capture_pid": camera_stats["capture_process"].pid,
'camera_fps': round(camera_stats['camera_fps'].value, 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'pid': camera_stats['process'].pid,
'capture_pid': camera_stats['capture_process'].pid
}
stats["detectors"] = {}
stats['detectors'] = {}
for name, detector in stats_tracking["detectors"].items():
stats["detectors"][name] = {
"inference_speed": round(detector.avg_inference_speed.value * 1000, 2),
"detection_start": detector.detection_start.value,
"pid": detector.detect_process.pid,
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value * 1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats["detection_fps"] = round(total_detection_fps, 2)
stats['detection_fps'] = round(total_detection_fps, 2)
stats["service"] = {
"uptime": (int(time.time()) - stats_tracking["started"]),
"version": VERSION,
"storage": {},
stats['service'] = {
'uptime': (int(time.time()) - stats_tracking['started']),
'version': VERSION
}
for path in [RECORD_DIR, CLIPS_DIR, CACHE_DIR, "/dev/shm"]:
storage_stats = shutil.disk_usage(path)
stats["service"]["storage"][path] = {
"total": round(storage_stats.total / 1000000, 1),
"used": round(storage_stats.used / 1000000, 1),
"free": round(storage_stats.free / 1000000, 1),
"mount_type": get_fs_type(path),
}
return stats
class StatsEmitter(threading.Thread):
def __init__(
self,
config: FrigateConfig,
stats_tracking,
mqtt_client,
topic_prefix,
stop_event,
):
def __init__(self, config: FrigateConfig, stats_tracking, mqtt_client, topic_prefix, stop_event):
threading.Thread.__init__(self)
self.name = "frigate_stats_emitter"
self.name = 'frigate_stats_emitter'
self.config = config
self.stats_tracking = stats_tracking
self.mqtt_client = mqtt_client
@@ -94,9 +61,10 @@ class StatsEmitter(threading.Thread):
def run(self):
time.sleep(10)
while not self.stop_event.wait(self.config.mqtt.stats_interval):
while True:
if self.stop_event.is_set():
logger.info(f"Exiting watchdog...")
break
stats = stats_snapshot(self.stats_tracking)
self.mqtt_client.publish(
f"{self.topic_prefix}/stats", json.dumps(stats), retain=False
)
logger.info(f"Exiting watchdog...")
self.mqtt_client.publish(f"{self.topic_prefix}/stats", json.dumps(stats), retain=False)
time.sleep(self.config.mqtt.stats_interval)

File diff suppressed because it is too large Load Diff

View File

@@ -1,66 +0,0 @@
import cv2
import numpy as np
from unittest import TestCase, main
from frigate.util import get_yuv_crop, copy_yuv_to_position
class TestCopyYuvToPosition(TestCase):
def setUp(self):
self.source_frame_bgr = np.zeros((400, 800, 3), np.uint8)
self.source_frame_bgr[:] = (0, 0, 255)
self.source_yuv_frame = cv2.cvtColor(
self.source_frame_bgr, cv2.COLOR_BGR2YUV_I420
)
y, u1, u2, v1, v2 = get_yuv_crop(
self.source_yuv_frame.shape,
(
0,
0,
self.source_frame_bgr.shape[1],
self.source_frame_bgr.shape[0],
),
)
self.source_channel_dims = {
"y": y,
"u1": u1,
"u2": u2,
"v1": v1,
"v2": v2,
}
self.dest_frame_bgr = np.zeros((400, 800, 3), np.uint8)
self.dest_frame_bgr[:] = (112, 202, 50)
self.dest_frame_bgr[100:300, 200:600] = (255, 0, 0)
self.dest_yuv_frame = cv2.cvtColor(self.dest_frame_bgr, cv2.COLOR_BGR2YUV_I420)
def test_clear_position(self):
copy_yuv_to_position(self.dest_yuv_frame, (100, 100), (100, 100))
# cv2.imwrite(f"source_frame_yuv.jpg", self.source_yuv_frame)
# cv2.imwrite(f"dest_frame_yuv.jpg", self.dest_yuv_frame)
def test_copy_position(self):
copy_yuv_to_position(
self.dest_yuv_frame,
(100, 100),
(100, 200),
self.source_yuv_frame,
self.source_channel_dims,
)
# cv2.imwrite(f"source_frame_yuv.jpg", self.source_yuv_frame)
# cv2.imwrite(f"dest_frame_yuv.jpg", self.dest_yuv_frame)
def test_copy_position_full_screen(self):
copy_yuv_to_position(
self.dest_yuv_frame,
(0, 0),
(400, 800),
self.source_yuv_frame,
self.source_channel_dims,
)
# cv2.imwrite(f"source_frame_yuv.jpg", self.source_yuv_frame)
# cv2.imwrite(f"dest_frame_yuv.jpg", self.dest_yuv_frame)
if __name__ == "__main__":
main(verbosity=2)

View File

@@ -3,39 +3,37 @@ import numpy as np
from unittest import TestCase, main
from frigate.util import yuv_region_2_rgb
class TestYuvRegion2RGB(TestCase):
def setUp(self):
self.bgr_frame = np.zeros((100, 200, 3), np.uint8)
self.bgr_frame[:] = (0, 0, 255)
self.bgr_frame[5:55, 5:55] = (255, 0, 0)
self.bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
self.yuv_frame = cv2.cvtColor(self.bgr_frame, cv2.COLOR_BGR2YUV_I420)
def test_crop_yuv(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (10, 10, 50, 50))
cropped = yuv_region_2_rgb(self.yuv_frame, (10,10,50,50))
# ensure the upper left pixel is blue
assert np.all(cropped[0, 0] == [0, 0, 255])
assert(np.all(cropped[0, 0] == [0, 0, 255]))
def test_crop_yuv_out_of_bounds(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (0, 0, 200, 200))
cropped = yuv_region_2_rgb(self.yuv_frame, (0,0,200,200))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
# ensure the upper left pixel is red
# the yuv conversion has some noise
assert np.all(cropped[0, 0] == [255, 1, 0])
assert(np.all(cropped[0, 0] == [255, 1, 0]))
# ensure the bottom right is black
assert np.all(cropped[199, 199] == [0, 0, 0])
assert(np.all(cropped[199, 199] == [0, 0, 0]))
def test_crop_yuv_portrait(self):
bgr_frame = np.zeros((1920, 1080, 3), np.uint8)
bgr_frame[:] = (0, 0, 255)
bgr_frame[5:55, 5:55] = (255, 0, 0)
bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
yuv_frame = cv2.cvtColor(bgr_frame, cv2.COLOR_BGR2YUV_I420)
cropped = yuv_region_2_rgb(yuv_frame, (0, 852, 648, 1500))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
if __name__ == "__main__":
if __name__ == '__main__':
main(verbosity=2)

View File

@@ -1,10 +1,8 @@
import collections
import copy
import datetime
import hashlib
import json
import logging
import math
import signal
import subprocess as sp
import threading
@@ -17,124 +15,13 @@ from typing import AnyStr
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
logger = logging.getLogger(__name__)
def deep_merge(dct1: dict, dct2: dict, override=False, merge_lists=False) -> dict:
"""
:param dct1: First dict to merge
:param dct2: Second dict to merge
:param override: if same key exists in both dictionaries, should override? otherwise ignore. (default=True)
:return: The merge dictionary
"""
merged = copy.deepcopy(dct1)
for k, v2 in dct2.items():
if k in merged:
v1 = merged[k]
if isinstance(v1, dict) and isinstance(v2, collections.Mapping):
merged[k] = deep_merge(v1, v2, override)
elif isinstance(v1, list) and isinstance(v2, list):
if merge_lists:
merged[k] = v1 + v2
else:
if override:
merged[k] = copy.deepcopy(v2)
else:
merged[k] = copy.deepcopy(v2)
return merged
def draw_timestamp(
frame,
timestamp,
timestamp_format,
font_effect=None,
font_scale=1.0,
font_thickness=2,
font_color=(255, 255, 255),
position="tl",
):
time_to_show = datetime.datetime.fromtimestamp(timestamp).strftime(timestamp_format)
size = cv2.getTextSize(
time_to_show,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
thickness=font_thickness,
)
image_width = frame.shape[1]
image_height = frame.shape[0]
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
if position == "tl":
text_offset_x = 0
text_offset_y = 0 if 0 < line_height else 0 - (line_height + 8)
elif position == "tr":
text_offset_x = image_width - text_width
text_offset_y = 0 if 0 < line_height else 0 - (line_height + 8)
elif position == "bl":
text_offset_x = 0
text_offset_y = image_height - (line_height + 8)
elif position == "br":
text_offset_x = image_width - text_width
text_offset_y = image_height - (line_height + 8)
if font_effect == "solid":
# make the coords of the box with a small padding of two pixels
timestamp_box_coords = np.array(
[
[text_offset_x, text_offset_y],
[text_offset_x + text_width, text_offset_y],
[text_offset_x + text_width, text_offset_y + line_height + 8],
[text_offset_x, text_offset_y + line_height + 8],
]
)
cv2.fillPoly(
frame,
[timestamp_box_coords],
# inverse color of text for background for max. contrast
(255 - font_color[0], 255 - font_color[1], 255 - font_color[2]),
)
elif font_effect == "shadow":
cv2.putText(
frame,
time_to_show,
(text_offset_x + 3, text_offset_y + line_height),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
color=(255 - font_color[0], 255 - font_color[1], 255 - font_color[2]),
thickness=font_thickness,
)
cv2.putText(
frame,
time_to_show,
(text_offset_x, text_offset_y + line_height - 3),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
color=font_color,
thickness=font_thickness,
)
def draw_box_with_label(
frame,
x_min,
y_min,
x_max,
y_max,
label,
info,
thickness=2,
color=None,
position="ul",
):
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
color = (0, 0, 255)
color = (0,0,255)
display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
font_scale = 0.5
@@ -145,350 +32,208 @@ def draw_box_with_label(
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
if position == "ul":
if position == 'ul':
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height + 8)
elif position == "ur":
text_offset_x = x_max - (text_width + 8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height + 8)
elif position == "bl":
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'ur':
text_offset_x = x_max - (text_width+8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'bl':
text_offset_x = x_min
text_offset_y = y_max
elif position == "br":
text_offset_x = x_max - (text_width + 8)
elif position == 'br':
text_offset_x = x_max - (text_width+8)
text_offset_y = y_max
# make the coords of the box with a small padding of two pixels
textbox_coords = (
(text_offset_x, text_offset_y),
(text_offset_x + text_width + 2, text_offset_y + line_height),
)
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(
frame,
display_text,
(text_offset_x, text_offset_y + line_height - 3),
font,
fontScale=font_scale,
color=(0, 0, 0),
thickness=2,
)
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is the longest edge and divisible by 4
size = int(max(xmax - xmin, ymax - ymin) // 4 * 4 * multiplier)
size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
# dont go any smaller than 300
if size < 300:
size = 300
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax - xmin) / 2.0 + xmin - size / 2.0)
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1] - size):
x_offset = max(0, (frame_shape[1] - size))
elif x_offset > (frame_shape[1]-size):
x_offset = max(0, (frame_shape[1]-size))
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax - ymin) / 2.0 + ymin - size / 2.0)
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# # if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0] - size):
y_offset = max(0, (frame_shape[0] - size))
return (x_offset, y_offset, x_offset + size, y_offset + size)
elif y_offset > (frame_shape[0]-size):
y_offset = max(0, (frame_shape[0]-size))
return (x_offset, y_offset, x_offset+size, y_offset+size)
def get_yuv_crop(frame_shape, crop):
# crop should be (x1,y1,x2,y2)
frame_height = frame_shape[0] // 3 * 2
frame_height = frame_shape[0]//3*2
frame_width = frame_shape[1]
# compute the width/height of the uv channels
uv_width = frame_width // 2 # width of the uv channels
uv_height = frame_height // 4 # height of the uv channels
uv_width = frame_width//2 # width of the uv channels
uv_height = frame_height//4 # height of the uv channels
# compute the offset for upper left corner of the uv channels
uv_x_offset = crop[0] // 2 # x offset of the uv channels
uv_y_offset = crop[1] // 4 # y offset of the uv channels
uv_x_offset = crop[0]//2 # x offset of the uv channels
uv_y_offset = crop[1]//4 # y offset of the uv channels
# compute the width/height of the uv crops
uv_crop_width = (crop[2] - crop[0]) // 2 # width of the cropped uv channels
uv_crop_height = (crop[3] - crop[1]) // 4 # height of the cropped uv channels
uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
# ensure crop dimensions are multiples of 2 and 4
y = (crop[0], crop[1], crop[0] + uv_crop_width * 2, crop[1] + uv_crop_height * 4)
y = (
crop[0],
crop[1],
crop[0] + uv_crop_width*2,
crop[1] + uv_crop_height*4
)
u1 = (
0 + uv_x_offset,
0 + uv_x_offset,
frame_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
u2 = (
uv_width + uv_x_offset,
uv_width + uv_x_offset,
frame_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
v1 = (
0 + uv_x_offset,
frame_height + uv_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height,
0 + uv_x_offset,
frame_height + uv_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
v2 = (
uv_width + uv_x_offset,
frame_height + uv_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height,
uv_width + uv_x_offset,
frame_height + uv_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
return y, u1, u2, v1, v2
def yuv_crop_and_resize(frame, region, height=None):
# Crops and resizes a YUV frame while maintaining aspect ratio
# https://stackoverflow.com/a/57022634
height = frame.shape[0] // 3 * 2
width = frame.shape[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
# ensure these are a multiple of 4
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
# if the region starts outside the frame, indent the start point in the cropped frame
y_channel_x_offset = abs(min(0, region[0]))
y_channel_y_offset = abs(min(0, region[1]))
uv_channel_x_offset = y_channel_x_offset // 2
uv_channel_y_offset = y_channel_y_offset // 4
# create the yuv region frame
# make sure the size is a multiple of 4
# TODO: this should be based on the size after resize now
size = (region[3] - region[1]) // 4 * 4
yuv_cropped_frame = np.zeros((size + size // 2, size), np.uint8)
# fill in black
yuv_cropped_frame[:] = 128
yuv_cropped_frame[0:size, 0:size] = 16
# copy the y channel
yuv_cropped_frame[
y_channel_y_offset : y_channel_y_offset + y[3] - y[1],
y_channel_x_offset : y_channel_x_offset + y[2] - y[0],
] = frame[y[1] : y[3], y[0] : y[2]]
uv_crop_width = u1[2] - u1[0]
uv_crop_height = u1[3] - u1[1]
# copy u1
yuv_cropped_frame[
size + uv_channel_y_offset : size + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset : 0 + uv_channel_x_offset + uv_crop_width,
] = frame[u1[1] : u1[3], u1[0] : u1[2]]
# copy u2
yuv_cropped_frame[
size + uv_channel_y_offset : size + uv_channel_y_offset + uv_crop_height,
size // 2
+ uv_channel_x_offset : size // 2
+ uv_channel_x_offset
+ uv_crop_width,
] = frame[u2[1] : u2[3], u2[0] : u2[2]]
# copy v1
yuv_cropped_frame[
size
+ size // 4
+ uv_channel_y_offset : size
+ size // 4
+ uv_channel_y_offset
+ uv_crop_height,
0 + uv_channel_x_offset : 0 + uv_channel_x_offset + uv_crop_width,
] = frame[v1[1] : v1[3], v1[0] : v1[2]]
# copy v2
yuv_cropped_frame[
size
+ size // 4
+ uv_channel_y_offset : size
+ size // 4
+ uv_channel_y_offset
+ uv_crop_height,
size // 2
+ uv_channel_x_offset : size // 2
+ uv_channel_x_offset
+ uv_crop_width,
] = frame[v2[1] : v2[3], v2[0] : v2[2]]
return yuv_cropped_frame
def copy_yuv_to_position(
destination_frame,
destination_offset,
destination_shape,
source_frame=None,
source_channel_dim=None,
):
# get the coordinates of the channels for this position in the layout
y, u1, u2, v1, v2 = get_yuv_crop(
destination_frame.shape,
(
destination_offset[1],
destination_offset[0],
destination_offset[1] + destination_shape[1],
destination_offset[0] + destination_shape[0],
),
)
# clear y
destination_frame[
y[1] : y[3],
y[0] : y[2],
] = 16
# clear u1
destination_frame[u1[1] : u1[3], u1[0] : u1[2]] = 128
# clear u2
destination_frame[u2[1] : u2[3], u2[0] : u2[2]] = 128
# clear v1
destination_frame[v1[1] : v1[3], v1[0] : v1[2]] = 128
# clear v2
destination_frame[v2[1] : v2[3], v2[0] : v2[2]] = 128
if not source_frame is None:
# calculate the resized frame, maintaining the aspect ratio
source_aspect_ratio = source_frame.shape[1] / (source_frame.shape[0] // 3 * 2)
dest_aspect_ratio = destination_shape[1] / destination_shape[0]
if source_aspect_ratio <= dest_aspect_ratio:
y_resize_height = int(destination_shape[0] // 4 * 4)
y_resize_width = int((y_resize_height * source_aspect_ratio) // 4 * 4)
else:
y_resize_width = int(destination_shape[1] // 4 * 4)
y_resize_height = int((y_resize_width / source_aspect_ratio) // 4 * 4)
uv_resize_width = int(y_resize_width // 2)
uv_resize_height = int(y_resize_height // 4)
y_y_offset = int((destination_shape[0] - y_resize_height) / 4 // 4 * 4)
y_x_offset = int((destination_shape[1] - y_resize_width) / 2 // 4 * 4)
uv_y_offset = y_y_offset // 4
uv_x_offset = y_x_offset // 2
interpolation = cv2.INTER_LINEAR
# resize/copy y channel
destination_frame[
y[1] + y_y_offset : y[1] + y_y_offset + y_resize_height,
y[0] + y_x_offset : y[0] + y_x_offset + y_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["y"][1] : source_channel_dim["y"][3],
source_channel_dim["y"][0] : source_channel_dim["y"][2],
],
dsize=(y_resize_width, y_resize_height),
interpolation=interpolation,
)
# resize/copy u1
destination_frame[
u1[1] + uv_y_offset : u1[1] + uv_y_offset + uv_resize_height,
u1[0] + uv_x_offset : u1[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["u1"][1] : source_channel_dim["u1"][3],
source_channel_dim["u1"][0] : source_channel_dim["u1"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
# resize/copy u2
destination_frame[
u2[1] + uv_y_offset : u2[1] + uv_y_offset + uv_resize_height,
u2[0] + uv_x_offset : u2[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["u2"][1] : source_channel_dim["u2"][3],
source_channel_dim["u2"][0] : source_channel_dim["u2"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
# resize/copy v1
destination_frame[
v1[1] + uv_y_offset : v1[1] + uv_y_offset + uv_resize_height,
v1[0] + uv_x_offset : v1[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["v1"][1] : source_channel_dim["v1"][3],
source_channel_dim["v1"][0] : source_channel_dim["v1"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
# resize/copy v2
destination_frame[
v2[1] + uv_y_offset : v2[1] + uv_y_offset + uv_resize_height,
v2[0] + uv_x_offset : v2[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["v2"][1] : source_channel_dim["v2"][3],
source_channel_dim["v2"][0] : source_channel_dim["v2"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
def yuv_region_2_rgb(frame, region):
try:
# TODO: does this copy the numpy array?
yuv_cropped_frame = yuv_crop_and_resize(frame, region)
height = frame.shape[0]//3*2
width = frame.shape[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
# ensure these are a multiple of 4
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
# if the region starts outside the frame, indent the start point in the cropped frame
y_channel_x_offset = abs(min(0, region[0]))
y_channel_y_offset = abs(min(0, region[1]))
uv_channel_x_offset = y_channel_x_offset//2
uv_channel_y_offset = y_channel_y_offset//4
# create the yuv region frame
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# fill in black
yuv_cropped_frame[:] = 128
yuv_cropped_frame[0:size,0:size] = 16
# copy the y channel
yuv_cropped_frame[
y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
] = frame[
y[1]:y[3],
y[0]:y[2]
]
uv_crop_width = u1[2] - u1[0]
uv_crop_height = u1[3] - u1[1]
# copy u1
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
u1[1]:u1[3],
u1[0]:u1[2]
]
# copy u2
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
u2[1]:u2[3],
u2[0]:u2[2]
]
# copy v1
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
v1[1]:v1[3],
v1[0]:v1[2]
]
# copy v2
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
v2[1]:v2[3],
v2[0]:v2[2]
]
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def intersection(box_a, box_b):
return (
max(box_a[0], box_b[0]),
max(box_a[1], box_b[1]),
min(box_a[2], box_b[2]),
min(box_a[3], box_b[3]),
min(box_a[3], box_b[3])
)
def area(box):
return (box[2] - box[0] + 1) * (box[3] - box[1] + 1)
return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
def intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = intersection(box_a, box_b)
# compute the area of intersection rectangle
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(
0, intersect[3] - intersect[1] + 1
)
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
@@ -502,33 +247,25 @@ def intersection_over_union(box_a, box_b):
# return the intersection over union value
return iou
def clipped(obj, frame_shape):
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
box = obj[2]
region = obj[4]
if (
(region[0] > 5 and box[0] - region[0] <= 5)
or (region[1] > 5 and box[1] - region[1] <= 5)
or (frame_shape[1] - region[2] > 5 and region[2] - box[2] <= 5)
or (frame_shape[0] - region[3] > 5 and region[3] - box[3] <= 5)
):
if ((region[0] > 5 and box[0]-region[0] <= 5) or
(region[1] > 5 and box[1]-region[1] <= 5) or
(frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
(frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
return True
else:
return False
def restart_frigate():
os.kill(os.getpid(), signal.SIGTERM)
class EventsPerSecond:
def __init__(self, max_events=1000):
self._start = None
self._max_events = max_events
self._timestamps = []
def start(self):
self._start = datetime.datetime.now().timestamp()
@@ -537,28 +274,23 @@ class EventsPerSecond:
self.start()
self._timestamps.append(datetime.datetime.now().timestamp())
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events + 100:
self._timestamps = self._timestamps[(1 - self._max_events) :]
if len(self._timestamps) > self._max_events+100:
self._timestamps = self._timestamps[(1-self._max_events):]
def eps(self, last_n_seconds=10):
if self._start is None:
self.start()
# compute the (approximate) events in the last n seconds
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now - self._start, last_n_seconds)
return (
len([t for t in self._timestamps if t > (now - last_n_seconds)]) / seconds
)
seconds = min(now-self._start, last_n_seconds)
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
def print_stack(sig, frame):
traceback.print_stack(frame)
def listen():
signal.signal(signal.SIGUSR1, print_stack)
def create_mask(frame_shape, mask):
mask_img = np.zeros(frame_shape, np.uint8)
mask_img[:] = 255
@@ -572,15 +304,11 @@ def create_mask(frame_shape, mask):
return mask_img
def add_mask(mask, mask_img):
points = mask.split(",")
contour = np.array(
[[int(points[i]), int(points[i + 1])] for i in range(0, len(points), 2)]
)
points = mask.split(',')
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
cv2.fillPoly(mask_img, pts=[contour], color=(0))
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:
@@ -598,31 +326,29 @@ class FrameManager(ABC):
def delete(self, name):
pass
class DictFrameManager(FrameManager):
def __init__(self):
self.frames = {}
def create(self, name, size) -> AnyStr:
mem = bytearray(size)
self.frames[name] = mem
return mem
def get(self, name, shape):
mem = self.frames[name]
return np.ndarray(shape, dtype=np.uint8, buffer=mem)
def close(self, name):
pass
def delete(self, name):
del self.frames[name]
class SharedMemoryFrameManager(FrameManager):
def __init__(self):
self.shm_store = {}
def create(self, name, size) -> AnyStr:
shm = shared_memory.SharedMemory(name=name, create=True, size=size)
self.shm_store[name] = shm

View File

@@ -1,7 +1,12 @@
import base64
import copy
import ctypes
import datetime
import itertools
import json
import logging
import multiprocessing as mp
import os
import queue
import subprocess as sp
import signal
@@ -11,7 +16,7 @@ from collections import defaultdict
from setproctitle import setproctitle
from typing import Dict, List
from cv2 import cv2
import cv2
import numpy as np
from frigate.config import CameraConfig
@@ -19,25 +24,19 @@ from frigate.edgetpu import RemoteObjectDetector
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.objects import ObjectTracker
from frigate.util import (
EventsPerSecond,
FrameManager,
SharedMemoryFrameManager,
calculate_region,
clipped,
listen,
yuv_region_2_rgb,
)
from frigate.util import (EventsPerSecond, FrameManager,
SharedMemoryFrameManager, area, calculate_region,
clipped, draw_box_with_label, intersection,
intersection_over_union, listen, yuv_region_2_rgb)
logger = logging.getLogger(__name__)
def filtered(obj, objects_to_track, object_filters):
object_name = obj[0]
if not object_name in objects_to_track:
return True
if object_name in object_filters:
obj_settings = object_filters[object_name]
@@ -45,7 +44,7 @@ def filtered(obj, objects_to_track, object_filters):
# detected object, don't add it to detected objects
if obj_settings.min_area > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj[3]:
@@ -54,36 +53,29 @@ def filtered(obj, objects_to_track, object_filters):
# if the score is lower than the min_score, skip
if obj_settings.min_score > obj[1]:
return True
if not obj_settings.mask is None:
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(obj_settings.mask) - 1)
x_location = min(
int((obj[2][2] - obj[2][0]) / 2.0) + obj[2][0],
len(obj_settings.mask[0]) - 1,
)
y_location = min(int(obj[2][3]), len(obj_settings.mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(obj_settings.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if obj_settings.mask[y_location][x_location] == 0:
return True
return False
def create_tensor_input(frame, model_shape, region):
cropped_frame = yuv_region_2_rgb(frame, region)
# Resize to 300x300 if needed
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
cropped_frame = cv2.resize(
cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR
)
cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0)
def stop_ffmpeg(ffmpeg_process, logger):
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
@@ -96,43 +88,18 @@ def stop_ffmpeg(ffmpeg_process, logger):
ffmpeg_process.communicate()
ffmpeg_process = None
def start_or_restart_ffmpeg(
ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None
):
if ffmpeg_process is not None:
def start_or_restart_ffmpeg(ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None):
if not ffmpeg_process is None:
stop_ffmpeg(ffmpeg_process, logger)
if frame_size is None:
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.DEVNULL,
stderr=logpipe,
stdin=sp.DEVNULL,
start_new_session=True,
)
process = sp.Popen(ffmpeg_cmd, stdout = sp.DEVNULL, stderr=logpipe, stdin = sp.DEVNULL, start_new_session=True)
else:
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.PIPE,
stderr=logpipe,
stdin=sp.DEVNULL,
bufsize=frame_size * 10,
start_new_session=True,
)
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stderr=logpipe, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
return process
def capture_frames(
ffmpeg_process,
camera_name,
frame_shape,
frame_manager: FrameManager,
frame_queue,
fps: mp.Value,
skipped_fps: mp.Value,
current_frame: mp.Value,
):
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
frame_queue, fps:mp.Value, skipped_fps: mp.Value, current_frame: mp.Value):
frame_size = frame_shape[0] * frame_shape[1]
frame_rate = EventsPerSecond()
@@ -152,9 +119,7 @@ def capture_frames(
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
if ffmpeg_process.poll() != None:
logger.info(
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
)
logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
frame_manager.delete(frame_name)
break
continue
@@ -173,11 +138,8 @@ def capture_frames(
# add to the queue
frame_queue.put(current_frame.value)
class CameraWatchdog(threading.Thread):
def __init__(
self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event
):
def __init__(self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
threading.Thread.__init__(self)
self.logger = logging.getLogger(f"watchdog.{camera_name}")
self.camera_name = camera_name
@@ -197,38 +159,31 @@ class CameraWatchdog(threading.Thread):
self.start_ffmpeg_detect()
for c in self.config.ffmpeg_cmds:
if "detect" in c["roles"]:
if 'detect' in c['roles']:
continue
logpipe = LogPipe(
f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}",
logging.ERROR,
)
self.ffmpeg_other_processes.append(
{
"cmd": c["cmd"],
"logpipe": logpipe,
"process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe),
}
)
logpipe = LogPipe(f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}", logging.ERROR)
self.ffmpeg_other_processes.append({
'cmd': c['cmd'],
'logpipe': logpipe,
'process': start_or_restart_ffmpeg(c['cmd'], self.logger, logpipe)
})
time.sleep(10)
while not self.stop_event.wait(10):
while True:
if self.stop_event.is_set():
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
for p in self.ffmpeg_other_processes:
stop_ffmpeg(p['process'], self.logger)
p['logpipe'].close()
self.logpipe.close()
break
now = datetime.datetime.now().timestamp()
if not self.capture_thread.is_alive():
self.logger.error(
f"FFMPEG process crashed unexpectedly for {self.camera_name}."
)
self.logger.error(
"The following ffmpeg logs include the last 100 lines prior to exit."
)
self.logger.error("You may have invalid args defined for this camera.")
self.logpipe.dump()
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
self.logger.info(
f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..."
)
self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
self.ffmpeg_detect_process.terminate()
try:
self.logger.info("Waiting for ffmpeg to exit gracefully...")
@@ -237,40 +192,24 @@ class CameraWatchdog(threading.Thread):
self.logger.info("FFmpeg didnt exit. Force killing...")
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
for p in self.ffmpeg_other_processes:
poll = p["process"].poll()
if poll is None:
poll = p['process'].poll()
if poll == None:
continue
p["logpipe"].dump()
p["process"] = start_or_restart_ffmpeg(
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
)
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
for p in self.ffmpeg_other_processes:
stop_ffmpeg(p["process"], self.logger)
p["logpipe"].close()
self.logpipe.close()
p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
# wait a bit before checking again
time.sleep(10)
def start_ffmpeg_detect(self):
ffmpeg_cmd = [
c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"]
][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(
ffmpeg_cmd, self.logger, self.logpipe, self.frame_size
)
ffmpeg_cmd = [c['cmd'] for c in self.config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.logger, self.logpipe, self.frame_size)
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
self.capture_thread = CameraCapture(
self.camera_name,
self.ffmpeg_detect_process,
self.frame_shape,
self.frame_queue,
self.camera_fps,
)
self.capture_thread = CameraCapture(self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue,
self.camera_fps)
self.capture_thread.start()
class CameraCapture(threading.Thread):
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
threading.Thread.__init__(self)
@@ -282,60 +221,32 @@ class CameraCapture(threading.Thread):
self.skipped_fps = EventsPerSecond()
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = mp.Value("d", 0.0)
self.current_frame = mp.Value('d', 0.0)
self.last_frame = 0
def run(self):
self.skipped_fps.start()
capture_frames(
self.ffmpeg_process,
self.camera_name,
self.frame_shape,
self.frame_manager,
self.frame_queue,
self.fps,
self.skipped_fps,
self.current_frame,
)
capture_frames(self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue,
self.fps, self.skipped_fps, self.current_frame)
def capture_camera(name, config: CameraConfig, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_queue = process_info["frame_queue"]
camera_watchdog = CameraWatchdog(
name,
config,
frame_queue,
process_info["camera_fps"],
process_info["ffmpeg_pid"],
stop_event,
)
frame_queue = process_info['frame_queue']
camera_watchdog = CameraWatchdog(name, config, frame_queue, process_info['camera_fps'], process_info['ffmpeg_pid'], stop_event)
camera_watchdog.start()
camera_watchdog.join()
def track_camera(
name,
config: CameraConfig,
model_shape,
labelmap,
detection_queue,
result_connection,
detected_objects_queue,
process_info,
):
def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
@@ -343,118 +254,72 @@ def track_camera(
setproctitle(f"frigate.process:{name}")
listen()
frame_queue = process_info["frame_queue"]
detection_enabled = process_info["detection_enabled"]
frame_queue = process_info['frame_queue']
detection_enabled = process_info['detection_enabled']
frame_shape = config.frame_shape
objects_to_track = config.objects.track
object_filters = config.objects.filters
motion_detector = MotionDetector(frame_shape, config.motion)
object_detector = RemoteObjectDetector(
name, labelmap, detection_queue, result_connection, model_shape
)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
object_tracker = ObjectTracker(config.detect)
frame_manager = SharedMemoryFrameManager()
process_frames(
name,
frame_queue,
frame_shape,
model_shape,
frame_manager,
motion_detector,
object_detector,
object_tracker,
detected_objects_queue,
process_info,
objects_to_track,
object_filters,
detection_enabled,
stop_event,
)
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, detection_enabled, stop_event)
logger.info(f"{name}: exiting subprocess")
def reduce_boxes(boxes):
if len(boxes) == 0:
return []
reduced_boxes = cv2.groupRectangles(
[list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2
)[0]
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
return [tuple(b) for b in reduced_boxes]
# modified from https://stackoverflow.com/a/40795835
def intersects_any(box_a, boxes):
for box in boxes:
if (
box_a[2] < box[0]
or box_a[0] > box[2]
or box_a[1] > box[3]
or box_a[3] < box[1]
):
continue
return True
def detect(
object_detector, frame, model_shape, region, objects_to_track, object_filters
):
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters):
tensor_input = create_tensor_input(frame, model_shape, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2] - region[0]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (
d[0],
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max - x_min) * (y_max - y_min),
region,
)
(x_max-x_min)*(y_max-y_min),
region)
# apply object filters
if filtered(det, objects_to_track, object_filters):
continue
detections.append(det)
return detections
def process_frames(
camera_name: str,
frame_queue: mp.Queue,
frame_shape,
model_shape,
frame_manager: FrameManager,
motion_detector: MotionDetector,
object_detector: RemoteObjectDetector,
object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue,
process_info: Dict,
objects_to_track: List[str],
object_filters,
detection_enabled: mp.Value,
stop_event,
exit_on_empty: bool = False,
):
fps = process_info["process_fps"]
detection_fps = process_info["detection_fps"]
current_frame_time = process_info["detection_frame"]
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
frame_manager: FrameManager, motion_detector: MotionDetector,
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue, process_info: Dict,
objects_to_track: List[str], object_filters, detection_enabled: mp.Value, stop_event,
exit_on_empty: bool = False):
fps = process_info['process_fps']
detection_fps = process_info['detection_fps']
current_frame_time = process_info['detection_frame']
fps_tracker = EventsPerSecond()
fps_tracker.start()
while not stop_event.is_set():
while True:
if stop_event.is_set():
break
if exit_on_empty and frame_queue.empty():
logger.info(f"Exiting track_objects...")
break
@@ -466,9 +331,7 @@ def process_frames(
current_frame_time.value = frame_time
frame = frame_manager.get(
f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])
)
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
if frame is None:
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
@@ -477,9 +340,7 @@ def process_frames(
if not detection_enabled.value:
fps.value = fps_tracker.eps()
object_tracker.match_and_update(frame_time, [])
detected_objects_queue.put(
(camera_name, frame_time, object_tracker.tracked_objects, [], [])
)
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, [], []))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
continue
@@ -487,45 +348,27 @@ def process_frames(
# look for motion
motion_boxes = motion_detector.detect(frame)
# only get the tracked object boxes that intersect with motion
tracked_object_boxes = [
obj["box"]
for obj in object_tracker.tracked_objects.values()
if intersects_any(obj["box"], motion_boxes)
]
tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values()]
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
# compute regions
regions = [
calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in combined_boxes
]
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in combined_boxes]
# combine overlapping regions
combined_regions = reduce_boxes(regions)
# re-compute regions
regions = [
calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in combined_regions
]
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in combined_regions]
# resize regions and detect
detections = []
for region in regions:
detections.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
#########
# merge objects, check for clipped objects and look again up to 4 times
#########
@@ -543,10 +386,8 @@ def process_frames(
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
for o in group
]
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
for o in group]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
@@ -555,26 +396,17 @@ def process_frames(
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(
frame_shape, box[0], box[1], box[2], box[3]
)
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
regions.append(region)
selected_objects.extend(
detect(
object_detector,
frame,
model_shape,
region,
objects_to_track,
object_filters,
)
)
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
refining = True
else:
selected_objects.append(obj)
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
@@ -582,30 +414,16 @@ def process_frames(
if refining:
refine_count += 1
# Limit to the detections overlapping with motion areas
# to avoid picking up stationary background objects
detections_with_motion = [
d for d in detections if intersects_any(d[2], motion_boxes)
]
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections_with_motion)
object_tracker.match_and_update(frame_time, detections)
# add to the queue if not full
if detected_objects_queue.full():
if(detected_objects_queue.full()):
frame_manager.delete(f"{camera_name}{frame_time}")
continue
else:
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put(
(
camera_name,
frame_time,
object_tracker.tracked_objects,
motion_boxes,
regions,
)
)
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")

View File

@@ -2,34 +2,35 @@ import datetime
import logging
import threading
import time
import os
import signal
logger = logging.getLogger(__name__)
class FrigateWatchdog(threading.Thread):
def __init__(self, detectors, stop_event):
threading.Thread.__init__(self)
self.name = "frigate_watchdog"
self.name = 'frigate_watchdog'
self.detectors = detectors
self.stop_event = stop_event
def run(self):
time.sleep(10)
while not self.stop_event.wait(10):
while True:
# wait a bit before checking
time.sleep(10)
if self.stop_event.is_set():
logger.info(f"Exiting watchdog...")
break
now = datetime.datetime.now().timestamp()
# check the detection processes
for detector in self.detectors.values():
detection_start = detector.detection_start.value
if detection_start > 0.0 and now - detection_start > 10:
logger.info(
"Detection appears to be stuck. Restarting detection process..."
)
if (detection_start > 0.0 and
now - detection_start > 10):
logger.info("Detection appears to be stuck. Restarting detection process")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
logger.info("Detection appears to have stopped. Exiting frigate...")
os.kill(os.getpid(), signal.SIGTERM)
logger.info(f"Exiting watchdog...")
logger.info("Detection appears to have stopped. Restarting detection process")
detector.start_or_restart()

View File

@@ -31,7 +31,6 @@ def get_local_ip() -> str:
finally:
sock.close()
def broadcast_zeroconf(frigate_id):
zeroconf = Zeroconf(interfaces=InterfaceChoice.Default, ip_version=IPVersion.V4Only)

Some files were not shown because too many files have changed in this diff Show More