Compare commits

..

28 Commits

Author SHA1 Message Date
Blake Blackshear
7686c510b3 add a few more metrics to debug 2020-02-23 18:11:39 -06:00
Blake Blackshear
2f5e322d3c cleanup the plasma store when finished with a frame 2020-02-23 18:11:08 -06:00
Blake Blackshear
1cd4c12104 dont redirect stdout for plasma store 2020-02-23 15:53:17 -06:00
Blake Blackshear
1a8b034685 reset detection fps 2020-02-23 15:53:00 -06:00
Blake Blackshear
da6dc03a57 dont change dictionary while iterating 2020-02-23 11:18:00 -06:00
Blake Blackshear
7fa3b70d2d allow specifying the frame size in the config instead of detecting 2020-02-23 07:56:14 -06:00
Blake Blackshear
1fc5a2bfd4 ensure missing objects are expired even when other object types are in the frame 2020-02-23 07:55:51 -06:00
Blake Blackshear
7e84da7dad Fix watchdog last_frame calculation 2020-02-23 07:55:16 -06:00
Blake Blackshear
128be72e28 cleanup 2020-02-22 09:15:29 -06:00
Blake Blackshear
aaddedc95c update docs and add back benchmark 2020-02-22 09:10:37 -06:00
Blake Blackshear
ba919fb439 fix watchdog 2020-02-22 09:10:37 -06:00
Blake Blackshear
b1d563f3c4 check avg wait before dropping frames 2020-02-22 09:10:37 -06:00
Blake Blackshear
204d8af5df fix watchdog restart 2020-02-22 09:10:37 -06:00
Blake Blackshear
b507a73d79 improve watchdog and coral fps tracking 2020-02-22 09:10:37 -06:00
Blake Blackshear
66eeb8b5cb dont log http requests 2020-02-22 09:10:37 -06:00
Blake Blackshear
efa67067c6 cleanup 2020-02-22 09:10:37 -06:00
Blake Blackshear
aeb036f1a4 add models and convert speed to ms 2020-02-22 09:10:37 -06:00
Blake Blackshear
74c528f9dc add watchdog for camera processes 2020-02-22 09:10:34 -06:00
Blake Blackshear
f2d54bec43 cleanup old code 2020-02-22 09:09:36 -06:00
Blake Blackshear
f07d57741e add a min_fps option 2020-02-22 09:06:46 -06:00
Blake Blackshear
2c1ec19f98 check plasma store and consolidate frame drawing 2020-02-22 09:06:46 -06:00
Blake Blackshear
6a9027c002 split into separate processes 2020-02-22 09:06:43 -06:00
Blake Blackshear
60c15e4419 update tflite to 2.1.0 2020-02-22 09:05:26 -06:00
Blake Blackshear
03dbf600aa refactor some classes into new files 2020-02-22 09:05:26 -06:00
Blake Blackshear
fbbb79b31b tweak process handoff 2020-02-22 09:05:26 -06:00
Blake Blackshear
496c6bc6c4 Mostly working detection in a separate process 2020-02-22 09:05:26 -06:00
Blake Blackshear
869a81c944 read from ffmpeg 2020-02-22 09:05:26 -06:00
Blake Blackshear
5b1884cfb3 WIP: revamp to incorporate motion 2020-02-22 09:05:26 -06:00
195 changed files with 1821 additions and 40763 deletions

View File

@@ -1,7 +1,6 @@
README.md
docs/
diagram.png
.gitignore
debug
config/
*.pyc
.git
*.pyc

4
.github/FUNDING.yml vendored
View File

@@ -1,3 +1 @@
github:
- blakeblackshear
- paularmstrong
github: blakeblackshear

View File

@@ -1,56 +0,0 @@
---
name: Bug report or Support request
about: Bug report or Support request
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what your issue is.
**Version of frigate**
Output from `/api/version`
**Config file**
Include your full config file wrapped in triple back ticks.
```yaml
config here
```
**Frigate container logs**
```
Include relevant log output here
```
**Frigate stats**
```json
Output from frigate's /api/stats endpoint
```
**FFprobe from your camera**
Run the following command and paste output below
```
ffprobe <stream_url>
```
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Computer Hardware**
- OS: [e.g. Ubuntu, Windows]
- Install method: [e.g. Addon, Docker Compose, Docker Command]
- Virtualization: [e.g. Proxmox, Virtualbox]
- Coral Version: [e.g. USB, PCIe, None]
- Network Setup: [e.g. Wired, WiFi]
**Camera Info:**
- Manufacturer: [e.g. Dahua]
- Model: [e.g. IPC-HDW5231R-ZE]
- Resolution: [e.g. 720p]
- FPS: [e.g. 5]
**Additional context**
Add any other context about the problem here.

17
.github/stale.yml vendored
View File

@@ -1,17 +0,0 @@
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 30
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 3
# Issues with these labels will never be considered stale
exemptLabels:
- pinned
- security
# Label to use when marking an issue as stale
staleLabel: stale
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Thank you
for your contributions.
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: false

View File

@@ -1,46 +0,0 @@
name: On pull request
on: pull_request
jobs:
web_lint:
name: Web - Lint
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 14.x
- run: npm install
working-directory: ./web
- name: Lint
run: npm run lint:cmd
working-directory: ./web
web_build:
name: Web - Build
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 14.x
- run: npm install
working-directory: ./web
- name: Build
run: npm run build
working-directory: ./web
web_test:
name: Web - Test
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 14.x
- run: npm install
working-directory: ./web
- name: Test
run: npm run test
working-directory: ./web

View File

@@ -1,28 +0,0 @@
name: On push
on:
push:
branches:
- master
- release-0.8.0
jobs:
deploy-docs:
name: Deploy docs
runs-on: ubuntu-latest
defaults:
run:
working-directory: ./docs
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 12.x
- run: npm install
- name: Build docs
run: npm run build
- name: Deploy documentation
uses: peaceiris/actions-gh-pages@v3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./docs/build

12
.gitignore vendored
View File

@@ -1,12 +1,4 @@
.DS_Store
*.pyc
*.pyc
debug
.vscode
config/config.yml
models
*.mp4
*.db
frigate/version.py
web/build
web/node_modules
web/coverage
config/config.yml

60
Dockerfile Executable file
View File

@@ -0,0 +1,60 @@
FROM ubuntu:18.04
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt -qq update && apt -qq install --no-install-recommends -y \
software-properties-common \
# apt-transport-https ca-certificates \
build-essential \
gnupg wget unzip \
# libcap-dev \
&& add-apt-repository ppa:deadsnakes/ppa -y \
&& apt -qq install --no-install-recommends -y \
python3.7 \
python3.7-dev \
python3-pip \
ffmpeg \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
&& python3.7 -m pip install -U wheel setuptools \
&& python3.7 -m pip install -U \
opencv-python-headless \
# python-prctl \
numpy \
imutils \
scipy \
&& python3.7 -m pip install -U \
SharedArray \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
pyarrow \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
&& apt -qq update \
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
&& apt -qq install --no-install-recommends -y \
libedgetpu1-max \
## Tensorflow lite (python 3.7 only)
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
# get model and labels
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names
RUN wget -q https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -O /cpu_model.zip && \
unzip /cpu_model.zip detect.tflite -d / && \
mv /detect.tflite /cpu_model.tflite && \
rm /cpu_model.zip
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
CMD ["python3.7", "-u", "detect_objects.py"]

674
LICENSE
View File

@@ -1,21 +1,661 @@
The MIT License
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (c) 2020 Blake Blackshear
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
Preamble
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

View File

@@ -1,59 +0,0 @@
default_target: amd64_frigate
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
version:
echo "VERSION='0.8.4-$(COMMIT_HASH)'" > frigate/version.py
web:
docker build --tag frigate-web --file docker/Dockerfile.web web/
amd64_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-amd64 --file docker/Dockerfile.wheels .
amd64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.1.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
amd64_frigate: version web
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --build-arg WHEELS_VERSION=1.0.3 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64 .
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
amd64nvidia_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-amd64nvidia --file docker/Dockerfile.wheels .
amd64nvidia_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
amd64nvidia_frigate: version web
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.3 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64nvidia .
amd64nvidia_all: amd64nvidia_wheels amd64nvidia_ffmpeg amd64nvidia_frigate
aarch64_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-aarch64 --file docker/Dockerfile.wheels .
aarch64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
aarch64_frigate: version web
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.3 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.aarch64 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
armv7_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.3-armv7 --file docker/Dockerfile.wheels .
armv7_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
armv7_frigate: version web
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.3 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.armv7 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
.PHONY: web

153
README.md
View File

@@ -1,41 +1,132 @@
<p align="center">
<img align="center" alt="logo" src="docs/static/img/frigate.png">
</p>
# Frigate - Realtime Object Detection for IP Cameras
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
# Frigate - NVR With Realtime Object Detection for IP Cameras
Use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load.
A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
- Tight integration with HomeAssistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- Records video clips of detected objects
- 24/7 recording
- Re-streaming via RTMP to reduce the number of connections to your camera
- Object detection with Tensorflow runs in a separate process
- Object info is published over MQTT for integration into HomeAssistant as a binary sensor
- An endpoint is available to view an MJPEG stream for debugging, but should not be used continuously
## Documentation
![Diagram](diagram.png)
View the documentation at https://blakeblackshear.github.io/frigate
## Example video (from older version)
You see multiple bounding boxes because it draws bounding boxes from all frames in the past 1 second where a person was detected. Not all of the bounding boxes were from the current frame.
[![](http://img.youtube.com/vi/nqHbCtyo4dY/0.jpg)](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
## Donations
If you would like to make a donation to support development, please use [Github Sponsors](https://github.com/sponsors/blakeblackshear).
## Getting Started
Build the container with
```
docker build -t frigate .
```
## Screenshots
Integration into HomeAssistant
<div>
<a href="docs/static/img/media_browser.png"><img src="docs/static/img/media_browser.png" height=400></a>
<a href="docs/static/img/notification.png"><img src="docs/static/img/notification.png" height=400></a>
</div>
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
Also comes with a builtin UI:
<div>
<a href="docs/static/img/home-ui.png"><img src="docs/static/img/home-ui.png" height=400></a>
<a href="docs/static/img/camera-ui.png"><img src="docs/static/img/camera-ui.png" height=400></a>
</div>
Run the container with
```bash
docker run --rm \
--privileged \
--shm-size=512m \ # should work for a 2-3 cameras
-v /dev/bus/usb:/dev/bus/usb \
-v <path_to_config_dir>:/config:ro \
-v /etc/localtime:/etc/localtime:ro \
-p 5000:5000 \
-e FRIGATE_RTSP_PASSWORD='password' \
frigate:latest
```
![Events](docs/static/img/events-ui.png)
Example docker-compose:
```yaml
frigate:
container_name: frigate
restart: unless-stopped
privileged: true
shm_size: '1g' # should work for 5-7 cameras
image: frigate:latest
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
- <path_to_config>:/config
ports:
- "5000:5000"
environment:
FRIGATE_RTSP_PASSWORD: "password"
```
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
Debug info is available at `http://localhost:5000/debug/stats`
## Integration with HomeAssistant
```
camera:
- name: Camera Last Person
platform: mqtt
topic: frigate/<camera_name>/person/snapshot
- name: Camera Last Car
platform: mqtt
topic: frigate/<camera_name>/car/snapshot
binary_sensor:
- name: Camera Person
platform: mqtt
state_topic: "frigate/<camera_name>/person"
device_class: motion
availability_topic: "frigate/available"
automation:
- alias: Alert me if a person is detected while armed away
trigger:
platform: state
entity_id: binary_sensor.camera_person
from: 'off'
to: 'on'
condition:
- condition: state
entity_id: alarm_control_panel.home_alarm
state: armed_away
action:
- service: notify.user_telegram
data:
message: "A person was detected."
data:
photo:
- url: http://<ip>:5000/<camera_name>/person/best.jpg
caption: A person was detected.
sensor:
- platform: rest
name: Frigate Debug
resource: http://localhost:5000/debug/stats
scan_interval: 5
json_attributes:
- back
- coral
value_template: 'OK'
- platform: template
sensors:
back_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["fps"] }}'
unit_of_measurement: 'FPS'
back_skipped_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["skipped_fps"] }}'
unit_of_measurement: 'FPS'
back_detection_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["detection_fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_inference:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
unit_of_measurement: 'ms'
```
## Tips
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed

View File

@@ -1,93 +1,18 @@
import os
from statistics import mean
import multiprocessing as mp
import statistics
import numpy as np
import datetime
from frigate.edgetpu import LocalObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
import time
from frigate.edgetpu import ObjectDetector
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
labels = load_labels('/labelmap.txt')
object_detector = ObjectDetector()
######
# Minimal same process runner
######
# object_detector = LocalObjectDetector()
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
frame = np.zeros((300,300,3), np.uint8)
input_frame = np.expand_dims(frame, axis=0)
# start = datetime.datetime.now().timestamp()
detection_times = []
# frame_times = []
# for x in range(0, 1000):
# start_frame = datetime.datetime.now().timestamp()
for x in range(0, 100):
start = time.monotonic()
object_detector.detect_raw(input_frame)
detection_times.append(time.monotonic()-start)
# tensor_input[:] = my_frame
# detections = object_detector.detect_raw(tensor_input)
# parsed_detections = []
# for d in detections:
# if d[1] < 0.4:
# break
# parsed_detections.append((
# labels[int(d[0])],
# float(d[1]),
# (d[2], d[3], d[4], d[5])
# ))
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
# duration = datetime.datetime.now().timestamp()-start
# print(f"Processed for {duration:.2f} seconds.")
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
def start(id, num_detections, detection_queue, event):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue, event)
start = datetime.datetime.now().timestamp()
frame_times = []
for x in range(0, num_detections):
start_frame = datetime.datetime.now().timestamp()
detections = object_detector.detect(my_frame)
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
duration = datetime.datetime.now().timestamp()-start
object_detector.cleanup()
print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
######
# Separate process runner
######
# event = mp.Event()
# detection_queue = mp.Queue()
# edgetpu_process = EdgeTPUProcess(detection_queue, {'1': event}, 'usb:0')
# start(1, 1000, edgetpu_process.detection_queue, event)
# print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")
####
# Multiple camera processes
####
camera_processes = []
events = {}
for x in range(0, 10):
events[str(x)] = mp.Event()
detection_queue = mp.Queue()
edgetpu_process_1 = EdgeTPUProcess(detection_queue, events, 'usb:0')
edgetpu_process_2 = EdgeTPUProcess(detection_queue, events, 'usb:1')
for x in range(0, 10):
camera_process = mp.Process(target=start, args=(x, 300, detection_queue, events[str(x)]))
camera_process.daemon = True
camera_processes.append(camera_process)
start_time = datetime.datetime.now().timestamp()
for p in camera_processes:
p.start()
for p in camera_processes:
p.join()
duration = datetime.datetime.now().timestamp()-start_time
print(f"Total - Processed for {duration:.2f} seconds.")
print(f"Average inference time: {statistics.mean(detection_times)*1000:.2f}ms")

BIN
config/back-mask.bmp Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

132
config/config.example.yml Normal file
View File

@@ -0,0 +1,132 @@
web_port: 5000
mqtt:
host: mqtt.server.com
topic_prefix: frigate
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
# user: username # Optional -- Uncomment for use
# password: password # Optional -- Uncomment for use
#################
# Default ffmpeg args. Optional and can be overwritten per camera.
# Should work with most RTSP cameras that send h264 video
# Built from the properties below with:
# "ffmpeg" + global_args + input_args + "-i" + input + output_args
#################
# ffmpeg:
# global_args:
# - -hide_banner
# - -loglevel
# - panic
# hwaccel_args: []
# input_args:
# - -avoid_negative_ts
# - make_zero
# - -fflags
# - nobuffer
# - -flags
# - low_delay
# - -strict
# - experimental
# - -fflags
# - +genpts+discardcorrupt
# - -vsync
# - drop
# - -rtsp_transport
# - tcp
# - -stimeout
# - '5000000'
# - -use_wallclock_as_timestamps
# - '1'
# output_args:
# - -f
# - rawvideo
# - -pix_fmt
# - rgb24
####################
# Global object configuration. Applies to all cameras
# unless overridden at the camera levels.
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
# min_area (optional): minimum width*height of the bounding box for the detected person
# max_area (optional): maximum width*height of the bounding box for the detected person
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
####################
objects:
track:
- person
- car
- truck
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
cameras:
back:
ffmpeg:
################
# Source passed to ffmpeg after the -i parameter. Supports anything compatible with OpenCV and FFmpeg.
# Environment variables that begin with 'FRIGATE_' may be referenced in {}
################
input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
#################
# These values will override default values for just this camera
#################
# global_args: []
# hwaccel_args: []
# input_args: []
# output_args: []
################
## Optionally specify the resolution of the video feed. Frigate will try to auto detect if not specified
################
# height: 1280
# width: 720
################
## Optional mask. Must be the same aspect ratio as your video feed.
##
## The mask works by looking at the bottom center of the bounding box for the detected
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
## false positive. In my mask, the grass and driveway visible from my backdoor camera
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
## person to stand) are black.
##
## Masked areas are also ignored for motion detection.
################
# mask: back-mask.bmp
################
# Allows you to limit the framerate within frigate for cameras that do not support
# custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,
# 3 every 3rd frame, etc.
################
take_frame: 1
################
# The expected framerate for the camera. Frigate will try and ensure it maintains this framerate
# by dropping frames as necessary. Setting this lower than the actual framerate will allow frigate
# to process every frame at the expense of realtime processing.
################
fps: 5
################
# Configuration for the snapshots in the debug view and mqtt
################
snapshots:
show_timestamp: True
################
# Camera level object config. This config is merged with the global config above.
################
objects:
track:
- person
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5

246
detect_objects.py Normal file
View File

@@ -0,0 +1,246 @@
import cv2
import time
import datetime
import queue
import yaml
import threading
import multiprocessing as mp
import subprocess as sp
import numpy as np
import logging
from flask import Flask, Response, make_response, jsonify
import paho.mqtt.client as mqtt
from frigate.video import track_camera
from frigate.object_processing import TrackedObjectProcessor
from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess
with open('/config/config.yml') as f:
CONFIG = yaml.safe_load(f)
MQTT_HOST = CONFIG['mqtt']['host']
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
# Set the default FFmpeg config
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
FFMPEG_DEFAULT_CONFIG = {
'global_args': FFMPEG_CONFIG.get('global_args',
['-hide_banner','-loglevel','panic']),
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
[]),
'input_args': FFMPEG_CONFIG.get('input_args',
['-avoid_negative_ts', 'make_zero',
'-fflags', 'nobuffer',
'-flags', 'low_delay',
'-strict', 'experimental',
'-fflags', '+genpts+discardcorrupt',
'-vsync', 'drop',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
'output_args': FFMPEG_CONFIG.get('output_args',
['-f', 'rawvideo',
'-pix_fmt', 'rgb24'])
}
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
class CameraWatchdog(threading.Thread):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.tflite_process = tflite_process
self.tracked_objects_queue = tracked_objects_queue
self.object_processor = object_processor
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(30)
for name, camera_process in self.camera_processes.items():
process = camera_process['process']
if (not self.object_processor.get_current_frame_time(name) is None and
(datetime.datetime.now().timestamp() - self.object_processor.get_current_frame_time(name)) > 30):
print(f"Last frame for {name} is more than 30 seconds old...")
if process.is_alive():
process.terminate()
print("Waiting for process to exit gracefully...")
process.join(timeout=30)
if process.exitcode is None:
print("Process didnt exit. Force killing...")
process.kill()
process.join()
if not process.is_alive():
print(f"Process for {name} is not alive. Starting again...")
camera_process['fps'].value = float(self.config[name]['fps'])
camera_process['skipped_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0
self.object_processor.camera_data[name]['current_frame_time'] = None
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
self.tflite_process.detect_lock, self.tflite_process.detect_ready, self.tflite_process.frame_ready, self.tracked_objects_queue,
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
process.daemon = True
camera_process['process'] = process
process.start()
print(f"Camera_process started for {name}: {process.pid}")
def main():
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
if rc != 0:
if rc == 3:
print ("MQTT Server unavailable")
elif rc == 4:
print ("MQTT Bad username or password")
elif rc == 5:
print ("MQTT Not authorized")
else:
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
client.on_connect = on_connect
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
if not MQTT_USER is None:
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
# start plasma store
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
time.sleep(1)
rc = plasma_process.poll()
if rc is not None:
raise RuntimeError("plasma_store exited unexpectedly with "
"code %d" % (rc,))
##
# Setup config defaults for cameras
##
for name, config in CONFIG['cameras'].items():
config['snapshots'] = {
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
}
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.Queue()
# Start the shared tflite process
tflite_process = EdgeTPUProcess()
# start the camera processes
camera_processes = {}
for name, config in CONFIG['cameras'].items():
camera_processes[name] = {
'fps': mp.Value('d', float(config['fps'])),
'skipped_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0)
}
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue,
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
camera_process.daemon = True
camera_processes[name]['process'] = camera_process
for name, camera_process in camera_processes.items():
camera_process['process'].start()
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
object_processor.start()
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
camera_watchdog.start()
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
log = logging.getLogger('werkzeug')
log.setLevel(logging.ERROR)
@app.route('/')
def ishealthy():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/debug/stats')
def stats():
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_processes.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'fps': camera_stats['fps'].value,
'skipped_fps': camera_stats['skipped_fps'].value,
'detection_fps': camera_stats['detection_fps'].value
}
stats['coral'] = {
'fps': total_detection_fps,
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2)
}
rc = plasma_process.poll()
stats['plasma_store_rc'] = rc
stats['tracked_objects_queue'] = tracked_objects_queue.qsize()
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in CONFIG['cameras']:
best_frame = object_processor.get_best(camera_name, label)
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
if camera_name in CONFIG['cameras']:
# return a multipart response
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name):
while True:
# max out at 1 FPS
time.sleep(1)
frame = object_processor.get_current_frame(camera_name)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
camera_watchdog.join()
plasma_process.terminate()
if __name__ == '__main__':
main()

View File

Before

Width:  |  Height:  |  Size: 132 KiB

After

Width:  |  Height:  |  Size: 132 KiB

View File

@@ -1,22 +0,0 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
## Tensorflow lite
&& pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_aarch64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -1,18 +0,0 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
# By default, use the i965 driver
ENV LIBVA_DRIVER_NAME=i965
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg dependencies
libgomp1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 libmfx1 i965-va-driver vainfo intel-media-va-driver mesa-va-drivers \
## Tensorflow lite
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -1,47 +0,0 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg dependencies
libgomp1 \
## Tensorflow lite
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
# nvidia layer (see https://gitlab.com/nvidia/container-images/cuda/blob/master/dist/11.1/ubuntu20.04-x86_64/base/Dockerfile)
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
RUN apt-get update && apt-get install -y --no-install-recommends \
gnupg2 curl ca-certificates && \
curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64 /" > /etc/apt/sources.list.d/cuda.list && \
echo "deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list && \
apt-get purge --autoremove -y curl \
&& rm -rf /var/lib/apt/lists/*
ENV CUDA_VERSION 11.1.1
# For libraries in the cuda-compat-* package: https://docs.nvidia.com/cuda/eula/index.html#attachment-a
RUN apt-get update && apt-get install -y --no-install-recommends \
cuda-cudart-11-1=11.1.74-1 \
cuda-compat-11-1 \
&& ln -s cuda-11.1 /usr/local/cuda && \
rm -rf /var/lib/apt/lists/*
# Required for nvidia-docker v1
RUN echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && \
echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64
# nvidia-container-runtime
ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
ENV NVIDIA_REQUIRE_CUDA "cuda>=11.1 brand=tesla,driver>=418,driver<419 brand=tesla,driver>=440,driver<441 brand=tesla,driver>=450,driver<451"

View File

@@ -1,24 +0,0 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
libaom0 \
libx265-179 \
## Tensorflow lite
&& pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_armv7l.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -1,61 +0,0 @@
ARG ARCH=amd64
ARG WHEELS_VERSION
ARG FFMPEG_VERSION
FROM blakeblackshear/frigate-wheels:${WHEELS_VERSION}-${ARCH} as wheels
FROM blakeblackshear/frigate-ffmpeg:${FFMPEG_VERSION}-${ARCH} as ffmpeg
FROM frigate-web as web
FROM ubuntu:20.04
LABEL maintainer "blakeb@blakeshome.com"
COPY --from=ffmpeg /usr/local /usr/local/
COPY --from=wheels /wheels/. /wheels/
ENV FLASK_ENV=development
# ENV FONTCONFIG_PATH=/etc/fonts
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get upgrade -y \
&& apt-get -qq install --no-install-recommends -y \
gnupg wget unzip tzdata nginx libnginx-mod-rtmp \
&& apt-get -qq install --no-install-recommends -y \
python3-pip \
&& pip3 install -U /wheels/*.whl \
&& APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn apt-key adv --fetch-keys https://packages.cloud.google.com/apt/doc/apt-key.gpg \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections \
&& apt-get -qq update && apt-get -qq install --no-install-recommends -y \
libedgetpu1-max=15.0 \
&& rm -rf /var/lib/apt/lists/* /wheels \
&& (apt-get autoremove -y; apt-get autoclean -y)
RUN pip3 install \
peewee_migrate \
zeroconf \
voluptuous\
Flask-Sockets \
gevent \
gevent-websocket
COPY nginx/nginx.conf /etc/nginx/nginx.conf
# get model and labels
COPY labelmap.txt /labelmap.txt
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess.tflite -O /cpu_model.tflite
WORKDIR /opt/frigate/
ADD frigate frigate/
ADD migrations migrations/
COPY --from=web /opt/frigate/build web/
COPY run.sh /run.sh
RUN chmod +x /run.sh
EXPOSE 5000
EXPOSE 1935
CMD ["/run.sh"]

View File

@@ -1,474 +0,0 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
export CXXFLAGS="${CXXFLAGS} -fPIC" && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make check && \
make -j $(nproc) install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
# --enable-omx \
# --enable-omx-rpi \
# --enable-mmal \
--enable-v4l2_m2m \
--enable-neon \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make -j $(nproc) && \
make -j $(nproc) install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/
# Run ffmpeg with -c:v h264_v4l2m2m to enable HW accell for decoding on raspberry pi4 64-bit

View File

@@ -1,468 +0,0 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
libva-dev \
libmfx-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make && \
make install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make && \
make install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make && \
make install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make && \
make install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make && \
make install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make check && \
make install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmfx \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-vaapi \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make && \
make install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/
RUN \
apt-get update -y && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver mesa-va-drivers && \
rm -rf /var/lib/apt/lists/*

View File

@@ -1,549 +0,0 @@
# inspired by https://github.com/jrottenberg/ffmpeg/blob/master/docker-images/4.3/ubuntu1804/Dockerfile
# ffmpeg - http://ffmpeg.org/download.html
#
# From https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu
#
# https://hub.docker.com/r/jrottenberg/ffmpeg/
#
#
FROM nvidia/cuda:11.1-devel-ubuntu20.04 AS devel-base
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
ENV DEBIAN_FRONTEND=noninteractive
WORKDIR /tmp/workdir
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM nvidia/cuda:11.1-runtime-ubuntu20.04 AS runtime-base
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
ENV DEBIAN_FRONTEND=noninteractive
WORKDIR /tmp/workdir
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 libxcb-shape0-dev && \
apt-get autoremove -y && \
apt-get clean -y
FROM devel-base as build
ENV NVIDIA_HEADERS_VERSION=9.1.23.1
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
LIBSRT_VERSION=1.4.1 \
LIBARIBB24_VERSION=1.0.3 \
LIBPNG_VERSION=1.6.9 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LIBARIBB24_SHA256SUM="f61560738926e57f9173510389634d8c06cabedfa857db4b28fb7704707ff128 v1.0.3.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
RUN \
DIR=/tmp/nv-codec-headers && \
git clone https://github.com/FFmpeg/nv-codec-headers ${DIR} && \
cd ${DIR} && \
git checkout n${NVIDIA_HEADERS_VERSION} && \
make PREFIX="${PREFIX}" && \
make install PREFIX="${PREFIX}" && \
rm -rf ${DIR}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make && \
make install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make && \
make install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make && \
make install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make && \
make install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make && \
make install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make check && \
make install && \
rm -rf ${DIR}
## libsrt https://github.com/Haivision/srt
RUN \
DIR=/tmp/srt && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/Haivision/srt/archive/v${LIBSRT_VERSION}.tar.gz && \
tar -xz --strip-components=1 -f v${LIBSRT_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## libpng
RUN \
DIR=/tmp/png && \
mkdir -p ${DIR} && \
cd ${DIR} && \
git clone https://git.code.sf.net/p/libpng/code ${DIR} -b v${LIBPNG_VERSION} --depth 1 && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make check && \
make install && \
rm -rf ${DIR}
## libaribb24
RUN \
DIR=/tmp/b24 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/nkoriyama/aribb24/archive/v${LIBARIBB24_VERSION}.tar.gz && \
echo ${LIBARIBB24_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBARIBB24_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure CFLAGS="-I${PREFIX}/include -fPIC" --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-libsrt \
--enable-libaribb24 \
--enable-nvenc \
--enable-cuda \
--enable-cuvid \
--enable-libnpp \
--extra-cflags="-I${PREFIX}/include -I${PREFIX}/include/ffnvcodec -I/usr/local/cuda/include/" \
--extra-ldflags="-L${PREFIX}/lib -L/usr/local/cuda/lib64 -L/usr/local/cuda/lib32/" && \
make && \
make install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
LD_LIBRARY_PATH="${PREFIX}/lib:${PREFIX}/lib64:${LD_LIBRARY_PATH}" ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/* /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g; s:/lib64:/lib:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM runtime-base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
# copy only needed files, without copying nvidia dev files
COPY --from=build /usr/local/bin /usr/local/bin/
COPY --from=build /usr/local/share /usr/local/share/
COPY --from=build /usr/local/lib /usr/local/lib/
COPY --from=build /usr/local/include /usr/local/include/
# Let's make sure the app built correctly
# Convenient to verify on https://hub.docker.com/r/jrottenberg/ffmpeg/builds/ console output

View File

@@ -1,490 +0,0 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.3 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig:/opt/vc/lib/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib:/opt/vc/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
sudo \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
libx265-dev \
libaom-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
# ### x265 http://x265.org/
# RUN \
# DIR=/tmp/x265 && \
# mkdir -p ${DIR} && \
# cd ${DIR} && \
# curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
# tar -zx && \
# cd x265_${X265_VERSION}/build/linux && \
# sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
# sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
# # export CXXFLAGS="${CXXFLAGS} -fPIC" && \
# ./multilib.sh && \
# make -C 8bit install && \
# rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
# RUN \
# DIR=/tmp/aom && \
# git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
# cd ${DIR} ; \
# rm -rf CMakeCache.txt CMakeFiles ; \
# mkdir -p ./aom_build ; \
# cd ./aom_build ; \
# cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
# make ; \
# make install ; \
# rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
# make check && \
make -j $(nproc) install && \
rm -rf ${DIR}
## userland https://github.com/raspberrypi/userland
RUN \
DIR=/tmp/userland && \
mkdir -p ${DIR} && \
cd ${DIR} && \
git clone --depth 1 https://github.com/raspberrypi/userland.git . && \
./buildme && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-omx \
--enable-omx-rpi \
--enable-mmal \
--enable-v4l2_m2m \
--enable-neon \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make -j $(nproc) && \
make -j $(nproc) install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
# copy userland lib too
ldd ${PREFIX}/bin/ffmpeg | grep opt/vc | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
RUN \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends libx265-dev libaom-dev && \
apt-get autoremove -y && \
apt-get clean -y
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/

View File

@@ -1,9 +0,0 @@
ARG NODE_VERSION=14.0
FROM node:${NODE_VERSION}
WORKDIR /opt/frigate
COPY . .
RUN npm install && npm run build

View File

@@ -1,42 +0,0 @@
FROM ubuntu:20.04 as build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
&& apt-get -qq install -y \
python3 \
python3-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# scipy dependencies
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py "pip==20.2.4"
RUN pip3 install scikit-build
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
imutils \
scipy \
psutil \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
click \
setproctitle \
peewee \
gevent
FROM scratch
COPY --from=build /wheels /wheels

20
docs/.gitignore vendored
View File

@@ -1,20 +0,0 @@
# Dependencies
/node_modules
# Production
/build
# Generated files
.docusaurus
.cache-loader
# Misc
.DS_Store
.env.local
.env.development.local
.env.test.local
.env.production.local
npm-debug.log*
yarn-debug.log*
yarn-error.log*

74
docs/DEVICES.md Normal file
View File

@@ -0,0 +1,74 @@
# Configuration Examples
### Default (most RTSP cameras)
This is the default ffmpeg command and should work with most RTSP cameras that send h264 video
```yaml
ffmpeg:
global_args:
- -hide_banner
- -loglevel
- panic
hwaccel_args: []
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -rtsp_transport
- tcp
- -stimeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
output_args:
- -vf
- mpdecimate
- -f
- rawvideo
- -pix_fmt
- rgb24
```
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -use_wallclock_as_timestamps
- '1'
```
### Hardware Acceleration
Intel Quicksync
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```

View File

@@ -1,5 +0,0 @@
# Website
This website is built using [Docusaurus 2](https://v2.docusaurus.io/), a modern static website generator.
For installation and contributing instructions, please follow the [Contributing Docs](https://blakeblackshear.github.io/frigate/contributing).

View File

@@ -1,3 +0,0 @@
module.exports = {
presets: [require.resolve('@docusaurus/core/lib/babel/preset')],
};

View File

@@ -1,139 +0,0 @@
---
id: advanced
title: Advanced
sidebar_label: Advanced
---
## Advanced configuration
### `motion`
Global motion detection config. These may also be defined at the camera level.
```yaml
motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 25
# Optional: Minimum size in pixels in the resized motion image that counts as motion
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
# moving objects.
contour_area: 100
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
# Too low and a fast moving person wont be detected as motion.
delta_alpha: 0.2
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.2
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
# Lower values result in less CPU, but small changes may not register as motion.
frame_height: 180
```
### `detect`
Global object detection settings. These may also be defined at the camera level.
```yaml
detect:
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
```
### `logger`
Change the default log level for troubleshooting purposes.
```yaml
logger:
# Optional: default log level (default: shown below)
default: info
# Optional: module by module log level configuration
logs:
frigate.mqtt: error
```
Available log levels are: `debug`, `info`, `warning`, `error`, `critical`
Examples of available modules are:
- `frigate.app`
- `frigate.mqtt`
- `frigate.edgetpu`
- `frigate.zeroconf`
- `detector.<detector_name>`
- `watchdog.<camera_name>`
- `ffmpeg.<camera_name>.<sorted_roles>` NOTE: All FFmpeg logs are sent as `error` level.
### `environment_vars`
This section can be used to set environment variables for those unable to modify the environment of the container (ie. within Hass.io)
```yaml
environment_vars:
EXAMPLE_VAR: value
```
### `database`
Event and clip information is managed in a sqlite database at `/media/frigate/clips/frigate.db`. If that database is deleted, clips will be orphaned and will need to be cleaned up manually. They also won't show up in the Media Browser within HomeAssistant.
If you are storing your clips on a network share (SMB, NFS, etc), you may get a `database is locked` error message on startup. You can customize the location of the database in the config if necessary.
This may need to be in a custom location if network storage is used for clips.
```yaml
database:
path: /media/frigate/clips/frigate.db
```
### `detectors`
```yaml
detectors:
# Required: name of the detector
coral:
# Required: type of the detector
# Valid values are 'edgetpu' (requires device property below) and 'cpu'. type: edgetpu
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
device: usb
# Optional: num_threads value passed to the tflite.Interpreter (default: shown below)
# This value is only used for CPU types
num_threads: 3
```
### `model`
```yaml
model:
# Required: height of the trained model
height: 320
# Required: width of the trained model
width: 320
```
## Custom Models
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
You also need to update the model width/height in the config if they differ from the defaults.
### Customizing the Labelmap
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
- Download the [COCO labelmap](https://dl.google.com/coral/canned_models/coco_labels.txt)
- Modify the label names as desired. For example, change `7 truck` to `7 car`
- Mount the new file at `/labelmap.txt` in the container with an additional volume
```
-v ./config/labelmap.txt:/labelmap.txt
```

View File

@@ -1,452 +0,0 @@
---
id: cameras
title: Cameras
---
## Setting Up Camera Inputs
Up to 4 inputs can be configured for each camera and the role of each input can be mixed and matched based on your needs. This allows you to use a lower resolution stream for object detection, but create clips from a higher resolution stream, or vice versa.
Each role can only be assigned to one input per camera. The options for roles are as follows:
| Role | Description |
| -------- | ------------------------------------------------------------------------------------ |
| `detect` | Main feed for object detection |
| `clips` | Clips of events from objects detected in the `detect` feed. [docs](#recording-clips) |
| `record` | Saves 60 second segments of the video feed. [docs](#247-recordings) |
| `rtmp` | Broadcast as an RTMP feed for other services to consume. [docs](#rtmp-streams) |
### Example
```yaml
mqtt:
host: mqtt.server.com
cameras:
back:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/live
roles:
- clips
- record
width: 1280
height: 720
fps: 5
```
## Masks & Zones
### Masks
Masks are used to ignore initial detection in areas of your camera's field of view.
There are two types of masks available:
- **Motion masks**: Motion masks are used to prevent unwanted types of motion from triggering detection. Try watching the video feed with `Motion Boxes` enabled to see what may be regularly detected as motion. For example, you want to mask out your timestamp, the sky, rooftops, etc. Keep in mind that this mask only prevents motion from being detected and does not prevent objects from being detected if object detection was started due to motion in unmasked areas. Motion is also used during object tracking to refine the object detection area in the next frame. Over masking will make it more difficult for objects to be tracked. To see this effect, create a mask, and then watch the video feed with `Motion Boxes` enabled again.
- **Object filter masks**: Object filter masks are used to filter out false positives for a given object type. These should be used to filter any areas where it is not possible for an object of that type to be. The bottom center of the detected object's bounding box is evaluated against the mask. If it is in a masked area, it is assumed to be a false positive. For example, you may want to mask out rooftops, walls, the sky, treetops for people. For cars, masking locations other than the street or your driveway will tell frigate that anything in your yard is a false positive.
To create a poly mask:
1. Visit the [web UI](/usage/web)
1. Click the camera you wish to create a mask for
1. Click "Mask & Zone creator"
1. Click "Add" on the type of mask or zone you would like to create
1. Click on the camera's latest image to create a masked area. The yaml representation will be updated in real-time
1. When you've finished creating your mask, click "Copy" and paste the contents into your `config.yaml` file and restart Frigate
Example of a finished row corresponding to the below example image:
```yaml
motion:
mask: '0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432'
```
![poly](/img/example-mask-poly.png)
```yaml
# Optional: camera level motion config
motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
```
### Zones
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
During testing, `draw_zones` should be set in the config to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
To create a zone, follow the same steps above for a "Motion mask", but use the section of the web UI for creating a zone instead.
```yaml
# Optional: zones for this camera
zones:
# Required: name of the zone
# NOTE: This must be different than any camera names, but can match with another zone on another
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: Zone level object filters.
# NOTE: The global and camera filters are applied upstream.
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.7
```
## Objects
```yaml
# Optional: Camera level object filters config.
objects:
track:
- person
- car
# Optional: mask to prevent all object types from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object.
# NOTE: This mask is COMBINED with the object type specific mask below
mask: 0,0,1000,0,1000,200,0,200
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.7
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object
mask: 0,0,1000,0,1000,200,0,200
```
## Clips
Frigate can save video clips without any CPU overhead for encoding by simply copying the stream directly with FFmpeg. It leverages FFmpeg's segment functionality to maintain a cache of video for each camera. The cache files are written to disk at `/tmp/cache` and do not introduce memory overhead. When an object is being tracked, it will extend the cache to ensure it can assemble a clip when the event ends. Once the event ends, it again uses FFmpeg to assemble a clip by combining the video clips without any encoding by the CPU. Assembled clips are are saved to `/media/frigate/clips`. Clips are retained according to the retention settings defined on the config for each object type.
These clips will not be playable in the web UI or in HomeAssistant's media browser unless your camera sends video as h264.
:::caution
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
:::
```yaml
clips:
# Required: enables clips for the camera (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: Number of seconds before the event to include in the clips (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include in the clips (default: shown below)
post_capture: 5
# Optional: Objects to save clips for. (default: all tracked objects)
objects:
- person
# Optional: Restrict clips to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
## Snapshots
Frigate can save a snapshot image to `/media/frigate/clips` for each event named as `<camera>-<id>.jpg`.
```yaml
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
snapshots:
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: False
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: False
# Optional: crop the snapshot (default: shown below)
crop: False
# Optional: height to resize the snapshot to (default: original size)
height: 175
# Optional: Restrict snapshots to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
## 24/7 Recordings
24/7 recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding and are available in HomeAssistant's media browser. Each camera supports a configurable retention policy in the config.
:::caution
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
:::
```yaml
# Optional: 24/7 recording configuration
record:
# Optional: Enable recording (default: global setting)
enabled: False
# Optional: Number of days to retain (default: global setting)
retain_days: 30
```
## RTMP streams
Frigate can re-stream your video feed as a RTMP feed for other applications such as HomeAssistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and HomeAssistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.
## Full example
The following is a full example of all of the options together for a camera configuration
```yaml
cameras:
# Required: name of the camera
back:
# Required: ffmpeg settings for the camera
ffmpeg:
# Required: A list of input streams for the camera. See documentation for more information.
inputs:
# Required: the path to the stream
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
# Required: list of roles for this stream. valid values are: detect,record,clips,rtmp
# NOTICE: In addition to assigning the record, clips, and rtmp roles,
# they must also be enabled in the camera config.
roles:
- detect
- rtmp
# Optional: stream specific global args (default: inherit)
global_args:
# Optional: stream specific hwaccel args (default: inherit)
hwaccel_args:
# Optional: stream specific input args (default: inherit)
input_args:
# Optional: camera specific global args (default: inherit)
global_args:
# Optional: camera specific hwaccel args (default: inherit)
hwaccel_args:
# Optional: camera specific input args (default: inherit)
input_args:
# Optional: camera specific output args (default: inherit)
output_args:
# Required: width of the frame for the input with the detect role
width: 1280
# Required: height of the frame for the input with the detect role
height: 720
# Optional: desired fps for your camera for the input with the detect role
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
# Frigate will attempt to autodetect if not specified.
fps: 5
# Optional: camera level motion config
motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
# Optional: timeout for highest scoring image before allowing it
# to be replaced by a newer image. (default: shown below)
best_image_timeout: 60
# Optional: zones for this camera
zones:
# Required: name of the zone
# NOTE: This must be different than any camera names, but can match with another zone on another
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: Zone level object filters.
# NOTE: The global and camera filters are applied upstream.
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.7
# Optional: Camera level detect settings
detect:
# Optional: enables detection for the camera (default: True)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: True
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
# Optional: save clips configuration
clips:
# Required: enables clips for the camera (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: Number of seconds before the event to include in the clips (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include in the clips (default: shown below)
post_capture: 5
# Optional: Objects to save clips for. (default: all tracked objects)
objects:
- person
# Optional: Restrict clips to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: 24/7 recording configuration
record:
# Optional: Enable recording (default: global setting)
enabled: False
# Optional: Number of days to retain (default: global setting)
retain_days: 30
# Optional: RTMP re-stream configuration
rtmp:
# Required: Enable the live stream (default: True)
enabled: True
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
snapshots:
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: False
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: False
# Optional: crop the snapshot (default: shown below)
crop: False
# Optional: height to resize the snapshot to (default: original size)
height: 175
# Optional: Restrict snapshots to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: Configuration for the jpg snapshots published via MQTT
mqtt:
# Optional: Enable publishing snapshot via mqtt for camera (default: shown below)
# NOTE: Only applies to publishing image data to MQTT via 'frigate/<camera_name>/<object_name>/snapshot'.
# All other messages will still be published.
enabled: True
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: True
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: True
# Optional: crop the snapshot (default: shown below)
crop: True
# Optional: height to resize the snapshot to (default: shown below)
height: 270
# Optional: Restrict mqtt messages to objects that entered any of the listed zones (default: no required zones)
required_zones: []
# Optional: Camera level object filters config.
objects:
track:
- person
- car
# Optional: mask to prevent all object types from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object.
# NOTE: This mask is COMBINED with the object type specific mask below
mask: 0,0,1000,0,1000,200,0,200
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.7
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object
mask: 0,0,1000,0,1000,200,0,200
```
## Camera specific configuration
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- '1'
```
### Reolink 410/520 (possibly others)
Several users have reported success with the rtmp video from Reolink cameras.
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rw_timeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
```
### Blue Iris RTSP Cameras
You will need to remove `nobuffer` flag for Blue Iris RTSP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rtsp_transport
- tcp
- -stimeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
```

View File

@@ -1,53 +0,0 @@
---
id: detectors
title: Detectors
---
The default config will look for a USB Coral device. If you do not have a Coral, you will need to configure a CPU detector. If you have PCI or multiple Coral devices, you need to configure your detector devices in the config file. When using multiple detectors, they run in dedicated processes, but pull from a common queue of requested detections across all cameras.
Frigate supports `edgetpu` and `cpu` as detector types. The device value should be specified according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api).
**Note**: There is no support for Nvidia GPUs to perform object detection with tensorflow. It can be used for ffmpeg decoding, but not object detection.
Single USB Coral:
```yaml
detectors:
coral:
type: edgetpu
device: usb
```
Multiple USB Corals:
```yaml
detectors:
coral1:
type: edgetpu
device: usb:0
coral2:
type: edgetpu
device: usb:1
```
Mixing Corals:
```yaml
detectors:
coral_usb:
type: edgetpu
device: usb
coral_pci:
type: edgetpu
device: pci
```
CPU Detectors (not recommended):
```yaml
detectors:
cpu1:
type: cpu
cpu2:
type: cpu
```

View File

@@ -1,19 +0,0 @@
---
id: false_positives
title: Reducing false positives
---
Tune your object filters to adjust false positives: `min_area`, `max_area`, `min_score`, `threshold`.
For object filters in your configuration, any single detection below `min_score` will be ignored as a false positive. `threshold` is based on the median of the history of scores (padded to 3 values) for a tracked object. Consider the following frames when `min_score` is set to 0.6 and threshold is set to 0.85:
| Frame | Current Score | Score History | Computed Score | Detected Object |
| ----- | ------------- | --------------------------------- | -------------- | --------------- |
| 1 | 0.7 | 0.0, 0, 0.7 | 0.0 | No |
| 2 | 0.55 | 0.0, 0.7, 0.0 | 0.0 | No |
| 3 | 0.85 | 0.7, 0.0, 0.85 | 0.7 | No |
| 4 | 0.90 | 0.7, 0.85, 0.95, 0.90 | 0.875 | Yes |
| 5 | 0.88 | 0.7, 0.85, 0.95, 0.90, 0.88 | 0.88 | Yes |
| 6 | 0.95 | 0.7, 0.85, 0.95, 0.90, 0.88, 0.95 | 0.89 | Yes |
In frame 2, the score is below the `min_score` value, so frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.

View File

@@ -1,138 +0,0 @@
---
id: index
title: Configuration
---
HassOS users can manage their configuration directly in the addon Configuration tab. For other installations, the default location for the config file is `/config/config.yml`. This can be overridden with the `CONFIG_FILE` environment variable. Camera specific ffmpeg parameters are documented [here](cameras.md).
It is recommended to start with a minimal configuration and add to it:
```yaml
mqtt:
host: mqtt.server.com
cameras:
back:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
width: 1280
height: 720
fps: 5
```
## Required
## `mqtt`
```yaml
mqtt:
# Required: host name
host: mqtt.server.com
# Optional: port (default: shown below)
port: 1883
# Optional: topic prefix (default: shown below)
# WARNING: must be unique if you are running multiple instances
topic_prefix: frigate
# Optional: client id (default: shown below)
# WARNING: must be unique if you are running multiple instances
client_id: frigate
# Optional: user
user: mqtt_user
# Optional: password
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}.
# eg. password: '{FRIGATE_MQTT_PASSWORD}'
password: password
# Optional: interval in seconds for publishing stats (default: shown below)
stats_interval: 60
```
## `cameras`
Each of your cameras must be configured. The following is the minimum required to register a camera in Frigate. Check the [camera configuration page](cameras.md) for a complete list of options.
```yaml
cameras:
# Name of your camera
front_door:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
width: 1280
height: 720
fps: 5
```
## Optional
### `clips`
```yaml
clips:
# Optional: Maximum length of time to retain video during long events. (default: shown below)
# NOTE: If an object is being tracked for longer than this amount of time, the cache
# will begin to expire and the resulting clip will be the last x seconds of the event.
max_seconds: 300
# Optional: size of tmpfs mount to create for cache files (default: not set)
# mount -t tmpfs -o size={tmpfs_cache_size} tmpfs /tmp/cache
# NOTICE: Addon users must have Protection mode disabled for the addon when using this setting.
# Also, if you have mounted a tmpfs volume through docker, this value should not be set in your config.
tmpfs_cache_size: 256m
# Optional: Retention settings for clips (default: shown below)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
### `ffmpeg`
```yaml
ffmpeg:
# Optional: global ffmpeg args (default: shown below)
global_args: -hide_banner -loglevel warning
# Optional: global hwaccel args (default: shown below)
# NOTE: See hardware acceleration docs for your specific device
hwaccel_args: []
# Optional: global input args (default: shown below)
input_args: -avoid_negative_ts make_zero -fflags +genpts+discardcorrupt -rtsp_transport tcp -stimeout 5000000 -use_wallclock_as_timestamps 1
# Optional: global output args
output_args:
# Optional: output args for detect streams (default: shown below)
detect: -f rawvideo -pix_fmt yuv420p
# Optional: output args for record streams (default: shown below)
record: -f segment -segment_time 60 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
# Optional: output args for clips streams (default: shown below)
clips: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
# Optional: output args for rtmp streams (default: shown below)
rtmp: -c copy -f flv
```
### `objects`
Can be overridden at the camera level
```yaml
objects:
# Optional: list of objects to track from labelmap.txt (default: shown below)
track:
- person
# Optional: filters to reduce false positives for specific object types
filters:
person:
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
min_area: 5000
# Optional: maximum width*height of the bounding box for the detected object (default: 24000000)
max_area: 100000
# Optional: minimum score for the object to initiate tracking (default: shown below)
min_score: 0.5
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
threshold: 0.7
```

View File

@@ -1,110 +0,0 @@
---
id: nvdec
title: nVidia hardware decoder
---
Certain nvidia cards include a hardware decoder, which can greatly improve the
performance of video decoding. In order to use NVDEC, a special build of
ffmpeg with NVDEC support is required. The special docker architecture 'amd64nvidia'
includes this support for amd64 platforms. An aarch64 for the Jetson, which
also includes NVDEC may be added in the future.
## Docker setup
### Requirements
[nVidia closed source driver](https://www.nvidia.com/en-us/drivers/unix/) required to access NVDEC.
[nvidia-docker](https://github.com/NVIDIA/nvidia-docker) required to pass NVDEC to docker.
### Setting up docker-compose
In order to pass NVDEC, the docker engine must be set to `nvidia` and the environment variables
`NVIDIA_VISIBLE_DEVICES=all` and `NVIDIA_DRIVER_CAPABILITIES=compute,utility,video` must be set.
In a docker compose file, these lines need to be set:
```
services:
frigate:
...
image: blakeblackshear/frigate:stable-amd64nvidia
runtime: nvidia
environment:
- NVIDIA_VISIBLE_DEVICES=all
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
```
### Setting up the configuration file
In your frigate config.yml, you'll need to set ffmpeg to use the hardware decoder.
The decoder you choose will depend on the input video.
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get a list)
```
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
```
For example, for H265 video (hevc), you'll select `hevc_cuvid`. Add
`-c:v hevc_covid` to your ffmpeg input arguments:
```
ffmpeg:
input_args:
...
- -c:v
- hevc_cuvid
```
If everything is working correctly, you should see a significant improvement in performance.
Verify that hardware decoding is working by running `nvidia-smi`, which should show the ffmpeg
processes:
```
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 455.38 Driver Version: 455.38 CUDA Version: 11.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce GTX 166... Off | 00000000:03:00.0 Off | N/A |
| 38% 41C P2 36W / 125W | 2082MiB / 5942MiB | 5% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 12737 C ffmpeg 249MiB |
| 0 N/A N/A 12751 C ffmpeg 249MiB |
| 0 N/A N/A 12772 C ffmpeg 249MiB |
| 0 N/A N/A 12775 C ffmpeg 249MiB |
| 0 N/A N/A 12800 C ffmpeg 249MiB |
| 0 N/A N/A 12811 C ffmpeg 417MiB |
| 0 N/A N/A 12827 C ffmpeg 417MiB |
+-----------------------------------------------------------------------------+
```
To further improve performance, you can set ffmpeg to skip frames in the output,
using the fps filter:
```
output_args:
- -filter:v
- fps=fps=5
```
This setting, for example, allows Frigate to consume my 10-15fps camera streams on
my relatively low powered Haswell machine with relatively low cpu usage.

View File

@@ -1,72 +0,0 @@
---
id: optimizing
title: Optimizing performance
---
- **Google Coral**: It is strongly recommended to use a Google Coral, but Frigate will fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU. Frigate should work with any supported Coral device from https://coral.ai
- **Resolution**: For the `detect` input, choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
- **FPS**: 5 frames per second should be adequate. Higher frame rates will require more CPU usage without improving detections or accuracy. Reducing the frame rate on your camera will have the greatest improvement on system resources.
- **Hardware Acceleration**: Make sure you configure the `hwaccel_args` for your hardware. They provide a significant reduction in CPU usage if they are available.
- **Masks**: Masks can be used to ignore motion and reduce your idle CPU load. If you have areas with regular motion such as timestamps or trees blowing in the wind, frigate will constantly try to determine if that motion is from a person or other object you are tracking. Those detections not only increase your average CPU usage, but also clog the pipeline for detecting objects elsewhere. If you are experiencing high values for `detection_fps` when no objects of interest are in the cameras, you should use masks to tell frigate to ignore movement from trees, bushes, timestamps, or any part of the image where detections should not be wasted looking for objects.
### FFmpeg Hardware Acceleration
Frigate works on Raspberry Pi 3b/4 and x86 machines. It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible.
Raspberry Pi 3/4 (32-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_mmal
```
Raspberry Pi 3/4 (64-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_v4l2m2m
```
Intel-based CPUs (<10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```
Intel-based CPUs (>=10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- qsv
- -qsv_device
- /dev/dri/renderD128
```
AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
**Note:** You also need to set `LIBVA_DRIVER_NAME=radeonsi` as an environment variable on the container.
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
```
Nvidia GPU based decoding via NVDEC is supported, but requires special configuration. See the [nvidia NVDEC documentation](/configuration/nvdec) for more details.

View File

@@ -1,131 +0,0 @@
---
id: contributing
title: Contributing
---
## Getting the source
### Core, Web, Docker, and Documentation
This repository holds the main Frigate application and all of its dependencies.
Fork [blakeblackshear/frigate](https://github.com/blakeblackshear/frigate.git) to your own GitHub profile, then clone the forked repo to your local machine.
From here, follow the guides for:
- [Core](#core)
- [Web Interface](#web-interface)
- [Documentation](#documentation)
### Frigate Home Assistant Addon
This repository holds the Home Assistant Addon, for use with Home Assistant OS and compatible installations. It is the piece that allows you to run Frigate from your Home Assistant Supervisor tab.
Fork [blakeblackshear/frigate-hass-addons](https://github.com/blakeblackshear/frigate-hass-addons) to your own Github profile, then clone the forked repo to your local machine.
### Frigate Home Assistant Integration
This repository holds the custom integration that allows your Home Assistant installation to automatically create entities for your Frigate instance, whether you run that with the [addon](#frigate-home-assistant-addon) or in a separate Docker instance.
Fork [blakeblackshear/frigate-hass-integration](https://github.com/blakeblackshear/frigate-hass-integration) to your own GitHub profile, then clone the forked repo to your local machine.
## Core
### Prerequisites
- [Frigate source code](#frigate-core-web-and-docs)
- GNU make
- Docker
## Web Interface
### Prerequisites
- [Frigate source code](#frigate-core-web-and-docs)
- All [core](#core) prerequisites _or_ another running Frigate instance locally available
- Node.js 14
### Making changes
#### 1. Set up a Frigate instance
The Web UI requires an instance of Frigate to interact with for all of its data. You can either run an instance locally (recommended) or attach to a separate instance accessible on your network.
To run the local instance, follow the [core](#core) development instructions.
If you won't be making any changes to the Frigate HTTP API, you can attach the web development server to any Frigate instance on your network. Skip this step and go to [3a](#3a-run-the-development-server-against-a-non-local-instance).
#### 2. Install dependencies
```console
cd web && npm install
```
#### 3. Run the development server
```console
cd web && npm run start
```
#### 3a. Run the development server against a non-local instance
To run the development server against a non-local instance, you will need to provide an environment variable, `SNOWPACK_PUBLIC_API_HOST` that tells the web application how to connect to the Frigate API:
```console
cd web && SNOWPACK_PUBLIC_API_HOST=http://<ip-address-to-your-frigate-instance>:5000 npm run start
```
#### 4. Making changes
The Web UI is built using [Snowpack](https://www.snowpack.dev/), [Preact](https://preactjs.com), and [Tailwind CSS](https://tailwindcss.com).
Light guidelines and advice:
- Avoid adding more dependencies. The web UI intends to be lightweight and fast to load.
- Do not make large sweeping changes. [Open a discussion on GitHub](https://github.com/blakeblackshear/frigate/discussions/new) for any large or architectural ideas.
- Ensure `lint` passes. This command will ensure basic conformance to styles, applying as many automatic fixes as possible, including Prettier formatting.
```console
npm run lint
```
- Add to unit tests and ensure they pass. As much as possible, you should strive to _increase_ test coverage whenever making changes. This will help ensure features do not accidentally become broken in the future.
```console
npm run test
```
- Test in different browsers. Firefox, Chrome, and Safari all have different quirks that make them unique targets to interact with.
## Documentation
### Prerequisites
- [Frigate source code](#frigate-core-web-and-docs)
- Node.js 14
### Making changes
#### 1. Installation
```console
npm run install
```
#### 2. Local Development
```console
npm run start
```
This command starts a local development server and open up a browser window. Most changes are reflected live without having to restart the server.
The docs are built using [Docusaurus v2](https://v2.docusaurus.io). Please refer to the Docusaurus docs for more information on how to modify Frigate's documentation.
#### 3. Build (optional)
```console
npm run build
```
This command generates static content into the `build` directory and can be served using any static contents hosting service.

View File

@@ -1,29 +0,0 @@
---
id: hardware
title: Recommended hardware
---
## Cameras
Cameras that output H.264 video and AAC audio will offer the most compatibility with all features of Frigate and HomeAssistant. It is also helpful if your camera supports multiple substreams to allow different resolutions to be used for detection, streaming, clips, and recordings without re-encoding.
## Computer
| Name | Inference Speed | Notes |
| ----------------------- | --------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| Atomic Pi | 16ms | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
| Intel NUC NUC7i3BNK | 8-10ms | Great performance. Can handle many cameras at 5fps depending on typical amounts of motion. |
| BMAX B2 Plus | 10-12ms | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
| Minisforum GK41 | 9-10ms | Great alternative to a NUC with dual Gigabit NICs. Easily handles several 1080p cameras. |
| Raspberry Pi 3B (32bit) | 60ms | Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0. |
| Raspberry Pi 4 (32bit) | 15-20ms | Can handle a small number of cameras. The 2GB version runs fine. |
| Raspberry Pi 4 (64bit) | 10-15ms | Can handle a small number of cameras. The 2GB version runs fine. |
## Unraid
Many people have powerful enough NAS devices or home servers to also run docker. There is a Unraid Community App.
To install make sure you have the [community app plugin here](https://forums.unraid.net/topic/38582-plug-in-community-applications/). Then search for "Frigate" in the apps section within Unraid - you can see the online store [here](https://unraid.net/community/apps?q=frigate#r)
| Name | Inference Speed | Notes |
| ----------------------- | --------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| [M2 Coral Edge TPU](http://coral.ai) | 6.2ms | Little complicated to get installed, as needs drivers on the host OS, [info here](https://forums.unraid.net/topic/98064-support-blakeblackshear-frigate/?do=findComment&comment=945776) |

View File

@@ -1,13 +0,0 @@
---
id: how-it-works
title: How Frigate Works
sidebar_label: How it works
---
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
![Diagram](/img/diagram.png)
1. Look for Motion
2. Calculate Detection Regions
3. Run Object Detection

View File

@@ -1,25 +0,0 @@
---
id: index
title: Frigate
sidebar_label: Features
slug: /
---
A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
- Tight integration with HomeAssistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- 24/7 recording
- Re-streaming via RTMP to reduce the number of connections to your camera
## Screenshots
![Media Browser](/img/media_browser.png)
![Notification](/img/notification.png)

View File

@@ -1,123 +0,0 @@
---
id: installation
title: Installation
---
Frigate is a Docker container that can be run on any Docker host including as a [HassOS Addon](https://www.home-assistant.io/addons/). See instructions below for installing the HassOS addon.
For HomeAssistant users, there is also a [custom component (aka integration)](https://github.com/blakeblackshear/frigate-hass-integration). This custom component adds tighter integration with HomeAssistant by automatically setting up camera entities, sensors, media browser for clips and recordings, and a public API to simplify notifications.
Note that HassOS Addons and custom components are different things. If you are already running Frigate with Docker directly, you do not need the Addon since the Addon would run another instance of Frigate.
## HassOS Addon
HassOS users can install via the addon repository. Frigate requires an MQTT server.
1. Navigate to Supervisor > Add-on Store > Repositories
1. Add https://github.com/blakeblackshear/frigate-hass-addons
1. Setup your configuration in the `Configuration` tab
1. Start the addon container
1. If you are using hardware acceleration for ffmpeg, you will need to disable "Protection mode"
## Docker
Make sure you choose the right image for your architecture:
|Arch|Image Name|
|-|-|
|amd64|blakeblackshear/frigate:stable-amd64|
|amd64nvidia|blakeblackshear/frigate:stable-amd64nvidia|
|armv7|blakeblackshear/frigate:stable-armv7|
|aarch64|blakeblackshear/frigate:stable-aarch64|
It is recommended to run with docker-compose:
```yaml
version: '3.9'
services:
frigate:
container_name: frigate
privileged: true # this may not be necessary for all setups
restart: unless-stopped
image: blakeblackshear/frigate:<specify_version_tag>
devices:
- /dev/bus/usb:/dev/bus/usb
- /dev/dri/renderD128 # for intel hwaccel, needs to be updated for your hardware
volumes:
- /etc/localtime:/etc/localtime:ro
- <path_to_config_file>:/config/config.yml:ro
- <path_to_directory_for_media>:/media/frigate
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
target: /tmp/cache
tmpfs:
size: 1000000000
ports:
- '5000:5000'
- '1935:1935' # RTMP feeds
environment:
FRIGATE_RTSP_PASSWORD: 'password'
```
If you can't use docker compose, you can run the container with something similar to this:
```bash
docker run -d \
--name frigate \
--restart=unless-stopped \
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
--device /dev/bus/usb:/dev/bus/usb \
--device /dev/dri/renderD128
-v <path_to_directory_for_media>:/media/frigate \
-v <path_to_config_file>:/config/config.yml:ro \
-v /etc/localtime:/etc/localtime:ro \
-e FRIGATE_RTSP_PASSWORD='password' \
-p 5000:5000 \
-p 1935:1935 \
blakeblackshear/frigate:<specify_version_tag>
```
### Calculating shm-size
The default shm-size of 64m is fine for setups with 3 or less 1080p cameras. If frigate is exiting with "Bus error" messages, it could be because you have too many high resolution cameras and you need to specify a higher shm size.
You can calculate the necessary shm-size for each camera with the following formula:
```
(width * height * 1.5 * 7 + 270480)/1048576 = <shm size in mb>
```
The shm size cannot be set per container for HomeAssistant Addons. You must set `default-shm-size` in `/etc/docker/daemon.json` to increase the default shm size. This will increase the shm size for all of your docker containers. This may or may not cause issues with your setup. https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
## Kubernetes
Use the [helm chart](https://github.com/blakeblackshear/blakeshome-charts/tree/master/charts/frigate).
## Virtualization
For ideal performance, Frigate needs access to underlying hardware for the Coral and GPU devices for ffmpeg decoding. Running Frigate in a VM on top of Proxmox, ESXi, Virtualbox, etc. is not recommended. The virtualization layer typically introduces a sizable amount of overhead for communication with Coral devices.
### Proxmox
Some people have had success running Frigate in LXC directly with the following config:
```
arch: amd64
cores: 2
features: nesting=1
hostname: FrigateLXC
memory: 4096
net0: name=eth0,bridge=vmbr0,firewall=1,hwaddr=2E:76:AE:5A:58:48,ip=dhcp,ip6=auto,type=veth
ostype: debian
rootfs: local-lvm:vm-115-disk-0,size=12G
swap: 512
lxc.cgroup.devices.allow: c 189:385 rwm
lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file
lxc.mount.entry: /dev/bus/usb/004/002 dev/bus/usb/004/002 none bind,optional,create=file
lxc.apparmor.profile: unconfined
lxc.cgroup.devices.allow: a
lxc.cap.drop:
```
### ESX
For details on running Frigate under ESX, see details [here](https://github.com/blakeblackshear/frigate/issues/305).

View File

@@ -1,17 +0,0 @@
---
id: mdx
title: Powered by MDX
---
You can write JSX and use React components within your Markdown thanks to [MDX](https://mdxjs.com/).
export const Highlight = ({children, color}) => ( <span style={{
backgroundColor: color,
borderRadius: '2px',
color: '#fff',
padding: '0.2rem',
}}>{children}</span> );
<Highlight color="#25c2a0">Docusaurus green</Highlight> and <Highlight color="#1877F2">Facebook blue</Highlight> are my favorite colors.
I can write **Markdown** alongside my _JSX_!

View File

@@ -1,28 +0,0 @@
---
id: troubleshooting
title: Troubleshooting and FAQ
---
### How can I get sound or audio in my clips and recordings?
By default, Frigate removes audio from clips and recordings to reduce the likelihood of failing for invalid data. If you would like to include audio, you need to override the output args to remove `-an` for where you want to include audio. The recommended audio codec is `aac`. Not all audio codecs are supported by RTMP, so you may need to re-encode your audio with `-c:a aac`. The default ffmpeg args are shown [here](/frigate/configuration/index#ffmpeg).
### My mjpeg stream or snapshots look green and crazy
This almost always means that the width/height defined for your camera are not correct. Double check the resolution with vlc or another player. Also make sure you don't have the width and height values backwards.
![mismatched-resolution](/img/mismatched-resolution.jpg)
### I have clips and snapshots in my clips folder, but I can't view them in the Web UI.
This is usually caused one of two things:
- The permissions on the parent folder don't have execute and nginx returns a 403 error you can see in the browser logs
- In this case, try mounting a volume to `/media/frigate` inside the container instead of `/media/frigate/clips`.
- Your cameras do not send h264 encoded video and the mp4 files are not playable in the browser
### "[mov,mp4,m4a,3gp,3g2,mj2 @ 0x5639eeb6e140] moov atom not found"
These messages in the logs are expected in certain situations. Frigate checks the integrity of the video cache before assembling clips. Occasionally these cached files will be invalid and cleaned up automatically.
### "On connect called"
If you see repeated "On connect called" messages in your config, check for another instance of frigate. This happens when multiple frigate containers are trying to connect to mqtt with the same client_id.

View File

@@ -1,208 +0,0 @@
---
id: api
title: HTTP API
---
A web server is available on port 5000 with the following endpoints.
### `/api/<camera_name>`
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
Accepts the following query string parameters:
| param | Type | Description |
| ----------- | ---- | ------------------------------------------------------------------ |
| `fps` | int | Frame rate |
| `h` | int | Height in pixels |
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
| `zones` | int | Draw the zones on the image (0 or 1) |
| `mask` | int | Overlay the mask on the image (0 or 1) |
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`.
### `/api/<camera_name>/<object_name>/best.jpg[?h=300&crop=1]`
The best snapshot for any object type. It is a full resolution image by default.
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
- `crop=1`: crops the image to the region of the detection rather than returning the entire image
### `/api/<camera_name>/latest.jpg[?h=300]`
The most recent frame that frigate has finished processing. It is a full resolution image by default.
Accepts the following query string parameters:
| param | Type | Description |
| ----------- | ---- | ------------------------------------------------------------------ |
| `h` | int | Height in pixels |
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
| `zones` | int | Draw the zones on the image (0 or 1) |
| `mask` | int | Overlay the mask on the image (0 or 1) |
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
### `/api/stats`
Contains some granular debug info that can be used for sensors in HomeAssistant.
Sample response:
```json
{
/* Per Camera Stats */
"back": {
/***************
* Frames per second being consumed from your camera. If this is higher
* than it is supposed to be, you should set -r FPS in your input_args.
* camera_fps = process_fps + skipped_fps
***************/
"camera_fps": 5.0,
/***************
* Number of times detection is run per second. This can be higher than
* your camera FPS because frigate often looks at the same frame multiple times
* or in multiple locations
***************/
"detection_fps": 1.5,
/***************
* PID for the ffmpeg process that consumes this camera
***************/
"capture_pid": 27,
/***************
* PID for the process that runs detection for this camera
***************/
"pid": 34,
/***************
* Frames per second being processed by frigate.
***************/
"process_fps": 5.1,
/***************
* Frames per second skip for processing by frigate.
***************/
"skipped_fps": 0.0
},
/***************
* Sum of detection_fps across all cameras and detectors.
* This should be the sum of all detection_fps values from cameras.
***************/
"detection_fps": 5.0,
/* Detectors Stats */
"detectors": {
"coral": {
/***************
* Timestamp when object detection started. If this value stays non-zero and constant
* for a long time, that means the detection process is stuck.
***************/
"detection_start": 0.0,
/***************
* Time spent running object detection in milliseconds.
***************/
"inference_speed": 10.48,
/***************
* PID for the shared process that runs object detection on the Coral.
***************/
"pid": 25321
}
},
"service": {
/* Uptime in seconds */
"uptime": 10,
"version": "0.8.0-8883709",
/* Storage data in MB for important locations */
"storage": {
"/media/frigate/clips": {
"total": 1000,
"used": 700,
"free": 300,
"mnt_type": "ext4",
},
"/media/frigate/recordings": {
"total": 1000,
"used": 700,
"free": 300,
"mnt_type": "ext4",
},
"/tmp/cache": {
"total": 256,
"used": 100,
"free": 156,
"mnt_type": "tmpfs",
},
"/dev/shm": {
"total": 256,
"used": 100,
"free": 156,
"mnt_type": "tmpfs",
},
}
}
}
```
### `/api/config`
A json representation of your configuration
### `/api/version`
Version info
### `/api/events`
Events from the database. Accepts the following query string parameters:
| param | Type | Description |
| -------------------- | ---- | --------------------------------------------- |
| `before` | int | Epoch time |
| `after` | int | Epoch time |
| `camera` | str | Camera name |
| `label` | str | Label name |
| `zone` | str | Zone name |
| `limit` | int | Limit the number of events returned |
| `has_snapshot` | int | Filter to events that have snapshots (0 or 1) |
| `has_clip` | int | Filter to events that have clips (0 or 1) |
| `include_thumbnails` | int | Include thumbnails in the response (0 or 1) |
### `/api/events/summary`
Returns summary data for events in the database. Used by the HomeAssistant integration.
### `/api/events/<id>`
Returns data for a single event.
### `/api/events/<id>/thumbnail.jpg`
Returns a thumbnail for the event id optimized for notifications. Works while the event is in progress and after completion. Passing `?format=android` will convert the thumbnail to 2:1 aspect ratio.
### `/api/events/<id>/snapshot.jpg`
Returns the snapshot image for the event id. Works while the event is in progress and after completion.
Accepts the following query string parameters, but they are only applied when an event is in progress. After the event is completed, the saved snapshot is returned from disk without modification:
| param | Type | Description |
| ----------- | ---- | ------------------------------------------------- |
| `h` | int | Height in pixels |
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
| `crop` | int | Crop the snapshot to the (0 or 1) |
### `/clips/<camera>-<id>.mp4`
Video clip for the given camera and event id.
### `/clips/<camera>-<id>.jpg`
JPG snapshot for the given camera and event id.

View File

@@ -1,132 +0,0 @@
---
id: home-assistant
title: Integration with Home Assistant
sidebar_label: Home Assistant
---
The best way to integrate with HomeAssistant is to use the [official integration](https://github.com/blakeblackshear/frigate-hass-integration). When configuring the integration, you will be asked for the `Host` of your frigate instance. This value should be the url you use to access Frigate in the browser and will look like `http://<host>:5000/`. If you are using HassOS with the addon, the host should be `http://ccab4aaf-frigate:5000` (or `http://ccab4aaf-frigate-beta:5000` if your are using the beta version of the addon). HomeAssistant needs access to port 5000 (api) and 1935 (rtmp) for all features. The integration will setup the following entities within HomeAssistant:
## Sensors:
- Stats to monitor frigate performance
- Object counts for all zones and cameras
## Cameras:
- Cameras for image of the last detected object for each camera
- Camera entities with stream support (requires RTMP)
## Media Browser:
- Rich UI with thumbnails for browsing event clips
- Rich UI for browsing 24/7 recordings by month, day, camera, time
## API:
- Notification API with public facing endpoints for images in notifications
### Notifications
Frigate publishes event information in the form of a change feed via MQTT. This allows lots of customization for notifications to meet your needs. Event changes are published with `before` and `after` information as shown [here](#frigateevents).
Note that some people may not want to expose frigate to the web, so you can leverage the HA API that frigate custom_integration ties into (which is exposed to the web, and thus can be used for mobile notifications etc):
To load an image taken by frigate from HomeAssistants API see below:
```
https://HA_URL/api/frigate/notifications/<event-id>/thumbnail.jpg
```
To load a video clip taken by frigate from HomeAssistants API :
```
https://HA_URL/api/frigate/notifications/<event-id>/<camera>/clip.mp4
```
Here is a simple example of a notification automation of events which will update the existing notification for each change. This means the image you see in the notification will update as frigate finds a "better" image.
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
image: 'https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg?format=android'
tag: '{{trigger.payload_json["after"]["id"]}}'
```
```yaml
automation:
- alias: When a person enters a zone named yard
trigger:
platform: mqtt
topic: frigate/events
condition:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
```yaml
- alias: When a person leaves a zone named yard
trigger:
platform: mqtt
topic: frigate/events
condition:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
```yaml
- alias: Notify for dogs in the front with a high top score
trigger:
platform: mqtt
topic: frigate/events
condition:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'High confidence dog detection.'
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
If you are using telegram, you can fetch the image directly from Frigate:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.telegram_full
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
# this url should work for addon users
- url: 'http://ccab4aaf-frigate:5000/api/events/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg'
caption: 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
```

View File

@@ -1,99 +0,0 @@
---
id: mqtt
title: MQTT
---
These are the MQTT messages generated by Frigate. The default topic_prefix is `frigate`, but can be changed in the config file.
### `frigate/available`
Designed to be used as an availability topic with HomeAssistant. Possible message are:
"online": published when frigate is running (on startup)
"offline": published right before frigate stops
### `frigate/<camera_name>/<object_name>`
Publishes the count of objects for the camera for use as a sensor in HomeAssistant.
### `frigate/<zone_name>/<object_name>`
Publishes the count of objects for the zone for use as a sensor in HomeAssistant.
### `frigate/<camera_name>/<object_name>/snapshot`
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
is published again.
The height and crop of snapshots can be configured in the config.
### `frigate/events`
Message published for each changed event. The first message is published when the tracked object is no longer marked as a false_positive. When frigate finds a better snapshot of the tracked object or when a zone change occurs, it will publish a message with the same id. When the event ends, a final message is published with `end_time` set.
```json
{
"type": "update", // new, update, or end
"before": {
"id": "1607123955.475377-mxklsc",
"camera": "front_door",
"frame_time": 1607123961.837752,
"label": "person",
"top_score": 0.958984375,
"false_positive": false,
"start_time": 1607123955.475377,
"end_time": null,
"score": 0.7890625,
"box": [424, 500, 536, 712],
"area": 23744,
"region": [264, 450, 667, 853],
"current_zones": ["driveway"],
"entered_zones": ["yard", "driveway"],
"thumbnail": null
},
"after": {
"id": "1607123955.475377-mxklsc",
"camera": "front_door",
"frame_time": 1607123962.082975,
"label": "person",
"top_score": 0.958984375,
"false_positive": false,
"start_time": 1607123955.475377,
"end_time": null,
"score": 0.87890625,
"box": [432, 496, 544, 854],
"area": 40096,
"region": [218, 440, 693, 915],
"current_zones": ["yard", "driveway"],
"entered_zones": ["yard", "driveway"],
"thumbnail": null
}
}
```
### `frigate/stats`
Same data available at `/api/stats` published at a configurable interval.
### `frigate/<camera_name>/detect/set`
Topic to turn detection for a camera on and off. Expected values are `ON` and `OFF`.
### `frigate/<camera_name>/detect/state`
Topic with current state of detection for a camera. Published values are `ON` and `OFF`.
### `frigate/<camera_name>/clips/set`
Topic to turn clips for a camera on and off. Expected values are `ON` and `OFF`.
### `frigate/<camera_name>/clips/state`
Topic with current state of clips for a camera. Published values are `ON` and `OFF`.
### `frigate/<camera_name>/snapshots/set`
Topic to turn snapshots for a camera on and off. Expected values are `ON` and `OFF`.
### `frigate/<camera_name>/snapshots/state`
Topic with current state of snapshots for a camera. Published values are `ON` and `OFF`.

View File

@@ -1,10 +0,0 @@
---
id: web
title: Web Interface
---
Frigate comes bundled with a simple web ui that supports the following:
- Show cameras
- Browse events
- Mask helper

View File

@@ -1,76 +0,0 @@
module.exports = {
title: 'Frigate',
tagline: 'NVR With Realtime Object Detection for IP Cameras',
url: 'https://blakeblackshear.github.io',
baseUrl: '/frigate/',
onBrokenLinks: 'throw',
onBrokenMarkdownLinks: 'warn',
favicon: 'img/favicon.ico',
organizationName: 'blakeblackshear',
projectName: 'frigate',
themeConfig: {
algolia: {
apiKey: '81ec882db78f7fed05c51daf973f0362',
indexName: 'frigate'
},
navbar: {
title: 'Frigate',
logo: {
alt: 'Frigate',
src: 'img/logo.svg',
srcDark: 'img/logo-dark.svg',
},
items: [
{
to: '/',
activeBasePath: 'docs',
label: 'Docs',
position: 'left',
},
{
href: 'https://github.com/blakeblackshear/frigate',
label: 'GitHub',
position: 'right',
},
],
},
sidebarCollapsible: false,
hideableSidebar: true,
footer: {
style: 'dark',
links: [
{
title: 'Community',
items: [
{
label: 'GitHub',
href: 'https://github.com/blakeblackshear/frigate',
},
{
label: 'Discussions',
href: 'https://github.com/blakeblackshear/frigate/discussions',
},
],
},
],
copyright: `Copyright © ${new Date().getFullYear()} Blake Blackshear`,
},
},
presets: [
[
'@docusaurus/preset-classic',
{
docs: {
routeBasePath: '/',
sidebarPath: require.resolve('./sidebars.js'),
// Please change this to your repo.
editUrl: 'https://github.com/blakeblackshear/frigate/edit/master/docs/',
},
theme: {
customCss: require.resolve('./src/css/custom.css'),
},
},
],
],
};

14035
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,34 +0,0 @@
{
"name": "docs",
"version": "0.0.0",
"private": true,
"scripts": {
"docusaurus": "docusaurus",
"start": "docusaurus start",
"build": "docusaurus build",
"swizzle": "docusaurus swizzle",
"deploy": "docusaurus deploy",
"serve": "docusaurus serve",
"clear": "docusaurus clear"
},
"dependencies": {
"@docusaurus/core": "2.0.0-alpha.70",
"@docusaurus/preset-classic": "2.0.0-alpha.70",
"@mdx-js/react": "^1.6.21",
"clsx": "^1.1.1",
"react": "^16.8.4",
"react-dom": "^16.8.4"
},
"browserslist": {
"production": [
">0.5%",
"not dead",
"not op_mini all"
],
"development": [
"last 1 chrome version",
"last 1 firefox version",
"last 1 safari version"
]
}
}

View File

@@ -1,15 +0,0 @@
module.exports = {
docs: {
Frigate: ['index', 'how-it-works', 'hardware', 'installation', 'troubleshooting'],
Configuration: [
'configuration/index',
'configuration/cameras',
'configuration/optimizing',
'configuration/detectors',
'configuration/false_positives',
'configuration/advanced',
],
Usage: ['usage/home-assistant', 'usage/web', 'usage/api', 'usage/mqtt'],
Development: ['contributing'],
},
};

View File

@@ -1,25 +0,0 @@
/* stylelint-disable docusaurus/copyright-header */
/**
* Any CSS included here will be global. The classic template
* bundles Infima by default. Infima is a CSS framework designed to
* work well for content-centric websites.
*/
/* You can override the default Infima variables here. */
:root {
--ifm-color-primary: #3b82f7;
--ifm-color-primary-dark: #1d4ed8;
--ifm-color-primary-darker: #1e40af;
--ifm-color-primary-darkest: #1e3a8a;
--ifm-color-primary-light: #60a5fa;
--ifm-color-primary-lighter: #93c5fd;
--ifm-color-primary-lightest: #dbeafe;
--ifm-code-font-size: 95%;
}
.docusaurus-highlight-code-line {
background-color: rgb(72, 77, 91);
display: block;
margin: 0 calc(-1 * var(--ifm-pre-padding));
padding: 0 var(--ifm-pre-padding);
}

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 944 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.2 MiB

View File

@@ -1,3 +0,0 @@
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.4999 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="white"/>
</svg>

Before

Width:  |  Height:  |  Size: 936 B

View File

@@ -1,3 +0,0 @@
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.5 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="black"/>
</svg>

Before

Width:  |  Height:  |  Size: 933 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 781 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.5 MiB

View File

View File

@@ -1,15 +0,0 @@
import faulthandler; faulthandler.enable()
import sys
import threading
threading.current_thread().name = "frigate"
from frigate.app import FrigateApp
cli = sys.modules['flask.cli']
cli.show_server_banner = lambda *x: None
if __name__ == '__main__':
frigate_app = FrigateApp()
frigate_app.start()

View File

@@ -1,267 +0,0 @@
import json
import logging
import multiprocessing as mp
import os
from logging.handlers import QueueHandler
from typing import Dict, List
import sys
import signal
import yaml
from gevent import pywsgi
from geventwebsocket.handler import WebSocketHandler
from peewee_migrate import Router
from playhouse.sqlite_ext import SqliteExtDatabase
from playhouse.sqliteq import SqliteQueueDatabase
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.edgetpu import EdgeTPUProcess
from frigate.events import EventProcessor, EventCleanup
from frigate.http import create_app
from frigate.log import log_process, root_configurer
from frigate.models import Event
from frigate.mqtt import create_mqtt_client
from frigate.object_processing import TrackedObjectProcessor
from frigate.record import RecordingMaintainer
from frigate.stats import StatsEmitter, stats_init
from frigate.video import capture_camera, track_camera
from frigate.watchdog import FrigateWatchdog
from frigate.zeroconf import broadcast_zeroconf
logger = logging.getLogger(__name__)
class FrigateApp():
def __init__(self):
self.stop_event = mp.Event()
self.config: FrigateConfig = None
self.detection_queue = mp.Queue()
self.detectors: Dict[str, EdgeTPUProcess] = {}
self.detection_out_events: Dict[str, mp.Event] = {}
self.detection_shms: List[mp.shared_memory.SharedMemory] = []
self.log_queue = mp.Queue()
self.camera_metrics = {}
def set_environment_vars(self):
for key, value in self.config.environment_vars.items():
os.environ[key] = value
def ensure_dirs(self):
for d in [RECORD_DIR, CLIPS_DIR, CACHE_DIR]:
if not os.path.exists(d) and not os.path.islink(d):
logger.info(f"Creating directory: {d}")
os.makedirs(d)
else:
logger.debug(f"Skipping directory: {d}")
tmpfs_size = self.config.clips.tmpfs_cache_size
if tmpfs_size:
logger.info(f"Creating tmpfs of size {tmpfs_size}")
rc = os.system(f"mount -t tmpfs -o size={tmpfs_size} tmpfs {CACHE_DIR}")
if rc != 0:
logger.error(f"Failed to create tmpfs, error code: {rc}")
def init_logger(self):
self.log_process = mp.Process(target=log_process, args=(self.log_queue,), name='log_process')
self.log_process.daemon = True
self.log_process.start()
root_configurer(self.log_queue)
def init_config(self):
config_file = os.environ.get('CONFIG_FILE', '/config/config.yml')
self.config = FrigateConfig(config_file=config_file)
for camera_name in self.config.cameras.keys():
# create camera_metrics
self.camera_metrics[camera_name] = {
'camera_fps': mp.Value('d', 0.0),
'skipped_fps': mp.Value('d', 0.0),
'process_fps': mp.Value('d', 0.0),
'detection_enabled': mp.Value('i', self.config.cameras[camera_name].detect.enabled),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0),
'frame_queue': mp.Queue(maxsize=2),
}
def check_config(self):
for name, camera in self.config.cameras.items():
assigned_roles = list(set([r for i in camera.ffmpeg.inputs for r in i.roles]))
if not camera.clips.enabled and 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips assigned to an input, but clips is not enabled.")
elif camera.clips.enabled and not 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips enabled, but clips is not assigned to an input.")
if not camera.record.enabled and 'record' in assigned_roles:
logger.warning(f"Camera {name} has record assigned to an input, but record is not enabled.")
elif camera.record.enabled and not 'record' in assigned_roles:
logger.warning(f"Camera {name} has record enabled, but record is not assigned to an input.")
if not camera.rtmp.enabled and 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled.")
elif camera.rtmp.enabled and not 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input.")
def set_log_levels(self):
logging.getLogger().setLevel(self.config.logger.default)
for log, level in self.config.logger.logs.items():
logging.getLogger(log).setLevel(level)
if not 'geventwebsocket.handler' in self.config.logger.logs:
logging.getLogger('geventwebsocket.handler').setLevel('ERROR')
def init_queues(self):
# Queues for clip processing
self.event_queue = mp.Queue()
self.event_processed_queue = mp.Queue()
# Queue for cameras to push tracked objects to
self.detected_frames_queue = mp.Queue(maxsize=len(self.config.cameras.keys())*2)
def init_database(self):
migrate_db = SqliteExtDatabase(self.config.database.path)
# Run migrations
del(logging.getLogger('peewee_migrate').handlers[:])
router = Router(migrate_db)
router.run()
migrate_db.close()
self.db = SqliteQueueDatabase(self.config.database.path)
models = [Event]
self.db.bind(models)
def init_stats(self):
self.stats_tracking = stats_init(self.camera_metrics, self.detectors)
def init_web_server(self):
self.flask_app = create_app(self.config, self.db, self.stats_tracking, self.detected_frames_processor, self.mqtt_client)
def init_mqtt(self):
self.mqtt_client = create_mqtt_client(self.config, self.camera_metrics)
def start_detectors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name in self.config.cameras.keys():
self.detection_out_events[name] = mp.Event()
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=self.config.model.height*self.config.model.width*3)
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
self.detection_shms.append(shm_in)
self.detection_shms.append(shm_out)
for name, detector in self.config.detectors.items():
if detector.type == 'cpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, 'cpu', detector.num_threads)
if detector.type == 'edgetpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads)
def start_detected_frames_processor(self):
self.detected_frames_processor = TrackedObjectProcessor(self.config, self.mqtt_client, self.config.mqtt.topic_prefix,
self.detected_frames_queue, self.event_queue, self.event_processed_queue, self.stop_event)
self.detected_frames_processor.start()
def start_camera_processors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name, config in self.config.cameras.items():
camera_process = mp.Process(target=track_camera, name=f"camera_processor:{name}", args=(name, config, model_shape,
self.detection_queue, self.detection_out_events[name], self.detected_frames_queue,
self.camera_metrics[name]))
camera_process.daemon = True
self.camera_metrics[name]['process'] = camera_process
camera_process.start()
logger.info(f"Camera processor started for {name}: {camera_process.pid}")
def start_camera_capture_processes(self):
for name, config in self.config.cameras.items():
capture_process = mp.Process(target=capture_camera, name=f"camera_capture:{name}", args=(name, config,
self.camera_metrics[name]))
capture_process.daemon = True
self.camera_metrics[name]['capture_process'] = capture_process
capture_process.start()
logger.info(f"Capture process started for {name}: {capture_process.pid}")
def start_event_processor(self):
self.event_processor = EventProcessor(self.config, self.camera_metrics, self.event_queue, self.event_processed_queue, self.stop_event)
self.event_processor.start()
def start_event_cleanup(self):
self.event_cleanup = EventCleanup(self.config, self.stop_event)
self.event_cleanup.start()
def start_recording_maintainer(self):
self.recording_maintainer = RecordingMaintainer(self.config, self.stop_event)
self.recording_maintainer.start()
def start_stats_emitter(self):
self.stats_emitter = StatsEmitter(self.config, self.stats_tracking, self.mqtt_client, self.config.mqtt.topic_prefix, self.stop_event)
self.stats_emitter.start()
def start_watchdog(self):
self.frigate_watchdog = FrigateWatchdog(self.detectors, self.stop_event)
self.frigate_watchdog.start()
def start(self):
self.init_logger()
try:
try:
self.init_config()
except Exception as e:
print(f"Error parsing config: {e}")
self.log_process.terminate()
sys.exit(1)
self.set_environment_vars()
self.ensure_dirs()
self.check_config()
self.set_log_levels()
self.init_queues()
self.init_database()
self.init_mqtt()
except Exception as e:
print(e)
self.log_process.terminate()
sys.exit(1)
self.start_detectors()
self.start_detected_frames_processor()
self.start_camera_processors()
self.start_camera_capture_processes()
self.init_stats()
self.init_web_server()
self.start_event_processor()
self.start_event_cleanup()
self.start_recording_maintainer()
self.start_stats_emitter()
self.start_watchdog()
# self.zeroconf = broadcast_zeroconf(self.config.mqtt.client_id)
def receiveSignal(signalNumber, frame):
self.stop()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
server = pywsgi.WSGIServer(('127.0.0.1', 5001), self.flask_app, handler_class=WebSocketHandler)
server.serve_forever()
self.stop()
def stop(self):
logger.info(f"Stopping...")
self.stop_event.set()
self.detected_frames_processor.join()
self.event_processor.join()
self.event_cleanup.join()
self.recording_maintainer.join()
self.stats_emitter.join()
self.frigate_watchdog.join()
self.db.stop()
for detector in self.detectors.values():
detector.stop()
while len(self.detection_shms) > 0:
shm = self.detection_shms.pop()
shm.close()
shm.unlink()

File diff suppressed because it is too large Load Diff

View File

@@ -1,3 +0,0 @@
CLIPS_DIR = '/media/frigate/clips'
RECORD_DIR = '/media/frigate/recordings'
CACHE_DIR = '/tmp/cache'

View File

@@ -1,23 +1,11 @@
import datetime
import hashlib
import logging
import multiprocessing as mp
import os
import queue
import threading
import signal
from abc import ABC, abstractmethod
from multiprocessing.connection import Connection
from setproctitle import setproctitle
from typing import Dict
import datetime
import multiprocessing as mp
import numpy as np
import SharedArray as sa
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
logger = logging.getLogger(__name__)
from frigate.util import EventsPerSecond
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
@@ -38,61 +26,27 @@ def load_labels(path, encoding='utf-8'):
else:
return {index: line.strip() for index, line in enumerate(lines)}
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold = .4):
pass
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, num_threads=3, labels=None):
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
else:
self.labels = load_labels(labels)
device_config = {"device": "usb"}
if not tf_device is None:
device_config = {"device": tf_device}
class ObjectDetector():
def __init__(self):
edge_tpu_delegate = None
if tf_device != 'cpu':
try:
logger.info(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
logger.info("TPU found")
self.interpreter = tflite.Interpreter(
model_path='/edgetpu_model.tflite',
experimental_delegates=[edge_tpu_delegate])
except ValueError:
logger.info("No EdgeTPU detected.")
raise
try:
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
model_path='/cpu_model.tflite')
else:
self.interpreter = tflite.Interpreter(
model_path='/cpu_model.tflite', num_threads=num_threads)
model_path='/edgetpu_model.tflite',
experimental_delegates=[edge_tpu_delegate])
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect(self, tensor_input, threshold=.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
self.interpreter.invoke()
@@ -106,121 +60,77 @@ class LocalObjectDetector(ObjectDetector):
return detections
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, model_shape, tf_device, num_threads):
threading.current_thread().name = f"detector:{name}"
logger = logging.getLogger(f"detector.{name}")
logger.info(f"Starting detection process: {os.getpid()}")
setproctitle(f"frigate.detector.{name}")
listen()
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(tf_device=tf_device, num_threads=num_threads)
outputs = {}
for name in out_events.keys():
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20,6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {
'shm': out_shm,
'np': out_np
}
while True:
if stop_event.is_set():
break
try:
connection_id = detection_queue.get(timeout=5)
except queue.Empty:
continue
input_frame = frame_manager.get(connection_id, (1,model_shape[0],model_shape[1],3))
if input_frame is None:
continue
# detect and send the output
start.value = datetime.datetime.now().timestamp()
detections = object_detector.detect_raw(input_frame)
duration = datetime.datetime.now().timestamp()-start.value
outputs[connection_id]['np'][:] = detections[:]
out_events[connection_id].set()
start.value = 0.0
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self, name, detection_queue, out_events, model_shape, tf_device=None, num_threads=3):
self.name = name
self.out_events = out_events
self.detection_queue = detection_queue
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.model_shape = model_shape
self.tf_device = tf_device
self.num_threads = num_threads
self.start_or_restart()
def stop(self):
self.detect_process.terminate()
logging.info("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
logging.info("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
def __init__(self):
# TODO: see if we can use the plasma store with a queue and maintain the same speeds
try:
sa.delete("frame")
except:
pass
try:
sa.delete("detections")
except:
pass
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.stop()
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.model_shape, self.tf_device, self.num_threads))
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
self.detect_lock = mp.Lock()
self.detect_ready = mp.Event()
self.frame_ready = mp.Event()
self.avg_inference_speed = mp.Value('d', 0.01)
def run_detector(detect_ready, frame_ready, avg_speed):
print(f"Starting detection process: {os.getpid()}")
object_detector = ObjectDetector()
input_frame = sa.attach("frame")
detections = sa.attach("detections")
while True:
# wait until a frame is ready
frame_ready.wait()
start = datetime.datetime.now().timestamp()
# signal that the process is busy
frame_ready.clear()
detections[:] = object_detector.detect_raw(input_frame)
# signal that the process is ready to detect
detect_ready.set()
duration = datetime.datetime.now().timestamp()-start
avg_speed.value = (avg_speed.value*9 + duration)/10
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue, event, model_shape):
def __init__(self, labels, detect_lock, detect_ready, frame_ready):
self.labels = load_labels(labels)
self.name = name
self.input_frame = sa.attach("frame")
self.detections = sa.attach("detections")
self.fps = EventsPerSecond()
self.detection_queue = detection_queue
self.event = event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray((1,model_shape[0],model_shape[1],3), dtype=np.uint8, buffer=self.shm.buf)
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
self.detect_lock = detect_lock
self.detect_ready = detect_ready
self.frame_ready = frame_ready
def detect(self, tensor_input, threshold=.4):
detections = []
# copy input to shared memory
self.np_shm[:] = tensor_input[:]
self.event.clear()
self.detection_queue.put(self.name)
result = self.event.wait(timeout=10.0)
# if it timed out
if result is None:
return detections
for d in self.out_np_shm:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
with self.detect_lock:
self.input_frame[:] = tensor_input
# unset detections and signal that a frame is ready
self.detect_ready.clear()
self.frame_ready.set()
# wait until the detection process is finished,
self.detect_ready.wait()
for d in self.detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections
def cleanup(self):
self.shm.unlink()
self.out_shm.unlink()
return detections

View File

@@ -1,372 +0,0 @@
import datetime
import json
import logging
import os
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
import shutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.models import Event
from peewee import fn
logger = logging.getLogger(__name__)
class EventProcessor(threading.Thread):
def __init__(self, config, camera_processes, event_queue, event_processed_queue, stop_event):
threading.Thread.__init__(self)
self.name = 'event_processor'
self.config = config
self.camera_processes = camera_processes
self.cached_clips = {}
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.events_in_process = {}
self.stop_event = stop_event
def should_create_clip(self, camera, event_data):
if event_data['false_positive']:
return False
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].clips.required_zones
if len(required_zones) > 0 and not set(event_data['entered_zones']) & set(required_zones):
logger.debug(f"Not creating clip for {event_data['id']} because it did not enter required zones")
return False
return True
def refresh_cache(self):
cached_files = os.listdir(CACHE_DIR)
files_in_use = []
for process in psutil.process_iter():
try:
if process.name() != 'ffmpeg':
continue
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(CACHE_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in cached_files:
if f in files_in_use or f in self.cached_clips:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(CACHE_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
logger.info(f"bad file: {f}")
os.remove(os.path.join(CACHE_DIR,f))
continue
self.cached_clips[f] = {
'path': f,
'camera': camera,
'start_time': start_time.timestamp(),
'duration': duration
}
if len(self.events_in_process) > 0:
earliest_event = min(self.events_in_process.values(), key=lambda x:x['start_time'])['start_time']
else:
earliest_event = datetime.datetime.now().timestamp()
# if the earliest event exceeds the max seconds, cap it
max_seconds = self.config.clips.max_seconds
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
earliest_event = datetime.datetime.now().timestamp()-max_seconds
for f, data in list(self.cached_clips.items()):
if earliest_event-90 > data['start_time']+data['duration']:
del self.cached_clips[f]
logger.debug(f"Cleaning up cached file {f}")
os.remove(os.path.join(CACHE_DIR,f))
# if we are still using more than 90% of the cache, proactively cleanup
cache_usage = shutil.disk_usage("/tmp/cache")
if cache_usage.used/cache_usage.total > .9 and cache_usage.free < 200000000 and len(self.cached_clips) > 0:
logger.warning("More than 90% of the cache is used.")
logger.warning("Consider increasing space available at /tmp/cache or reducing max_seconds in your clips config.")
logger.warning("Proactively cleaning up the cache...")
while cache_usage.used/cache_usage.total > .9:
oldest_clip = min(self.cached_clips.values(), key=lambda x:x['start_time'])
del self.cached_clips[oldest_clip['path']]
os.remove(os.path.join(CACHE_DIR,oldest_clip['path']))
cache_usage = shutil.disk_usage("/tmp/cache")
def create_clip(self, camera, event_data, pre_capture, post_capture):
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
# if there are no clips in the cache or we are still waiting on a needed file check every 5 seconds
wait_count = 0
while len(sorted_clips) == 0 or sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']+post_capture:
if wait_count > 4:
logger.warning(f"Unable to create clip for {camera} and event {event_data['id']}. There were no cache files for this event.")
return False
logger.debug(f"No cache clips for {camera}. Waiting...")
time.sleep(5)
self.refresh_cache()
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
wait_count += 1
playlist_start = event_data['start_time']-pre_capture
playlist_end = event_data['end_time']+post_capture
playlist_lines = []
for clip in sorted_clips:
# clip ends before playlist start time, skip
if clip['start_time']+clip['duration'] < playlist_start:
continue
# clip starts after playlist ends, finish
if clip['start_time'] > playlist_end:
break
playlist_lines.append(f"file '{os.path.join(CACHE_DIR,clip['path'])}'")
# if this is the starting clip, add an inpoint
if clip['start_time'] < playlist_start:
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
# if this is the ending clip, add an outpoint
if clip['start_time']+clip['duration'] > playlist_end:
playlist_lines.append(f"outpoint {int(playlist_end-clip['start_time'])}")
clip_name = f"{camera}-{event_data['id']}"
ffmpeg_cmd = [
'ffmpeg',
'-y',
'-protocol_whitelist',
'pipe,file',
'-f',
'concat',
'-safe',
'0',
'-i',
'-',
'-c',
'copy',
'-movflags',
'+faststart',
f"{os.path.join(CLIPS_DIR, clip_name)}.mp4"
]
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
if p.returncode != 0:
logger.error(p.stderr)
return False
return True
def run(self):
while True:
if self.stop_event.is_set():
logger.info(f"Exiting event processor...")
break
try:
event_type, camera, event_data = self.event_queue.get(timeout=10)
except queue.Empty:
if not self.stop_event.is_set():
self.refresh_cache()
continue
logger.debug(f"Event received: {event_type} {camera} {event_data['id']}")
self.refresh_cache()
if event_type == 'start':
self.events_in_process[event_data['id']] = event_data
if event_type == 'end':
clips_config = self.config.cameras[camera].clips
clip_created = False
if self.should_create_clip(camera, event_data):
if clips_config.enabled and (clips_config.objects is None or event_data['label'] in clips_config.objects):
clip_created = self.create_clip(camera, event_data, clips_config.pre_capture, clips_config.post_capture)
if clip_created or event_data['has_snapshot']:
Event.create(
id=event_data['id'],
label=event_data['label'],
camera=camera,
start_time=event_data['start_time'],
end_time=event_data['end_time'],
top_score=event_data['top_score'],
false_positive=event_data['false_positive'],
zones=list(event_data['entered_zones']),
thumbnail=event_data['thumbnail'],
has_clip=clip_created,
has_snapshot=event_data['has_snapshot'],
)
del self.events_in_process[event_data['id']]
self.event_processed_queue.put((event_data['id'], camera))
class EventCleanup(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = 'event_cleanup'
self.config = config
self.stop_event = stop_event
self.camera_keys = list(self.config.cameras.keys())
def expire(self, media):
## Expire events from unlisted cameras based on the global config
if media == 'clips':
retain_config = self.config.clips.retain
file_extension = 'mp4'
update_params = {'has_clip': False}
else:
retain_config = self.config.snapshots.retain
file_extension = 'jpg'
update_params = {'has_snapshot': False}
distinct_labels = (Event.select(Event.label)
.where(Event.camera.not_in(self.camera_keys))
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the media from disk
for event in expired_events:
media_name = f"{event.camera}-{event.id}"
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
media.unlink(missing_ok=True)
# update the clips attribute for the db entry
update_query = (
Event.update(update_params)
.where(Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
update_query.execute()
## Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
if media == 'clips':
retain_config = camera.clips.retain
else:
retain_config = camera.snapshots.retain
# get distinct objects in database for this camera
distinct_labels = (Event.select(Event.label)
.where(Event.camera == name)
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
media_name = f"{event.camera}-{event.id}"
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
media.unlink(missing_ok=True)
# update the clips attribute for the db entry
update_query = (
Event.update(update_params)
.where( Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
update_query.execute()
def purge_duplicates(self):
duplicate_query = """with grouped_events as (
select id,
label,
camera,
has_snapshot,
has_clip,
row_number() over (
partition by label, camera, round(start_time/5,0)*5
order by end_time-start_time desc
) as copy_number
from event
)
select distinct id, camera, has_snapshot, has_clip from grouped_events
where copy_number > 1;"""
duplicate_events = Event.raw(duplicate_query)
for event in duplicate_events:
logger.debug(f"Removing duplicate: {event.id}")
media_name = f"{event.camera}-{event.id}"
if event.has_snapshot:
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg")
media.unlink(missing_ok=True)
if event.has_clip:
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.mp4")
media.unlink(missing_ok=True)
(Event.delete()
.where( Event.id << [event.id for event in duplicate_events] )
.execute())
def run(self):
counter = 0
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting event cleanup...")
break
# only expire events every 5 minutes, but check for stop events every 10 seconds
time.sleep(10)
counter = counter + 1
if counter < 30:
continue
counter = 0
self.expire('clips')
self.expire('snapshots')
self.purge_duplicates()
# drop events from db where has_clip and has_snapshot are false
delete_query = (
Event.delete()
.where( Event.has_clip == False,
Event.has_snapshot == False)
)
delete_query.execute()

View File

@@ -1,381 +0,0 @@
import base64
import datetime
import json
import logging
import os
import time
from functools import reduce
import cv2
import gevent
import numpy as np
from flask import (Blueprint, Flask, Response, current_app, jsonify,
make_response, request)
from flask_sockets import Sockets
from peewee import SqliteDatabase, operator, fn, DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.const import CLIPS_DIR
from frigate.models import Event
from frigate.stats import stats_snapshot
from frigate.util import calculate_region
from frigate.version import VERSION
logger = logging.getLogger(__name__)
bp = Blueprint('frigate', __name__)
ws = Blueprint('ws', __name__)
class MqttBackend():
"""Interface for registering and updating WebSocket clients."""
def __init__(self, mqtt_client, topic_prefix):
self.clients = list()
self.mqtt_client = mqtt_client
self.topic_prefix = topic_prefix
def register(self, client):
"""Register a WebSocket connection for Mqtt updates."""
self.clients.append(client)
def publish(self, message):
try:
json_message = json.loads(message)
json_message = {
'topic': f"{self.topic_prefix}/{json_message['topic']}",
'payload': json_message['payload'],
'retain': json_message.get('retain', False)
}
except:
logger.warning("Unable to parse websocket message as valid json.")
return
logger.debug(f"Publishing mqtt message from websockets at {json_message['topic']}.")
self.mqtt_client.publish(json_message['topic'], json_message['payload'], retain=json_message['retain'])
def run(self):
def send(client, userdata, message):
"""Sends mqtt messages to clients."""
try:
logger.debug(f"Received mqtt message on {message.topic}.")
ws_message = json.dumps({
'topic': message.topic.replace(f"{self.topic_prefix}/",""),
'payload': message.payload.decode()
})
except:
# if the payload can't be decoded don't relay to clients
logger.debug(f"MQTT payload for {message.topic} wasn't text. Skipping...")
return
for client in self.clients:
try:
client.send(ws_message)
except:
logger.debug("Removing websocket client due to a closed connection.")
self.clients.remove(client)
self.mqtt_client.message_callback_add(f"{self.topic_prefix}/#", send)
def start(self):
"""Maintains mqtt subscription in the background."""
gevent.spawn(self.run)
def create_app(frigate_config, database: SqliteDatabase, stats_tracking, detected_frames_processor, mqtt_client):
app = Flask(__name__)
sockets = Sockets(app)
@app.before_request
def _db_connect():
database.connect()
@app.teardown_request
def _db_close(exc):
if not database.is_closed():
database.close()
app.frigate_config = frigate_config
app.stats_tracking = stats_tracking
app.detected_frames_processor = detected_frames_processor
app.register_blueprint(bp)
sockets.register_blueprint(ws)
app.mqtt_backend = MqttBackend(mqtt_client, frigate_config.mqtt.topic_prefix)
app.mqtt_backend.start()
return app
@bp.route('/')
def is_healthy():
return "Frigate is running. Alive and healthy!"
@bp.route('/events/summary')
def events_summary():
has_clip = request.args.get('has_clip', type=int)
has_snapshot = request.args.get('has_snapshot', type=int)
clauses = []
if not has_clip is None:
clauses.append((Event.has_clip == has_clip))
if not has_snapshot is None:
clauses.append((Event.has_snapshot == has_snapshot))
if len(clauses) == 0:
clauses.append((1 == 1))
groups = (
Event
.select(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'),
Event.zones,
fn.COUNT(Event.id).alias('count')
)
.where(reduce(operator.and_, clauses))
.group_by(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')),
Event.zones
)
)
return jsonify([e for e in groups.dicts()])
@bp.route('/events/<id>')
def event(id):
try:
return model_to_dict(Event.get(Event.id == id))
except DoesNotExist:
return "Event not found", 404
@bp.route('/events/<id>/thumbnail.jpg')
def event_thumbnail(id):
format = request.args.get('format', 'ios')
thumbnail_bytes = None
try:
event = Event.get(Event.id == id)
thumbnail_bytes = base64.b64decode(event.thumbnail)
except DoesNotExist:
# see if the object is currently being tracked
try:
for camera_state in current_app.detected_frames_processor.camera_states.values():
if id in camera_state.tracked_objects:
tracked_obj = camera_state.tracked_objects.get(id)
if not tracked_obj is None:
thumbnail_bytes = tracked_obj.get_thumbnail()
except:
return "Event not found", 404
if thumbnail_bytes is None:
return "Event not found", 404
# android notifications prefer a 2:1 ratio
if format == 'android':
jpg_as_np = np.frombuffer(thumbnail_bytes, dtype=np.uint8)
img = cv2.imdecode(jpg_as_np, flags=1)
thumbnail = cv2.copyMakeBorder(img, 0, 0, int(img.shape[1]*0.5), int(img.shape[1]*0.5), cv2.BORDER_CONSTANT, (0,0,0))
ret, jpg = cv2.imencode('.jpg', thumbnail, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
thumbnail_bytes = jpg.tobytes()
response = make_response(thumbnail_bytes)
response.headers['Content-Type'] = 'image/jpg'
return response
@bp.route('/events/<id>/snapshot.jpg')
def event_snapshot(id):
jpg_bytes = None
try:
event = Event.get(Event.id == id)
if not event.has_snapshot:
return "Snapshot not available", 404
# read snapshot from disk
with open(os.path.join(CLIPS_DIR, f"{event.camera}-{id}.jpg"), 'rb') as image_file:
jpg_bytes = image_file.read()
except DoesNotExist:
# see if the object is currently being tracked
try:
for camera_state in current_app.detected_frames_processor.camera_states.values():
if id in camera_state.tracked_objects:
tracked_obj = camera_state.tracked_objects.get(id)
if not tracked_obj is None:
jpg_bytes = tracked_obj.get_jpg_bytes(
timestamp=request.args.get('timestamp', type=int),
bounding_box=request.args.get('bbox', type=int),
crop=request.args.get('crop', type=int),
height=request.args.get('h', type=int)
)
except:
return "Event not found", 404
except:
return "Event not found", 404
response = make_response(jpg_bytes)
response.headers['Content-Type'] = 'image/jpg'
return response
@bp.route('/events')
def events():
limit = request.args.get('limit', 100)
camera = request.args.get('camera')
label = request.args.get('label')
zone = request.args.get('zone')
after = request.args.get('after', type=float)
before = request.args.get('before', type=float)
has_clip = request.args.get('has_clip', type=int)
has_snapshot = request.args.get('has_snapshot', type=int)
include_thumbnails = request.args.get('include_thumbnails', default=1, type=int)
clauses = []
excluded_fields = []
if camera:
clauses.append((Event.camera == camera))
if label:
clauses.append((Event.label == label))
if zone:
clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*"))
if after:
clauses.append((Event.start_time >= after))
if before:
clauses.append((Event.start_time <= before))
if not has_clip is None:
clauses.append((Event.has_clip == has_clip))
if not has_snapshot is None:
clauses.append((Event.has_snapshot == has_snapshot))
if not include_thumbnails:
excluded_fields.append(Event.thumbnail)
if len(clauses) == 0:
clauses.append((1 == 1))
events = (Event.select()
.where(reduce(operator.and_, clauses))
.order_by(Event.start_time.desc())
.limit(limit))
return jsonify([model_to_dict(e, exclude=excluded_fields) for e in events])
@bp.route('/config')
def config():
return jsonify(current_app.frigate_config.to_dict())
@bp.route('/version')
def version():
return VERSION
@bp.route('/stats')
def stats():
stats = stats_snapshot(current_app.stats_tracking)
return jsonify(stats)
@bp.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in current_app.frigate_config.cameras:
best_object = current_app.detected_frames_processor.get_best(camera_name, label)
best_frame = best_object.get('frame')
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
else:
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int))
if crop:
box = best_object.get('box', (0,0,300,300))
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', best_frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
draw_options = {
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
if camera_name in current_app.frigate_config.cameras:
# return a multipart response
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height, draw_options),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
draw_options = {
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
if camera_name in current_app.frigate_config.cameras:
# max out at specified FPS
frame = current_app.detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
while True:
# max out at specified FPS
gevent.sleep(1/fps)
frame = detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
ret, jpg = cv2.imencode('.jpg', frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
@ws.route('/ws')
def echo_socket(socket):
current_app.mqtt_backend.register(socket)
while not socket.closed:
# Sleep to prevent *constant* context-switches.
gevent.sleep(0.1)
message = socket.receive()
if message:
current_app.mqtt_backend.publish(message)

View File

@@ -1,83 +0,0 @@
# adapted from https://medium.com/@jonathonbao/python3-logging-with-multiprocessing-f51f460b8778
import logging
import threading
import os
import signal
import queue
import multiprocessing as mp
from logging import handlers
from setproctitle import setproctitle
from collections import deque
def listener_configurer():
root = logging.getLogger()
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(name)-30s %(levelname)-8s: %(message)s')
console_handler.setFormatter(formatter)
root.addHandler(console_handler)
root.setLevel(logging.INFO)
def root_configurer(queue):
h = handlers.QueueHandler(queue)
root = logging.getLogger()
root.addHandler(h)
root.setLevel(logging.INFO)
def log_process(log_queue):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"logger"
setproctitle("frigate.logger")
listener_configurer()
while True:
if stop_event.is_set() and log_queue.empty():
break
try:
record = log_queue.get(timeout=5)
except queue.Empty:
continue
logger = logging.getLogger(record.name)
logger.handle(record)
# based on https://codereview.stackexchange.com/a/17959
class LogPipe(threading.Thread):
def __init__(self, log_name, level):
"""Setup the object with a logger and a loglevel
and start the thread
"""
threading.Thread.__init__(self)
self.daemon = False
self.logger = logging.getLogger(log_name)
self.level = level
self.deque = deque(maxlen=100)
self.fdRead, self.fdWrite = os.pipe()
self.pipeReader = os.fdopen(self.fdRead)
self.start()
def fileno(self):
"""Return the write file descriptor of the pipe
"""
return self.fdWrite
def run(self):
"""Run the thread, logging everything.
"""
for line in iter(self.pipeReader.readline, ''):
self.deque.append(line.strip('\n'))
self.pipeReader.close()
def dump(self):
while len(self.deque) > 0:
self.logger.log(self.level, self.deque.popleft())
def close(self):
"""Close the write end of the pipe.
"""
os.close(self.fdWrite)

View File

@@ -1,16 +0,0 @@
from peewee import *
from playhouse.sqlite_ext import *
class Event(Model):
id = CharField(null=False, primary_key=True, max_length=30)
label = CharField(index=True, max_length=20)
camera = CharField(index=True, max_length=20)
start_time = DateTimeField()
end_time = DateTimeField()
top_score = FloatField()
false_positive = BooleanField()
zones = JSONField()
thumbnail = TextField()
has_clip = BooleanField(default=True)
has_snapshot = BooleanField(default=True)

View File

@@ -1,37 +1,29 @@
import cv2
import imutils
import numpy as np
from frigate.config import MotionConfig
class MotionDetector():
def __init__(self, frame_shape, config: MotionConfig):
self.config = config
self.frame_shape = frame_shape
self.resize_factor = frame_shape[0]/config.frame_height
self.motion_frame_size = (config.frame_height, config.frame_height*frame_shape[1]//frame_shape[0])
def __init__(self, frame_shape, mask, resize_factor=4):
self.resize_factor = resize_factor
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
self.motion_frame_count = 0
self.frame_counter = 0
resized_mask = cv2.resize(config.mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
self.mask = np.where(resized_mask==[0])
def detect(self, frame):
motion_boxes = []
gray = frame[0:self.frame_shape[0], 0:self.frame_shape[1]]
# resize frame
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
# TODO: can I improve the contrast of the grayscale image here?
resized_frame = cv2.resize(frame, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
# convert to grayscale
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
# mask frame
resized_frame[self.mask] = [255]
gray[self.mask] = [255]
# it takes ~30 frames to establish a baseline
# dont bother looking for motion
@@ -39,24 +31,25 @@ class MotionDetector():
self.frame_counter += 1
else:
# compare to average
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg_frame))
# compute the average delta over the past few frames
# the alpha value can be modified to configure how sensitive the motion detection is.
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
# register as motion, too low and a fast moving person wont be detected as motion
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
# this also assumes that a person is in the same location across more than a single frame
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
# compute the threshold image for the current frame
# TODO: threshold
current_thresh = cv2.threshold(frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
avg_delta_image[np.where(current_thresh==[0])] = [0]
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
thresh = cv2.threshold(avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
@@ -68,18 +61,19 @@ class MotionDetector():
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > self.config.contour_area:
if contour_area > 100:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append((int(x*self.resize_factor), int(y*self.resize_factor), int((x+w)*self.resize_factor), int((y+h)*self.resize_factor)))
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
if len(motion_boxes) > 0:
self.motion_frame_count += 1
# TODO: this really depends on FPS
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for a bit
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
# only average in the current frame if the difference persists for at least 3 frames
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
self.motion_frame_count = 0
return motion_boxes
return motion_boxes

View File

@@ -1,124 +0,0 @@
import logging
import threading
import paho.mqtt.client as mqtt
from frigate.config import FrigateConfig
logger = logging.getLogger(__name__)
def create_mqtt_client(config: FrigateConfig, camera_metrics):
mqtt_config = config.mqtt
def on_clips_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_clips_toggle: {message.topic} {payload}")
camera_name = message.topic.split('/')[-3]
clips_settings = config.cameras[camera_name].clips
if payload == 'ON':
if not clips_settings.enabled:
logger.info(f"Turning on clips for {camera_name} via mqtt")
clips_settings._enabled = True
elif payload == 'OFF':
if clips_settings.enabled:
logger.info(f"Turning off clips for {camera_name} via mqtt")
clips_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_snapshots_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_snapshots_toggle: {message.topic} {payload}")
camera_name = message.topic.split('/')[-3]
snapshots_settings = config.cameras[camera_name].snapshots
if payload == 'ON':
if not snapshots_settings.enabled:
logger.info(f"Turning on snapshots for {camera_name} via mqtt")
snapshots_settings._enabled = True
elif payload == 'OFF':
if snapshots_settings.enabled:
logger.info(f"Turning off snapshots for {camera_name} via mqtt")
snapshots_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_detect_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_detect_toggle: {message.topic} {payload}")
camera_name = message.topic.split('/')[-3]
detect_settings = config.cameras[camera_name].detect
if payload == 'ON':
if not camera_metrics[camera_name]["detection_enabled"].value:
logger.info(f"Turning on detection for {camera_name} via mqtt")
camera_metrics[camera_name]["detection_enabled"].value = True
detect_settings._enabled = True
elif payload == 'OFF':
if camera_metrics[camera_name]["detection_enabled"].value:
logger.info(f"Turning off detection for {camera_name} via mqtt")
camera_metrics[camera_name]["detection_enabled"].value = False
detect_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_connect(client, userdata, flags, rc):
threading.current_thread().name = "mqtt"
if rc != 0:
if rc == 3:
logger.error("MQTT Server unavailable")
elif rc == 4:
logger.error("MQTT Bad username or password")
elif rc == 5:
logger.error("MQTT Not authorized")
else:
logger.error("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
logger.info("MQTT connected")
client.subscribe(f"{mqtt_config.topic_prefix}/#")
client.publish(mqtt_config.topic_prefix+'/available', 'online', retain=True)
client = mqtt.Client(client_id=mqtt_config.client_id)
client.on_connect = on_connect
client.will_set(mqtt_config.topic_prefix+'/available', payload='offline', qos=1, retain=True)
# register callbacks
for name in config.cameras.keys():
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/clips/set", on_clips_command)
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/snapshots/set", on_snapshots_command)
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/detect/set", on_detect_command)
if not mqtt_config.user is None:
client.username_pw_set(mqtt_config.user, password=mqtt_config.password)
try:
client.connect(mqtt_config.host, mqtt_config.port, 60)
except Exception as e:
logger.error(f"Unable to connect to MQTT server: {e}")
raise
client.loop_start()
for name in config.cameras.keys():
client.publish(f"{mqtt_config.topic_prefix}/{name}/clips/state", 'ON' if config.cameras[name].clips.enabled else 'OFF', retain=True)
client.publish(f"{mqtt_config.topic_prefix}/{name}/snapshots/state", 'ON' if config.cameras[name].snapshots.enabled else 'OFF', retain=True)
client.publish(f"{mqtt_config.topic_prefix}/{name}/detect/state", 'ON' if config.cameras[name].detect.enabled else 'OFF', retain=True)
client.subscribe(f"{mqtt_config.topic_prefix}/#")
return client

View File

@@ -1,28 +1,17 @@
import copy
import base64
import datetime
import hashlib
import itertools
import json
import logging
import os
import queue
import threading
import time
from collections import Counter, defaultdict
from statistics import mean, median
from typing import Callable, Dict
import hashlib
import datetime
import copy
import cv2
import matplotlib.pyplot as plt
import threading
import numpy as np
from frigate.config import FrigateConfig, CameraConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from collections import Counter, defaultdict
import itertools
import pyarrow.plasma as plasma
import SharedArray as sa
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label
from frigate.edgetpu import load_labels
from frigate.util import SharedMemoryFrameManager, draw_box_with_label, calculate_region
logger = logging.getLogger(__name__)
PATH_TO_LABELS = '/labelmap.txt'
@@ -33,552 +22,133 @@ COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
def on_edge(box, frame_shape):
if (
box[0] == 0 or
box[1] == 0 or
box[2] == frame_shape[1]-1 or
box[3] == frame_shape[0]-1
):
return True
def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
# larger is better
# cutoff images are less ideal, but they should also be smaller?
# better scores are obviously better too
# if the new_thumb is on an edge, and the current thumb is not
if on_edge(new_obj['box'], frame_shape) and not on_edge(current_thumb['box'], frame_shape):
return False
# if the score is better by more than 5%
if new_obj['score'] > current_thumb['score']+.05:
return True
# if the area is 10% larger
if new_obj['area'] > current_thumb['area']*1.1:
return True
return False
class TrackedObject():
def __init__(self, camera, camera_config: CameraConfig, frame_cache, obj_data):
self.obj_data = obj_data
self.camera = camera
self.camera_config = camera_config
self.frame_cache = frame_cache
self.current_zones = []
self.entered_zones = set()
self.false_positive = True
self.top_score = self.computed_score = 0.0
self.thumbnail_data = None
self.last_updated = 0
self.last_published = 0
self.frame = None
self.previous = self.to_dict()
# start the score history
self.score_history = [self.obj_data['score']]
def _is_false_positive(self):
# once a true positive, always a true positive
if not self.false_positive:
return False
threshold = self.camera_config.objects.filters[self.obj_data['label']].threshold
if self.computed_score < threshold:
return True
return False
def compute_score(self):
scores = self.score_history[:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def update(self, current_frame_time, obj_data):
significant_update = False
self.obj_data.update(obj_data)
# if the object is not in the current frame, add a 0.0 to the score history
if self.obj_data['frame_time'] != current_frame_time:
self.score_history.append(0.0)
else:
self.score_history.append(self.obj_data['score'])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
# calculate if this is a false positive
self.computed_score = self.compute_score()
if self.computed_score > self.top_score:
self.top_score = self.computed_score
self.false_positive = self._is_false_positive()
if not self.false_positive:
# determine if this frame is a better thumbnail
if (
self.thumbnail_data is None
or is_better_thumbnail(self.thumbnail_data, self.obj_data, self.camera_config.frame_shape)
):
self.thumbnail_data = {
'frame_time': self.obj_data['frame_time'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'score': self.obj_data['score']
}
significant_update = True
# check zones
current_zones = []
bottom_center = (self.obj_data['centroid'][0], self.obj_data['box'][3])
# check each zone
for name, zone in self.camera_config.zones.items():
contour = zone.contour
# check if the object is in the zone
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
# if the object passed the filters once, dont apply again
if name in self.current_zones or not zone_filtered(self, zone.filters):
current_zones.append(name)
self.entered_zones.add(name)
# if the zones changed, signal an update
if not self.false_positive and set(self.current_zones) != set(current_zones):
significant_update = True
self.current_zones = current_zones
return significant_update
def to_dict(self, include_thumbnail: bool = False):
return {
'id': self.obj_data['id'],
'camera': self.camera,
'frame_time': self.obj_data['frame_time'],
'label': self.obj_data['label'],
'top_score': self.top_score,
'false_positive': self.false_positive,
'start_time': self.obj_data['start_time'],
'end_time': self.obj_data.get('end_time', None),
'score': self.obj_data['score'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'current_zones': self.current_zones.copy(),
'entered_zones': list(self.entered_zones).copy(),
'thumbnail': base64.b64encode(self.get_thumbnail()).decode('utf-8') if include_thumbnail else None
}
def get_thumbnail(self):
if self.thumbnail_data is None or not self.thumbnail_data['frame_time'] in self.frame_cache:
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
jpg_bytes = self.get_jpg_bytes(timestamp=False, bounding_box=False, crop=True, height=175)
if jpg_bytes:
return jpg_bytes
else:
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
return jpg.tobytes()
def get_jpg_bytes(self, timestamp=False, bounding_box=False, crop=False, height=None):
if self.thumbnail_data is None:
return None
try:
best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
except KeyError:
logger.warning(f"Unable to create jpg because frame {self.thumbnail_data['frame_time']} is not in the cache")
return None
if bounding_box:
thickness = 2
color = COLOR_MAP[self.obj_data['label']]
# draw the bounding boxes on the frame
box = self.thumbnail_data['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'], f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
if crop:
box = self.thumbnail_data['box']
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if height:
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
if timestamp:
time_to_show = datetime.datetime.fromtimestamp(self.thumbnail_data['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
desired_size = max(150, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale, color=(255, 255, 255), thickness=2)
ret, jpg = cv2.imencode('.jpg', best_frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
if ret:
return jpg.tobytes()
else:
return None
def zone_filtered(obj: TrackedObject, object_config):
object_name = obj.obj_data['label']
if object_name in object_config:
obj_settings = object_config[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > obj.obj_data['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj.obj_data['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.threshold > obj.computed_score:
return True
return False
# Maintains the state of a camera
class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.camera_config = config.cameras[name]
self.frame_manager = frame_manager
self.best_objects: Dict[str, TrackedObject] = {}
self.object_counts = defaultdict(lambda: 0)
self.tracked_objects: Dict[str, TrackedObject] = {}
self.frame_cache = {}
self.zone_objects = defaultdict(lambda: [])
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.motion_boxes = []
self.regions = []
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
def get_current_frame(self, draw_options={}):
with self.current_frame_lock:
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
motion_boxes = self.motion_boxes.copy()
regions = self.regions.copy()
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw_options.get('bounding_boxes'):
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
if draw_options.get('regions'):
for region in regions:
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
if draw_options.get('zones'):
for name, zone in self.camera_config.zones.items():
thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
if draw_options.get('mask'):
mask_overlay = np.where(self.camera_config.motion.mask==[0])
frame_copy[mask_overlay] = [0,0,0]
if draw_options.get('motion_boxes'):
for m_box in motion_boxes:
cv2.rectangle(frame_copy, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0,0,255), 2)
if draw_options.get('timestamp'):
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
return frame_copy
def finished(self, obj_id):
del self.tracked_objects[obj_id]
def on(self, event_type: str, callback: Callable[[Dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, current_detections, motion_boxes, regions):
self.current_frame_time = frame_time
self.motion_boxes = motion_boxes
self.regions = regions
# get the new frame
frame_id = f"{self.name}{frame_time}"
current_frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape_yuv)
current_ids = current_detections.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
new_obj = self.tracked_objects[id] = TrackedObject(self.name, self.camera_config, self.frame_cache, current_detections[id])
# call event handlers
for c in self.callbacks['start']:
c(self.name, new_obj, frame_time)
for id in updated_ids:
updated_obj = self.tracked_objects[id]
significant_update = updated_obj.update(frame_time, current_detections[id])
if significant_update:
# ensure this frame is stored in the cache
if updated_obj.thumbnail_data['frame_time'] == frame_time and frame_time not in self.frame_cache:
self.frame_cache[frame_time] = np.copy(current_frame)
updated_obj.last_updated = frame_time
# if it has been more than 5 seconds since the last publish
# and the last update is greater than the last publish
if frame_time - updated_obj.last_published > 5 and updated_obj.last_updated > updated_obj.last_published:
# call event handlers
for c in self.callbacks['update']:
c(self.name, updated_obj, frame_time)
updated_obj.last_published = frame_time
for id in removed_ids:
# publish events to mqtt
removed_obj = self.tracked_objects[id]
if not 'end_time' in removed_obj.obj_data:
removed_obj.obj_data['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, removed_obj, frame_time)
# TODO: can i switch to looking this up and only changing when an event ends?
# maintain best objects
for obj in self.tracked_objects.values():
object_type = obj.obj_data['label']
# if the object's thumbnail is not from the current frame
if obj.false_positive or obj.thumbnail_data['frame_time'] != self.current_frame_time:
continue
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
or (now - current_best.thumbnail_data['frame_time']) > self.camera_config.best_image_timeout):
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type], frame_time)
else:
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type], frame_time)
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
if count != self.object_counts[obj_name]:
self.object_counts[obj_name] = count
for c in self.callbacks['object_status']:
c(self.name, obj_name, count)
# expire any objects that are >0 and no longer detected
expired_objects = [obj_name for obj_name, count in self.object_counts.items() if count > 0 and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_counts[obj_name] = 0
for c in self.callbacks['object_status']:
c(self.name, obj_name, 0)
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[obj_name], frame_time)
# cleanup thumbnail frame cache
current_thumb_frames = set([obj.thumbnail_data['frame_time'] for obj in self.tracked_objects.values() if not obj.false_positive])
current_best_frames = set([obj.thumbnail_data['frame_time'] for obj in self.best_objects.values()])
thumb_frames_to_delete = [t for t in self.frame_cache.keys() if not t in current_thumb_frames and not t in current_best_frames]
for t in thumb_frames_to_delete:
del self.frame_cache[t]
with self.current_frame_lock:
self._current_frame = current_frame
if not self.previous_frame_id is None:
self.frame_manager.delete(self.previous_frame_id)
self.previous_frame_id = frame_id
class TrackedObjectProcessor(threading.Thread):
def __init__(self, config: FrigateConfig, client, topic_prefix, tracked_objects_queue, event_queue, event_processed_queue, stop_event):
def __init__(self, config, client, topic_prefix, tracked_objects_queue):
threading.Thread.__init__(self)
self.name = "detected_frames_processor"
self.config = config
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.stop_event = stop_event
self.camera_states: Dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
def start(camera, obj: TrackedObject, current_frame_time):
self.event_queue.put(('start', camera, obj.to_dict()))
def update(camera, obj: TrackedObject, current_frame_time):
after = obj.to_dict()
message = { 'before': obj.previous, 'after': after, 'type': 'new' if obj.previous['false_positive'] else 'update' }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
obj.previous = after
def end(camera, obj: TrackedObject, current_frame_time):
snapshot_config = self.config.cameras[camera].snapshots
event_data = obj.to_dict(include_thumbnail=True)
event_data['has_snapshot'] = False
if not obj.false_positive:
message = { 'before': obj.previous, 'after': obj.to_dict(), 'type': 'end' }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
# write snapshot to disk if enabled
if snapshot_config.enabled and self.should_save_snapshot(camera, obj):
jpg_bytes = obj.get_jpg_bytes(
timestamp=snapshot_config.timestamp,
bounding_box=snapshot_config.bounding_box,
crop=snapshot_config.crop,
height=snapshot_config.height
)
if jpg_bytes is None:
logger.warning(f"Unable to save snapshot for {obj.obj_data['id']}.")
else:
with open(os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"), 'wb') as j:
j.write(jpg_bytes)
event_data['has_snapshot'] = True
self.event_queue.put(('end', camera, event_data))
self.plasma_client = plasma.connect("/tmp/plasma")
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {},
'current_frame_time': None,
'current_frame': np.zeros((720,1280,3), np.uint8),
'object_id': None
})
def snapshot(camera, obj: TrackedObject, current_frame_time):
mqtt_config = self.config.cameras[camera].mqtt
if mqtt_config.enabled and self.should_mqtt_snapshot(camera, obj):
jpg_bytes = obj.get_jpg_bytes(
timestamp=mqtt_config.timestamp,
bounding_box=mqtt_config.bounding_box,
crop=mqtt_config.crop,
height=mqtt_config.height
)
if jpg_bytes is None:
logger.warning(f"Unable to send mqtt snapshot for {obj.obj_data['id']}.")
else:
self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", jpg_bytes, retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.config.cameras.keys():
camera_state = CameraState(camera, self.config, self.frame_manager)
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
camera_state.on('snapshot', snapshot)
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
# {
# 'zone_name': {
# 'person': {
# 'camera_1': 2,
# 'camera_2': 1
# }
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: {}))
def should_save_snapshot(self, camera, obj: TrackedObject):
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].snapshots.required_zones
if len(required_zones) > 0 and not obj.entered_zones & set(required_zones):
logger.debug(f"Not creating snapshot for {obj.obj_data['id']} because it did not enter required zones")
return False
return True
def should_mqtt_snapshot(self, camera, obj: TrackedObject):
# if there are required zones and there is no overlap
required_zones = self.config.cameras[camera].mqtt.required_zones
if len(required_zones) > 0 and not obj.entered_zones & set(required_zones):
logger.debug(f"Not sending mqtt for {obj.obj_data['id']} because it did not enter required zones")
return False
return True
def get_best(self, camera, label):
# TODO: need a lock here
camera_state = self.camera_states[camera]
if label in camera_state.best_objects:
best_obj = camera_state.best_objects[label]
best = best_obj.thumbnail_data.copy()
best['frame'] = camera_state.frame_cache.get(best_obj.thumbnail_data['frame_time'])
return best
if label in self.camera_data[camera]['best_objects']:
return self.camera_data[camera]['best_objects'][label]['frame']
else:
return {}
def get_current_frame(self, camera, draw_options={}):
return self.camera_states[camera].get_current_frame(draw_options)
return None
def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame']
def get_current_frame_time(self, camera):
return self.camera_data[camera]['current_frame_time']
def run(self):
while True:
if self.stop_event.is_set():
logger.info(f"Exiting object processor...")
break
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
try:
camera, frame_time, current_tracked_objects, motion_boxes, regions = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
config = self.config[camera]
best_objects = self.camera_data[camera]['best_objects']
current_object_status = self.camera_data[camera]['object_status']
self.camera_data[camera]['tracked_objects'] = tracked_objects
camera_state = self.camera_states[camera]
###
# Draw tracked objects on the frame
###
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
object_id_bytes = object_id_hash.digest()
object_id = plasma.ObjectID(object_id_bytes)
current_frame = self.plasma_client.get(object_id, timeout_ms=0)
camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# update zone counts for each label
# for each zone in the current camera
for zone in self.config.cameras[camera].zones.keys():
# count labels for the camera in the zone
obj_counter = Counter()
for obj in camera_state.tracked_objects.values():
if zone in obj.current_zones and not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# update counts and publish status
for label in set(list(self.zone_data[zone].keys()) + list(obj_counter.keys())):
# if we have previously published a count for this zone/label
zone_label = self.zone_data[zone][label]
if camera in zone_label:
current_count = sum(zone_label.values())
zone_label[camera] = obj_counter[label] if label in obj_counter else 0
new_count = sum(zone_label.values())
if new_count != current_count:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", new_count, retain=False)
# if this is a new zone/label combo for this camera
else:
if label in obj_counter:
zone_label[camera] = obj_counter[label]
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", obj_counter[label], retain=False)
###
# Set the current frame as ready
###
self.camera_data[camera]['current_frame'] = current_frame
self.camera_data[camera]['current_frame_time'] = frame_time
# cleanup event finished queue
while not self.event_processed_queue.empty():
event_id, camera = self.event_processed_queue.get()
self.camera_states[camera].finished(event_id)
# store the object id, so you can delete it at the next loop
previous_object_id = self.camera_data[camera]['object_id']
if not previous_object_id is None:
self.plasma_client.delete([previous_object_id])
self.camera_data[camera]['object_id'] = object_id
###
# Maintain the highest scoring recent object and frame for each label
###
for obj in tracked_objects.values():
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != frame_time:
continue
if obj['label'] in best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
###
# Report over MQTT
###
# count objects with more than 2 entries in history by type
obj_counter = Counter()
for obj in tracked_objects.values():
if len(obj['history']) > 1:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
# send the best snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)

View File

@@ -1,32 +1,26 @@
import copy
import datetime
import itertools
import multiprocessing as mp
import random
import string
import threading
import time
from collections import defaultdict
import datetime
import threading
import cv2
import itertools
import copy
import numpy as np
import multiprocessing as mp
from collections import defaultdict
from scipy.spatial import distance as dist
from frigate.config import DetectConfig
from frigate.util import draw_box_with_label
from frigate.util import draw_box_with_label, calculate_region
class ObjectTracker():
def __init__(self, config: DetectConfig):
def __init__(self, max_disappeared):
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = config.max_disappeared
self.max_disappeared = max_disappeared
def register(self, index, obj):
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
id = f"{obj['frame_time']}-{rand_id}"
id = f"{obj['frame_time']}-{index}"
obj['id'] = id
obj['start_time'] = obj['frame_time']
obj['top_score'] = obj['score']
self.add_history(obj)
self.tracked_objects[id] = obj
self.disappeared[id] = 0
@@ -37,6 +31,22 @@ class ObjectTracker():
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
self.add_history(self.tracked_objects[id])
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def add_history(self, obj):
entry = {
'score': obj['score'],
'box': obj['box'],
'region': obj['region'],
'centroid': obj['centroid'],
'frame_time': obj['frame_time']
}
if 'history' in obj:
obj['history'].append(entry)
else:
obj['history'] = [entry]
def match_and_update(self, frame_time, new_objects):
# group by name

View File

@@ -1,208 +0,0 @@
import datetime
import json
import logging
import multiprocessing as mp
import os
import subprocess as sp
import sys
from unittest import TestCase, main
import click
import cv2
import numpy as np
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
from frigate.edgetpu import LocalObjectDetector
from frigate.motion import MotionDetector
from frigate.object_processing import COLOR_MAP, CameraState
from frigate.objects import ObjectTracker
from frigate.util import (DictFrameManager, EventsPerSecond,
SharedMemoryFrameManager, draw_box_with_label)
from frigate.video import (capture_frames, process_frames,
start_or_restart_ffmpeg)
logging.basicConfig()
logging.root.setLevel(logging.DEBUG)
logger = logging.getLogger(__name__)
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
class ProcessClip():
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
self.clip_path = clip_path
self.camera_name = 'camera'
self.config = config
self.camera_config = self.config.cameras['camera']
self.frame_shape = self.camera_config.frame_shape
self.ffmpeg_cmd = [c['cmd'] for c in self.camera_config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
current_frame = mp.Value('d', 0.0)
frame_size = self.camera_config.frame_shape_yuv[0] * self.camera_config.frame_shape_yuv[1]
ffmpeg_process = start_or_restart_ffmpeg(self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size)
capture_frames(ffmpeg_process, self.camera_name, self.camera_config.frame_shape_yuv, self.frame_manager,
self.frame_queue, fps, skipped_fps, current_frame)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=['person'], object_filters={}):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, mask, self.camera_config.motion)
object_detector = LocalObjectDetector(labels='/labelmap.txt')
object_tracker = ObjectTracker(self.camera_config.detect)
process_info = {
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0)
}
stop_event = mp.Event()
model_shape = (self.config.model.height, self.config.model.width)
process_frames(self.camera_name, self.frame_queue, self.frame_shape, model_shape,
self.frame_manager, motion_detector, object_detector, object_tracker,
self.detected_objects_queue, process_info,
objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
def top_object(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj, frame_time):
nonlocal obj_detected
nonlocal top_computed_score
if obj.computed_score > top_computed_score:
top_computed_score = obj.computed_score
if not obj.false_positive:
obj_detected = True
self.camera_state.on('new', handle_event)
self.camera_state.on('update', handle_event)
while(not self.detected_objects_queue.empty()):
camera_name, frame_time, current_tracked_objects, motion_boxes, regions = self.detected_objects_queue.get()
if not debug_path is None:
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
self.camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
'object_detected': obj_detected,
'top_score': top_computed_score
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = cv2.cvtColor(self.frame_manager.get(f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv), cv2.COLOR_YUV2BGR_I420)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0,0,175)
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
else:
color = (255,255,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['id'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", current_frame)
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default='person', help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("-s", "--scores", default=None, help="File to save csv of top scores")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, threshold, scores, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
json_config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'camera': {
'ffmpeg': {
'inputs': [
{ 'path': 'path.mp4', 'global_args': '', 'input_args': '', 'roles': ['detect'] }
]
},
'height': 1920,
'width': 1080
}
}
}
results = []
for c in clips:
logger.info(c)
frame_shape = get_frame_shape(c)
json_config['cameras']['camera']['height'] = frame_shape[0]
json_config['cameras']['camera']['width'] = frame_shape[1]
json_config['cameras']['camera']['ffmpeg']['inputs'][0]['path'] = c
config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
process_clip = ProcessClip(c, frame_shape, config)
process_clip.load_frames()
process_clip.process_frames(objects_to_track=[label])
results.append((c, process_clip.top_object(debug_path)))
if not scores is None:
with open(scores, 'w') as writer:
for result in results:
writer.write(f"{result[0]},{result[1]['top_score']}\n")
positive_count = sum(1 for result in results if result[1]['object_detected'])
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
if __name__ == '__main__':
process()

View File

@@ -1,125 +0,0 @@
import datetime
import json
import logging
import os
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
logger = logging.getLogger(__name__)
SECONDS_IN_DAY = 60 * 60 * 24
def remove_empty_directories(directory):
# list all directories recursively and sort them by path,
# longest first
paths = sorted(
[x[0] for x in os.walk(RECORD_DIR)],
key=lambda p: len(str(p)),
reverse=True,
)
for path in paths:
# don't delete the parent
if path == RECORD_DIR:
continue
if len(os.listdir(path)) == 0:
os.rmdir(path)
class RecordingMaintainer(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = 'recording_maint'
self.config = config
self.stop_event = stop_event
def move_files(self):
recordings = [d for d in os.listdir(RECORD_DIR) if os.path.isfile(os.path.join(RECORD_DIR, d)) and d.endswith(".mp4")]
files_in_use = []
for process in psutil.process_iter():
try:
if process.name() != 'ffmpeg':
continue
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(RECORD_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in recordings:
if f in files_in_use:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(RECORD_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
logger.info(f"bad file: {f}")
os.remove(os.path.join(RECORD_DIR,f))
continue
directory = os.path.join(RECORD_DIR, start_time.strftime('%Y-%m/%d/%H'), camera)
if not os.path.exists(directory):
os.makedirs(directory)
file_name = f"{start_time.strftime('%M.%S.mp4')}"
os.rename(os.path.join(RECORD_DIR,f), os.path.join(directory,file_name))
def expire_files(self):
delete_before = {}
for name, camera in self.config.cameras.items():
delete_before[name] = datetime.datetime.now().timestamp() - SECONDS_IN_DAY*camera.record.retain_days
for p in Path('/media/frigate/recordings').rglob("*.mp4"):
if not p.parent.name in delete_before:
continue
if p.stat().st_mtime < delete_before[p.parent.name]:
p.unlink(missing_ok=True)
def run(self):
counter = 0
self.expire_files()
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting recording maintenance...")
break
# only expire events every 10 minutes, but check for new files every 10 seconds
time.sleep(10)
counter = counter + 1
if counter > 60:
self.expire_files()
remove_empty_directories(RECORD_DIR)
counter = 0
self.move_files()

View File

@@ -1,92 +0,0 @@
import json
import logging
import threading
import time
import psutil
import shutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.version import VERSION
logger = logging.getLogger(__name__)
def stats_init(camera_metrics, detectors):
stats_tracking = {
'camera_metrics': camera_metrics,
'detectors': detectors,
'started': int(time.time())
}
return stats_tracking
def get_fs_type(path):
bestMatch = ""
fsType = ""
for part in psutil.disk_partitions(all=True):
if path.startswith(part.mountpoint) and len(bestMatch) < len(part.mountpoint):
fsType = part.fstype
bestMatch = part.mountpoint
return fsType
def stats_snapshot(stats_tracking):
camera_metrics = stats_tracking['camera_metrics']
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_metrics.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'camera_fps': round(camera_stats['camera_fps'].value, 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'pid': camera_stats['process'].pid,
'capture_pid': camera_stats['capture_process'].pid
}
stats['detectors'] = {}
for name, detector in stats_tracking["detectors"].items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value * 1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
stats['service'] = {
'uptime': (int(time.time()) - stats_tracking['started']),
'version': VERSION,
'storage': {}
}
for path in [RECORD_DIR, CLIPS_DIR, CACHE_DIR, "/dev/shm"]:
storage_stats = shutil.disk_usage(path)
stats['service']['storage'][path] = {
'total': round(storage_stats.total/1000000, 1),
'used': round(storage_stats.used/1000000, 1),
'free': round(storage_stats.free/1000000, 1),
'mount_type': get_fs_type(path)
}
return stats
class StatsEmitter(threading.Thread):
def __init__(self, config: FrigateConfig, stats_tracking, mqtt_client, topic_prefix, stop_event):
threading.Thread.__init__(self)
self.name = 'frigate_stats_emitter'
self.config = config
self.stats_tracking = stats_tracking
self.mqtt_client = mqtt_client
self.topic_prefix = topic_prefix
self.stop_event = stop_event
def run(self):
time.sleep(10)
while True:
if self.stop_event.is_set():
logger.info(f"Exiting watchdog...")
break
stats = stats_snapshot(self.stats_tracking)
self.mqtt_client.publish(f"{self.topic_prefix}/stats", json.dumps(stats), retain=False)
time.sleep(self.config.mqtt.stats_interval)

View File

@@ -1,433 +0,0 @@
import json
from unittest import TestCase, main
import voluptuous as vol
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
class TestConfig(TestCase):
def setUp(self):
self.minimal = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
def test_empty(self):
FRIGATE_CONFIG_SCHEMA({})
def test_minimal(self):
FRIGATE_CONFIG_SCHEMA(self.minimal)
def test_config_class(self):
FrigateConfig(config=self.minimal)
def test_inherit_tracked_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.track)
def test_override_tracked_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['cat']
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('cat' in frigate_config.cameras['back'].objects.track)
def test_default_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
def test_inherit_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
def test_override_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
def test_global_object_mask(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'mask': '0,0,1,1,0,1',
'filters': {
'dog': {
'mask': '1,1,1,1,1,1'
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
assert(len(frigate_config.cameras['back'].objects.filters['dog']._raw_mask) == 2)
assert(len(frigate_config.cameras['back'].objects.filters['person']._raw_mask) == 1)
def test_ffmpeg_params_global(self):
config = {
'ffmpeg': {
'input_args': ['-re']
},
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('-re' in frigate_config.cameras['back'].ffmpeg_cmds[0]['cmd'])
def test_ffmpeg_params_camera(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
],
'input_args': ['-re']
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('-re' in frigate_config.cameras['back'].ffmpeg_cmds[0]['cmd'])
def test_ffmpeg_params_input(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'], 'input_args': ['-re'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('-re' in frigate_config.cameras['back'].ffmpeg_cmds[0]['cmd'])
def test_inherit_clips_retention(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert(frigate_config.cameras['back'].clips.retain.objects['person'] == 30)
def test_roles_listed_twice_throws_error(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] },
{ 'path': 'rtsp://10.0.0.1:554/video2', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
def test_zone_matching_camera_name_throws_error(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'zones': {
'back': {
'coordinates': '1,1,1,1,1,1'
}
}
}
}
}
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
def test_clips_should_default_to_global_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'clips': {
'enabled': True
}
}
}
}
config = FrigateConfig(config=config)
assert(config.cameras['back'].clips.objects is None)
def test_role_assigned_but_not_enabled(self):
json_config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect', 'rtmp'] },
{ 'path': 'rtsp://10.0.0.1:554/record', 'roles': ['record'] }
]
},
'height': 1080,
'width': 1920
}
}
}
config = FrigateConfig(config=json_config)
ffmpeg_cmds = config.cameras['back'].ffmpeg_cmds
assert(len(ffmpeg_cmds) == 1)
assert(not 'clips' in ffmpeg_cmds[0]['roles'])
if __name__ == '__main__':
main(verbosity=2)

View File

@@ -1,39 +0,0 @@
import cv2
import numpy as np
from unittest import TestCase, main
from frigate.util import yuv_region_2_rgb
class TestYuvRegion2RGB(TestCase):
def setUp(self):
self.bgr_frame = np.zeros((100, 200, 3), np.uint8)
self.bgr_frame[:] = (0, 0, 255)
self.bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
self.yuv_frame = cv2.cvtColor(self.bgr_frame, cv2.COLOR_BGR2YUV_I420)
def test_crop_yuv(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (10,10,50,50))
# ensure the upper left pixel is blue
assert(np.all(cropped[0, 0] == [0, 0, 255]))
def test_crop_yuv_out_of_bounds(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (0,0,200,200))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
# ensure the upper left pixel is red
# the yuv conversion has some noise
assert(np.all(cropped[0, 0] == [255, 1, 0]))
# ensure the bottom right is black
assert(np.all(cropped[199, 199] == [0, 0, 0]))
def test_crop_yuv_portrait(self):
bgr_frame = np.zeros((1920, 1080, 3), np.uint8)
bgr_frame[:] = (0, 0, 255)
bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
yuv_frame = cv2.cvtColor(bgr_frame, cv2.COLOR_BGR2YUV_I420)
cropped = yuv_region_2_rgb(yuv_frame, (0, 852, 648, 1500))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
if __name__ == '__main__':
main(verbosity=2)

View File

@@ -1,23 +1,9 @@
import collections
import datetime
import hashlib
import json
import logging
import signal
import subprocess as sp
import threading
import time
import traceback
from abc import ABC, abstractmethod
from multiprocessing import shared_memory
from typing import AnyStr
import cv2
import matplotlib.pyplot as plt
import collections
import numpy as np
logger = logging.getLogger(__name__)
import cv2
import threading
import matplotlib.pyplot as plt
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
@@ -50,11 +36,11 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is the longest edge and divisible by 4
size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
# dont go any smaller than 300
if size < 300:
size = 300
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
@@ -62,157 +48,18 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1]-size):
x_offset = max(0, (frame_shape[1]-size))
x_offset = (frame_shape[1]-size)
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# # if outside the image
# if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0]-size):
y_offset = max(0, (frame_shape[0]-size))
y_offset = (frame_shape[0]-size)
return (x_offset, y_offset, x_offset+size, y_offset+size)
def get_yuv_crop(frame_shape, crop):
# crop should be (x1,y1,x2,y2)
frame_height = frame_shape[0]//3*2
frame_width = frame_shape[1]
# compute the width/height of the uv channels
uv_width = frame_width//2 # width of the uv channels
uv_height = frame_height//4 # height of the uv channels
# compute the offset for upper left corner of the uv channels
uv_x_offset = crop[0]//2 # x offset of the uv channels
uv_y_offset = crop[1]//4 # y offset of the uv channels
# compute the width/height of the uv crops
uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
# ensure crop dimensions are multiples of 2 and 4
y = (
crop[0],
crop[1],
crop[0] + uv_crop_width*2,
crop[1] + uv_crop_height*4
)
u1 = (
0 + uv_x_offset,
frame_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
u2 = (
uv_width + uv_x_offset,
frame_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
v1 = (
0 + uv_x_offset,
frame_height + uv_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
v2 = (
uv_width + uv_x_offset,
frame_height + uv_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
return y, u1, u2, v1, v2
def yuv_region_2_rgb(frame, region):
try:
height = frame.shape[0]//3*2
width = frame.shape[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
# ensure these are a multiple of 4
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
# if the region starts outside the frame, indent the start point in the cropped frame
y_channel_x_offset = abs(min(0, region[0]))
y_channel_y_offset = abs(min(0, region[1]))
uv_channel_x_offset = y_channel_x_offset//2
uv_channel_y_offset = y_channel_y_offset//4
# create the yuv region frame
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# fill in black
yuv_cropped_frame[:] = 128
yuv_cropped_frame[0:size,0:size] = 16
# copy the y channel
yuv_cropped_frame[
y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
] = frame[
y[1]:y[3],
y[0]:y[2]
]
uv_crop_width = u1[2] - u1[0]
uv_crop_height = u1[3] - u1[1]
# copy u1
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
u1[1]:u1[3],
u1[0]:u1[2]
]
# copy u2
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
u2[1]:u2[3],
u2[0]:u2[2]
]
# copy v1
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
v1[1]:v1[3],
v1[0]:v1[2]
]
# copy v2
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
v2[1]:v2[3],
v2[0]:v2[2]
]
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def intersection(box_a, box_b):
return (
max(box_a[0], box_b[0]),
@@ -270,105 +117,13 @@ class EventsPerSecond:
self._start = datetime.datetime.now().timestamp()
def update(self):
if self._start is None:
self.start()
self._timestamps.append(datetime.datetime.now().timestamp())
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events+100:
self._timestamps = self._timestamps[(1-self._max_events):]
def eps(self, last_n_seconds=10):
if self._start is None:
self.start()
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now-self._start, last_n_seconds)
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
def print_stack(sig, frame):
traceback.print_stack(frame)
def listen():
signal.signal(signal.SIGUSR1, print_stack)
def create_mask(frame_shape, mask):
mask_img = np.zeros(frame_shape, np.uint8)
mask_img[:] = 255
if isinstance(mask, list):
for m in mask:
add_mask(m, mask_img)
elif isinstance(mask, str):
add_mask(mask, mask_img)
return mask_img
def add_mask(mask, mask_img):
points = mask.split(',')
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
cv2.fillPoly(mask_img, pts=[contour], color=(0))
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:
pass
@abstractmethod
def get(self, name, timeout_ms=0):
pass
@abstractmethod
def close(self, name):
pass
@abstractmethod
def delete(self, name):
pass
class DictFrameManager(FrameManager):
def __init__(self):
self.frames = {}
def create(self, name, size) -> AnyStr:
mem = bytearray(size)
self.frames[name] = mem
return mem
def get(self, name, shape):
mem = self.frames[name]
return np.ndarray(shape, dtype=np.uint8, buffer=mem)
def close(self, name):
pass
def delete(self, name):
del self.frames[name]
class SharedMemoryFrameManager(FrameManager):
def __init__(self):
self.shm_store = {}
def create(self, name, size) -> AnyStr:
shm = shared_memory.SharedMemory(name=name, create=True, size=size)
self.shm_store[name] = shm
return shm.buf
def get(self, name, shape):
if name in self.shm_store:
shm = self.shm_store[name]
else:
shm = shared_memory.SharedMemory(name=name)
self.shm_store[name] = shm
return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
def close(self, name):
if name in self.shm_store:
self.shm_store[name].close()
del self.shm_store[name]
def delete(self, name):
if name in self.shm_store:
self.shm_store[name].close()
self.shm_store[name].unlink()
del self.shm_store[name]

View File

@@ -1,37 +1,60 @@
import base64
import copy
import ctypes
import os
import time
import datetime
import cv2
import queue
import threading
import ctypes
import multiprocessing as mp
import subprocess as sp
import numpy as np
import hashlib
import pyarrow.plasma as plasma
import SharedArray as sa
import copy
import itertools
import json
import logging
import multiprocessing as mp
import os
import queue
import subprocess as sp
import signal
import threading
import time
from collections import defaultdict
from setproctitle import setproctitle
from typing import Dict, List
import cv2
import numpy as np
from frigate.config import CameraConfig
from frigate.edgetpu import RemoteObjectDetector
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
from frigate.objects import ObjectTracker
from frigate.util import (EventsPerSecond, FrameManager,
SharedMemoryFrameManager, area, calculate_region,
clipped, draw_box_with_label, intersection,
intersection_over_union, listen, yuv_region_2_rgb)
from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector
logger = logging.getLogger(__name__)
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
print(ffprobe_cmd)
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
print(info)
def filtered(obj, objects_to_track, object_filters):
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
def filtered(obj, objects_to_track, object_filters, mask):
object_name = obj[0]
if not object_name in objects_to_track:
@@ -42,345 +65,227 @@ def filtered(obj, objects_to_track, object_filters):
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > obj[3]:
if obj_settings.get('min_area',-1) > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj[3]:
if obj_settings.get('max_area', 24000000) < obj[3]:
return True
# if the score is lower than the min_score, skip
if obj_settings.min_score > obj[1]:
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj[1]:
return True
if not obj_settings.mask is None:
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(obj_settings.mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(obj_settings.mask[0])-1)
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if obj_settings.mask[y_location][x_location] == 0:
return True
# if the object is in a masked location, don't add it to detected objects
if mask[y_location][x_location] == [0]:
return True
return False
return False
def create_tensor_input(frame, model_shape, region):
cropped_frame = yuv_region_2_rgb(frame, region)
def create_tensor_input(frame, region):
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
# Resize to 300x300 if needed
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
if cropped_frame.shape != (300, 300, 3):
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
def stop_ffmpeg(ffmpeg_process, logger):
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
logger.info("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
logger.info("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps):
print(f"Starting process for {name}: {os.getpid()}")
def start_or_restart_ffmpeg(ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None):
if not ffmpeg_process is None:
stop_ffmpeg(ffmpeg_process, logger)
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
if frame_size is None:
process = sp.Popen(ffmpeg_cmd, stdout = sp.DEVNULL, stderr=logpipe, stdin = sp.DEVNULL, start_new_session=True)
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
# combine tracked objects lists
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# merge object filters
global_object_filters = global_objects_config.get('filters', {})
camera_object_filters = camera_objects_config.get('filters', {})
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
object_filters = {}
for obj in objects_with_config:
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
expected_fps = config['fps']
take_frame = config.get('take_frame', 1)
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stderr=logpipe, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
return process
frame_shape = get_frame_shape(ffmpeg_input)
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
frame_queue, fps:mp.Value, skipped_fps: mp.Value, current_frame: mp.Value):
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
frame_size = frame_shape[0] * frame_shape[1]
frame_rate = EventsPerSecond()
frame_rate.start()
skipped_eps = EventsPerSecond()
skipped_eps.start()
while True:
fps.value = frame_rate.eps()
skipped_fps = skipped_eps.eps()
try:
sa.delete(name)
except:
pass
current_frame.value = datetime.datetime.now().timestamp()
frame_name = f"{camera_name}{current_frame.value}"
frame_buffer = frame_manager.create(frame_name, frame_size)
try:
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception as e:
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
if ffmpeg_process.poll() != None:
logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
frame_manager.delete(frame_name)
break
continue
# load in the mask for object detection
if 'mask' in config:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None
frame_rate.update()
if mask is None:
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
mask[:] = 255
# if the queue is full, skip this frame
if frame_queue.full():
skipped_eps.update()
frame_manager.delete(frame_name)
continue
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector('/labelmap.txt', detect_lock, detect_ready, frame_ready)
# close the frame
frame_manager.close(frame_name)
object_tracker = ObjectTracker(10)
# add to the queue
frame_queue.put(current_frame.value)
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
class CameraWatchdog(threading.Thread):
def __init__(self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
threading.Thread.__init__(self)
self.logger = logging.getLogger(f"watchdog.{camera_name}")
self.camera_name = camera_name
self.config = config
self.capture_thread = None
self.ffmpeg_detect_process = None
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect", logging.ERROR)
self.ffmpeg_other_processes = []
self.camera_fps = camera_fps
self.ffmpeg_pid = ffmpeg_pid
self.frame_queue = frame_queue
self.frame_shape = self.config.frame_shape_yuv
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
self.stop_event = stop_event
def run(self):
self.start_ffmpeg_detect()
for c in self.config.ffmpeg_cmds:
if 'detect' in c['roles']:
continue
logpipe = LogPipe(f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}", logging.ERROR)
self.ffmpeg_other_processes.append({
'cmd': c['cmd'],
'logpipe': logpipe,
'process': start_or_restart_ffmpeg(c['cmd'], self.logger, logpipe)
})
time.sleep(10)
while True:
if self.stop_event.is_set():
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
for p in self.ffmpeg_other_processes:
stop_ffmpeg(p['process'], self.logger)
p['logpipe'].close()
self.logpipe.close()
break
now = datetime.datetime.now().timestamp()
if not self.capture_thread.is_alive():
self.logpipe.dump()
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
self.ffmpeg_detect_process.terminate()
try:
self.logger.info("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_detect_process.communicate(timeout=30)
except sp.TimeoutExpired:
self.logger.info("FFmpeg didnt exit. Force killing...")
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
for p in self.ffmpeg_other_processes:
poll = p['process'].poll()
if poll == None:
continue
p['logpipe'].dump()
p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
# wait a bit before checking again
time.sleep(10)
print(" ".join(ffmpeg_cmd))
def start_ffmpeg_detect(self):
ffmpeg_cmd = [c['cmd'] for c in self.config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.logger, self.logpipe, self.frame_size)
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
self.capture_thread = CameraCapture(self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue,
self.camera_fps)
self.capture_thread.start()
class CameraCapture(threading.Thread):
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
threading.Thread.__init__(self)
self.name = f"capture:{camera_name}"
self.camera_name = camera_name
self.frame_shape = frame_shape
self.frame_queue = frame_queue
self.fps = fps
self.skipped_fps = EventsPerSecond()
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = mp.Value('d', 0.0)
self.last_frame = 0
def run(self):
self.skipped_fps.start()
capture_frames(self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue,
self.fps, self.skipped_fps, self.current_frame)
def capture_camera(name, config: CameraConfig, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size)
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_queue = process_info['frame_queue']
camera_watchdog = CameraWatchdog(name, config, frame_queue, process_info['camera_fps'], process_info['ffmpeg_pid'], stop_event)
camera_watchdog.start()
camera_watchdog.join()
def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"process:{name}"
setproctitle(f"frigate.process:{name}")
listen()
frame_queue = process_info['frame_queue']
detection_enabled = process_info['detection_enabled']
frame_shape = config.frame_shape
objects_to_track = config.objects.track
object_filters = config.objects.filters
motion_detector = MotionDetector(frame_shape, config.motion)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
object_tracker = ObjectTracker(config.detect)
frame_manager = SharedMemoryFrameManager()
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, detection_enabled, stop_event)
logger.info(f"{name}: exiting subprocess")
def reduce_boxes(boxes):
if len(boxes) == 0:
return []
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
return [tuple(b) for b in reduced_boxes]
# modified from https://stackoverflow.com/a/40795835
def intersects_any(box_a, boxes):
for box in boxes:
if box_a[2] < box[0] or box_a[0] > box[2] or box_a[1] > box[3] or box_a[3] < box[1]:
continue
return True
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters):
tensor_input = create_tensor_input(frame, model_shape, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
# apply object filters
if filtered(det, objects_to_track, object_filters):
continue
detections.append(det)
return detections
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
frame_manager: FrameManager, motion_detector: MotionDetector,
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue, process_info: Dict,
objects_to_track: List[str], object_filters, detection_enabled: mp.Value, stop_event,
exit_on_empty: bool = False):
fps = process_info['process_fps']
detection_fps = process_info['detection_fps']
current_frame_time = process_info['detection_frame']
plasma_client = plasma.connect("/tmp/plasma")
frame_num = 0
avg_wait = 0.0
fps_tracker = EventsPerSecond()
skipped_fps_tracker = EventsPerSecond()
fps_tracker.start()
skipped_fps_tracker.start()
object_detector.fps.start()
while True:
if stop_event.is_set():
start = datetime.datetime.now().timestamp()
frame_bytes = ffmpeg_process.stdout.read(frame_size)
duration = datetime.datetime.now().timestamp()-start
avg_wait = (avg_wait*99+duration)/100
if not frame_bytes:
break
if exit_on_empty and frame_queue.empty():
logger.info(f"Exiting track_objects...")
break
try:
frame_time = frame_queue.get(True, 10)
except queue.Empty:
# limit frame rate
frame_num += 1
if (frame_num % take_frame) != 0:
continue
current_frame_time.value = frame_time
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
if frame is None:
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
if not detection_enabled.value:
fps.value = fps_tracker.eps()
object_tracker.match_and_update(frame_time, [])
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, [], []))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
continue
fps_tracker.update()
fps.value = fps_tracker.eps()
detection_fps.value = object_detector.fps.eps()
frame_time = datetime.datetime.now().timestamp()
# Store frame in numpy array
frame[:] = (np
.frombuffer(frame_bytes, np.uint8)
.reshape(frame_shape))
# look for motion
motion_boxes = motion_detector.detect(frame)
# only get the tracked object boxes that intersect with motion
tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values() if intersects_any(obj['box'], motion_boxes)]
# skip object detection if we are below the min_fps and wait time is less than half the average
if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait:
skipped_fps_tracker.update()
skipped_fps.value = skipped_fps_tracker.eps()
continue
skipped_fps.value = skipped_fps_tracker.eps()
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
tracked_objects = object_tracker.tracked_objects.values()
# compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in combined_boxes]
# combine overlapping regions
combined_regions = reduce_boxes(regions)
# re-compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in combined_regions]
# merge areas of motion that intersect with a known tracked object into a single area to look at
areas_of_interest = []
used_motion_boxes = []
for obj in tracked_objects:
x_min, y_min, x_max, y_max = obj['box']
for m_index, motion_box in enumerate(motion_boxes):
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
used_motion_boxes.append(m_index)
x_min = min(obj['box'][0], motion_box[0])
y_min = min(obj['box'][1], motion_box[1])
x_max = max(obj['box'][2], motion_box[2])
y_max = max(obj['box'][3], motion_box[3])
areas_of_interest.append((x_min, y_min, x_max, y_max))
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
# compute motion regions
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
for i in unused_motion_boxes]
# compute tracked object regions
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in areas_of_interest]
# merge regions with high IOU
merged_regions = motion_regions+object_regions
while True:
max_iou = 0.0
max_indices = None
region_indices = range(len(merged_regions))
for a, b in itertools.combinations(region_indices, 2):
iou = intersection_over_union(merged_regions[a], merged_regions[b])
if iou > max_iou:
max_iou = iou
max_indices = (a, b)
if max_iou > 0.1:
a = merged_regions[max_indices[0]]
b = merged_regions[max_indices[1]]
merged_regions.append(calculate_region(frame_shape,
min(a[0], b[0]),
min(a[1], b[1]),
max(a[2], b[2]),
max(a[3], b[3]),
1
))
del merged_regions[max(max_indices[0], max_indices[1])]
del merged_regions[min(max_indices[0], max_indices[1])]
else:
break
# resize regions and detect
detections = []
for region in regions:
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
for region in merged_regions:
tensor_input = create_tensor_input(frame, region)
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
#########
# merge objects, check for clipped objects and look again up to 4 times
# merge objects, check for clipped objects and look again up to N times
#########
refining = True
refine_count = 0
@@ -403,41 +308,48 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape):
if clipped(obj, frame_shape): #obj['clipped']:
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
regions.append(region)
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
tensor_input = create_tensor_input(frame, region)
# run detection on new region
refined_detections = object_detector.detect(tensor_input)
for d in refined_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
selected_objects.append(det)
refining = True
else:
selected_objects.append(obj)
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
# Limit to the detections overlapping with motion areas
# to avoid picking up stationary background objects
detections_with_motion = [d for d in detections if intersects_any(d[2], motion_boxes)]
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections_with_motion)
object_tracker.match_and_update(frame_time, detections)
# add to the queue if not full
if(detected_objects_queue.full()):
frame_manager.delete(f"{camera_name}{frame_time}")
continue
else:
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
# put the frame in the plasma store
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
plasma_client.put(frame, plasma.ObjectID(object_id))
# add to the queue
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))

View File

@@ -1,38 +0,0 @@
import datetime
import logging
import threading
import time
import os
import signal
logger = logging.getLogger(__name__)
class FrigateWatchdog(threading.Thread):
def __init__(self, detectors, stop_event):
threading.Thread.__init__(self)
self.name = 'frigate_watchdog'
self.detectors = detectors
self.stop_event = stop_event
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(10)
if self.stop_event.is_set():
logger.info(f"Exiting watchdog...")
break
now = datetime.datetime.now().timestamp()
# check the detection processes
for detector in self.detectors.values():
detection_start = detector.detection_start.value
if (detection_start > 0.0 and
now - detection_start > 10):
logger.info("Detection appears to be stuck. Restarting detection process...")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
logger.info("Detection appears to have stopped. Exiting frigate...")
os.kill(os.getpid(), signal.SIGTERM)

View File

@@ -1,58 +0,0 @@
import logging
import socket
from zeroconf import (
ServiceInfo,
NonUniqueNameException,
InterfaceChoice,
IPVersion,
Zeroconf,
)
logger = logging.getLogger(__name__)
ZEROCONF_TYPE = "_frigate._tcp.local."
# Taken from: http://stackoverflow.com/a/11735897
def get_local_ip() -> str:
"""Try to determine the local IP address of the machine."""
try:
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# Use Google Public DNS server to determine own IP
sock.connect(("8.8.8.8", 80))
return sock.getsockname()[0] # type: ignore
except OSError:
try:
return socket.gethostbyname(socket.gethostname())
except socket.gaierror:
return "127.0.0.1"
finally:
sock.close()
def broadcast_zeroconf(frigate_id):
zeroconf = Zeroconf(interfaces=InterfaceChoice.Default, ip_version=IPVersion.V4Only)
host_ip = get_local_ip()
try:
host_ip_pton = socket.inet_pton(socket.AF_INET, host_ip)
except OSError:
host_ip_pton = socket.inet_pton(socket.AF_INET6, host_ip)
info = ServiceInfo(
ZEROCONF_TYPE,
name=f"{frigate_id}.{ZEROCONF_TYPE}",
addresses=[host_ip_pton],
port=5000,
)
logger.info("Starting Zeroconf broadcast")
try:
zeroconf.register_service(info)
except NonUniqueNameException:
logger.error(
"Frigate instance with identical name present in the local network"
)
return zeroconf

View File

@@ -1,80 +0,0 @@
0 person
1 bicycle
2 car
3 motorcycle
4 airplane
5 bus
6 train
7 car
8 boat
9 traffic light
10 fire hydrant
12 stop sign
13 parking meter
14 bench
15 bird
16 cat
17 dog
18 horse
19 sheep
20 cow
21 elephant
22 bear
23 zebra
24 giraffe
26 backpack
27 umbrella
30 handbag
31 tie
32 suitcase
33 frisbee
34 skis
35 snowboard
36 sports ball
37 kite
38 baseball bat
39 baseball glove
40 skateboard
41 surfboard
42 tennis racket
43 bottle
45 wine glass
46 cup
47 fork
48 knife
49 spoon
50 bowl
51 banana
52 apple
53 sandwich
54 orange
55 broccoli
56 carrot
57 hot dog
58 pizza
59 donut
60 cake
61 chair
62 couch
63 potted plant
64 bed
66 dining table
69 toilet
71 tv
72 laptop
73 mouse
74 remote
75 keyboard
76 cell phone
77 microwave
78 oven
79 toaster
80 sink
81 refrigerator
83 book
84 clock
85 vase
86 scissors
87 teddy bear
88 hair drier
89 toothbrush

View File

@@ -1,41 +0,0 @@
"""Peewee migrations -- 001_create_events_table.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import datetime as dt
import peewee as pw
from decimal import ROUND_HALF_EVEN
try:
import playhouse.postgres_ext as pw_pext
except ImportError:
pass
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.sql('CREATE TABLE IF NOT EXISTS "event" ("id" VARCHAR(30) NOT NULL PRIMARY KEY, "label" VARCHAR(20) NOT NULL, "camera" VARCHAR(20) NOT NULL, "start_time" DATETIME NOT NULL, "end_time" DATETIME NOT NULL, "top_score" REAL NOT NULL, "false_positive" INTEGER NOT NULL, "zones" JSON NOT NULL, "thumbnail" TEXT NOT NULL)')
migrator.sql('CREATE INDEX IF NOT EXISTS "event_label" ON "event" ("label")')
migrator.sql('CREATE INDEX IF NOT EXISTS "event_camera" ON "event" ("camera")')
def rollback(migrator, database, fake=False, **kwargs):
pass

View File

@@ -1,41 +0,0 @@
"""Peewee migrations -- 002_add_clip_snapshot.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import datetime as dt
import peewee as pw
from decimal import ROUND_HALF_EVEN
from frigate.models import Event
try:
import playhouse.postgres_ext as pw_pext
except ImportError:
pass
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.add_fields(Event, has_clip=pw.BooleanField(default=True), has_snapshot=pw.BooleanField(default=True))
def rollback(migrator, database, fake=False, **kwargs):
migrator.remove_fields(Event, ['has_clip', 'has_snapshot'])

View File

@@ -1,160 +0,0 @@
worker_processes 1;
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
load_module "modules/ngx_rtmp_module.so";
events {
worker_connections 1024;
}
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';
access_log /var/log/nginx/access.log main;
sendfile on;
keepalive_timeout 65;
gzip on;
gzip_comp_level 6;
gzip_types text/plain text/css application/json application/x-javascript application/javascript text/javascript image/svg+xml image/x-icon image/bmp image/png image/gif image/jpeg image/jpg;
gzip_proxied no-cache no-store private expired auth;
gzip_vary on;
upstream frigate_api {
server localhost:5001;
keepalive 1024;
}
server {
listen 5000;
location /stream/ {
add_header 'Cache-Control' 'no-cache';
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
application/dash+xml mpd;
application/vnd.apple.mpegurl m3u8;
video/mp2t ts;
image/jpeg jpg;
}
root /tmp;
}
location /clips/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
image/jpeg jpg;
}
autoindex on;
root /media/frigate;
}
location /recordings/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
}
autoindex on;
autoindex_format json;
root /media/frigate;
}
location /ws {
proxy_pass http://frigate_api/ws;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_set_header Host $host;
}
location /api/ {
add_header 'Access-Control-Allow-Origin' '*';
add_header Cache-Control "no-store";
proxy_pass http://frigate_api/;
proxy_pass_request_headers on;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
}
location / {
add_header Cache-Control "no-cache";
location ~* \.(?:js|css|svg|ico|png)$ {
access_log off;
expires 1y;
add_header Cache-Control "public";
}
sub_filter 'href="/' 'href="$http_x_ingress_path/';
sub_filter 'url(/' 'url($http_x_ingress_path/';
sub_filter '"/dist/' '"$http_x_ingress_path/dist/';
sub_filter '"/js/' '"$http_x_ingress_path/js/';
sub_filter '<body>' '<body><script>window.baseUrl="$http_x_ingress_path";</script>';
sub_filter_types text/css application/javascript;
sub_filter_once off;
root /opt/frigate/web;
try_files $uri $uri/ /index.html;
}
}
}
rtmp {
server {
listen 1935;
chunk_size 4096;
allow publish 127.0.0.1;
deny publish all;
allow play all;
application live {
live on;
record off;
meta copy;
}
}
}

4
run.sh
View File

@@ -1,4 +0,0 @@
#!/usr/bin/env bash
service nginx start
exec python3 -u -m frigate

View File

@@ -1 +0,0 @@
node_modules

View File

@@ -1,2 +0,0 @@
build/*
node_modules/*

View File

@@ -1,140 +0,0 @@
module.exports = {
parser: '@babel/eslint-parser',
parserOptions: {
sourceType: 'module',
ecmaFeatures: {
experimentalObjectRestSpread: true,
jsx: true,
},
},
extends: [
'prettier',
'preact',
'plugin:import/react',
'plugin:testing-library/recommended',
'plugin:jest/recommended',
],
plugins: ['import', 'testing-library', 'jest'],
env: {
es6: true,
node: true,
browser: true,
},
rules: {
'constructor-super': 'error',
'default-case': ['error', { commentPattern: '^no default$' }],
'handle-callback-err': ['error', '^(err|error)$'],
'new-cap': ['error', { newIsCap: true, capIsNew: false }],
'no-alert': 'error',
'no-array-constructor': 'error',
'no-caller': 'error',
'no-case-declarations': 'error',
'no-class-assign': 'error',
'no-cond-assign': 'error',
'no-console': 'error',
'no-const-assign': 'error',
'no-control-regex': 'error',
'no-debugger': 'error',
'no-delete-var': 'error',
'no-dupe-args': 'error',
'no-dupe-class-members': 'error',
'no-dupe-keys': 'error',
'no-duplicate-case': 'error',
'no-duplicate-imports': 'error',
'no-empty-character-class': 'error',
'no-empty-pattern': 'error',
'no-eval': 'error',
'no-ex-assign': 'error',
'no-extend-native': 'error',
'no-extra-bind': 'error',
'no-extra-boolean-cast': 'error',
'no-fallthrough': 'error',
'no-floating-decimal': 'error',
'no-func-assign': 'error',
'no-implied-eval': 'error',
'no-inner-declarations': ['error', 'functions'],
'no-invalid-regexp': 'error',
'no-irregular-whitespace': 'error',
'no-iterator': 'error',
'no-label-var': 'error',
'no-labels': ['error', { allowLoop: false, allowSwitch: false }],
'no-lone-blocks': 'error',
'no-loop-func': 'error',
'no-multi-str': 'error',
'no-native-reassign': 'error',
'no-negated-in-lhs': 'error',
'no-new': 'error',
'no-new-func': 'error',
'no-new-object': 'error',
'no-new-require': 'error',
'no-new-symbol': 'error',
'no-new-wrappers': 'error',
'no-obj-calls': 'error',
'no-octal': 'error',
'no-octal-escape': 'error',
'no-path-concat': 'error',
'no-proto': 'error',
'no-redeclare': 'error',
'no-regex-spaces': 'error',
'no-return-assign': ['error', 'except-parens'],
'no-script-url': 'error',
'no-self-assign': 'error',
'no-self-compare': 'error',
'no-sequences': 'error',
'no-shadow-restricted-names': 'error',
'no-sparse-arrays': 'error',
'no-this-before-super': 'error',
'no-throw-literal': 'error',
'no-trailing-spaces': 'error',
'no-undef': 'error',
'no-undef-init': 'error',
'no-unexpected-multiline': 'error',
'no-unmodified-loop-condition': 'error',
'no-unneeded-ternary': ['error', { defaultAssignment: false }],
'no-unreachable': 'error',
'no-unsafe-finally': 'error',
'no-unused-vars': ['error', { vars: 'all', args: 'none', ignoreRestSiblings: true }],
'no-useless-call': 'error',
'no-useless-computed-key': 'error',
'no-useless-concat': 'error',
'no-useless-constructor': 'error',
'no-useless-escape': 'error',
'no-var': 'error',
'no-with': 'error',
'prefer-const': 'error',
'prefer-rest-params': 'error',
'use-isnan': 'error',
'valid-typeof': 'error',
camelcase: 'off',
eqeqeq: ['error', 'allow-null'],
indent: ['error', 2, { SwitchCase: 1 }],
quotes: ['error', 'single', 'avoid-escape'],
radix: 'error',
yoda: ['error', 'never'],
'import/no-unresolved': 'error',
'react-hooks/exhaustive-deps': 'error',
'jest/consistent-test-it': ['error', { fn: 'test' }],
'jest/no-test-prefixes': 'error',
'jest/no-restricted-matchers': [
'error',
{ toMatchSnapshot: 'Use `toMatchInlineSnapshot()` and ensure you only snapshot very small elements' },
],
'jest/valid-describe': 'error',
'jest/valid-expect-in-promise': 'error',
},
settings: {
'import/resolver': {
node: {
extensions: ['.js', '.jsx'],
},
},
},
};

View File

@@ -1,3 +0,0 @@
# Frigate Web UI
For installation and contributing instructions, please follow the [Contributing Docs](https://blakeblackshear.github.io/frigate/contributing).

View File

@@ -1,4 +0,0 @@
module.exports = {
presets: ['@babel/preset-env'],
plugins: [['@babel/plugin-transform-react-jsx', { pragma: 'h' }]],
};

Some files were not shown because too many files have changed in this diff Show More