Compare commits

...

81 Commits

Author SHA1 Message Date
Blake Blackshear
0e6eca7cd6 Update to latest url for tensorflow lite wheel 2020-03-02 06:11:19 -06:00
Blake Blackshear
91415f7e9d if the detections dont come back in 10s, give up 2020-03-01 20:32:32 -06:00
Blake Blackshear
0f66a8cb41 call the restart function and handle errors better in the detection process 2020-03-01 18:45:07 -06:00
Blake Blackshear
04ef6ac30e clarify mqtt password readme 2020-03-01 18:45:07 -06:00
Blake Blackshear
ab42a9625d readme updates 2020-03-01 07:47:22 -06:00
Blake Blackshear
30ad0e30f8 allow mqtt password to be set by env var 2020-03-01 07:23:56 -06:00
Blake Blackshear
7bad89c9bf update benchmark script to mirror actual frigate use 2020-03-01 07:16:56 -06:00
Blake Blackshear
f077c397f4 improve detection processing and restart when stuck 2020-03-01 07:16:49 -06:00
Blake Blackshear
cc729d83a8 handle ffmpeg process failures in the camera process itself 2020-02-26 19:02:12 -06:00
Blake Blackshear
c520b81e49 add a few print statements for debugging 2020-02-25 20:37:12 -06:00
Blake Blackshear
9c304391c0 dont kill the camera process from the main process 2020-02-25 20:36:30 -06:00
Blake Blackshear
9a12b02d22 increase the buffer size a bit 2020-02-24 20:05:30 -06:00
Blake Blackshear
7686c510b3 add a few more metrics to debug 2020-02-23 18:11:39 -06:00
Blake Blackshear
2f5e322d3c cleanup the plasma store when finished with a frame 2020-02-23 18:11:08 -06:00
Blake Blackshear
1cd4c12104 dont redirect stdout for plasma store 2020-02-23 15:53:17 -06:00
Blake Blackshear
1a8b034685 reset detection fps 2020-02-23 15:53:00 -06:00
Blake Blackshear
da6dc03a57 dont change dictionary while iterating 2020-02-23 11:18:00 -06:00
Blake Blackshear
7fa3b70d2d allow specifying the frame size in the config instead of detecting 2020-02-23 07:56:14 -06:00
Blake Blackshear
1fc5a2bfd4 ensure missing objects are expired even when other object types are in the frame 2020-02-23 07:55:51 -06:00
Blake Blackshear
7e84da7dad Fix watchdog last_frame calculation 2020-02-23 07:55:16 -06:00
Blake Blackshear
128be72e28 cleanup 2020-02-22 09:15:29 -06:00
Blake Blackshear
aaddedc95c update docs and add back benchmark 2020-02-22 09:10:37 -06:00
Blake Blackshear
ba919fb439 fix watchdog 2020-02-22 09:10:37 -06:00
Blake Blackshear
b1d563f3c4 check avg wait before dropping frames 2020-02-22 09:10:37 -06:00
Blake Blackshear
204d8af5df fix watchdog restart 2020-02-22 09:10:37 -06:00
Blake Blackshear
b507a73d79 improve watchdog and coral fps tracking 2020-02-22 09:10:37 -06:00
Blake Blackshear
66eeb8b5cb dont log http requests 2020-02-22 09:10:37 -06:00
Blake Blackshear
efa67067c6 cleanup 2020-02-22 09:10:37 -06:00
Blake Blackshear
aeb036f1a4 add models and convert speed to ms 2020-02-22 09:10:37 -06:00
Blake Blackshear
74c528f9dc add watchdog for camera processes 2020-02-22 09:10:34 -06:00
Blake Blackshear
f2d54bec43 cleanup old code 2020-02-22 09:09:36 -06:00
Blake Blackshear
f07d57741e add a min_fps option 2020-02-22 09:06:46 -06:00
Blake Blackshear
2c1ec19f98 check plasma store and consolidate frame drawing 2020-02-22 09:06:46 -06:00
Blake Blackshear
6a9027c002 split into separate processes 2020-02-22 09:06:43 -06:00
Blake Blackshear
60c15e4419 update tflite to 2.1.0 2020-02-22 09:05:26 -06:00
Blake Blackshear
03dbf600aa refactor some classes into new files 2020-02-22 09:05:26 -06:00
Blake Blackshear
fbbb79b31b tweak process handoff 2020-02-22 09:05:26 -06:00
Blake Blackshear
496c6bc6c4 Mostly working detection in a separate process 2020-02-22 09:05:26 -06:00
Blake Blackshear
869a81c944 read from ffmpeg 2020-02-22 09:05:26 -06:00
Blake Blackshear
5b1884cfb3 WIP: revamp to incorporate motion 2020-02-22 09:05:26 -06:00
Blake Blackshear
cd057370e1 fallback to opencv to detect resolution and allow config to specify 2020-02-22 09:03:00 -06:00
Blake Blackshear
6263912655 use ffprobe to get frame shape (fixes #87) 2020-02-22 09:03:00 -06:00
Blake Blackshear
af247275cf make timestamp on snapshots configurable (fixes #88) 2020-02-22 09:03:00 -06:00
Blake Blackshear
1198c29dac make watchdog timeout configurable per camera (fixes #95) 2020-02-22 09:03:00 -06:00
Blake Blackshear
169603d3ff attempt to fix regions in process key error 2020-02-22 09:03:00 -06:00
Blake Blackshear
dc7eecebc6 clarify config 2020-02-22 09:03:00 -06:00
Blake Blackshear
0dd4087d5d switch base image back to ubuntu:18.04 2020-02-22 09:03:00 -06:00
Blake Blackshear
6ecf87fc60 update config example 2020-02-22 09:03:00 -06:00
Blake Blackshear
ebcf1482f8 remove region in process when skipping 2020-02-22 09:03:00 -06:00
Blake Blackshear
50bcf60893 switch to opencv headless 2020-02-22 09:03:00 -06:00
Blake Blackshear
38efbd63ea add camera name to ffmpeg log messages 2020-02-22 09:03:00 -06:00
Blake Blackshear
50bcad8b77 skip regions when the queue is too full and add more locks 2020-02-22 09:03:00 -06:00
Blake Blackshear
cfffb219ae switch back to stretch for hwaccel issues 2020-02-22 09:03:00 -06:00
Blake Blackshear
382d7be50a check correct object 2020-02-22 09:03:00 -06:00
Blake Blackshear
f43dc36a37 cleanup 2020-02-22 09:03:00 -06:00
Blake Blackshear
38e7fa07d2 add a label position arg for bounding boxes 2020-02-22 09:03:00 -06:00
Blake Blackshear
e261c20819 let the queues get as big as needed 2020-02-22 09:03:00 -06:00
Blake Blackshear
3a66e672d3 notify mqtt when objects deregistered 2020-02-22 09:03:00 -06:00
Blake Blackshear
2aada930e3 fix multiple object type tracking 2020-02-22 09:03:00 -06:00
Blake Blackshear
d87f4407a0 switch everything to run off of tracked objects 2020-02-22 09:03:00 -06:00
Blake Blackshear
be5a114f6a group by label before tracking objects 2020-02-22 09:03:00 -06:00
Blake Blackshear
32b212c7b6 fix mask filtering 2020-02-22 09:03:00 -06:00
Blake Blackshear
76c8e3a12f make a copy 2020-02-22 09:03:00 -06:00
Blake Blackshear
16f7a361c3 fix object filters 2020-02-22 09:03:00 -06:00
Blake Blackshear
634b87307f group by label before suppressing boxes 2020-02-22 09:03:00 -06:00
Blake Blackshear
1d4fbbdba3 update all obj props 2020-02-22 09:03:00 -06:00
Blake Blackshear
65579e9cbf add thread to write frames to disk 2020-02-22 09:03:00 -06:00
Blake Blackshear
49dc029c43 merge boxes by label 2020-02-22 09:03:00 -06:00
Blake Blackshear
08174d8db2 fix color of best image 2020-02-22 09:03:00 -06:00
Blake Blackshear
5199242a68 remove unused current frame variable 2020-02-22 09:03:00 -06:00
Blake Blackshear
725dd3220c removing pillow-simd for now 2020-02-22 09:03:00 -06:00
Blake Blackshear
10dc56f6ea revamp dockerfile 2020-02-22 09:03:00 -06:00
Blake Blackshear
cc2abe93a6 track objects and add config for tracked objects 2020-02-22 09:03:00 -06:00
Blake Blackshear
0c6717090c implement filtering and switch to NMS with OpenCV 2020-02-22 09:03:00 -06:00
Blake Blackshear
f5a2252b29 cleanup imports 2020-02-22 09:03:00 -06:00
Blake Blackshear
02efb6f415 fixing a few things 2020-02-22 09:03:00 -06:00
Blake Blackshear
5b4c6e50bc dedupe detected objects 2020-02-22 09:03:00 -06:00
Blake Blackshear
9cc46a71cb working dynamic regions, but messy 2020-02-22 09:03:00 -06:00
Blake Blackshear
be1673b00a process detected objects in a queue 2020-02-22 09:03:00 -06:00
Blake Blackshear
b6130e77ff label threads and implements stats endpoint 2020-02-22 09:03:00 -06:00
Blake Blackshear
4180c710cd refactor resizing into generic priority queues 2020-02-22 09:03:00 -06:00
16 changed files with 1327 additions and 845 deletions

148
Dockerfile Normal file → Executable file
View File

@@ -1,110 +1,60 @@
FROM ubuntu:18.04
LABEL maintainer "blakeb@blakeshome.com"
ARG DEVICE
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
apt-transport-https \
ca-certificates \
curl \
wget \
gnupg-agent \
dirmngr \
RUN apt -qq update && apt -qq install --no-install-recommends -y \
software-properties-common \
&& rm -rf /var/lib/apt/lists/*
# apt-transport-https ca-certificates \
build-essential \
gnupg wget unzip \
# libcap-dev \
&& add-apt-repository ppa:deadsnakes/ppa -y \
&& apt -qq install --no-install-recommends -y \
python3.7 \
python3.7-dev \
python3-pip \
ffmpeg \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
&& python3.7 -m pip install -U wheel setuptools \
&& python3.7 -m pip install -U \
opencv-python-headless \
# python-prctl \
numpy \
imutils \
scipy \
&& python3.7 -m pip install -U \
SharedArray \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
pyarrow \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
&& apt -qq update \
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
&& apt -qq install --no-install-recommends -y \
libedgetpu1-max \
## Tensorflow lite (python 3.7 only)
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& python3.7 -m pip install tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
COPY scripts/install_odroid_repo.sh .
RUN if [ "$DEVICE" = "odroid" ]; then \
sh /install_odroid_repo.sh; \
fi
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
python3 \
# OpenCV dependencies
ffmpeg \
build-essential \
cmake \
unzip \
pkg-config \
libjpeg-dev \
libpng-dev \
libtiff-dev \
libavcodec-dev \
libavformat-dev \
libswscale-dev \
libv4l-dev \
libxvidcore-dev \
libx264-dev \
libgtk-3-dev \
libatlas-base-dev \
gfortran \
python3-dev \
# Coral USB Python API Dependencies
libusb-1.0-0 \
python3-pip \
python3-pil \
python3-numpy \
libc++1 \
libc++abi1 \
libunwind8 \
libgcc1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
&& rm -rf /var/lib/apt/lists/*
# Download & build OpenCV
# TODO: use multistage build to reduce image size:
# https://medium.com/@denismakogon/pain-and-gain-running-opencv-application-with-golang-and-docker-on-alpine-3-7-435aa11c7aec
# https://www.merixstudio.com/blog/docker-multi-stage-builds-python-development/
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
RUN cd /usr/local/src/ \
&& unzip 4.0.1.zip \
&& rm 4.0.1.zip \
&& cd /usr/local/src/opencv-4.0.1/ \
&& mkdir build \
&& cd /usr/local/src/opencv-4.0.1/build \
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
&& make -j4 \
&& make install \
&& ldconfig \
&& rm -rf /usr/local/src/opencv-4.0.1
# Download and install EdgeTPU libraries for Coral
RUN wget https://dl.google.com/coral/edgetpu_api/edgetpu_api_latest.tar.gz -O edgetpu_api.tar.gz --trust-server-names \
&& tar xzf edgetpu_api.tar.gz
COPY scripts/install_edgetpu_api.sh edgetpu_api/install.sh
RUN cd edgetpu_api \
&& /bin/bash install.sh
# Copy a python 3.6 version
RUN cd /usr/local/lib/python3.6/dist-packages/edgetpu/swig/ \
&& ln -s _edgetpu_cpp_wrapper.cpython-35m-arm-linux-gnueabihf.so _edgetpu_cpp_wrapper.cpython-36m-arm-linux-gnueabihf.so
# symlink the model and labels
RUN wget https://dl.google.com/coral/canned_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
RUN wget https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
RUN ln -s mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
RUN ln -s /coco_labels.txt /label_map.pbtext
# Minimize image size
RUN (apt-get autoremove -y; \
apt-get autoclean -y)
# Install core packages
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
RUN pip install -U pip \
numpy \
Flask \
paho-mqtt \
PyYAML \
matplotlib
# get model and labels
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names
RUN wget -q https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -O /cpu_model.zip && \
unzip /cpu_model.zip detect.tflite -d / && \
mv /detect.tflite /cpu_model.tflite && \
rm /cpu_model.zip
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
CMD ["python3", "-u", "detect_objects.py"]
CMD ["python3.7", "-u", "detect_objects.py"]

View File

@@ -1,14 +1,13 @@
# Frigate - Realtime Object Detection for IP Cameras
**Note:** This version requires the use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/)
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
- Leverages multiprocessing and threads heavily with an emphasis on realtime over processing every frame
- Allows you to define specific regions (squares) in the image to look for objects
- No motion detection (for now)
- Object detection with Tensorflow runs in a separate thread
Use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load.
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with Tensorflow runs in a separate process
- Object info is published over MQTT for integration into HomeAssistant as a binary sensor
- An endpoint is available to view an MJPEG stream for debugging
- An endpoint is available to view an MJPEG stream for debugging, but should not be used continuously
![Diagram](diagram.png)
@@ -17,32 +16,27 @@ You see multiple bounding boxes because it draws bounding boxes from all frames
[![](http://img.youtube.com/vi/nqHbCtyo4dY/0.jpg)](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
## Getting Started
Build the container with
```
docker build -t frigate .
```
The `mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite` model is included and used by default. You can use your own model and labels by mounting files in the container at `/frozen_inference_graph.pb` and `/label_map.pbtext`. Models must be compatible with the Coral according to [this](https://coral.withgoogle.com/models/).
Run the container with
```
```bash
docker run --rm \
--privileged \
--shm-size=512m \ # should work for a 2-3 cameras
-v /dev/bus/usb:/dev/bus/usb \
-v <path_to_config_dir>:/config:ro \
-v /etc/localtime:/etc/localtime:ro \
-p 5000:5000 \
-e FRIGATE_RTSP_PASSWORD='password' \
frigate:latest
blakeblackshear/frigate:stable
```
Example docker-compose:
```
```yaml
frigate:
container_name: frigate
restart: unless-stopped
privileged: true
image: frigate:latest
shm_size: '1g' # should work for 5-7 cameras
image: blakeblackshear/frigate:stable
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
@@ -57,6 +51,8 @@ A `config.yml` file must exist in the `config` directory. See example [here](con
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
Debug info is available at `http://localhost:5000/debug/stats`
## Integration with HomeAssistant
```
camera:
@@ -93,30 +89,39 @@ automation:
photo:
- url: http://<ip>:5000/<camera_name>/person/best.jpg
caption: A person was detected.
sensor:
- platform: rest
name: Frigate Debug
resource: http://localhost:5000/debug/stats
scan_interval: 5
json_attributes:
- back
- coral
value_template: 'OK'
- platform: template
sensors:
back_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["fps"] }}'
unit_of_measurement: 'FPS'
back_skipped_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["skipped_fps"] }}'
unit_of_measurement: 'FPS'
back_detection_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["detection_fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_inference:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
unit_of_measurement: 'ms'
```
## Using a custom model
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
## Tips
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
## Future improvements
- [x] Remove motion detection for now
- [x] Try running object detection in a thread rather than a process
- [x] Implement min person size again
- [x] Switch to a config file
- [x] Handle multiple cameras in the same container
- [ ] Attempt to figure out coral symlinking
- [ ] Add object list to config with min scores for mqtt
- [ ] Move mjpeg encoding to a separate process
- [ ] Simplify motion detection (check entire image against mask, resize instead of gaussian blur)
- [ ] See if motion detection is even worth running
- [ ] Scan for people across entire image rather than specfic regions
- [ ] Dynamically resize detection area and follow people
- [ ] Add ability to turn detection on and off via MQTT
- [ ] Output movie clips of people for notifications, etc.
- [ ] Integrate with homeassistant push camera
- [ ] Merge bounding boxes that span multiple regions
- [ ] Implement mode to save labeled objects for training
- [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about
- [ ] Look into GPU accelerated decoding of RTSP stream
- [ ] Send video over a socket and use JSMPEG
- [x] Look into neural compute stick

85
benchmark.py Normal file → Executable file
View File

@@ -1,20 +1,79 @@
import statistics
import os
from statistics import mean
import multiprocessing as mp
import numpy as np
from edgetpu.detection.engine import DetectionEngine
import datetime
from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
labels = load_labels('/labelmap.txt')
# Load the edgetpu engine and labels
engine = DetectionEngine(PATH_TO_CKPT)
######
# Minimal same process runner
######
# object_detector = ObjectDetector()
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
frame = np.zeros((300,300,3), np.uint8)
flattened_frame = np.expand_dims(frame, axis=0).flatten()
# start = datetime.datetime.now().timestamp()
detection_times = []
# frame_times = []
# for x in range(0, 1000):
# start_frame = datetime.datetime.now().timestamp()
for x in range(0, 1000):
objects = engine.DetectWithInputTensor(flattened_frame, threshold=0.1, top_k=3)
detection_times.append(engine.get_inference_time())
# tensor_input[:] = my_frame
# detections = object_detector.detect_raw(tensor_input)
# parsed_detections = []
# for d in detections:
# if d[1] < 0.4:
# break
# parsed_detections.append((
# labels[int(d[0])],
# float(d[1]),
# (d[2], d[3], d[4], d[5])
# ))
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
print("Average inference time: " + str(statistics.mean(detection_times)))
# duration = datetime.datetime.now().timestamp()-start
# print(f"Processed for {duration:.2f} seconds.")
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
######
# Separate process runner
######
def start(id, num_detections, detection_queue):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
start = datetime.datetime.now().timestamp()
frame_times = []
for x in range(0, num_detections):
start_frame = datetime.datetime.now().timestamp()
detections = object_detector.detect(my_frame)
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
duration = datetime.datetime.now().timestamp()-start
print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
edgetpu_process = EdgeTPUProcess()
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
####
# Multiple camera processes
####
camera_processes = []
for x in range(0, 10):
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
camera_process.daemon = True
camera_processes.append(camera_process)
start = datetime.datetime.now().timestamp()
for p in camera_processes:
p.start()
for p in camera_processes:
p.join()
duration = datetime.datetime.now().timestamp()-start
print(f"Total - Processed for {duration:.2f} seconds.")

View File

@@ -3,9 +3,13 @@ web_port: 5000
mqtt:
host: mqtt.server.com
topic_prefix: frigate
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
# user: username # Optional -- Uncomment for use
# password: password # Optional -- Uncomment for use
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
# user: username # Optional
#################
## Environment variables that begin with 'FRIGATE_' may be referenced in {}.
## password: '{FRIGATE_MQTT_PASSWORD}'
#################
# password: password # Optional
#################
# Default ffmpeg args. Optional and can be overwritten per camera.
@@ -39,24 +43,30 @@ mqtt:
# - -use_wallclock_as_timestamps
# - '1'
# output_args:
# - -vf
# - mpdecimate
# - -f
# - rawvideo
# - -pix_fmt
# - rgb24
####################
# Global object configuration. Applies to all cameras and regions
# unless overridden at the camera/region levels.
# Global object configuration. Applies to all cameras
# unless overridden at the camera levels.
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
# min_area (optional): minimum width*height of the bounding box for the detected person
# max_area (optional): maximum width*height of the bounding box for the detected person
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
####################
objects:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
track:
- person
- car
- truck
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
cameras:
back:
@@ -73,14 +83,23 @@ cameras:
# hwaccel_args: []
# input_args: []
# output_args: []
################
## Optionally specify the resolution of the video feed. Frigate will try to auto detect if not specified
################
# height: 1280
# width: 720
################
## Optional mask. Must be the same dimensions as your video feed.
## Optional mask. Must be the same aspect ratio as your video feed.
##
## The mask works by looking at the bottom center of the bounding box for the detected
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
## false positive. In my mask, the grass and driveway visible from my backdoor camera
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
## person to stand) are black.
##
## Masked areas are also ignored for motion detection.
################
# mask: back-mask.bmp
@@ -91,38 +110,27 @@ cameras:
################
take_frame: 1
################
# The expected framerate for the camera. Frigate will try and ensure it maintains this framerate
# by dropping frames as necessary. Setting this lower than the actual framerate will allow frigate
# to process every frame at the expense of realtime processing.
################
fps: 5
################
# Configuration for the snapshots in the debug view and mqtt
################
snapshots:
show_timestamp: True
################
# Camera level object config. This config is merged with the global config above.
################
objects:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
################
# size: size of the region in pixels
# x_offset/y_offset: position of the upper left corner of your region (top left of image is 0,0)
# min_person_area (optional): minimum width*height of the bounding box for the detected person
# max_person_area (optional): maximum width*height of the bounding box for the detected person
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
# Tips: All regions are resized to 300x300 before detection because the model is trained on that size.
# Resizing regions takes CPU power. Ideally, all regions should be as close to 300x300 as possible.
# Defining a region that goes outside the bounds of the image will result in errors.
################
regions:
- size: 350
x_offset: 0
y_offset: 300
objects:
car:
threshold: 0.2
- size: 400
x_offset: 350
y_offset: 250
objects:
person:
min_area: 2000
- size: 400
x_offset: 750
y_offset: 250
objects:
person:
min_area: 2000
track:
- person
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5

View File

@@ -1,13 +1,23 @@
import os
import cv2
import time
import datetime
import queue
import yaml
import threading
import multiprocessing as mp
import subprocess as sp
import numpy as np
from flask import Flask, Response, make_response
import logging
from flask import Flask, Response, make_response, jsonify
import paho.mqtt.client as mqtt
from frigate.video import Camera
from frigate.object_detection import PreppedQueueProcessor
from frigate.video import track_camera
from frigate.object_processing import TrackedObjectProcessor
from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
with open('/config/config.yml') as f:
CONFIG = yaml.safe_load(f)
@@ -17,6 +27,8 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
if not MQTT_PASS is None:
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
# Set the default FFmpeg config
@@ -24,7 +36,7 @@ FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
FFMPEG_DEFAULT_CONFIG = {
'global_args': FFMPEG_CONFIG.get('global_args',
['-hide_banner','-loglevel','panic']),
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
[]),
'input_args': FFMPEG_CONFIG.get('input_args',
['-avoid_negative_ts', 'make_zero',
@@ -37,8 +49,7 @@ FFMPEG_DEFAULT_CONFIG = {
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
'output_args': FFMPEG_CONFIG.get('output_args',
['-vf', 'mpdecimate',
'-f', 'rawvideo',
['-f', 'rawvideo',
'-pix_fmt', 'rgb24'])
}
@@ -47,6 +58,42 @@ GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
class CameraWatchdog(threading.Thread):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.tflite_process = tflite_process
self.tracked_objects_queue = tracked_objects_queue
self.object_processor = object_processor
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(30)
if (self.tflite_process.detection_start.value > 0.0 and
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
print("Detection appears to be stuck. Restarting detection process")
self.tflite_process.start_or_restart()
time.sleep(30)
for name, camera_process in self.camera_processes.items():
process = camera_process['process']
if not process.is_alive():
print(f"Process for {name} is not alive. Starting again...")
camera_process['fps'].value = float(self.config[name]['fps'])
camera_process['skipped_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
self.tflite_process.detection_queue, self.tracked_objects_queue,
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
process.daemon = True
camera_process['process'] = process
process.start()
print(f"Camera_process started for {name}: {process.pid}")
def main():
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
@@ -69,66 +116,132 @@ def main():
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
# Queue for prepped frames, max size set to (number of cameras * 5)
max_queue_size = len(CONFIG['cameras'].items())*5
prepped_frame_queue = queue.Queue(max_queue_size)
cameras = {}
# start plasma store
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
time.sleep(1)
rc = plasma_process.poll()
if rc is not None:
raise RuntimeError("plasma_store exited unexpectedly with "
"code %d" % (rc,))
##
# Setup config defaults for cameras
##
for name, config in CONFIG['cameras'].items():
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
config['snapshots'] = {
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
}
prepped_queue_processor = PreppedQueueProcessor(
cameras,
prepped_frame_queue
)
prepped_queue_processor.start()
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.Queue()
# Start the shared tflite process
tflite_process = EdgeTPUProcess()
for name, camera in cameras.items():
camera.start()
print("Capture process for {}: {}".format(name, camera.get_capture_pid()))
# start the camera processes
camera_processes = {}
for name, config in CONFIG['cameras'].items():
camera_processes[name] = {
'fps': mp.Value('d', float(config['fps'])),
'skipped_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0)
}
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
tflite_process.detection_queue, tracked_objects_queue,
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
camera_process.daemon = True
camera_processes[name]['process'] = camera_process
for name, camera_process in camera_processes.items():
camera_process['process'].start()
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
object_processor.start()
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
camera_watchdog.start()
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
log = logging.getLogger('werkzeug')
log.setLevel(logging.ERROR)
@app.route('/')
def ishealthy():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/debug/stats')
def stats():
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_processes.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'fps': round(camera_stats['fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2)
}
stats['coral'] = {
'fps': round(total_detection_fps, 2),
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
'detection_queue': tflite_process.detection_queue.qsize(),
'detection_start': tflite_process.detection_start.value
}
rc = plasma_process.poll()
stats['plasma_store_rc'] = rc
stats['tracked_objects_queue'] = tracked_objects_queue.qsize()
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in cameras:
best_frame = cameras[camera_name].get_best(label)
if camera_name in CONFIG['cameras']:
best_frame = object_processor.get_best(camera_name, label)
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return f'Camera named {camera_name} not found', 404
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
if camera_name in cameras:
if camera_name in CONFIG['cameras']:
# return a multipart response
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return f'Camera named {camera_name} not found', 404
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name):
while True:
# max out at 1 FPS
time.sleep(1)
frame = cameras[camera_name].get_current_frame_with_objects()
frame = object_processor.get_current_frame(camera_name)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
camera.join()
camera_watchdog.join()
plasma_process.terminate()
if __name__ == '__main__':
main()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 283 KiB

After

Width:  |  Height:  |  Size: 132 KiB

142
frigate/edgetpu.py Normal file
View File

@@ -0,0 +1,142 @@
import os
import datetime
import hashlib
import multiprocessing as mp
import numpy as np
import SharedArray as sa
import pyarrow.plasma as plasma
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
with open(path, 'r', encoding=encoding) as f:
lines = f.readlines()
if not lines:
return {}
if lines[0].split(' ', maxsplit=1)[0].isdigit():
pairs = [line.split(' ', maxsplit=1) for line in lines]
return {int(index): label.strip() for index, label in pairs}
else:
return {index: line.strip() for index, line in enumerate(lines)}
class ObjectDetector():
def __init__(self):
edge_tpu_delegate = None
try:
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
model_path='/cpu_model.tflite')
else:
self.interpreter = tflite.Interpreter(
model_path='/edgetpu_model.tflite',
experimental_delegates=[edge_tpu_delegate])
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
self.interpreter.invoke()
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
detections = np.zeros((20,6), np.float32)
for i, score in enumerate(scores):
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
return detections
def run_detector(detection_queue, avg_speed, start):
print(f"Starting detection process: {os.getpid()}")
plasma_client = plasma.connect("/tmp/plasma")
object_detector = ObjectDetector()
while True:
object_id_str = detection_queue.get()
object_id_hash = hashlib.sha1(str.encode(object_id_str))
object_id = plasma.ObjectID(object_id_hash.digest())
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
input_frame = plasma_client.get(object_id, timeout_ms=0)
if input_frame is plasma.ObjectNotAvailable:
continue
# detect and put the output in the plasma store
start.value = datetime.datetime.now().timestamp()
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
duration = datetime.datetime.now().timestamp()-start.value
start.value = 0.0
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self):
self.detection_queue = mp.Queue()
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.start_or_restart()
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue):
self.labels = load_labels(labels)
self.name = name
self.fps = EventsPerSecond()
self.plasma_client = plasma.connect("/tmp/plasma")
self.detection_queue = detection_queue
def detect(self, tensor_input, threshold=.4):
detections = []
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
self.plasma_client.put(tensor_input, object_id_frame)
self.detection_queue.put(now)
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
if raw_detections is plasma.ObjectNotAvailable:
self.plasma_client.delete([object_id_frame])
return detections
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.plasma_client.delete([object_id_frame, object_id_detections])
self.fps.update()
return detections

79
frigate/motion.py Normal file
View File

@@ -0,0 +1,79 @@
import cv2
import imutils
import numpy as np
class MotionDetector():
def __init__(self, frame_shape, mask, resize_factor=4):
self.resize_factor = resize_factor
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
self.motion_frame_count = 0
self.frame_counter = 0
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
self.mask = np.where(resized_mask==[0])
def detect(self, frame):
motion_boxes = []
# resize frame
resized_frame = cv2.resize(frame, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
# convert to grayscale
gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
# mask frame
gray[self.mask] = [255]
# it takes ~30 frames to establish a baseline
# dont bother looking for motion
if self.frame_counter < 30:
self.frame_counter += 1
else:
# compare to average
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg_frame))
# compute the average delta over the past few frames
# the alpha value can be modified to configure how sensitive the motion detection is.
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
# register as motion, too low and a fast moving person wont be detected as motion
# this also assumes that a person is in the same location across more than a single frame
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
# compute the threshold image for the current frame
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
avg_delta_image[np.where(current_thresh==[0])] = [0]
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > 100:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
if len(motion_boxes) > 0:
self.motion_frame_count += 1
# TODO: this really depends on FPS
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for at least 3 frames
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
self.motion_frame_count = 0
return motion_boxes

View File

@@ -1,47 +0,0 @@
import json
import cv2
import threading
from collections import Counter, defaultdict
class MqttObjectPublisher(threading.Thread):
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
threading.Thread.__init__(self)
self.client = client
self.topic_prefix = topic_prefix
self.objects_parsed = objects_parsed
self._detected_objects = detected_objects
self.best_frames = best_frames
def run(self):
current_object_status = defaultdict(lambda: 'OFF')
while True:
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# make a copy of detected objects
detected_objects = self._detected_objects.copy()
# total up all scores by object type
obj_counter = Counter()
for obj in detected_objects:
obj_counter[obj['name']] += obj['score']
# report on detected objects
for obj_name, total_score in obj_counter.items():
new_status = 'ON' if int(total_score*100) > 100 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
# send the snapshot over mqtt if we have it as well
if obj_name in self.best_frames.best_frames:
ret, jpg = cv2.imencode('.jpg', self.best_frames.best_frames[obj_name])
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)

View File

@@ -1,94 +0,0 @@
import datetime
import time
import cv2
import threading
import numpy as np
from edgetpu.detection.engine import DetectionEngine
from . util import tonumpyarray, LABELS, PATH_TO_CKPT
class PreppedQueueProcessor(threading.Thread):
def __init__(self, cameras, prepped_frame_queue):
threading.Thread.__init__(self)
self.cameras = cameras
self.prepped_frame_queue = prepped_frame_queue
# Load the edgetpu engine and labels
self.engine = DetectionEngine(PATH_TO_CKPT)
self.labels = LABELS
def run(self):
# process queue...
while True:
frame = self.prepped_frame_queue.get()
# Actual detection.
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
# print(self.engine.get_inference_time())
# parse and pass detected objects back to the camera
parsed_objects = []
for obj in objects:
parsed_objects.append({
'region_id': frame['region_id'],
'frame_time': frame['frame_time'],
'name': str(self.labels[obj.label_id]),
'score': float(obj.score),
'box': obj.bounding_box.flatten().tolist()
})
self.cameras[frame['camera_name']].add_objects(parsed_objects)
# should this be a region class?
class FramePrepper(threading.Thread):
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
frame_lock,
region_size, region_x_offset, region_y_offset, region_id,
prepped_frame_queue):
threading.Thread.__init__(self)
self.camera_name = camera_name
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.region_size = region_size
self.region_x_offset = region_x_offset
self.region_y_offset = region_y_offset
self.region_id = region_id
self.prepped_frame_queue = prepped_frame_queue
def run(self):
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
with self.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# make a copy of the cropped frame
with self.frame_lock:
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
frame_time = self.frame_time.value
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame, axis=0)
# add the frame to the queue
if not self.prepped_frame_queue.full():
self.prepped_frame_queue.put({
'camera_name': self.camera_name,
'frame_time': frame_time,
'frame': frame_expanded.flatten().copy(),
'region_size': self.region_size,
'region_id': self.region_id,
'region_x_offset': self.region_x_offset,
'region_y_offset': self.region_y_offset
})
else:
print("queue full. moving on")

View File

@@ -0,0 +1,149 @@
import json
import hashlib
import datetime
import copy
import cv2
import threading
import numpy as np
from collections import Counter, defaultdict
import itertools
import pyarrow.plasma as plasma
import SharedArray as sa
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label
from frigate.edgetpu import load_labels
PATH_TO_LABELS = '/labelmap.txt'
LABELS = load_labels(PATH_TO_LABELS)
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
class TrackedObjectProcessor(threading.Thread):
def __init__(self, config, client, topic_prefix, tracked_objects_queue):
threading.Thread.__init__(self)
self.config = config
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.plasma_client = plasma.connect("/tmp/plasma")
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {},
'current_frame': np.zeros((720,1280,3), np.uint8),
'object_id': None
})
def get_best(self, camera, label):
if label in self.camera_data[camera]['best_objects']:
return self.camera_data[camera]['best_objects'][label]['frame']
else:
return None
def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame']
def run(self):
while True:
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
config = self.config[camera]
best_objects = self.camera_data[camera]['best_objects']
current_object_status = self.camera_data[camera]['object_status']
self.camera_data[camera]['tracked_objects'] = tracked_objects
###
# Draw tracked objects on the frame
###
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
object_id_bytes = object_id_hash.digest()
object_id = plasma.ObjectID(object_id_bytes)
current_frame = self.plasma_client.get(object_id, timeout_ms=0)
if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
###
# Set the current frame as ready
###
self.camera_data[camera]['current_frame'] = current_frame
# store the object id, so you can delete it at the next loop
previous_object_id = self.camera_data[camera]['object_id']
if not previous_object_id is None:
self.plasma_client.delete([previous_object_id])
self.camera_data[camera]['object_id'] = object_id
###
# Maintain the highest scoring recent object and frame for each label
###
for obj in tracked_objects.values():
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != frame_time:
continue
if obj['label'] in best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
###
# Report over MQTT
###
# count objects with more than 2 entries in history by type
obj_counter = Counter()
for obj in tracked_objects.values():
if len(obj['history']) > 1:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
# send the best snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)

View File

@@ -2,82 +2,158 @@ import time
import datetime
import threading
import cv2
import itertools
import copy
import numpy as np
from . util import draw_box_with_label
import multiprocessing as mp
from collections import defaultdict
from scipy.spatial import distance as dist
from frigate.util import draw_box_with_label, calculate_region
class ObjectCleaner(threading.Thread):
def __init__(self, objects_parsed, detected_objects):
threading.Thread.__init__(self)
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
class ObjectTracker():
def __init__(self, max_disappeared):
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = max_disappeared
def run(self):
while True:
def register(self, index, obj):
id = f"{obj['frame_time']}-{index}"
obj['id'] = id
obj['top_score'] = obj['score']
self.add_history(obj)
self.tracked_objects[id] = obj
self.disappeared[id] = 0
# wait a bit before checking for expired frames
time.sleep(0.2)
def deregister(self, id):
del self.tracked_objects[id]
del self.disappeared[id]
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
self.add_history(self.tracked_objects[id])
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def add_history(self, obj):
entry = {
'score': obj['score'],
'box': obj['box'],
'region': obj['region'],
'centroid': obj['centroid'],
'frame_time': obj['frame_time']
}
if 'history' in obj:
obj['history'].append(entry)
else:
obj['history'] = [entry]
# expire the objects that are more than 1 second old
now = datetime.datetime.now().timestamp()
# look for the first object found within the last second
# (newest objects are appended to the end)
detected_objects = self._detected_objects.copy()
num_to_delete = 0
for obj in detected_objects:
if now-obj['frame_time']<2:
break
num_to_delete += 1
if num_to_delete > 0:
del self._detected_objects[:num_to_delete]
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
# Maintains the frame and object with the highest score
class BestFrames(threading.Thread):
def __init__(self, objects_parsed, recent_frames, detected_objects):
threading.Thread.__init__(self)
self.objects_parsed = objects_parsed
self.recent_frames = recent_frames
self.detected_objects = detected_objects
self.best_objects = {}
self.best_frames = {}
def run(self):
while True:
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
for obj in detected_objects:
if obj['name'] in self.best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
self.best_objects[obj['name']] = obj
def match_and_update(self, frame_time, new_objects):
# group by name
new_object_groups = defaultdict(lambda: [])
for obj in new_objects:
new_object_groups[obj[0]].append({
'label': obj[0],
'score': obj[1],
'box': obj[2],
'area': obj[3],
'region': obj[4],
'frame_time': frame_time
})
# update any tracked objects with labels that are not
# seen in the current objects and deregister if needed
for obj in list(self.tracked_objects.values()):
if not obj['label'] in new_object_groups:
if self.disappeared[obj['id']] >= self.max_disappeared:
self.deregister(obj['id'])
else:
self.best_objects[obj['name']] = obj
self.disappeared[obj['id']] += 1
if len(new_objects) == 0:
return
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
current_ids = [o['id'] for o in current_objects]
current_centroids = np.array([o['centroid'] for o in current_objects])
# compute centroids of new objects
for obj in group:
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
obj['centroid'] = (centroid_x, centroid_y)
if len(current_objects) == 0:
for index, obj in enumerate(group):
self.register(index, obj)
return
# make a copy of the recent frames
recent_frames = self.recent_frames.copy()
new_centroids = np.array([o['centroid'] for o in group])
for name, obj in self.best_objects.items():
if obj['frame_time'] in recent_frames:
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
self.best_frames[name] = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
if row in usedRows or col in usedCols:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = current_ids[row]
self.update(objectID, group[col])
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute the column index we have NOT yet examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# in the event that the number of object centroids is
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
for row in unusedRows:
id = current_ids[row]
if self.disappeared[id] >= self.max_disappeared:
self.deregister(id)
else:
self.disappeared[id] += 1
# if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
else:
for col in unusedCols:
self.register(col, group[col])

141
frigate/util.py Normal file → Executable file
View File

@@ -1,27 +1,15 @@
import datetime
import collections
import numpy as np
import cv2
import threading
import matplotlib.pyplot as plt
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, score, area):
color = COLOR_MAP[label]
display_text = "{}: {}% {}".format(label,int(score*100),int(area))
cv2.rectangle(frame, (x_min, y_min),
(x_max, y_max),
color, 2)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
color = (0,0,255)
display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box
@@ -30,21 +18,112 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, score, area):
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
if position == 'ul':
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'ur':
text_offset_x = x_max - (text_width+8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'bl':
text_offset_x = x_min
text_offset_y = y_max
elif position == 'br':
text_offset_x = x_max - (text_width+8)
text_offset_y = y_max
# make the coords of the box with a small padding of two pixels
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
LABELS = ReadLabelFile(PATH_TO_LABELS)
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1]-size):
x_offset = (frame_shape[1]-size)
COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0]-size):
y_offset = (frame_shape[0]-size)
return (x_offset, y_offset, x_offset+size, y_offset+size)
def intersection(box_a, box_b):
return (
max(box_a[0], box_b[0]),
max(box_a[1], box_b[1]),
min(box_a[2], box_b[2]),
min(box_a[3], box_b[3])
)
def area(box):
return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
def intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = intersection(box_a, box_b)
# compute the area of intersection rectangle
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = inter_area / float(box_a_area + box_b_area - inter_area)
# return the intersection over union value
return iou
def clipped(obj, frame_shape):
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
box = obj[2]
region = obj[4]
if ((region[0] > 5 and box[0]-region[0] <= 5) or
(region[1] > 5 and box[1]-region[1] <= 5) or
(frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
(frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
return True
else:
return False
class EventsPerSecond:
def __init__(self, max_events=1000):
self._start = None
self._max_events = max_events
self._timestamps = []
def start(self):
self._start = datetime.datetime.now().timestamp()
def update(self):
self._timestamps.append(datetime.datetime.now().timestamp())
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events+100:
self._timestamps = self._timestamps[(1-self._max_events):]
def eps(self, last_n_seconds=10):
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now-self._start, last_n_seconds)
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds

660
frigate/video.py Normal file → Executable file
View File

@@ -2,54 +2,48 @@ import os
import time
import datetime
import cv2
import queue
import threading
import ctypes
import multiprocessing as mp
import subprocess as sp
import numpy as np
import hashlib
import pyarrow.plasma as plasma
import SharedArray as sa
import copy
import itertools
import json
from collections import defaultdict
from . util import tonumpyarray, draw_box_with_label
from . object_detection import FramePrepper
from . objects import ObjectCleaner, BestFrames
from . mqtt import MqttObjectPublisher
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
class FrameTracker(threading.Thread):
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
threading.Thread.__init__(self)
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.recent_frames = recent_frames
def run(self):
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# wait for a frame
with self.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a signal
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# lock and make a copy of the frame
with self.frame_lock:
frame = self.shared_frame.copy()
frame_time = self.frame_time.value
# add the frame to recent frames
self.recent_frames[frame_time] = frame
# delete any old frames
stored_frame_times = list(self.recent_frames.keys())
for k in stored_frame_times:
if (now - k) > 2:
del self.recent_frames[k]
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
from frigate.objects import ObjectTracker
from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector
def get_frame_shape(source):
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
print(ffprobe_cmd)
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
print(info)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
@@ -60,300 +54,324 @@ def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
class CameraWatchdog(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def filtered(obj, objects_to_track, object_filters, mask):
object_name = obj[0]
def run(self):
while True:
# wait a bit before checking
time.sleep(10)
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
print("last frame is more than 5 minutes old, restarting camera capture...")
self.camera.start_or_restart_capture()
time.sleep(5)
# Thread to read the stdout of the ffmpeg process and update the current frame
class CameraCapture(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
frame_num = 0
while True:
if self.camera.ffmpeg_process.poll() != None:
print("ffmpeg process is not running. exiting capture thread...")
break
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
if len(raw_image) == 0:
print("ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
break
frame_num += 1
if (frame_num % self.camera.take_frame) != 0:
continue
with self.camera.frame_lock:
self.camera.frame_time.value = datetime.datetime.now().timestamp()
self.camera.current_frame[:] = (
np
.frombuffer(raw_image, np.uint8)
.reshape(self.camera.frame_shape)
)
# Notify with the condition that a new frame is ready
with self.camera.frame_ready:
self.camera.frame_ready.notify_all()
class Camera:
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
self.name = name
self.config = config
self.detected_objects = []
self.recent_frames = {}
self.ffmpeg = config.get('ffmpeg', {})
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
camera_objects_config = config.get('objects', {})
self.take_frame = self.config.get('take_frame', 1)
self.regions = self.config['regions']
self.frame_shape = get_frame_shape(self.ffmpeg_input)
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
self.mqtt_client = mqtt_client
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
# create a numpy array for the current frame in initialize to zeros
self.current_frame = np.zeros(self.frame_shape, np.uint8)
# create shared value for storing the frame_time
self.frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame
self.frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
self.frame_ready = mp.Condition()
# Condition for notifying that objects were parsed
self.objects_parsed = mp.Condition()
# initialize the frame cache
self.cached_frame_with_objects = {
'frame_bytes': [],
'frame_time': 0
}
self.ffmpeg_process = None
self.capture_thread = None
# for each region, create a separate thread to resize the region and prep for detection
self.detection_prep_threads = []
for index, region in enumerate(self.config['regions']):
region_objects = region.get('objects', {})
# build objects config for region
objects_with_config = set().union(global_objects_config.keys(), camera_objects_config.keys(), region_objects.keys())
merged_objects_config = defaultdict(lambda: {})
for obj in objects_with_config:
merged_objects_config[obj] = {**global_objects_config.get(obj,{}), **camera_objects_config.get(obj, {}), **region_objects.get(obj, {})}
region['objects'] = merged_objects_config
self.detection_prep_threads.append(FramePrepper(
self.name,
self.current_frame,
self.frame_time,
self.frame_ready,
self.frame_lock,
region['size'], region['x_offset'], region['y_offset'], index,
prepped_frame_queue
))
# start a thread to store recent motion frames for processing
self.frame_tracker = FrameTracker(self.current_frame, self.frame_time,
self.frame_ready, self.frame_lock, self.recent_frames)
self.frame_tracker.start()
# start a thread to store the highest scoring recent frames for monitored object types
self.best_frames = BestFrames(self.objects_parsed, self.recent_frames, self.detected_objects)
self.best_frames.start()
# start a thread to expire objects from the detected objects list
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
self.object_cleaner.start()
# start a thread to publish object scores
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
mqtt_publisher.start()
# create a watchdog thread for capture process
self.watchdog = CameraWatchdog(self)
# load in the mask for object detection
if 'mask' in self.config:
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
else:
self.mask = None
if self.mask is None:
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
self.mask[:] = 255
def start_or_restart_capture(self):
if not self.ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
self.ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_process.wait(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
self.ffmpeg_process.kill()
self.ffmpeg_process.wait()
print("Waiting for the capture thread to exit...")
self.capture_thread.join()
self.ffmpeg_process = None
self.capture_thread = None
# create the process to capture frames from the input stream and store in a shared array
print("Creating a new ffmpeg process...")
self.start_ffmpeg()
print("Creating a new capture thread...")
self.capture_thread = CameraCapture(self)
print("Starting a new capture thread...")
self.capture_thread.start()
if not object_name in objects_to_track:
return True
def start_ffmpeg(self):
ffmpeg_cmd = (['ffmpeg'] +
self.ffmpeg_global_args +
self.ffmpeg_hwaccel_args +
self.ffmpeg_input_args +
['-i', self.ffmpeg_input] +
self.ffmpeg_output_args +
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj[3]:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj[1]:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if mask[y_location][x_location] == [0]:
return True
return False
def create_tensor_input(frame, region):
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
if not ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.wait(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.wait()
print("Creating ffmpeg process...")
print(" ".join(ffmpeg_cmd))
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
print(f"Starting process for {name}: {os.getpid()}")
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
print(" ".join(ffmpeg_cmd))
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
# combine tracked objects lists
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# merge object filters
global_object_filters = global_objects_config.get('filters', {})
camera_object_filters = camera_objects_config.get('filters', {})
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
object_filters = {}
for obj in objects_with_config:
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
expected_fps = config['fps']
take_frame = config.get('take_frame', 1)
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
try:
sa.delete(name)
except:
pass
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
# load in the mask for object detection
if 'mask' in config:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None
if mask is None:
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
object_tracker = ObjectTracker(10)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
plasma_client = plasma.connect("/tmp/plasma")
frame_num = 0
avg_wait = 0.0
fps_tracker = EventsPerSecond()
skipped_fps_tracker = EventsPerSecond()
fps_tracker.start()
skipped_fps_tracker.start()
object_detector.fps.start()
while True:
start = datetime.datetime.now().timestamp()
frame_bytes = ffmpeg_process.stdout.read(frame_size)
duration = datetime.datetime.now().timestamp()-start
avg_wait = (avg_wait*99+duration)/100
if not frame_bytes:
rc = ffmpeg_process.poll()
if rc is not None:
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
time.sleep(10)
else:
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
continue
# limit frame rate
frame_num += 1
if (frame_num % take_frame) != 0:
continue
fps_tracker.update()
fps.value = fps_tracker.eps()
detection_fps.value = object_detector.fps.eps()
frame_time = datetime.datetime.now().timestamp()
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
def start(self):
self.start_or_restart_capture()
# start the object detection prep threads
for detection_prep_thread in self.detection_prep_threads:
detection_prep_thread.start()
self.watchdog.start()
def join(self):
self.capture_thread.join()
def get_capture_pid(self):
return self.ffmpeg_process.pid
def add_objects(self, objects):
if len(objects) == 0:
return
# Store frame in numpy array
frame[:] = (np
.frombuffer(frame_bytes, np.uint8)
.reshape(frame_shape))
# look for motion
motion_boxes = motion_detector.detect(frame)
for obj in objects:
# find the matching region
region = self.regions[obj['region_id']]
# skip object detection if we are below the min_fps and wait time is less than half the average
if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait:
skipped_fps_tracker.update()
skipped_fps.value = skipped_fps_tracker.eps()
continue
skipped_fps.value = skipped_fps_tracker.eps()
# Compute some extra properties
obj.update({
'xmin': int((obj['box'][0] * region['size']) + region['x_offset']),
'ymin': int((obj['box'][1] * region['size']) + region['y_offset']),
'xmax': int((obj['box'][2] * region['size']) + region['x_offset']),
'ymax': int((obj['box'][3] * region['size']) + region['y_offset'])
})
# Compute the area
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
tracked_objects = object_tracker.tracked_objects.values()
object_name = obj['name']
# merge areas of motion that intersect with a known tracked object into a single area to look at
areas_of_interest = []
used_motion_boxes = []
for obj in tracked_objects:
x_min, y_min, x_max, y_max = obj['box']
for m_index, motion_box in enumerate(motion_boxes):
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
used_motion_boxes.append(m_index)
x_min = min(obj['box'][0], motion_box[0])
y_min = min(obj['box'][1], motion_box[1])
x_max = max(obj['box'][2], motion_box[2])
y_max = max(obj['box'][3], motion_box[3])
areas_of_interest.append((x_min, y_min, x_max, y_max))
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
# compute motion regions
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
for i in unused_motion_boxes]
# compute tracked object regions
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in areas_of_interest]
# merge regions with high IOU
merged_regions = motion_regions+object_regions
while True:
max_iou = 0.0
max_indices = None
region_indices = range(len(merged_regions))
for a, b in itertools.combinations(region_indices, 2):
iou = intersection_over_union(merged_regions[a], merged_regions[b])
if iou > max_iou:
max_iou = iou
max_indices = (a, b)
if max_iou > 0.1:
a = merged_regions[max_indices[0]]
b = merged_regions[max_indices[1]]
merged_regions.append(calculate_region(frame_shape,
min(a[0], b[0]),
min(a[1], b[1]),
max(a[2], b[2]),
max(a[3], b[3]),
1
))
del merged_regions[max(max_indices[0], max_indices[1])]
del merged_regions[min(max_indices[0], max_indices[1])]
else:
break
if object_name in region['objects']:
obj_settings = region['objects'][object_name]
# resize regions and detect
detections = []
for region in merged_regions:
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
tensor_input = create_tensor_input(frame, region)
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
#########
# merge objects, check for clipped objects and look again up to N times
#########
refining = True
refine_count = 0
while refining and refine_count < 4:
refining = False
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
for o in group]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape): #obj['clipped']:
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
tensor_input = create_tensor_input(frame, region)
# run detection on new region
refined_detections = object_detector.detect(tensor_input)
for d in refined_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
selected_objects.append(det)
refining = True
else:
selected_objects.append(obj)
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', region['size']**2) < obj['area']:
continue
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
continue
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['ymax']), len(self.mask)-1)
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if self.mask[y_location][x_location] == [0]:
continue
self.detected_objects.append(obj)
with self.objects_parsed:
self.objects_parsed.notify_all()
def get_best(self, label):
return self.best_frames.best_frames.get(label)
def get_current_frame_with_objects(self):
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# lock and make a copy of the current frame
with self.frame_lock:
frame = self.current_frame.copy()
frame_time = self.frame_time.value
if refining:
refine_count += 1
if frame_time == self.cached_frame_with_objects['frame_time']:
return self.cached_frame_with_objects['frame_bytes']
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections)
# draw the bounding boxes on the screen
for obj in detected_objects:
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
# put the frame in the plasma store
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
plasma_client.put(frame, plasma.ObjectID(object_id))
# add to the queue
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
for region in self.regions:
color = (255,255,255)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# convert to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
frame_bytes = jpg.tobytes()
self.cached_frame_with_objects = {
'frame_bytes': frame_bytes,
'frame_time': frame_time
}
return frame_bytes
print(f"{name}: exiting subprocess")

View File

@@ -1,50 +0,0 @@
#!/bin/bash
set -e
CPU_ARCH=$(uname -m)
OS_VERSION=$(uname -v)
echo "CPU_ARCH ${CPU_ARCH}"
echo "OS_VERSION ${OS_VERSION}"
if [[ "${CPU_ARCH}" == "x86_64" ]]; then
echo "Recognized as Linux on x86_64."
LIBEDGETPU_SUFFIX=x86_64
HOST_GNU_TYPE=x86_64-linux-gnu
elif [[ "${CPU_ARCH}" == "armv7l" ]]; then
echo "Recognized as Linux on ARM32 platform."
LIBEDGETPU_SUFFIX=arm32
HOST_GNU_TYPE=arm-linux-gnueabihf
elif [[ "${CPU_ARCH}" == "aarch64" ]]; then
echo "Recognized as generic ARM64 platform."
LIBEDGETPU_SUFFIX=arm64
HOST_GNU_TYPE=aarch64-linux-gnu
fi
if [[ -z "${HOST_GNU_TYPE}" ]]; then
echo "Your platform is not supported."
exit 1
fi
echo "Using maximum operating frequency."
LIBEDGETPU_SRC="libedgetpu/libedgetpu_${LIBEDGETPU_SUFFIX}.so"
LIBEDGETPU_DST="/usr/lib/${HOST_GNU_TYPE}/libedgetpu.so.1.0"
# Runtime library.
echo "Installing Edge TPU runtime library [${LIBEDGETPU_DST}]..."
if [[ -f "${LIBEDGETPU_DST}" ]]; then
echo "File already exists. Replacing it..."
rm -f "${LIBEDGETPU_DST}"
fi
cp -p "${LIBEDGETPU_SRC}" "${LIBEDGETPU_DST}"
ldconfig
echo "Done."
# Python API.
WHEEL=$(ls edgetpu-*-py3-none-any.whl 2>/dev/null)
if [[ $? == 0 ]]; then
echo "Installing Edge TPU Python API..."
python3 -m pip install --no-deps "${WHEEL}"
echo "Done."
fi

View File

@@ -1,5 +0,0 @@
#!/bin/bash
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys D986B59D
echo "deb http://deb.odroid.in/5422-s bionic main" > /etc/apt/sources.list.d/odroid.list