Compare commits

..

41 Commits

Author SHA1 Message Date
Blake Blackshear
a60b9211d2 allow specifying debug view fps and size 2020-03-03 20:26:53 -06:00
Blake Blackshear
777fb1d5d1 Update to latest url for tensorflow lite wheel 2020-03-03 20:26:53 -06:00
Blake Blackshear
8e9110f42e if the detections dont come back in 10s, give up 2020-03-03 20:26:53 -06:00
Blake Blackshear
c80137e059 call the restart function and handle errors better in the detection process 2020-03-03 20:26:53 -06:00
Blake Blackshear
2768e1dadb clarify mqtt password readme 2020-03-03 20:26:53 -06:00
Blake Blackshear
2fbba01577 readme updates 2020-03-03 20:26:53 -06:00
Blake Blackshear
e7c536ea31 allow mqtt password to be set by env var 2020-03-03 20:26:53 -06:00
Blake Blackshear
1734c0569a update benchmark script to mirror actual frigate use 2020-03-03 20:26:53 -06:00
Blake Blackshear
a5bef89123 improve detection processing and restart when stuck 2020-03-03 20:26:53 -06:00
Blake Blackshear
d8aa73d26e handle ffmpeg process failures in the camera process itself 2020-03-03 20:26:53 -06:00
Blake Blackshear
791409d5e5 add a few print statements for debugging 2020-03-03 20:26:53 -06:00
Blake Blackshear
01bf89907d dont kill the camera process from the main process 2020-03-03 20:26:53 -06:00
Blake Blackshear
8e73c7e95e increase the buffer size a bit 2020-03-03 20:26:53 -06:00
Blake Blackshear
088bd18adb add a few more metrics to debug 2020-03-03 20:26:53 -06:00
Blake Blackshear
2e8c7ec225 cleanup the plasma store when finished with a frame 2020-03-03 20:26:53 -06:00
Blake Blackshear
9340a74371 dont redirect stdout for plasma store 2020-03-03 20:26:53 -06:00
Blake Blackshear
5998de610b reset detection fps 2020-03-03 20:26:53 -06:00
Blake Blackshear
dfabff3846 dont change dictionary while iterating 2020-03-03 20:26:53 -06:00
Blake Blackshear
76a7a3bad5 allow specifying the frame size in the config instead of detecting 2020-03-03 20:26:53 -06:00
Blake Blackshear
a3fa97dd52 ensure missing objects are expired even when other object types are in the frame 2020-03-03 20:26:53 -06:00
Blake Blackshear
1d2a41129c Fix watchdog last_frame calculation 2020-03-03 20:26:53 -06:00
Blake Blackshear
956298128d cleanup 2020-03-03 20:26:53 -06:00
Blake Blackshear
e6892d66b8 update docs and add back benchmark 2020-03-03 20:26:53 -06:00
Blake Blackshear
6ef22cf578 fix watchdog 2020-03-03 20:26:53 -06:00
Blake Blackshear
3e6f6edf7e check avg wait before dropping frames 2020-03-03 20:26:53 -06:00
Blake Blackshear
81c5b96ed7 fix watchdog restart 2020-03-03 20:26:53 -06:00
Blake Blackshear
6f6d202c99 improve watchdog and coral fps tracking 2020-03-03 20:26:53 -06:00
Blake Blackshear
2fc389c3ad dont log http requests 2020-03-03 20:26:53 -06:00
Blake Blackshear
05951aa7da cleanup 2020-03-03 20:26:53 -06:00
Blake Blackshear
bb8e4621f5 add models and convert speed to ms 2020-03-03 20:26:53 -06:00
Blake Blackshear
04e9ab5ce4 add watchdog for camera processes 2020-03-03 20:26:53 -06:00
Blake Blackshear
1089a40943 cleanup old code 2020-03-03 20:26:53 -06:00
Blake Blackshear
68c3a069ba add a min_fps option 2020-03-03 20:26:53 -06:00
Blake Blackshear
80b9652f7a check plasma store and consolidate frame drawing 2020-03-03 20:26:53 -06:00
Blake Blackshear
569e07949f split into separate processes 2020-03-03 20:26:53 -06:00
Blake Blackshear
ffa9534549 update tflite to 2.1.0 2020-03-03 20:26:53 -06:00
Blake Blackshear
c539993387 refactor some classes into new files 2020-03-03 20:26:53 -06:00
Blake Blackshear
8a572f96d5 tweak process handoff 2020-03-03 20:26:53 -06:00
Blake Blackshear
24cb3508e8 Mostly working detection in a separate process 2020-03-03 20:26:53 -06:00
Blake Blackshear
3f34c57e31 read from ffmpeg 2020-03-03 20:26:53 -06:00
Blake Blackshear
4c618daa90 WIP: revamp to incorporate motion 2020-03-03 20:26:53 -06:00
8 changed files with 223 additions and 134 deletions

View File

@@ -38,9 +38,9 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
&& apt -qq install --no-install-recommends -y \ && apt -qq install --no-install-recommends -y \
libedgetpu1-max \ libedgetpu1-max \
## Tensorflow lite (python 3.7 only) ## Tensorflow lite (python 3.7 only)
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \ && wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \ && python3.7 -m pip install tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \ && rm tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \ && rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y) && (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -16,16 +16,6 @@ You see multiple bounding boxes because it draws bounding boxes from all frames
[![](http://img.youtube.com/vi/nqHbCtyo4dY/0.jpg)](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate") [![](http://img.youtube.com/vi/nqHbCtyo4dY/0.jpg)](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
## Getting Started ## Getting Started
Build the container with
```
docker build -t frigate .
```
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
Run the container with Run the container with
```bash ```bash
docker run --rm \ docker run --rm \
@@ -36,7 +26,7 @@ docker run --rm \
-v /etc/localtime:/etc/localtime:ro \ -v /etc/localtime:/etc/localtime:ro \
-p 5000:5000 \ -p 5000:5000 \
-e FRIGATE_RTSP_PASSWORD='password' \ -e FRIGATE_RTSP_PASSWORD='password' \
frigate:latest blakeblackshear/frigate:stable
``` ```
Example docker-compose: Example docker-compose:
@@ -46,7 +36,7 @@ Example docker-compose:
restart: unless-stopped restart: unless-stopped
privileged: true privileged: true
shm_size: '1g' # should work for 5-7 cameras shm_size: '1g' # should work for 5-7 cameras
image: frigate:latest image: blakeblackshear/frigate:stable
volumes: volumes:
- /dev/bus/usb:/dev/bus/usb - /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro - /etc/localtime:/etc/localtime:ro
@@ -127,6 +117,11 @@ sensor:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}' value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
unit_of_measurement: 'ms' unit_of_measurement: 'ms'
``` ```
## Using a custom model
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
## Tips ## Tips
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed - Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed

View File

@@ -1,18 +1,79 @@
import statistics import os
from statistics import mean
import multiprocessing as mp
import numpy as np import numpy as np
import time import datetime
from frigate.edgetpu import ObjectDetector from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
object_detector = ObjectDetector() my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
labels = load_labels('/labelmap.txt')
frame = np.zeros((300,300,3), np.uint8) ######
input_frame = np.expand_dims(frame, axis=0) # Minimal same process runner
######
# object_detector = ObjectDetector()
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
detection_times = [] # start = datetime.datetime.now().timestamp()
for x in range(0, 100): # frame_times = []
start = time.monotonic() # for x in range(0, 1000):
object_detector.detect_raw(input_frame) # start_frame = datetime.datetime.now().timestamp()
detection_times.append(time.monotonic()-start)
print(f"Average inference time: {statistics.mean(detection_times)*1000:.2f}ms") # tensor_input[:] = my_frame
# detections = object_detector.detect_raw(tensor_input)
# parsed_detections = []
# for d in detections:
# if d[1] < 0.4:
# break
# parsed_detections.append((
# labels[int(d[0])],
# float(d[1]),
# (d[2], d[3], d[4], d[5])
# ))
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
# duration = datetime.datetime.now().timestamp()-start
# print(f"Processed for {duration:.2f} seconds.")
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
######
# Separate process runner
######
def start(id, num_detections, detection_queue):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
start = datetime.datetime.now().timestamp()
frame_times = []
for x in range(0, num_detections):
start_frame = datetime.datetime.now().timestamp()
detections = object_detector.detect(my_frame)
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
duration = datetime.datetime.now().timestamp()-start
print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
edgetpu_process = EdgeTPUProcess()
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
####
# Multiple camera processes
####
camera_processes = []
for x in range(0, 10):
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
camera_process.daemon = True
camera_processes.append(camera_process)
start = datetime.datetime.now().timestamp()
for p in camera_processes:
p.start()
for p in camera_processes:
p.join()
duration = datetime.datetime.now().timestamp()-start
print(f"Total - Processed for {duration:.2f} seconds.")

View File

@@ -3,9 +3,13 @@ web_port: 5000
mqtt: mqtt:
host: mqtt.server.com host: mqtt.server.com
topic_prefix: frigate topic_prefix: frigate
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances # client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
# user: username # Optional -- Uncomment for use # user: username # Optional
# password: password # Optional -- Uncomment for use #################
## Environment variables that begin with 'FRIGATE_' may be referenced in {}.
## password: '{FRIGATE_MQTT_PASSWORD}'
#################
# password: password # Optional
################# #################
# Default ffmpeg args. Optional and can be overwritten per camera. # Default ffmpeg args. Optional and can be overwritten per camera.

View File

@@ -1,3 +1,4 @@
import os
import cv2 import cv2
import time import time
import datetime import datetime
@@ -8,7 +9,7 @@ import multiprocessing as mp
import subprocess as sp import subprocess as sp
import numpy as np import numpy as np
import logging import logging
from flask import Flask, Response, make_response, jsonify from flask import Flask, Response, make_response, jsonify, request
import paho.mqtt.client as mqtt import paho.mqtt.client as mqtt
from frigate.video import track_camera from frigate.video import track_camera
@@ -16,6 +17,8 @@ from frigate.object_processing import TrackedObjectProcessor
from frigate.util import EventsPerSecond from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess from frigate.edgetpu import EdgeTPUProcess
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
with open('/config/config.yml') as f: with open('/config/config.yml') as f:
CONFIG = yaml.safe_load(f) CONFIG = yaml.safe_load(f)
@@ -24,6 +27,8 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate') MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user') MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password') MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
if not MQTT_PASS is None:
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate') MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
# Set the default FFmpeg config # Set the default FFmpeg config
@@ -68,27 +73,21 @@ class CameraWatchdog(threading.Thread):
# wait a bit before checking # wait a bit before checking
time.sleep(30) time.sleep(30)
if (self.tflite_process.detection_start.value > 0.0 and
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
print("Detection appears to be stuck. Restarting detection process")
self.tflite_process.start_or_restart()
time.sleep(30)
for name, camera_process in self.camera_processes.items(): for name, camera_process in self.camera_processes.items():
process = camera_process['process'] process = camera_process['process']
if (not self.object_processor.get_current_frame_time(name) is None and
(datetime.datetime.now().timestamp() - self.object_processor.get_current_frame_time(name)) > 30):
print(f"Last frame for {name} is more than 30 seconds old...")
if process.is_alive():
process.terminate()
print("Waiting for process to exit gracefully...")
process.join(timeout=30)
if process.exitcode is None:
print("Process didnt exit. Force killing...")
process.kill()
process.join()
if not process.is_alive(): if not process.is_alive():
print(f"Process for {name} is not alive. Starting again...") print(f"Process for {name} is not alive. Starting again...")
camera_process['fps'].value = float(self.config[name]['fps']) camera_process['fps'].value = float(self.config[name]['fps'])
camera_process['skipped_fps'].value = 0.0 camera_process['skipped_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0 camera_process['detection_fps'].value = 0.0
self.object_processor.camera_data[name]['current_frame_time'] = None
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
self.tflite_process.detect_lock, self.tflite_process.detect_ready, self.tflite_process.frame_ready, self.tracked_objects_queue, self.tflite_process.detection_queue, self.tracked_objects_queue,
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps'])) camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
process.daemon = True process.daemon = True
camera_process['process'] = process camera_process['process'] = process
@@ -150,7 +149,7 @@ def main():
'detection_fps': mp.Value('d', 0.0) 'detection_fps': mp.Value('d', 0.0)
} }
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue, tflite_process.detection_queue, tracked_objects_queue,
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'])) camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
camera_process.daemon = True camera_process.daemon = True
camera_processes[name]['process'] = camera_process camera_processes[name]['process'] = camera_process
@@ -184,14 +183,16 @@ def main():
for name, camera_stats in camera_processes.items(): for name, camera_stats in camera_processes.items():
total_detection_fps += camera_stats['detection_fps'].value total_detection_fps += camera_stats['detection_fps'].value
stats[name] = { stats[name] = {
'fps': camera_stats['fps'].value, 'fps': round(camera_stats['fps'].value, 2),
'skipped_fps': camera_stats['skipped_fps'].value, 'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': camera_stats['detection_fps'].value 'detection_fps': round(camera_stats['detection_fps'].value, 2)
} }
stats['coral'] = { stats['coral'] = {
'fps': total_detection_fps, 'fps': round(total_detection_fps, 2),
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2) 'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
'detection_queue': tflite_process.detection_queue.qsize(),
'detection_start': tflite_process.detection_start.value
} }
rc = plasma_process.poll() rc = plasma_process.poll()
@@ -217,21 +218,26 @@ def main():
@app.route('/<camera_name>') @app.route('/<camera_name>')
def mjpeg_feed(camera_name): def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
if camera_name in CONFIG['cameras']: if camera_name in CONFIG['cameras']:
# return a multipart response # return a multipart response
return Response(imagestream(camera_name), return Response(imagestream(camera_name, fps, height),
mimetype='multipart/x-mixed-replace; boundary=frame') mimetype='multipart/x-mixed-replace; boundary=frame')
else: else:
return "Camera named {} not found".format(camera_name), 404 return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name): def imagestream(camera_name, fps, height):
while True: while True:
# max out at 1 FPS # max out at specified FPS
time.sleep(1) time.sleep(1/fps)
frame = object_processor.get_current_frame(camera_name) frame = object_processor.get_current_frame(camera_name)
if frame is None: if frame is None:
frame = np.zeros((720,1280,3), np.uint8) frame = np.zeros((height,int(height*16/9),3), np.uint8)
frame = cv2.resize(frame, dsize=(int(height*16/9), height), interpolation=cv2.INTER_LINEAR)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame) ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n' yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')

View File

@@ -1,8 +1,10 @@
import os import os
import datetime import datetime
import hashlib
import multiprocessing as mp import multiprocessing as mp
import numpy as np import numpy as np
import SharedArray as sa import SharedArray as sa
import pyarrow.plasma as plasma
import tflite_runtime.interpreter as tflite import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond from frigate.util import EventsPerSecond
@@ -60,77 +62,81 @@ class ObjectDetector():
return detections return detections
def run_detector(detection_queue, avg_speed, start):
print(f"Starting detection process: {os.getpid()}")
plasma_client = plasma.connect("/tmp/plasma")
object_detector = ObjectDetector()
while True:
object_id_str = detection_queue.get()
object_id_hash = hashlib.sha1(str.encode(object_id_str))
object_id = plasma.ObjectID(object_id_hash.digest())
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
input_frame = plasma_client.get(object_id, timeout_ms=0)
if input_frame is plasma.ObjectNotAvailable:
continue
# detect and put the output in the plasma store
start.value = datetime.datetime.now().timestamp()
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
duration = datetime.datetime.now().timestamp()-start.value
start.value = 0.0
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess(): class EdgeTPUProcess():
def __init__(self): def __init__(self):
# TODO: see if we can use the plasma store with a queue and maintain the same speeds self.detection_queue = mp.Queue()
try:
sa.delete("frame")
except:
pass
try:
sa.delete("detections")
except:
pass
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
self.detect_lock = mp.Lock()
self.detect_ready = mp.Event()
self.frame_ready = mp.Event()
self.avg_inference_speed = mp.Value('d', 0.01) self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.start_or_restart()
def run_detector(detect_ready, frame_ready, avg_speed): def start_or_restart(self):
print(f"Starting detection process: {os.getpid()}") self.detection_start.value = 0.0
object_detector = ObjectDetector() if (not self.detect_process is None) and self.detect_process.is_alive():
input_frame = sa.attach("frame") self.detect_process.terminate()
detections = sa.attach("detections") print("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
while True: if self.detect_process.exitcode is None:
# wait until a frame is ready print("Detection process didnt exit. Force killing...")
frame_ready.wait() self.detect_process.kill()
start = datetime.datetime.now().timestamp() self.detect_process.join()
# signal that the process is busy self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
frame_ready.clear()
detections[:] = object_detector.detect_raw(input_frame)
# signal that the process is ready to detect
detect_ready.set()
duration = datetime.datetime.now().timestamp()-start
avg_speed.value = (avg_speed.value*9 + duration)/10
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
self.detect_process.daemon = True self.detect_process.daemon = True
self.detect_process.start() self.detect_process.start()
class RemoteObjectDetector(): class RemoteObjectDetector():
def __init__(self, labels, detect_lock, detect_ready, frame_ready): def __init__(self, name, labels, detection_queue):
self.labels = load_labels(labels) self.labels = load_labels(labels)
self.name = name
self.input_frame = sa.attach("frame")
self.detections = sa.attach("detections")
self.fps = EventsPerSecond() self.fps = EventsPerSecond()
self.plasma_client = plasma.connect("/tmp/plasma")
self.detect_lock = detect_lock self.detection_queue = detection_queue
self.detect_ready = detect_ready
self.frame_ready = frame_ready
def detect(self, tensor_input, threshold=.4): def detect(self, tensor_input, threshold=.4):
detections = [] detections = []
with self.detect_lock:
self.input_frame[:] = tensor_input now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
# unset detections and signal that a frame is ready object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
self.detect_ready.clear() object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
self.frame_ready.set() self.plasma_client.put(tensor_input, object_id_frame)
# wait until the detection process is finished, self.detection_queue.put(now)
self.detect_ready.wait() raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
for d in self.detections:
if d[1] < threshold: if raw_detections is plasma.ObjectNotAvailable:
break self.plasma_client.delete([object_id_frame])
detections.append(( return detections
self.labels[int(d[0])],
float(d[1]), for d in raw_detections:
(d[2], d[3], d[4], d[5]) if d[1] < threshold:
)) break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.plasma_client.delete([object_id_frame, object_id_detections])
self.fps.update() self.fps.update()
return detections return detections

View File

@@ -34,7 +34,6 @@ class TrackedObjectProcessor(threading.Thread):
'best_objects': {}, 'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')), 'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {}, 'tracked_objects': {},
'current_frame_time': None,
'current_frame': np.zeros((720,1280,3), np.uint8), 'current_frame': np.zeros((720,1280,3), np.uint8),
'object_id': None 'object_id': None
}) })
@@ -48,9 +47,6 @@ class TrackedObjectProcessor(threading.Thread):
def get_current_frame(self, camera): def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame'] return self.camera_data[camera]['current_frame']
def get_current_frame_time(self, camera):
return self.camera_data[camera]['current_frame_time']
def run(self): def run(self):
while True: while True:
camera, frame_time, tracked_objects = self.tracked_objects_queue.get() camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
@@ -93,7 +89,6 @@ class TrackedObjectProcessor(threading.Thread):
# Set the current frame as ready # Set the current frame as ready
### ###
self.camera_data[camera]['current_frame'] = current_frame self.camera_data[camera]['current_frame'] = current_frame
self.camera_data[camera]['current_frame_time'] = frame_time
# store the object id, so you can delete it at the next loop # store the object id, so you can delete it at the next loop
previous_object_id = self.camera_data[camera]['object_id'] previous_object_id = self.camera_data[camera]['object_id']

View File

@@ -98,7 +98,23 @@ def create_tensor_input(frame, region):
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0) return np.expand_dims(cropped_frame, axis=0)
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps): def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
if not ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.wait(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.wait()
print("Creating ffmpeg process...")
print(" ".join(ffmpeg_cmd))
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
print(f"Starting process for {name}: {os.getpid()}") print(f"Starting process for {name}: {os.getpid()}")
# Merge the ffmpeg config with the global config # Merge the ffmpeg config with the global config
@@ -108,6 +124,13 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args']) ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args']) ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args']) ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
# Merge the tracked object config with the global config # Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {}) camera_objects_config = config.get('objects', {})
@@ -149,21 +172,11 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
mask[:] = 255 mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6) motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector('/labelmap.txt', detect_lock, detect_ready, frame_ready) object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
object_tracker = ObjectTracker(10) object_tracker = ObjectTracker(10)
ffmpeg_cmd = (['ffmpeg'] + ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
print(" ".join(ffmpeg_cmd))
ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size)
plasma_client = plasma.connect("/tmp/plasma") plasma_client = plasma.connect("/tmp/plasma")
frame_num = 0 frame_num = 0
@@ -180,7 +193,14 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
avg_wait = (avg_wait*99+duration)/100 avg_wait = (avg_wait*99+duration)/100
if not frame_bytes: if not frame_bytes:
break rc = ffmpeg_process.poll()
if rc is not None:
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
time.sleep(10)
else:
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
continue
# limit frame rate # limit frame rate
frame_num += 1 frame_num += 1
@@ -353,3 +373,5 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
plasma_client.put(frame, plasma.ObjectID(object_id)) plasma_client.put(frame, plasma.ObjectID(object_id))
# add to the queue # add to the queue
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects)) detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
print(f"{name}: exiting subprocess")