forked from Github/frigate
Compare commits
41 Commits
v0.5.0-rc3
...
v0.5.0
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a60b9211d2 | ||
|
|
777fb1d5d1 | ||
|
|
8e9110f42e | ||
|
|
c80137e059 | ||
|
|
2768e1dadb | ||
|
|
2fbba01577 | ||
|
|
e7c536ea31 | ||
|
|
1734c0569a | ||
|
|
a5bef89123 | ||
|
|
d8aa73d26e | ||
|
|
791409d5e5 | ||
|
|
01bf89907d | ||
|
|
8e73c7e95e | ||
|
|
088bd18adb | ||
|
|
2e8c7ec225 | ||
|
|
9340a74371 | ||
|
|
5998de610b | ||
|
|
dfabff3846 | ||
|
|
76a7a3bad5 | ||
|
|
a3fa97dd52 | ||
|
|
1d2a41129c | ||
|
|
956298128d | ||
|
|
e6892d66b8 | ||
|
|
6ef22cf578 | ||
|
|
3e6f6edf7e | ||
|
|
81c5b96ed7 | ||
|
|
6f6d202c99 | ||
|
|
2fc389c3ad | ||
|
|
05951aa7da | ||
|
|
bb8e4621f5 | ||
|
|
04e9ab5ce4 | ||
|
|
1089a40943 | ||
|
|
68c3a069ba | ||
|
|
80b9652f7a | ||
|
|
569e07949f | ||
|
|
ffa9534549 | ||
|
|
c539993387 | ||
|
|
8a572f96d5 | ||
|
|
24cb3508e8 | ||
|
|
3f34c57e31 | ||
|
|
4c618daa90 |
@@ -38,9 +38,9 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
|||||||
&& apt -qq install --no-install-recommends -y \
|
&& apt -qq install --no-install-recommends -y \
|
||||||
libedgetpu1-max \
|
libedgetpu1-max \
|
||||||
## Tensorflow lite (python 3.7 only)
|
## Tensorflow lite (python 3.7 only)
|
||||||
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
|
||||||
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
&& python3.7 -m pip install tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
|
||||||
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
&& rm tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
|
||||||
&& rm -rf /var/lib/apt/lists/* \
|
&& rm -rf /var/lib/apt/lists/* \
|
||||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||||
|
|
||||||
|
|||||||
19
README.md
19
README.md
@@ -16,16 +16,6 @@ You see multiple bounding boxes because it draws bounding boxes from all frames
|
|||||||
[](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
|
[](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
|
||||||
|
|
||||||
## Getting Started
|
## Getting Started
|
||||||
Build the container with
|
|
||||||
```
|
|
||||||
docker build -t frigate .
|
|
||||||
```
|
|
||||||
|
|
||||||
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
|
|
||||||
- CPU Model: `/cpu_model.tflite`
|
|
||||||
- EdgeTPU Model: `/edgetpu_model.tflite`
|
|
||||||
- Labels: `/labelmap.txt`
|
|
||||||
|
|
||||||
Run the container with
|
Run the container with
|
||||||
```bash
|
```bash
|
||||||
docker run --rm \
|
docker run --rm \
|
||||||
@@ -36,7 +26,7 @@ docker run --rm \
|
|||||||
-v /etc/localtime:/etc/localtime:ro \
|
-v /etc/localtime:/etc/localtime:ro \
|
||||||
-p 5000:5000 \
|
-p 5000:5000 \
|
||||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||||
frigate:latest
|
blakeblackshear/frigate:stable
|
||||||
```
|
```
|
||||||
|
|
||||||
Example docker-compose:
|
Example docker-compose:
|
||||||
@@ -46,7 +36,7 @@ Example docker-compose:
|
|||||||
restart: unless-stopped
|
restart: unless-stopped
|
||||||
privileged: true
|
privileged: true
|
||||||
shm_size: '1g' # should work for 5-7 cameras
|
shm_size: '1g' # should work for 5-7 cameras
|
||||||
image: frigate:latest
|
image: blakeblackshear/frigate:stable
|
||||||
volumes:
|
volumes:
|
||||||
- /dev/bus/usb:/dev/bus/usb
|
- /dev/bus/usb:/dev/bus/usb
|
||||||
- /etc/localtime:/etc/localtime:ro
|
- /etc/localtime:/etc/localtime:ro
|
||||||
@@ -127,6 +117,11 @@ sensor:
|
|||||||
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
|
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
|
||||||
unit_of_measurement: 'ms'
|
unit_of_measurement: 'ms'
|
||||||
```
|
```
|
||||||
|
## Using a custom model
|
||||||
|
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
|
||||||
|
- CPU Model: `/cpu_model.tflite`
|
||||||
|
- EdgeTPU Model: `/edgetpu_model.tflite`
|
||||||
|
- Labels: `/labelmap.txt`
|
||||||
|
|
||||||
## Tips
|
## Tips
|
||||||
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
|
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
|
||||||
|
|||||||
85
benchmark.py
85
benchmark.py
@@ -1,18 +1,79 @@
|
|||||||
import statistics
|
import os
|
||||||
|
from statistics import mean
|
||||||
|
import multiprocessing as mp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import time
|
import datetime
|
||||||
from frigate.edgetpu import ObjectDetector
|
from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
|
||||||
|
|
||||||
object_detector = ObjectDetector()
|
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
|
||||||
|
labels = load_labels('/labelmap.txt')
|
||||||
|
|
||||||
frame = np.zeros((300,300,3), np.uint8)
|
######
|
||||||
input_frame = np.expand_dims(frame, axis=0)
|
# Minimal same process runner
|
||||||
|
######
|
||||||
|
# object_detector = ObjectDetector()
|
||||||
|
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
|
||||||
|
|
||||||
detection_times = []
|
# start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
for x in range(0, 100):
|
# frame_times = []
|
||||||
start = time.monotonic()
|
# for x in range(0, 1000):
|
||||||
object_detector.detect_raw(input_frame)
|
# start_frame = datetime.datetime.now().timestamp()
|
||||||
detection_times.append(time.monotonic()-start)
|
|
||||||
|
|
||||||
print(f"Average inference time: {statistics.mean(detection_times)*1000:.2f}ms")
|
# tensor_input[:] = my_frame
|
||||||
|
# detections = object_detector.detect_raw(tensor_input)
|
||||||
|
# parsed_detections = []
|
||||||
|
# for d in detections:
|
||||||
|
# if d[1] < 0.4:
|
||||||
|
# break
|
||||||
|
# parsed_detections.append((
|
||||||
|
# labels[int(d[0])],
|
||||||
|
# float(d[1]),
|
||||||
|
# (d[2], d[3], d[4], d[5])
|
||||||
|
# ))
|
||||||
|
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||||
|
|
||||||
|
# duration = datetime.datetime.now().timestamp()-start
|
||||||
|
# print(f"Processed for {duration:.2f} seconds.")
|
||||||
|
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||||
|
|
||||||
|
######
|
||||||
|
# Separate process runner
|
||||||
|
######
|
||||||
|
def start(id, num_detections, detection_queue):
|
||||||
|
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
|
||||||
|
start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
frame_times = []
|
||||||
|
for x in range(0, num_detections):
|
||||||
|
start_frame = datetime.datetime.now().timestamp()
|
||||||
|
detections = object_detector.detect(my_frame)
|
||||||
|
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||||
|
|
||||||
|
duration = datetime.datetime.now().timestamp()-start
|
||||||
|
print(f"{id} - Processed for {duration:.2f} seconds.")
|
||||||
|
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||||
|
|
||||||
|
edgetpu_process = EdgeTPUProcess()
|
||||||
|
|
||||||
|
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
|
||||||
|
|
||||||
|
####
|
||||||
|
# Multiple camera processes
|
||||||
|
####
|
||||||
|
camera_processes = []
|
||||||
|
for x in range(0, 10):
|
||||||
|
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
|
||||||
|
camera_process.daemon = True
|
||||||
|
camera_processes.append(camera_process)
|
||||||
|
|
||||||
|
start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
for p in camera_processes:
|
||||||
|
p.start()
|
||||||
|
|
||||||
|
for p in camera_processes:
|
||||||
|
p.join()
|
||||||
|
|
||||||
|
duration = datetime.datetime.now().timestamp()-start
|
||||||
|
print(f"Total - Processed for {duration:.2f} seconds.")
|
||||||
@@ -3,9 +3,13 @@ web_port: 5000
|
|||||||
mqtt:
|
mqtt:
|
||||||
host: mqtt.server.com
|
host: mqtt.server.com
|
||||||
topic_prefix: frigate
|
topic_prefix: frigate
|
||||||
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
|
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
|
||||||
# user: username # Optional -- Uncomment for use
|
# user: username # Optional
|
||||||
# password: password # Optional -- Uncomment for use
|
#################
|
||||||
|
## Environment variables that begin with 'FRIGATE_' may be referenced in {}.
|
||||||
|
## password: '{FRIGATE_MQTT_PASSWORD}'
|
||||||
|
#################
|
||||||
|
# password: password # Optional
|
||||||
|
|
||||||
#################
|
#################
|
||||||
# Default ffmpeg args. Optional and can be overwritten per camera.
|
# Default ffmpeg args. Optional and can be overwritten per camera.
|
||||||
|
|||||||
@@ -1,3 +1,4 @@
|
|||||||
|
import os
|
||||||
import cv2
|
import cv2
|
||||||
import time
|
import time
|
||||||
import datetime
|
import datetime
|
||||||
@@ -8,7 +9,7 @@ import multiprocessing as mp
|
|||||||
import subprocess as sp
|
import subprocess as sp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import logging
|
import logging
|
||||||
from flask import Flask, Response, make_response, jsonify
|
from flask import Flask, Response, make_response, jsonify, request
|
||||||
import paho.mqtt.client as mqtt
|
import paho.mqtt.client as mqtt
|
||||||
|
|
||||||
from frigate.video import track_camera
|
from frigate.video import track_camera
|
||||||
@@ -16,6 +17,8 @@ from frigate.object_processing import TrackedObjectProcessor
|
|||||||
from frigate.util import EventsPerSecond
|
from frigate.util import EventsPerSecond
|
||||||
from frigate.edgetpu import EdgeTPUProcess
|
from frigate.edgetpu import EdgeTPUProcess
|
||||||
|
|
||||||
|
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||||
|
|
||||||
with open('/config/config.yml') as f:
|
with open('/config/config.yml') as f:
|
||||||
CONFIG = yaml.safe_load(f)
|
CONFIG = yaml.safe_load(f)
|
||||||
|
|
||||||
@@ -24,6 +27,8 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
|
|||||||
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
||||||
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
||||||
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
||||||
|
if not MQTT_PASS is None:
|
||||||
|
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
|
||||||
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
|
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
|
||||||
|
|
||||||
# Set the default FFmpeg config
|
# Set the default FFmpeg config
|
||||||
@@ -68,27 +73,21 @@ class CameraWatchdog(threading.Thread):
|
|||||||
# wait a bit before checking
|
# wait a bit before checking
|
||||||
time.sleep(30)
|
time.sleep(30)
|
||||||
|
|
||||||
|
if (self.tflite_process.detection_start.value > 0.0 and
|
||||||
|
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
|
||||||
|
print("Detection appears to be stuck. Restarting detection process")
|
||||||
|
self.tflite_process.start_or_restart()
|
||||||
|
time.sleep(30)
|
||||||
|
|
||||||
for name, camera_process in self.camera_processes.items():
|
for name, camera_process in self.camera_processes.items():
|
||||||
process = camera_process['process']
|
process = camera_process['process']
|
||||||
if (not self.object_processor.get_current_frame_time(name) is None and
|
|
||||||
(datetime.datetime.now().timestamp() - self.object_processor.get_current_frame_time(name)) > 30):
|
|
||||||
print(f"Last frame for {name} is more than 30 seconds old...")
|
|
||||||
if process.is_alive():
|
|
||||||
process.terminate()
|
|
||||||
print("Waiting for process to exit gracefully...")
|
|
||||||
process.join(timeout=30)
|
|
||||||
if process.exitcode is None:
|
|
||||||
print("Process didnt exit. Force killing...")
|
|
||||||
process.kill()
|
|
||||||
process.join()
|
|
||||||
if not process.is_alive():
|
if not process.is_alive():
|
||||||
print(f"Process for {name} is not alive. Starting again...")
|
print(f"Process for {name} is not alive. Starting again...")
|
||||||
camera_process['fps'].value = float(self.config[name]['fps'])
|
camera_process['fps'].value = float(self.config[name]['fps'])
|
||||||
camera_process['skipped_fps'].value = 0.0
|
camera_process['skipped_fps'].value = 0.0
|
||||||
camera_process['detection_fps'].value = 0.0
|
camera_process['detection_fps'].value = 0.0
|
||||||
self.object_processor.camera_data[name]['current_frame_time'] = None
|
|
||||||
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||||
self.tflite_process.detect_lock, self.tflite_process.detect_ready, self.tflite_process.frame_ready, self.tracked_objects_queue,
|
self.tflite_process.detection_queue, self.tracked_objects_queue,
|
||||||
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
|
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
|
||||||
process.daemon = True
|
process.daemon = True
|
||||||
camera_process['process'] = process
|
camera_process['process'] = process
|
||||||
@@ -150,7 +149,7 @@ def main():
|
|||||||
'detection_fps': mp.Value('d', 0.0)
|
'detection_fps': mp.Value('d', 0.0)
|
||||||
}
|
}
|
||||||
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||||
tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue,
|
tflite_process.detection_queue, tracked_objects_queue,
|
||||||
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
|
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
|
||||||
camera_process.daemon = True
|
camera_process.daemon = True
|
||||||
camera_processes[name]['process'] = camera_process
|
camera_processes[name]['process'] = camera_process
|
||||||
@@ -184,14 +183,16 @@ def main():
|
|||||||
for name, camera_stats in camera_processes.items():
|
for name, camera_stats in camera_processes.items():
|
||||||
total_detection_fps += camera_stats['detection_fps'].value
|
total_detection_fps += camera_stats['detection_fps'].value
|
||||||
stats[name] = {
|
stats[name] = {
|
||||||
'fps': camera_stats['fps'].value,
|
'fps': round(camera_stats['fps'].value, 2),
|
||||||
'skipped_fps': camera_stats['skipped_fps'].value,
|
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
||||||
'detection_fps': camera_stats['detection_fps'].value
|
'detection_fps': round(camera_stats['detection_fps'].value, 2)
|
||||||
}
|
}
|
||||||
|
|
||||||
stats['coral'] = {
|
stats['coral'] = {
|
||||||
'fps': total_detection_fps,
|
'fps': round(total_detection_fps, 2),
|
||||||
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2)
|
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
|
||||||
|
'detection_queue': tflite_process.detection_queue.qsize(),
|
||||||
|
'detection_start': tflite_process.detection_start.value
|
||||||
}
|
}
|
||||||
|
|
||||||
rc = plasma_process.poll()
|
rc = plasma_process.poll()
|
||||||
@@ -217,21 +218,26 @@ def main():
|
|||||||
|
|
||||||
@app.route('/<camera_name>')
|
@app.route('/<camera_name>')
|
||||||
def mjpeg_feed(camera_name):
|
def mjpeg_feed(camera_name):
|
||||||
|
fps = int(request.args.get('fps', '3'))
|
||||||
|
height = int(request.args.get('h', '360'))
|
||||||
if camera_name in CONFIG['cameras']:
|
if camera_name in CONFIG['cameras']:
|
||||||
# return a multipart response
|
# return a multipart response
|
||||||
return Response(imagestream(camera_name),
|
return Response(imagestream(camera_name, fps, height),
|
||||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||||
else:
|
else:
|
||||||
return "Camera named {} not found".format(camera_name), 404
|
return "Camera named {} not found".format(camera_name), 404
|
||||||
|
|
||||||
def imagestream(camera_name):
|
def imagestream(camera_name, fps, height):
|
||||||
while True:
|
while True:
|
||||||
# max out at 1 FPS
|
# max out at specified FPS
|
||||||
time.sleep(1)
|
time.sleep(1/fps)
|
||||||
frame = object_processor.get_current_frame(camera_name)
|
frame = object_processor.get_current_frame(camera_name)
|
||||||
if frame is None:
|
if frame is None:
|
||||||
frame = np.zeros((720,1280,3), np.uint8)
|
frame = np.zeros((height,int(height*16/9),3), np.uint8)
|
||||||
|
|
||||||
|
frame = cv2.resize(frame, dsize=(int(height*16/9), height), interpolation=cv2.INTER_LINEAR)
|
||||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||||
|
|
||||||
ret, jpg = cv2.imencode('.jpg', frame)
|
ret, jpg = cv2.imencode('.jpg', frame)
|
||||||
yield (b'--frame\r\n'
|
yield (b'--frame\r\n'
|
||||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||||
|
|||||||
@@ -1,8 +1,10 @@
|
|||||||
import os
|
import os
|
||||||
import datetime
|
import datetime
|
||||||
|
import hashlib
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import SharedArray as sa
|
import SharedArray as sa
|
||||||
|
import pyarrow.plasma as plasma
|
||||||
import tflite_runtime.interpreter as tflite
|
import tflite_runtime.interpreter as tflite
|
||||||
from tflite_runtime.interpreter import load_delegate
|
from tflite_runtime.interpreter import load_delegate
|
||||||
from frigate.util import EventsPerSecond
|
from frigate.util import EventsPerSecond
|
||||||
@@ -60,77 +62,81 @@ class ObjectDetector():
|
|||||||
|
|
||||||
return detections
|
return detections
|
||||||
|
|
||||||
|
def run_detector(detection_queue, avg_speed, start):
|
||||||
|
print(f"Starting detection process: {os.getpid()}")
|
||||||
|
plasma_client = plasma.connect("/tmp/plasma")
|
||||||
|
object_detector = ObjectDetector()
|
||||||
|
|
||||||
|
while True:
|
||||||
|
object_id_str = detection_queue.get()
|
||||||
|
object_id_hash = hashlib.sha1(str.encode(object_id_str))
|
||||||
|
object_id = plasma.ObjectID(object_id_hash.digest())
|
||||||
|
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
|
||||||
|
input_frame = plasma_client.get(object_id, timeout_ms=0)
|
||||||
|
|
||||||
|
if input_frame is plasma.ObjectNotAvailable:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# detect and put the output in the plasma store
|
||||||
|
start.value = datetime.datetime.now().timestamp()
|
||||||
|
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
|
||||||
|
duration = datetime.datetime.now().timestamp()-start.value
|
||||||
|
start.value = 0.0
|
||||||
|
|
||||||
|
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||||
|
|
||||||
class EdgeTPUProcess():
|
class EdgeTPUProcess():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
# TODO: see if we can use the plasma store with a queue and maintain the same speeds
|
self.detection_queue = mp.Queue()
|
||||||
try:
|
|
||||||
sa.delete("frame")
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
try:
|
|
||||||
sa.delete("detections")
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
|
|
||||||
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
|
|
||||||
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
|
|
||||||
|
|
||||||
self.detect_lock = mp.Lock()
|
|
||||||
self.detect_ready = mp.Event()
|
|
||||||
self.frame_ready = mp.Event()
|
|
||||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||||
|
self.detection_start = mp.Value('d', 0.0)
|
||||||
|
self.detect_process = None
|
||||||
|
self.start_or_restart()
|
||||||
|
|
||||||
def run_detector(detect_ready, frame_ready, avg_speed):
|
def start_or_restart(self):
|
||||||
print(f"Starting detection process: {os.getpid()}")
|
self.detection_start.value = 0.0
|
||||||
object_detector = ObjectDetector()
|
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||||
input_frame = sa.attach("frame")
|
self.detect_process.terminate()
|
||||||
detections = sa.attach("detections")
|
print("Waiting for detection process to exit gracefully...")
|
||||||
|
self.detect_process.join(timeout=30)
|
||||||
while True:
|
if self.detect_process.exitcode is None:
|
||||||
# wait until a frame is ready
|
print("Detection process didnt exit. Force killing...")
|
||||||
frame_ready.wait()
|
self.detect_process.kill()
|
||||||
start = datetime.datetime.now().timestamp()
|
self.detect_process.join()
|
||||||
# signal that the process is busy
|
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
|
||||||
frame_ready.clear()
|
|
||||||
detections[:] = object_detector.detect_raw(input_frame)
|
|
||||||
# signal that the process is ready to detect
|
|
||||||
detect_ready.set()
|
|
||||||
duration = datetime.datetime.now().timestamp()-start
|
|
||||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
|
||||||
|
|
||||||
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
|
|
||||||
self.detect_process.daemon = True
|
self.detect_process.daemon = True
|
||||||
self.detect_process.start()
|
self.detect_process.start()
|
||||||
|
|
||||||
class RemoteObjectDetector():
|
class RemoteObjectDetector():
|
||||||
def __init__(self, labels, detect_lock, detect_ready, frame_ready):
|
def __init__(self, name, labels, detection_queue):
|
||||||
self.labels = load_labels(labels)
|
self.labels = load_labels(labels)
|
||||||
|
self.name = name
|
||||||
self.input_frame = sa.attach("frame")
|
|
||||||
self.detections = sa.attach("detections")
|
|
||||||
|
|
||||||
self.fps = EventsPerSecond()
|
self.fps = EventsPerSecond()
|
||||||
|
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||||
self.detect_lock = detect_lock
|
self.detection_queue = detection_queue
|
||||||
self.detect_ready = detect_ready
|
|
||||||
self.frame_ready = frame_ready
|
|
||||||
|
|
||||||
def detect(self, tensor_input, threshold=.4):
|
def detect(self, tensor_input, threshold=.4):
|
||||||
detections = []
|
detections = []
|
||||||
with self.detect_lock:
|
|
||||||
self.input_frame[:] = tensor_input
|
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
|
||||||
# unset detections and signal that a frame is ready
|
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
|
||||||
self.detect_ready.clear()
|
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
|
||||||
self.frame_ready.set()
|
self.plasma_client.put(tensor_input, object_id_frame)
|
||||||
# wait until the detection process is finished,
|
self.detection_queue.put(now)
|
||||||
self.detect_ready.wait()
|
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
|
||||||
for d in self.detections:
|
|
||||||
if d[1] < threshold:
|
if raw_detections is plasma.ObjectNotAvailable:
|
||||||
break
|
self.plasma_client.delete([object_id_frame])
|
||||||
detections.append((
|
return detections
|
||||||
self.labels[int(d[0])],
|
|
||||||
float(d[1]),
|
for d in raw_detections:
|
||||||
(d[2], d[3], d[4], d[5])
|
if d[1] < threshold:
|
||||||
))
|
break
|
||||||
|
detections.append((
|
||||||
|
self.labels[int(d[0])],
|
||||||
|
float(d[1]),
|
||||||
|
(d[2], d[3], d[4], d[5])
|
||||||
|
))
|
||||||
|
self.plasma_client.delete([object_id_frame, object_id_detections])
|
||||||
self.fps.update()
|
self.fps.update()
|
||||||
return detections
|
return detections
|
||||||
@@ -34,7 +34,6 @@ class TrackedObjectProcessor(threading.Thread):
|
|||||||
'best_objects': {},
|
'best_objects': {},
|
||||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||||
'tracked_objects': {},
|
'tracked_objects': {},
|
||||||
'current_frame_time': None,
|
|
||||||
'current_frame': np.zeros((720,1280,3), np.uint8),
|
'current_frame': np.zeros((720,1280,3), np.uint8),
|
||||||
'object_id': None
|
'object_id': None
|
||||||
})
|
})
|
||||||
@@ -48,9 +47,6 @@ class TrackedObjectProcessor(threading.Thread):
|
|||||||
def get_current_frame(self, camera):
|
def get_current_frame(self, camera):
|
||||||
return self.camera_data[camera]['current_frame']
|
return self.camera_data[camera]['current_frame']
|
||||||
|
|
||||||
def get_current_frame_time(self, camera):
|
|
||||||
return self.camera_data[camera]['current_frame_time']
|
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
while True:
|
while True:
|
||||||
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
|
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
|
||||||
@@ -93,7 +89,6 @@ class TrackedObjectProcessor(threading.Thread):
|
|||||||
# Set the current frame as ready
|
# Set the current frame as ready
|
||||||
###
|
###
|
||||||
self.camera_data[camera]['current_frame'] = current_frame
|
self.camera_data[camera]['current_frame'] = current_frame
|
||||||
self.camera_data[camera]['current_frame_time'] = frame_time
|
|
||||||
|
|
||||||
# store the object id, so you can delete it at the next loop
|
# store the object id, so you can delete it at the next loop
|
||||||
previous_object_id = self.camera_data[camera]['object_id']
|
previous_object_id = self.camera_data[camera]['object_id']
|
||||||
|
|||||||
@@ -98,7 +98,23 @@ def create_tensor_input(frame, region):
|
|||||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||||
return np.expand_dims(cropped_frame, axis=0)
|
return np.expand_dims(cropped_frame, axis=0)
|
||||||
|
|
||||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps):
|
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
|
||||||
|
if not ffmpeg_process is None:
|
||||||
|
print("Terminating the existing ffmpeg process...")
|
||||||
|
ffmpeg_process.terminate()
|
||||||
|
try:
|
||||||
|
print("Waiting for ffmpeg to exit gracefully...")
|
||||||
|
ffmpeg_process.wait(timeout=30)
|
||||||
|
except sp.TimeoutExpired:
|
||||||
|
print("FFmpeg didnt exit. Force killing...")
|
||||||
|
ffmpeg_process.kill()
|
||||||
|
ffmpeg_process.wait()
|
||||||
|
|
||||||
|
print("Creating ffmpeg process...")
|
||||||
|
print(" ".join(ffmpeg_cmd))
|
||||||
|
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
|
||||||
|
|
||||||
|
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
|
||||||
print(f"Starting process for {name}: {os.getpid()}")
|
print(f"Starting process for {name}: {os.getpid()}")
|
||||||
|
|
||||||
# Merge the ffmpeg config with the global config
|
# Merge the ffmpeg config with the global config
|
||||||
@@ -108,6 +124,13 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
|||||||
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
|
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
|
||||||
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
|
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
|
||||||
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
|
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
|
||||||
|
ffmpeg_cmd = (['ffmpeg'] +
|
||||||
|
ffmpeg_global_args +
|
||||||
|
ffmpeg_hwaccel_args +
|
||||||
|
ffmpeg_input_args +
|
||||||
|
['-i', ffmpeg_input] +
|
||||||
|
ffmpeg_output_args +
|
||||||
|
['pipe:'])
|
||||||
|
|
||||||
# Merge the tracked object config with the global config
|
# Merge the tracked object config with the global config
|
||||||
camera_objects_config = config.get('objects', {})
|
camera_objects_config = config.get('objects', {})
|
||||||
@@ -149,21 +172,11 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
|||||||
mask[:] = 255
|
mask[:] = 255
|
||||||
|
|
||||||
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
||||||
object_detector = RemoteObjectDetector('/labelmap.txt', detect_lock, detect_ready, frame_ready)
|
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
|
||||||
|
|
||||||
object_tracker = ObjectTracker(10)
|
object_tracker = ObjectTracker(10)
|
||||||
|
|
||||||
ffmpeg_cmd = (['ffmpeg'] +
|
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
|
||||||
ffmpeg_global_args +
|
|
||||||
ffmpeg_hwaccel_args +
|
|
||||||
ffmpeg_input_args +
|
|
||||||
['-i', ffmpeg_input] +
|
|
||||||
ffmpeg_output_args +
|
|
||||||
['pipe:'])
|
|
||||||
|
|
||||||
print(" ".join(ffmpeg_cmd))
|
|
||||||
|
|
||||||
ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size)
|
|
||||||
|
|
||||||
plasma_client = plasma.connect("/tmp/plasma")
|
plasma_client = plasma.connect("/tmp/plasma")
|
||||||
frame_num = 0
|
frame_num = 0
|
||||||
@@ -180,7 +193,14 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
|||||||
avg_wait = (avg_wait*99+duration)/100
|
avg_wait = (avg_wait*99+duration)/100
|
||||||
|
|
||||||
if not frame_bytes:
|
if not frame_bytes:
|
||||||
break
|
rc = ffmpeg_process.poll()
|
||||||
|
if rc is not None:
|
||||||
|
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
|
||||||
|
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
|
||||||
|
time.sleep(10)
|
||||||
|
else:
|
||||||
|
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
|
||||||
|
continue
|
||||||
|
|
||||||
# limit frame rate
|
# limit frame rate
|
||||||
frame_num += 1
|
frame_num += 1
|
||||||
@@ -353,3 +373,5 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
|||||||
plasma_client.put(frame, plasma.ObjectID(object_id))
|
plasma_client.put(frame, plasma.ObjectID(object_id))
|
||||||
# add to the queue
|
# add to the queue
|
||||||
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
|
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
|
||||||
|
|
||||||
|
print(f"{name}: exiting subprocess")
|
||||||
Reference in New Issue
Block a user