Compare commits
457 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2ec921593e | ||
|
|
75a01f657e | ||
|
|
d4e512c1fc | ||
|
|
26e7d34f18 | ||
|
|
15b5ffddd4 | ||
|
|
f0f3764992 | ||
|
|
2beb44b591 | ||
|
|
27b659dde1 | ||
|
|
630c2ee6f6 | ||
|
|
600477c487 | ||
|
|
d31c295598 | ||
|
|
a7bb0931c4 | ||
|
|
ff99a01423 | ||
|
|
ea6e311318 | ||
|
|
6790467bbc | ||
|
|
d315dbea22 | ||
|
|
8db7ab6724 | ||
|
|
9a2c034ae8 | ||
|
|
2885b80a13 | ||
|
|
4a85156e87 | ||
|
|
1785c69e1b | ||
|
|
a862ba8348 | ||
|
|
633d45d02f | ||
|
|
7f4e042dfa | ||
|
|
507ec13848 | ||
|
|
2132352639 | ||
|
|
11016b8486 | ||
|
|
8615f14407 | ||
|
|
1e84f08018 | ||
|
|
7f663328dc | ||
|
|
ea53068432 | ||
|
|
144aff9b4e | ||
|
|
18db6daf0a | ||
|
|
26ba29b538 | ||
|
|
70167a34b6 | ||
|
|
ccb668a1b6 | ||
|
|
0989c64eab | ||
|
|
c082fc5cb2 | ||
|
|
d39111a294 | ||
|
|
3c072f94b0 | ||
|
|
7f8ae2ce5c | ||
|
|
d84b75168c | ||
|
|
eb0a5e1c55 | ||
|
|
47ac77dbb0 | ||
|
|
ec84847be7 | ||
|
|
e7839bfd40 | ||
|
|
8762da627b | ||
|
|
3fab321045 | ||
|
|
9451048574 | ||
|
|
46c002038b | ||
|
|
d1d833ea9a | ||
|
|
c1f0750526 | ||
|
|
89e02b6956 | ||
|
|
97e8258288 | ||
|
|
39040c1874 | ||
|
|
c709851888 | ||
|
|
b022bec1fa | ||
|
|
bca0531963 | ||
|
|
b2c7fc8f5b | ||
|
|
96ac2c29d6 | ||
|
|
14a5118b4d | ||
|
|
232fa1ffe8 | ||
|
|
d2e91754e9 | ||
|
|
4d9066a58d | ||
|
|
c618867941 | ||
|
|
5ad4017510 | ||
|
|
63e14a98f9 | ||
|
|
25e3fe8eab | ||
|
|
840f046572 | ||
|
|
89e3c2e4b1 | ||
|
|
c770470b58 | ||
|
|
4619836122 | ||
|
|
76403bba8e | ||
|
|
a9afa303a2 | ||
|
|
e5399ae07a | ||
|
|
80a5a7b129 | ||
|
|
9dc97d4b6b | ||
|
|
d8c9169af2 | ||
|
|
ec256f7130 | ||
|
|
19bbfce4ed | ||
|
|
b0b2d9d972 | ||
|
|
6f5f5c9461 | ||
|
|
fc04bc6046 | ||
|
|
9f504253fb | ||
|
|
961997e078 | ||
|
|
363594a9a2 | ||
|
|
247e2677f3 | ||
|
|
5b5159f4dd | ||
|
|
bc8b85860c | ||
|
|
44d45c5880 | ||
|
|
a6d8e4fc3f | ||
|
|
2cc9a15f6a | ||
|
|
151f9fb2ee | ||
|
|
32fb76b3d1 | ||
|
|
8d52e2635a | ||
|
|
f20e1f20a6 | ||
|
|
af8594c5c6 | ||
|
|
899d41f361 | ||
|
|
7dc6382c90 | ||
|
|
e8009c2d26 | ||
|
|
3bc7cdaab6 | ||
|
|
724d8187c6 | ||
|
|
8f68df60c7 | ||
|
|
6af3cb6134 | ||
|
|
2ff0c3907f | ||
|
|
dd102ff01d | ||
|
|
f20b1d75e6 | ||
|
|
a4b88ac4a7 | ||
|
|
93b9d586d2 | ||
|
|
41dd4447cc | ||
|
|
8b9c8a2e80 | ||
|
|
a63ff1bb99 | ||
|
|
d5e3b59245 | ||
|
|
d0470fffcc | ||
|
|
5053305e17 | ||
|
|
9c79392060 | ||
|
|
708c3278bf | ||
|
|
c0249f6e59 | ||
|
|
afd8aefac2 | ||
|
|
3c07767138 | ||
|
|
953c442f13 | ||
|
|
e147852878 | ||
|
|
db7ee6cfb3 | ||
|
|
3b41b6cc33 | ||
|
|
5e79888370 | ||
|
|
a6aa9bdd59 | ||
|
|
d78b7cc110 | ||
|
|
e7cdace0ab | ||
|
|
f60eb4e977 | ||
|
|
7aecf6c6de | ||
|
|
75d62096a6 | ||
|
|
7c44994070 | ||
|
|
f49f3fd9c3 | ||
|
|
5ea86d636c | ||
|
|
4c6e90717a | ||
|
|
d60ca9d783 | ||
|
|
d304718ea0 | ||
|
|
c787c8948e | ||
|
|
62728ef7fb | ||
|
|
47e256f03d | ||
|
|
527db52d5e | ||
|
|
f78b2c48a7 | ||
|
|
90c965a32a | ||
|
|
d4afcde6c9 | ||
|
|
257de89ce4 | ||
|
|
735cc3962b | ||
|
|
feb42181de | ||
|
|
f5c4bfa7b4 | ||
|
|
65ddd91855 | ||
|
|
6d7d838613 | ||
|
|
5edf7b7f00 | ||
|
|
117569830d | ||
|
|
d62aec7287 | ||
|
|
4e0cf3681e | ||
|
|
d98751102a | ||
|
|
1acbeb813e | ||
|
|
b87ec752cf | ||
|
|
753df31fa6 | ||
|
|
bd77b74689 | ||
|
|
810c23d8ee | ||
|
|
34d9b2983e | ||
|
|
63c5c8412a | ||
|
|
60207723d1 | ||
|
|
f4117ad096 | ||
|
|
8bed4e9970 | ||
|
|
f72eaf781c | ||
|
|
e9ecc20a36 | ||
|
|
addfa2a32d | ||
|
|
0dad9bc393 | ||
|
|
5155875a72 | ||
|
|
4ed1217366 | ||
|
|
50e898a684 | ||
|
|
251c7fa982 | ||
|
|
00c75e9f98 | ||
|
|
1b5b02d286 | ||
|
|
946d655cee | ||
|
|
d56710b0b5 | ||
|
|
0cf78277b5 | ||
|
|
ce2a583ff9 | ||
|
|
84bddad30e | ||
|
|
0ff682504a | ||
|
|
5d5984166f | ||
|
|
b825eb44fe | ||
|
|
7015eb66f2 | ||
|
|
494eeb16a5 | ||
|
|
692fdc8d5d | ||
|
|
ec1a8ebd4a | ||
|
|
59daa6597b | ||
|
|
3941ce4ad1 | ||
|
|
aff87d4372 | ||
|
|
373ca87887 | ||
|
|
03c855ecbe | ||
|
|
3a3cb24631 | ||
|
|
4c3fea25a5 | ||
|
|
af303cbf2a | ||
|
|
b7c09a9b38 | ||
|
|
eced06eea8 | ||
|
|
15d989255c | ||
|
|
095566b9c2 | ||
|
|
b77a65d446 | ||
|
|
9778a748fc | ||
|
|
a89dddcafa | ||
|
|
75973fd4c0 | ||
|
|
514036f9d1 | ||
|
|
36fbedab20 | ||
|
|
180baeba50 | ||
|
|
cce82fe2a5 | ||
|
|
5512bb2e06 | ||
|
|
be1fcbbdf8 | ||
|
|
422cd52049 | ||
|
|
d67a56d37e | ||
|
|
070c9721b6 | ||
|
|
0219834dd1 | ||
|
|
a1cc9ad1f0 | ||
|
|
29e8aa4020 | ||
|
|
777aff403f | ||
|
|
4b3b702459 | ||
|
|
893e6b40a7 | ||
|
|
a85d780020 | ||
|
|
34439699ae | ||
|
|
64b63142b1 | ||
|
|
cee1ab000b | ||
|
|
3ff98770c1 | ||
|
|
244203463d | ||
|
|
b6f7940b10 | ||
|
|
75312602aa | ||
|
|
75977128f0 | ||
|
|
eafde6c677 | ||
|
|
da0598baef | ||
|
|
35ba5e2f7c | ||
|
|
49258d6dbe | ||
|
|
5a081e4f00 | ||
|
|
4feae472e9 | ||
|
|
4e83239258 | ||
|
|
c4cccf44a5 | ||
|
|
64e7cbcc62 | ||
|
|
dd86e4f317 | ||
|
|
4db285a875 | ||
|
|
939d1ba091 | ||
|
|
0fe8d486d9 | ||
|
|
a3cb02af5c | ||
|
|
45a6b8452c | ||
|
|
9d594cc640 | ||
|
|
59e41ae1ac | ||
|
|
c6ed16465b | ||
|
|
8f14b36f5a | ||
|
|
b6c2491e3b | ||
|
|
8e31d04d90 | ||
|
|
bf93fbb357 | ||
|
|
c064b244db | ||
|
|
0280610e96 | ||
|
|
4363623c45 | ||
|
|
c960914ec3 | ||
|
|
9ecc80b443 | ||
|
|
3e146de0a2 | ||
|
|
bee54c39dc | ||
|
|
623d138d60 | ||
|
|
76befc1249 | ||
|
|
51251b9fb0 | ||
|
|
8c45076bb6 | ||
|
|
7d683ef399 | ||
|
|
e4da3822b1 | ||
|
|
12c4cd77c5 | ||
|
|
a611cbb942 | ||
|
|
f946813ccb | ||
|
|
49fca1b839 | ||
|
|
54cb4a2180 | ||
|
|
9954e3b11e | ||
|
|
82692b0ddc | ||
|
|
9d4fdec12f | ||
|
|
ed72c995ef | ||
|
|
66c77d1157 | ||
|
|
40c322ad47 | ||
|
|
83f1e0d713 | ||
|
|
2d89044bd3 | ||
|
|
dc4d24c2b9 | ||
|
|
d5fb20c524 | ||
|
|
7e92e8bfe8 | ||
|
|
efdcfcef97 | ||
|
|
574ee2a46f | ||
|
|
ec4d048905 | ||
|
|
b063099b2a | ||
|
|
2937dac4c3 | ||
|
|
7c283a1805 | ||
|
|
309c0dcda3 | ||
|
|
b35cc01035 | ||
|
|
6e79a5402e | ||
|
|
a989f8daaf | ||
|
|
7880d24b29 | ||
|
|
fdc8bbf72d | ||
|
|
005e188d38 | ||
|
|
adcc3e9b98 | ||
|
|
5fe201da25 | ||
|
|
974f7bd0df | ||
|
|
780ae7cd4f | ||
|
|
50e568b84c | ||
|
|
1ce993051e | ||
|
|
69406343ee | ||
|
|
1c33b8acb2 | ||
|
|
5e77436d39 | ||
|
|
e26308a05b | ||
|
|
c16ee3186f | ||
|
|
fedeeab561 | ||
|
|
bfcaabecfa | ||
|
|
606fa6f6d5 | ||
|
|
6a8d8bf53d | ||
|
|
1f81cba706 | ||
|
|
5db7b242aa | ||
|
|
0b7f65e227 | ||
|
|
2f758af097 | ||
|
|
f64320a464 | ||
|
|
3e87ef6426 | ||
|
|
acb75fa02d | ||
|
|
ea4ecae27c | ||
|
|
a8556a729b | ||
|
|
068df3ef2d | ||
|
|
b304139db2 | ||
|
|
df2aae5169 | ||
|
|
351ac4ec7d | ||
|
|
12e40291c0 | ||
|
|
8af7d51159 | ||
|
|
84ada716ac | ||
|
|
cbcc89be9c | ||
|
|
73a5e11b9b | ||
|
|
194baaeb56 | ||
|
|
469259d663 | ||
|
|
f3db69d975 | ||
|
|
0914cb71ad | ||
|
|
0ae2806eb4 | ||
|
|
adcfe699c2 | ||
|
|
e5048f98b6 | ||
|
|
e6c6338266 | ||
|
|
1f03c8cb8c | ||
|
|
69f5249788 | ||
|
|
3a1f1c946b | ||
|
|
d88745af6e | ||
|
|
709d917f0c | ||
|
|
918386bdc1 | ||
|
|
a8c0fadf95 | ||
|
|
6dc7b8f246 | ||
|
|
71f6f0bee4 | ||
|
|
a00afb61c0 | ||
|
|
5dbe6c5f36 | ||
|
|
16732aa5b3 | ||
|
|
3d2f1437e4 | ||
|
|
fbe721c860 | ||
|
|
7383db60b0 | ||
|
|
53ccc903da | ||
|
|
9d1f9f35e5 | ||
|
|
c1f522ff54 | ||
|
|
b345571a63 | ||
|
|
f29ee6165f | ||
|
|
ec6432cc5f | ||
|
|
8c917667b6 | ||
|
|
941434b8d8 | ||
|
|
2d0632adf8 | ||
|
|
f1afaf641a | ||
|
|
743116a733 | ||
|
|
8e77cf25d9 | ||
|
|
7d33e03943 | ||
|
|
0c44666c89 | ||
|
|
ddaa746807 | ||
|
|
760e1ffe1d | ||
|
|
15b4024715 | ||
|
|
918112a793 | ||
|
|
4ee200a81c | ||
|
|
e37eba49ff | ||
|
|
6de8e3bd1f | ||
|
|
3a9781c4f8 | ||
|
|
a60b9211d2 | ||
|
|
777fb1d5d1 | ||
|
|
8e9110f42e | ||
|
|
c80137e059 | ||
|
|
2768e1dadb | ||
|
|
2fbba01577 | ||
|
|
e7c536ea31 | ||
|
|
1734c0569a | ||
|
|
a5bef89123 | ||
|
|
d8aa73d26e | ||
|
|
791409d5e5 | ||
|
|
01bf89907d | ||
|
|
8e73c7e95e | ||
|
|
088bd18adb | ||
|
|
2e8c7ec225 | ||
|
|
9340a74371 | ||
|
|
5998de610b | ||
|
|
dfabff3846 | ||
|
|
76a7a3bad5 | ||
|
|
a3fa97dd52 | ||
|
|
1d2a41129c | ||
|
|
956298128d | ||
|
|
e6892d66b8 | ||
|
|
6ef22cf578 | ||
|
|
3e6f6edf7e | ||
|
|
81c5b96ed7 | ||
|
|
6f6d202c99 | ||
|
|
2fc389c3ad | ||
|
|
05951aa7da | ||
|
|
bb8e4621f5 | ||
|
|
04e9ab5ce4 | ||
|
|
1089a40943 | ||
|
|
68c3a069ba | ||
|
|
80b9652f7a | ||
|
|
569e07949f | ||
|
|
ffa9534549 | ||
|
|
c539993387 | ||
|
|
8a572f96d5 | ||
|
|
24cb3508e8 | ||
|
|
3f34c57e31 | ||
|
|
4c618daa90 | ||
|
|
cd057370e1 | ||
|
|
6263912655 | ||
|
|
af247275cf | ||
|
|
1198c29dac | ||
|
|
169603d3ff | ||
|
|
dc7eecebc6 | ||
|
|
0dd4087d5d | ||
|
|
6ecf87fc60 | ||
|
|
ebcf1482f8 | ||
|
|
50bcf60893 | ||
|
|
38efbd63ea | ||
|
|
50bcad8b77 | ||
|
|
cfffb219ae | ||
|
|
382d7be50a | ||
|
|
f43dc36a37 | ||
|
|
38e7fa07d2 | ||
|
|
e261c20819 | ||
|
|
3a66e672d3 | ||
|
|
2aada930e3 | ||
|
|
d87f4407a0 | ||
|
|
be5a114f6a | ||
|
|
32b212c7b6 | ||
|
|
76c8e3a12f | ||
|
|
16f7a361c3 | ||
|
|
634b87307f | ||
|
|
1d4fbbdba3 | ||
|
|
65579e9cbf | ||
|
|
49dc029c43 | ||
|
|
08174d8db2 | ||
|
|
5199242a68 | ||
|
|
725dd3220c | ||
|
|
10dc56f6ea | ||
|
|
cc2abe93a6 | ||
|
|
0c6717090c | ||
|
|
f5a2252b29 | ||
|
|
02efb6f415 | ||
|
|
5b4c6e50bc | ||
|
|
9cc46a71cb | ||
|
|
be1673b00a | ||
|
|
b6130e77ff | ||
|
|
4180c710cd | ||
|
|
ab3e70b4db | ||
|
|
d90e408d50 | ||
|
|
6c87ce0879 | ||
|
|
b7b4e38f62 | ||
|
|
480175d70f | ||
|
|
bee99ca6ff |
@@ -1,6 +1,7 @@
|
||||
README.md
|
||||
diagram.png
|
||||
docs/
|
||||
.gitignore
|
||||
debug
|
||||
config/
|
||||
*.pyc
|
||||
*.pyc
|
||||
.git
|
||||
56
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
---
|
||||
name: Bug report or Support request
|
||||
about: ''
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what your issue is.
|
||||
|
||||
**Version of frigate**
|
||||
Output from `/version`
|
||||
|
||||
**Config file**
|
||||
Include your full config file wrapped in triple back ticks.
|
||||
```yaml
|
||||
config here
|
||||
```
|
||||
|
||||
**Frigate container logs**
|
||||
```
|
||||
Include relevant log output here
|
||||
```
|
||||
|
||||
**Frigate stats**
|
||||
```json
|
||||
Output from frigate's /stats endpoint
|
||||
```
|
||||
|
||||
**FFprobe from your camera**
|
||||
|
||||
Run the following command and paste output below
|
||||
```
|
||||
ffprobe <stream_url>
|
||||
```
|
||||
|
||||
**Screenshots**
|
||||
If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**Computer Hardware**
|
||||
- OS: [e.g. Ubuntu, Windows]
|
||||
- Install method: [e.g. Addon, Docker Compose, Docker Command]
|
||||
- Virtualization: [e.g. Proxmox, Virtualbox]
|
||||
- Coral Version: [e.g. USB, PCIe, None]
|
||||
- Network Setup: [e.g. Wired, WiFi]
|
||||
|
||||
**Camera Info:**
|
||||
- Manufacturer: [e.g. Dahua]
|
||||
- Model: [e.g. IPC-HDW5231R-ZE]
|
||||
- Resolution: [e.g. 720p]
|
||||
- FPS: [e.g. 5]
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
||||
28
.github/workflows/push.yml
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
name: On push
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- release-0.8.0
|
||||
|
||||
jobs:
|
||||
deploy-docs:
|
||||
name: Deploy docs
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./docs
|
||||
steps:
|
||||
- uses: actions/checkout@master
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 12.x
|
||||
- run: npm install
|
||||
- name: Build docs
|
||||
run: npm run build
|
||||
- name: Deploy documentation
|
||||
uses: peaceiris/actions-gh-pages@v3
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
publish_dir: ./docs/build
|
||||
11
.gitignore
vendored
@@ -1,4 +1,11 @@
|
||||
*.pyc
|
||||
.DS_Store
|
||||
*.pyc
|
||||
debug
|
||||
.vscode
|
||||
config/config.yml
|
||||
config/config.yml
|
||||
models
|
||||
*.mp4
|
||||
*.db
|
||||
frigate/version.py
|
||||
web/build
|
||||
web/node_modules
|
||||
|
||||
109
Dockerfile
@@ -1,109 +0,0 @@
|
||||
FROM ubuntu:18.04
|
||||
|
||||
ARG DEVICE
|
||||
|
||||
# Install packages for apt repo
|
||||
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
|
||||
apt-transport-https \
|
||||
ca-certificates \
|
||||
curl \
|
||||
wget \
|
||||
gnupg-agent \
|
||||
dirmngr \
|
||||
software-properties-common \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
COPY scripts/install_odroid_repo.sh .
|
||||
|
||||
RUN if [ "$DEVICE" = "odroid" ]; then \
|
||||
sh /install_odroid_repo.sh; \
|
||||
fi
|
||||
|
||||
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
|
||||
python3 \
|
||||
# OpenCV dependencies
|
||||
ffmpeg \
|
||||
build-essential \
|
||||
cmake \
|
||||
unzip \
|
||||
pkg-config \
|
||||
libjpeg-dev \
|
||||
libpng-dev \
|
||||
libtiff-dev \
|
||||
libavcodec-dev \
|
||||
libavformat-dev \
|
||||
libswscale-dev \
|
||||
libv4l-dev \
|
||||
libxvidcore-dev \
|
||||
libx264-dev \
|
||||
libgtk-3-dev \
|
||||
libatlas-base-dev \
|
||||
gfortran \
|
||||
python3-dev \
|
||||
# Coral USB Python API Dependencies
|
||||
libusb-1.0-0 \
|
||||
python3-pip \
|
||||
python3-pil \
|
||||
python3-numpy \
|
||||
libc++1 \
|
||||
libc++abi1 \
|
||||
libunwind8 \
|
||||
libgcc1 \
|
||||
# VAAPI drivers for Intel hardware accel
|
||||
libva-drm2 libva2 i965-va-driver vainfo \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install core packages
|
||||
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
|
||||
RUN pip install -U pip \
|
||||
numpy \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML
|
||||
|
||||
# Download & build OpenCV
|
||||
# TODO: use multistage build to reduce image size:
|
||||
# https://medium.com/@denismakogon/pain-and-gain-running-opencv-application-with-golang-and-docker-on-alpine-3-7-435aa11c7aec
|
||||
# https://www.merixstudio.com/blog/docker-multi-stage-builds-python-development/
|
||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
||||
RUN cd /usr/local/src/ \
|
||||
&& unzip 4.0.1.zip \
|
||||
&& rm 4.0.1.zip \
|
||||
&& cd /usr/local/src/opencv-4.0.1/ \
|
||||
&& mkdir build \
|
||||
&& cd /usr/local/src/opencv-4.0.1/build \
|
||||
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
|
||||
&& make -j4 \
|
||||
&& make install \
|
||||
&& ldconfig \
|
||||
&& rm -rf /usr/local/src/opencv-4.0.1
|
||||
|
||||
# Download and install EdgeTPU libraries for Coral
|
||||
RUN wget https://dl.google.com/coral/edgetpu_api/edgetpu_api_latest.tar.gz -O edgetpu_api.tar.gz --trust-server-names \
|
||||
&& tar xzf edgetpu_api.tar.gz
|
||||
|
||||
COPY scripts/install_edgetpu_api.sh edgetpu_api/install.sh
|
||||
|
||||
RUN cd edgetpu_api \
|
||||
&& /bin/bash install.sh
|
||||
|
||||
# Copy a python 3.6 version
|
||||
RUN cd /usr/local/lib/python3.6/dist-packages/edgetpu/swig/ \
|
||||
&& ln -s _edgetpu_cpp_wrapper.cpython-35m-arm-linux-gnueabihf.so _edgetpu_cpp_wrapper.cpython-36m-arm-linux-gnueabihf.so
|
||||
|
||||
# symlink the model and labels
|
||||
RUN wget https://dl.google.com/coral/canned_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
|
||||
RUN wget https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
|
||||
RUN ln -s mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
|
||||
RUN ln -s /coco_labels.txt /label_map.pbtext
|
||||
|
||||
# Minimize image size
|
||||
RUN (apt-get autoremove -y; \
|
||||
apt-get autoclean -y)
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
COPY detect_objects.py .
|
||||
COPY benchmark.py .
|
||||
|
||||
CMD ["python3", "-u", "detect_objects.py"]
|
||||
682
LICENSE
@@ -1,661 +1,21 @@
|
||||
GNU AFFERO GENERAL PUBLIC LICENSE
|
||||
Version 3, 19 November 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU Affero General Public License is a free, copyleft license for
|
||||
software and other kinds of works, specifically designed to ensure
|
||||
cooperation with the community in the case of network server software.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
our General Public Licenses are intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
Developers that use our General Public Licenses protect your rights
|
||||
with two steps: (1) assert copyright on the software, and (2) offer
|
||||
you this License which gives you legal permission to copy, distribute
|
||||
and/or modify the software.
|
||||
|
||||
A secondary benefit of defending all users' freedom is that
|
||||
improvements made in alternate versions of the program, if they
|
||||
receive widespread use, become available for other developers to
|
||||
incorporate. Many developers of free software are heartened and
|
||||
encouraged by the resulting cooperation. However, in the case of
|
||||
software used on network servers, this result may fail to come about.
|
||||
The GNU General Public License permits making a modified version and
|
||||
letting the public access it on a server without ever releasing its
|
||||
source code to the public.
|
||||
|
||||
The GNU Affero General Public License is designed specifically to
|
||||
ensure that, in such cases, the modified source code becomes available
|
||||
to the community. It requires the operator of a network server to
|
||||
provide the source code of the modified version running there to the
|
||||
users of that server. Therefore, public use of a modified version, on
|
||||
a publicly accessible server, gives the public access to the source
|
||||
code of the modified version.
|
||||
|
||||
An older license, called the Affero General Public License and
|
||||
published by Affero, was designed to accomplish similar goals. This is
|
||||
a different license, not a version of the Affero GPL, but Affero has
|
||||
released a new version of the Affero GPL which permits relicensing under
|
||||
this license.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU Affero General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Remote Network Interaction; Use with the GNU General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, if you modify the
|
||||
Program, your modified version must prominently offer all users
|
||||
interacting with it remotely through a computer network (if your version
|
||||
supports such interaction) an opportunity to receive the Corresponding
|
||||
Source of your version by providing access to the Corresponding Source
|
||||
from a network server at no charge, through some standard or customary
|
||||
means of facilitating copying of software. This Corresponding Source
|
||||
shall include the Corresponding Source for any work covered by version 3
|
||||
of the GNU General Public License that is incorporated pursuant to the
|
||||
following paragraph.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the work with which it is combined will remain governed by version
|
||||
3 of the GNU General Public License.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU Affero General Public License from time to time. Such new versions
|
||||
will be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU Affero General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU Affero General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU Affero General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published
|
||||
by the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If your software can interact with users remotely through a computer
|
||||
network, you should also make sure that it provides a way for users to
|
||||
get its source. For example, if your program is a web application, its
|
||||
interface could display a "Source" link that leads users to an archive
|
||||
of the code. There are many ways you could offer source, and different
|
||||
solutions will be better for different programs; see section 13 for the
|
||||
specific requirements.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU AGPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
The MIT License
|
||||
|
||||
Copyright (c) 2020 Blake Blackshear
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
59
Makefile
Normal file
@@ -0,0 +1,59 @@
|
||||
default_target: amd64_frigate
|
||||
|
||||
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
|
||||
|
||||
version:
|
||||
echo "VERSION='0.8.0-$(COMMIT_HASH)'" > frigate/version.py
|
||||
|
||||
web:
|
||||
docker build --tag frigate-web --file docker/Dockerfile.web web/
|
||||
|
||||
amd64_wheels:
|
||||
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64 --file docker/Dockerfile.wheels .
|
||||
|
||||
amd64_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.1.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
|
||||
|
||||
amd64_frigate: version web
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.amd64 .
|
||||
|
||||
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
|
||||
|
||||
amd64nvidia_wheels:
|
||||
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64nvidia --file docker/Dockerfile.wheels .
|
||||
|
||||
amd64nvidia_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
|
||||
|
||||
amd64nvidia_frigate: version web
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.amd64nvidia .
|
||||
|
||||
amd64nvidia_all: amd64nvidia_wheels amd64nvidia_ffmpeg amd64nvidia_frigate
|
||||
|
||||
aarch64_wheels:
|
||||
docker build --tag blakeblackshear/frigate-wheels:1.0.1-aarch64 --file docker/Dockerfile.wheels .
|
||||
|
||||
aarch64_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
|
||||
|
||||
aarch64_frigate: version web
|
||||
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.aarch64 .
|
||||
|
||||
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
|
||||
|
||||
armv7_wheels:
|
||||
docker build --tag blakeblackshear/frigate-wheels:1.0.1-armv7 --file docker/Dockerfile.wheels .
|
||||
|
||||
armv7_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
|
||||
|
||||
armv7_frigate: version web
|
||||
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.armv7 .
|
||||
|
||||
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
|
||||
|
||||
.PHONY: web
|
||||
140
README.md
@@ -1,120 +1,38 @@
|
||||
# Frigate - Realtime Object Detection for IP Cameras
|
||||
**Note:** This version requires the use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/)
|
||||
<p align="center">
|
||||
<img align="center" alt="logo" src="docs/static/img/frigate.png">
|
||||
</p>
|
||||
|
||||
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
|
||||
# Frigate - NVR With Realtime Object Detection for IP Cameras
|
||||
|
||||
- Leverages multiprocessing and threads heavily with an emphasis on realtime over processing every frame
|
||||
- Allows you to define specific regions (squares) in the image to look for objects
|
||||
- No motion detection (for now)
|
||||
- Object detection with Tensorflow runs in a separate thread
|
||||
- Object info is published over MQTT for integration into HomeAssistant as a binary sensor
|
||||
- An endpoint is available to view an MJPEG stream for debugging
|
||||
A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
|
||||
|
||||

|
||||
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
|
||||
|
||||
## Example video (from older version)
|
||||
You see multiple bounding boxes because it draws bounding boxes from all frames in the past 1 second where a person was detected. Not all of the bounding boxes were from the current frame.
|
||||
[](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
|
||||
- Tight integration with HomeAssistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
|
||||
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
|
||||
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
|
||||
- Uses a very low overhead motion detection to determine where to run object detection
|
||||
- Object detection with TensorFlow runs in separate processes for maximum FPS
|
||||
- Communicates over MQTT for easy integration into other systems
|
||||
- Records video clips of detected objects
|
||||
- 24/7 recording
|
||||
- Re-streaming via RTMP to reduce the number of connections to your camera
|
||||
|
||||
## Getting Started
|
||||
Build the container with
|
||||
```
|
||||
docker build -t frigate .
|
||||
```
|
||||
## Documentation
|
||||
|
||||
The `mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite` model is included and used by default. You can use your own model and labels by mounting files in the container at `/frozen_inference_graph.pb` and `/label_map.pbtext`. Models must be compatible with the Coral according to [this](https://coral.withgoogle.com/models/).
|
||||
View the documentation at https://blakeblackshear.github.io/frigate
|
||||
|
||||
Run the container with
|
||||
```
|
||||
docker run --rm \
|
||||
--privileged \
|
||||
-v /dev/bus/usb:/dev/bus/usb \
|
||||
-v <path_to_config_dir>:/config:ro \
|
||||
-v /etc/localtime:/etc/localtime:ro \
|
||||
-p 5000:5000 \
|
||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||
frigate:latest
|
||||
```
|
||||
## Screenshots
|
||||
Integration into HomeAssistant
|
||||
<div>
|
||||
<a href="docs/static/img/media_browser.png"><img src="docs/static/img/media_browser.png" height=400></a>
|
||||
<a href="docs/static/img/notification.png"><img src="docs/static/img/notification.png" height=400></a>
|
||||
</div>
|
||||
|
||||
Example docker-compose:
|
||||
```
|
||||
frigate:
|
||||
container_name: frigate
|
||||
restart: unless-stopped
|
||||
privileged: true
|
||||
image: frigate:latest
|
||||
volumes:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
- <path_to_config>:/config
|
||||
ports:
|
||||
- "5000:5000"
|
||||
environment:
|
||||
FRIGATE_RTSP_PASSWORD: "password"
|
||||
```
|
||||
Also comes with a builtin UI:
|
||||
<div>
|
||||
<a href="docs/static/img/home-ui.png"><img src="docs/static/img/home-ui.png" height=400></a>
|
||||
<a href="docs/static/img/camera-ui.png"><img src="docs/static/img/camera-ui.png" height=400></a>
|
||||
</div>
|
||||
|
||||
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
|
||||
|
||||
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best person snapshot at `http://localhost:5000/<camera_name>/best_person.jpg`
|
||||
|
||||
## Integration with HomeAssistant
|
||||
```
|
||||
camera:
|
||||
- name: Camera Last Person
|
||||
platform: mqtt
|
||||
topic: frigate/<camera_name>/snapshot
|
||||
|
||||
binary_sensor:
|
||||
- name: Camera Person
|
||||
platform: mqtt
|
||||
state_topic: "frigate/<camera_name>/objects"
|
||||
value_template: '{{ value_json.person }}'
|
||||
device_class: motion
|
||||
availability_topic: "frigate/available"
|
||||
|
||||
automation:
|
||||
- alias: Alert me if a person is detected while armed away
|
||||
trigger:
|
||||
platform: state
|
||||
entity_id: binary_sensor.camera_person
|
||||
from: 'off'
|
||||
to: 'on'
|
||||
condition:
|
||||
- condition: state
|
||||
entity_id: alarm_control_panel.home_alarm
|
||||
state: armed_away
|
||||
action:
|
||||
- service: notify.user_telegram
|
||||
data:
|
||||
message: "A person was detected."
|
||||
data:
|
||||
photo:
|
||||
- url: http://<ip>:5000/<camera_name>/best_person.jpg
|
||||
caption: A person was detected.
|
||||
```
|
||||
|
||||
## Tips
|
||||
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
|
||||
|
||||
## Future improvements
|
||||
- [x] Remove motion detection for now
|
||||
- [x] Try running object detection in a thread rather than a process
|
||||
- [x] Implement min person size again
|
||||
- [x] Switch to a config file
|
||||
- [x] Handle multiple cameras in the same container
|
||||
- [ ] Attempt to figure out coral symlinking
|
||||
- [ ] Add object list to config with min scores for mqtt
|
||||
- [ ] Move mjpeg encoding to a separate process
|
||||
- [ ] Simplify motion detection (check entire image against mask, resize instead of gaussian blur)
|
||||
- [ ] See if motion detection is even worth running
|
||||
- [ ] Scan for people across entire image rather than specfic regions
|
||||
- [ ] Dynamically resize detection area and follow people
|
||||
- [ ] Add ability to turn detection on and off via MQTT
|
||||
- [ ] Output movie clips of people for notifications, etc.
|
||||
- [ ] Integrate with homeassistant push camera
|
||||
- [ ] Merge bounding boxes that span multiple regions
|
||||
- [ ] Implement mode to save labeled objects for training
|
||||
- [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about
|
||||
- [ ] Look into GPU accelerated decoding of RTSP stream
|
||||
- [ ] Send video over a socket and use JSMPEG
|
||||
- [x] Look into neural compute stick
|
||||

|
||||
|
||||
99
benchmark.py
Normal file → Executable file
@@ -1,20 +1,93 @@
|
||||
import statistics
|
||||
import os
|
||||
from statistics import mean
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
import datetime
|
||||
from frigate.edgetpu import LocalObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
|
||||
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
|
||||
labels = load_labels('/labelmap.txt')
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
engine = DetectionEngine(PATH_TO_CKPT)
|
||||
######
|
||||
# Minimal same process runner
|
||||
######
|
||||
# object_detector = LocalObjectDetector()
|
||||
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
|
||||
|
||||
frame = np.zeros((300,300,3), np.uint8)
|
||||
flattened_frame = np.expand_dims(frame, axis=0).flatten()
|
||||
# start = datetime.datetime.now().timestamp()
|
||||
|
||||
detection_times = []
|
||||
# frame_times = []
|
||||
# for x in range(0, 1000):
|
||||
# start_frame = datetime.datetime.now().timestamp()
|
||||
|
||||
for x in range(0, 1000):
|
||||
objects = engine.DetectWithInputTensor(flattened_frame, threshold=0.1, top_k=3)
|
||||
detection_times.append(engine.get_inference_time())
|
||||
# tensor_input[:] = my_frame
|
||||
# detections = object_detector.detect_raw(tensor_input)
|
||||
# parsed_detections = []
|
||||
# for d in detections:
|
||||
# if d[1] < 0.4:
|
||||
# break
|
||||
# parsed_detections.append((
|
||||
# labels[int(d[0])],
|
||||
# float(d[1]),
|
||||
# (d[2], d[3], d[4], d[5])
|
||||
# ))
|
||||
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||
|
||||
print("Average inference time: " + str(statistics.mean(detection_times)))
|
||||
# duration = datetime.datetime.now().timestamp()-start
|
||||
# print(f"Processed for {duration:.2f} seconds.")
|
||||
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||
|
||||
|
||||
def start(id, num_detections, detection_queue, event):
|
||||
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue, event)
|
||||
start = datetime.datetime.now().timestamp()
|
||||
|
||||
frame_times = []
|
||||
for x in range(0, num_detections):
|
||||
start_frame = datetime.datetime.now().timestamp()
|
||||
detections = object_detector.detect(my_frame)
|
||||
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
object_detector.cleanup()
|
||||
print(f"{id} - Processed for {duration:.2f} seconds.")
|
||||
print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
|
||||
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||
|
||||
######
|
||||
# Separate process runner
|
||||
######
|
||||
# event = mp.Event()
|
||||
# detection_queue = mp.Queue()
|
||||
# edgetpu_process = EdgeTPUProcess(detection_queue, {'1': event}, 'usb:0')
|
||||
|
||||
# start(1, 1000, edgetpu_process.detection_queue, event)
|
||||
# print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")
|
||||
|
||||
####
|
||||
# Multiple camera processes
|
||||
####
|
||||
camera_processes = []
|
||||
|
||||
events = {}
|
||||
for x in range(0, 10):
|
||||
events[str(x)] = mp.Event()
|
||||
detection_queue = mp.Queue()
|
||||
edgetpu_process_1 = EdgeTPUProcess(detection_queue, events, 'usb:0')
|
||||
edgetpu_process_2 = EdgeTPUProcess(detection_queue, events, 'usb:1')
|
||||
|
||||
for x in range(0, 10):
|
||||
camera_process = mp.Process(target=start, args=(x, 300, detection_queue, events[str(x)]))
|
||||
camera_process.daemon = True
|
||||
camera_processes.append(camera_process)
|
||||
|
||||
start_time = datetime.datetime.now().timestamp()
|
||||
|
||||
for p in camera_processes:
|
||||
p.start()
|
||||
|
||||
for p in camera_processes:
|
||||
p.join()
|
||||
|
||||
duration = datetime.datetime.now().timestamp()-start_time
|
||||
print(f"Total - Processed for {duration:.2f} seconds.")
|
||||
|
Before Width: | Height: | Size: 1.8 MiB |
@@ -1,110 +0,0 @@
|
||||
web_port: 5000
|
||||
|
||||
mqtt:
|
||||
host: mqtt.server.com
|
||||
topic_prefix: frigate
|
||||
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
|
||||
# user: username # Optional -- Uncomment for use
|
||||
# password: password # Optional -- Uncomment for use
|
||||
|
||||
#################
|
||||
# Default ffmpeg args. Optional and can be overwritten per camera.
|
||||
# Should work with most RTSP cameras that send h264 video
|
||||
# Built from the properties below with:
|
||||
# "ffmpeg" + global_args + input_args + "-i" + input + output_args
|
||||
#################
|
||||
# ffmpeg:
|
||||
# global_args:
|
||||
# - -hide_banner
|
||||
# - -loglevel
|
||||
# - panic
|
||||
# hwaccel_args: []
|
||||
# input_args:
|
||||
# - -avoid_negative_ts
|
||||
# - make_zero
|
||||
# - -fflags
|
||||
# - nobuffer
|
||||
# - -flags
|
||||
# - low_delay
|
||||
# - -strict
|
||||
# - experimental
|
||||
# - -fflags
|
||||
# - +genpts+discardcorrupt
|
||||
# - -vsync
|
||||
# - drop
|
||||
# - -rtsp_transport
|
||||
# - tcp
|
||||
# - -stimeout
|
||||
# - '5000000'
|
||||
# - -use_wallclock_as_timestamps
|
||||
# - '1'
|
||||
# output_args:
|
||||
# - -vf
|
||||
# - mpdecimate
|
||||
# - -f
|
||||
# - rawvideo
|
||||
# - -pix_fmt
|
||||
# - rgb24
|
||||
|
||||
cameras:
|
||||
back:
|
||||
ffmpeg:
|
||||
################
|
||||
# Source passed to ffmpeg after the -i parameter. Supports anything compatible with OpenCV and FFmpeg.
|
||||
# Environment variables that begin with 'FRIGATE_' may be referenced in {}
|
||||
################
|
||||
input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
#################
|
||||
# These values will override default values for just this camera
|
||||
#################
|
||||
# global_args: []
|
||||
# hwaccel_args: []
|
||||
# input_args: []
|
||||
# output_args: []
|
||||
|
||||
################
|
||||
## Optional mask. Must be the same dimensions as your video feed.
|
||||
## The mask works by looking at the bottom center of the bounding box for the detected
|
||||
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
|
||||
## false positive. In my mask, the grass and driveway visible from my backdoor camera
|
||||
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
|
||||
## person to stand) are black.
|
||||
################
|
||||
# mask: back-mask.bmp
|
||||
|
||||
################
|
||||
# Allows you to limit the framerate within frigate for cameras that do not support
|
||||
# custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,
|
||||
# 3 every 3rd frame, etc.
|
||||
################
|
||||
take_frame: 1
|
||||
|
||||
################
|
||||
# size: size of the region in pixels
|
||||
# x_offset/y_offset: position of the upper left corner of your region (top left of image is 0,0)
|
||||
# min_person_area (optional): minimum width*height of the bounding box for the detected person
|
||||
# max_person_area (optional): maximum width*height of the bounding box for the detected person
|
||||
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
|
||||
# Tips: All regions are resized to 300x300 before detection because the model is trained on that size.
|
||||
# Resizing regions takes CPU power. Ideally, all regions should be as close to 300x300 as possible.
|
||||
# Defining a region that goes outside the bounds of the image will result in errors.
|
||||
################
|
||||
regions:
|
||||
- size: 350
|
||||
x_offset: 0
|
||||
y_offset: 300
|
||||
min_person_area: 5000
|
||||
max_person_area: 100000
|
||||
threshold: 0.5
|
||||
- size: 400
|
||||
x_offset: 350
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
max_person_area: 100000
|
||||
threshold: 0.5
|
||||
- size: 400
|
||||
x_offset: 750
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
max_person_area: 100000
|
||||
threshold: 0.5
|
||||
@@ -1,134 +0,0 @@
|
||||
import cv2
|
||||
import time
|
||||
import queue
|
||||
import yaml
|
||||
import numpy as np
|
||||
from flask import Flask, Response, make_response
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
from frigate.video import Camera
|
||||
from frigate.object_detection import PreppedQueueProcessor
|
||||
|
||||
with open('/config/config.yml') as f:
|
||||
CONFIG = yaml.safe_load(f)
|
||||
|
||||
MQTT_HOST = CONFIG['mqtt']['host']
|
||||
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
|
||||
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
||||
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
||||
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
||||
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
|
||||
|
||||
# Set the default FFmpeg config
|
||||
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
|
||||
FFMPEG_DEFAULT_CONFIG = {
|
||||
'global_args': FFMPEG_CONFIG.get('global_args',
|
||||
['-hide_banner','-loglevel','panic']),
|
||||
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
|
||||
[]),
|
||||
'input_args': FFMPEG_CONFIG.get('input_args',
|
||||
['-avoid_negative_ts', 'make_zero',
|
||||
'-fflags', 'nobuffer',
|
||||
'-flags', 'low_delay',
|
||||
'-strict', 'experimental',
|
||||
'-fflags', '+genpts+discardcorrupt',
|
||||
'-vsync', 'drop',
|
||||
'-rtsp_transport', 'tcp',
|
||||
'-stimeout', '5000000',
|
||||
'-use_wallclock_as_timestamps', '1']),
|
||||
'output_args': FFMPEG_CONFIG.get('output_args',
|
||||
['-vf', 'mpdecimate',
|
||||
'-f', 'rawvideo',
|
||||
'-pix_fmt', 'rgb24'])
|
||||
}
|
||||
|
||||
WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||
|
||||
def main():
|
||||
# connect to mqtt and setup last will
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
print("On connect called")
|
||||
if rc != 0:
|
||||
if rc == 3:
|
||||
print ("MQTT Server unavailable")
|
||||
elif rc == 4:
|
||||
print ("MQTT Bad username or password")
|
||||
elif rc == 5:
|
||||
print ("MQTT Not authorized")
|
||||
else:
|
||||
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
|
||||
# publish a message to signal that the service is running
|
||||
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
||||
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
|
||||
client.on_connect = on_connect
|
||||
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
||||
if not MQTT_USER is None:
|
||||
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
|
||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||
client.loop_start()
|
||||
|
||||
# Queue for prepped frames, max size set to (number of cameras * 5)
|
||||
max_queue_size = len(CONFIG['cameras'].items())*5
|
||||
prepped_frame_queue = queue.Queue(max_queue_size)
|
||||
|
||||
cameras = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
cameras,
|
||||
prepped_frame_queue
|
||||
)
|
||||
prepped_queue_processor.start()
|
||||
|
||||
for name, camera in cameras.items():
|
||||
camera.start()
|
||||
print("Capture process for {}: {}".format(name, camera.get_capture_pid()))
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
app = Flask(__name__)
|
||||
|
||||
@app.route('/')
|
||||
def ishealthy():
|
||||
# return a healh
|
||||
return "Frigate is running. Alive and healthy!"
|
||||
|
||||
@app.route('/<camera_name>/best_person.jpg')
|
||||
def best_person(camera_name):
|
||||
if camera_name in cameras:
|
||||
best_person_frame = cameras[camera_name].get_best_person()
|
||||
if best_person_frame is None:
|
||||
best_person_frame = np.zeros((720,1280,3), np.uint8)
|
||||
ret, jpg = cv2.imencode('.jpg', best_person_frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
else:
|
||||
return f'Camera named {camera_name} not found', 404
|
||||
|
||||
@app.route('/<camera_name>')
|
||||
def mjpeg_feed(camera_name):
|
||||
if camera_name in cameras:
|
||||
# return a multipart response
|
||||
return Response(imagestream(camera_name),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
else:
|
||||
return f'Camera named {camera_name} not found', 404
|
||||
|
||||
def imagestream(camera_name):
|
||||
while True:
|
||||
# max out at 5 FPS
|
||||
time.sleep(0.2)
|
||||
frame = cameras[camera_name].get_current_frame_with_objects()
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
camera.join()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
BIN
diagram.png
|
Before Width: | Height: | Size: 283 KiB |
22
docker/Dockerfile.aarch64
Normal file
@@ -0,0 +1,22 @@
|
||||
FROM frigate-base
|
||||
LABEL maintainer "blakeb@blakeshome.com"
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
# Install packages for apt repo
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install --no-install-recommends -y \
|
||||
# ffmpeg runtime dependencies
|
||||
libgomp1 \
|
||||
# runtime dependencies
|
||||
libopenexr24 \
|
||||
libgstreamer1.0-0 \
|
||||
libgstreamer-plugins-base1.0-0 \
|
||||
libopenblas-base \
|
||||
libjpeg-turbo8 \
|
||||
libpng16-16 \
|
||||
libtiff5 \
|
||||
libdc1394-22 \
|
||||
## Tensorflow lite
|
||||
&& pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_aarch64.whl \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
18
docker/Dockerfile.amd64
Normal file
@@ -0,0 +1,18 @@
|
||||
FROM frigate-base
|
||||
LABEL maintainer "blakeb@blakeshome.com"
|
||||
|
||||
# By default, use the i965 driver
|
||||
ENV LIBVA_DRIVER_NAME=i965
|
||||
# Install packages for apt repo
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install --no-install-recommends -y \
|
||||
# ffmpeg dependencies
|
||||
libgomp1 \
|
||||
# VAAPI drivers for Intel hardware accel
|
||||
libva-drm2 libva2 libmfx1 i965-va-driver vainfo intel-media-va-driver mesa-va-drivers \
|
||||
## Tensorflow lite
|
||||
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
&& rm tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
47
docker/Dockerfile.amd64nvidia
Normal file
@@ -0,0 +1,47 @@
|
||||
FROM frigate-base
|
||||
LABEL maintainer "blakeb@blakeshome.com"
|
||||
|
||||
# Install packages for apt repo
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install --no-install-recommends -y \
|
||||
# ffmpeg dependencies
|
||||
libgomp1 \
|
||||
## Tensorflow lite
|
||||
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
&& rm tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
|
||||
|
||||
# nvidia layer (see https://gitlab.com/nvidia/container-images/cuda/blob/master/dist/11.1/ubuntu20.04-x86_64/base/Dockerfile)
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
|
||||
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
gnupg2 curl ca-certificates && \
|
||||
curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub | apt-key add - && \
|
||||
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64 /" > /etc/apt/sources.list.d/cuda.list && \
|
||||
echo "deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list && \
|
||||
apt-get purge --autoremove -y curl \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
ENV CUDA_VERSION 11.1.1
|
||||
|
||||
# For libraries in the cuda-compat-* package: https://docs.nvidia.com/cuda/eula/index.html#attachment-a
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
cuda-cudart-11-1=11.1.74-1 \
|
||||
cuda-compat-11-1 \
|
||||
&& ln -s cuda-11.1 /usr/local/cuda && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Required for nvidia-docker v1
|
||||
RUN echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && \
|
||||
echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf
|
||||
|
||||
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
|
||||
ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||
|
||||
# nvidia-container-runtime
|
||||
ENV NVIDIA_VISIBLE_DEVICES all
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
|
||||
ENV NVIDIA_REQUIRE_CUDA "cuda>=11.1 brand=tesla,driver>=418,driver<419 brand=tesla,driver>=440,driver<441 brand=tesla,driver>=450,driver<451"
|
||||
24
docker/Dockerfile.armv7
Normal file
@@ -0,0 +1,24 @@
|
||||
FROM frigate-base
|
||||
LABEL maintainer "blakeb@blakeshome.com"
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
# Install packages for apt repo
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install --no-install-recommends -y \
|
||||
# ffmpeg runtime dependencies
|
||||
libgomp1 \
|
||||
# runtime dependencies
|
||||
libopenexr24 \
|
||||
libgstreamer1.0-0 \
|
||||
libgstreamer-plugins-base1.0-0 \
|
||||
libopenblas-base \
|
||||
libjpeg-turbo8 \
|
||||
libpng16-16 \
|
||||
libtiff5 \
|
||||
libdc1394-22 \
|
||||
libaom0 \
|
||||
libx265-179 \
|
||||
## Tensorflow lite
|
||||
&& pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_armv7l.whl \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
58
docker/Dockerfile.base
Normal file
@@ -0,0 +1,58 @@
|
||||
ARG ARCH=amd64
|
||||
ARG WHEELS_VERSION
|
||||
ARG FFMPEG_VERSION
|
||||
FROM blakeblackshear/frigate-wheels:${WHEELS_VERSION}-${ARCH} as wheels
|
||||
FROM blakeblackshear/frigate-ffmpeg:${FFMPEG_VERSION}-${ARCH} as ffmpeg
|
||||
FROM frigate-web as web
|
||||
|
||||
FROM ubuntu:20.04
|
||||
LABEL maintainer "blakeb@blakeshome.com"
|
||||
|
||||
COPY --from=ffmpeg /usr/local /usr/local/
|
||||
|
||||
COPY --from=wheels /wheels/. /wheels/
|
||||
|
||||
ENV FLASK_ENV=development
|
||||
# ENV FONTCONFIG_PATH=/etc/fonts
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
# Install packages for apt repo
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get upgrade -y \
|
||||
&& apt-get -qq install --no-install-recommends -y \
|
||||
gnupg wget unzip tzdata nginx libnginx-mod-rtmp \
|
||||
&& apt-get -qq install --no-install-recommends -y \
|
||||
python3-pip \
|
||||
&& pip3 install -U /wheels/*.whl \
|
||||
&& APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn apt-key adv --fetch-keys https://packages.cloud.google.com/apt/doc/apt-key.gpg \
|
||||
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
|
||||
&& echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections \
|
||||
&& apt-get -qq update && apt-get -qq install --no-install-recommends -y \
|
||||
libedgetpu1-max=15.0 \
|
||||
&& rm -rf /var/lib/apt/lists/* /wheels \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
|
||||
RUN pip3 install \
|
||||
peewee_migrate \
|
||||
zeroconf \
|
||||
voluptuous
|
||||
|
||||
COPY nginx/nginx.conf /etc/nginx/nginx.conf
|
||||
|
||||
# get model and labels
|
||||
COPY labelmap.txt /labelmap.txt
|
||||
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
|
||||
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess.tflite -O /cpu_model.tflite
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
ADD migrations migrations/
|
||||
|
||||
COPY --from=web /opt/frigate/build web/
|
||||
|
||||
COPY run.sh /run.sh
|
||||
RUN chmod +x /run.sh
|
||||
|
||||
EXPOSE 5000
|
||||
EXPOSE 1935
|
||||
|
||||
CMD ["/run.sh"]
|
||||
474
docker/Dockerfile.ffmpeg.aarch64
Normal file
@@ -0,0 +1,474 @@
|
||||
# inspired by:
|
||||
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
|
||||
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
|
||||
# https://github.com/jrottenberg/ffmpeg/pull/158/files
|
||||
# https://github.com/jrottenberg/ffmpeg/pull/239
|
||||
FROM ubuntu:20.04 AS base
|
||||
|
||||
WORKDIR /tmp/workdir
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
RUN apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
|
||||
apt-get autoremove -y && \
|
||||
apt-get clean -y
|
||||
|
||||
FROM base as build
|
||||
|
||||
ENV FFMPEG_VERSION=4.3.1 \
|
||||
AOM_VERSION=v1.0.0 \
|
||||
FDKAAC_VERSION=0.1.5 \
|
||||
FREETYPE_VERSION=2.5.5 \
|
||||
FRIBIDI_VERSION=0.19.7 \
|
||||
KVAZAAR_VERSION=1.2.0 \
|
||||
LAME_VERSION=3.100 \
|
||||
LIBPTHREAD_STUBS_VERSION=0.4 \
|
||||
LIBVIDSTAB_VERSION=1.1.0 \
|
||||
LIBXCB_VERSION=1.13.1 \
|
||||
XCBPROTO_VERSION=1.13 \
|
||||
OGG_VERSION=1.3.2 \
|
||||
OPENCOREAMR_VERSION=0.1.5 \
|
||||
OPUS_VERSION=1.2 \
|
||||
OPENJPEG_VERSION=2.1.2 \
|
||||
THEORA_VERSION=1.1.1 \
|
||||
VORBIS_VERSION=1.3.5 \
|
||||
VPX_VERSION=1.8.0 \
|
||||
WEBP_VERSION=1.0.2 \
|
||||
X264_VERSION=20170226-2245-stable \
|
||||
X265_VERSION=3.1.1 \
|
||||
XAU_VERSION=1.0.9 \
|
||||
XORG_MACROS_VERSION=1.19.2 \
|
||||
XPROTO_VERSION=7.0.31 \
|
||||
XVID_VERSION=1.3.4 \
|
||||
LIBZMQ_VERSION=4.3.2 \
|
||||
SRC=/usr/local
|
||||
|
||||
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
|
||||
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
|
||||
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
|
||||
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
|
||||
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
|
||||
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
|
||||
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
|
||||
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
|
||||
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
|
||||
|
||||
|
||||
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
|
||||
ARG MAKEFLAGS="-j2"
|
||||
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
|
||||
ARG PREFIX=/opt/ffmpeg
|
||||
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
|
||||
|
||||
|
||||
RUN buildDeps="autoconf \
|
||||
automake \
|
||||
cmake \
|
||||
curl \
|
||||
bzip2 \
|
||||
libexpat1-dev \
|
||||
g++ \
|
||||
gcc \
|
||||
git \
|
||||
gperf \
|
||||
libtool \
|
||||
make \
|
||||
nasm \
|
||||
perl \
|
||||
pkg-config \
|
||||
python \
|
||||
libssl-dev \
|
||||
yasm \
|
||||
linux-headers-raspi2 \
|
||||
libomxil-bellagio-dev \
|
||||
zlib1g-dev" && \
|
||||
apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ${buildDeps}
|
||||
## opencore-amr https://sourceforge.net/projects/opencore-amr/
|
||||
RUN \
|
||||
DIR=/tmp/opencore-amr && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## x264 http://www.videolan.org/developers/x264.html
|
||||
RUN \
|
||||
DIR=/tmp/x264 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
|
||||
tar -jx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### x265 http://x265.org/
|
||||
RUN \
|
||||
DIR=/tmp/x265 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
|
||||
tar -zx && \
|
||||
cd x265_${X265_VERSION}/build/linux && \
|
||||
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
|
||||
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
|
||||
export CXXFLAGS="${CXXFLAGS} -fPIC" && \
|
||||
./multilib.sh && \
|
||||
make -C 8bit install && \
|
||||
rm -rf ${DIR}
|
||||
### libogg https://www.xiph.org/ogg/
|
||||
RUN \
|
||||
DIR=/tmp/ogg && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
|
||||
echo ${OGG_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libopus https://www.opus-codec.org/
|
||||
RUN \
|
||||
DIR=/tmp/opus && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
|
||||
echo ${OPUS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
|
||||
autoreconf -fiv && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libvorbis https://xiph.org/vorbis/
|
||||
RUN \
|
||||
DIR=/tmp/vorbis && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
|
||||
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libtheora http://www.theora.org/
|
||||
RUN \
|
||||
DIR=/tmp/theora && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
|
||||
echo ${THEORA_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
|
||||
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
|
||||
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
|
||||
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libvpx https://www.webmproject.org/code/
|
||||
RUN \
|
||||
DIR=/tmp/vpx && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
|
||||
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libwebp https://developers.google.com/speed/webp/
|
||||
RUN \
|
||||
DIR=/tmp/vebp && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libmp3lame http://lame.sourceforge.net/
|
||||
RUN \
|
||||
DIR=/tmp/lame && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### xvid https://www.xvid.com/
|
||||
RUN \
|
||||
DIR=/tmp/xvid && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
|
||||
echo ${XVID_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
|
||||
cd xvidcore/build/generic && \
|
||||
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### fdk-aac https://github.com/mstorsjo/fdk-aac
|
||||
RUN \
|
||||
DIR=/tmp/fdk-aac && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
autoreconf -fiv && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## openjpeg https://github.com/uclouvain/openjpeg
|
||||
RUN \
|
||||
DIR=/tmp/openjpeg && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
|
||||
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## freetype https://www.freetype.org/
|
||||
RUN \
|
||||
DIR=/tmp/freetype && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
|
||||
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## libvstab https://github.com/georgmartius/vid.stab
|
||||
RUN \
|
||||
DIR=/tmp/vid.stab && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
|
||||
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
|
||||
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## fridibi https://www.fribidi.org/
|
||||
RUN \
|
||||
DIR=/tmp/fribidi && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
|
||||
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
|
||||
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
|
||||
./bootstrap --no-config --auto && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j1 && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## kvazaar https://github.com/ultravideo/kvazaar
|
||||
RUN \
|
||||
DIR=/tmp/kvazaar && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/aom && \
|
||||
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
|
||||
cd ${DIR} ; \
|
||||
rm -rf CMakeCache.txt CMakeFiles ; \
|
||||
mkdir -p ./aom_build ; \
|
||||
cd ./aom_build ; \
|
||||
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
|
||||
make ; \
|
||||
make install ; \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
|
||||
RUN \
|
||||
DIR=/tmp/xorg-macros && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/xproto && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
|
||||
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
|
||||
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libXau && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libpthread-stubs && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libxcb-proto && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
|
||||
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libxcb && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
|
||||
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libzmq https://github.com/zeromq/libzmq/
|
||||
RUN \
|
||||
DIR=/tmp/libzmq && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
|
||||
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
|
||||
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make check && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## ffmpeg https://ffmpeg.org/
|
||||
RUN \
|
||||
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
|
||||
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
|
||||
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
|
||||
./configure \
|
||||
--disable-debug \
|
||||
--disable-doc \
|
||||
--disable-ffplay \
|
||||
--enable-shared \
|
||||
--enable-avresample \
|
||||
--enable-libopencore-amrnb \
|
||||
--enable-libopencore-amrwb \
|
||||
--enable-gpl \
|
||||
--enable-libfreetype \
|
||||
--enable-libvidstab \
|
||||
--enable-libmp3lame \
|
||||
--enable-libopus \
|
||||
--enable-libtheora \
|
||||
--enable-libvorbis \
|
||||
--enable-libvpx \
|
||||
--enable-libwebp \
|
||||
--enable-libxcb \
|
||||
--enable-libx265 \
|
||||
--enable-libxvid \
|
||||
--enable-libx264 \
|
||||
--enable-nonfree \
|
||||
--enable-openssl \
|
||||
--enable-libfdk_aac \
|
||||
--enable-postproc \
|
||||
--enable-small \
|
||||
--enable-version3 \
|
||||
--enable-libzmq \
|
||||
--extra-libs=-ldl \
|
||||
--prefix="${PREFIX}" \
|
||||
--enable-libopenjpeg \
|
||||
--enable-libkvazaar \
|
||||
--enable-libaom \
|
||||
--extra-libs=-lpthread \
|
||||
# --enable-omx \
|
||||
# --enable-omx-rpi \
|
||||
# --enable-mmal \
|
||||
--enable-v4l2_m2m \
|
||||
--enable-neon \
|
||||
--extra-cflags="-I${PREFIX}/include" \
|
||||
--extra-ldflags="-L${PREFIX}/lib" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
|
||||
make distclean && \
|
||||
hash -r && \
|
||||
cd tools && \
|
||||
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
|
||||
|
||||
## cleanup
|
||||
RUN \
|
||||
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
|
||||
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
|
||||
cp ${PREFIX}/bin/* /usr/local/bin/ && \
|
||||
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
|
||||
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
|
||||
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
|
||||
mkdir -p /usr/local/lib/pkgconfig && \
|
||||
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
|
||||
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
|
||||
done
|
||||
|
||||
FROM base AS release
|
||||
|
||||
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
|
||||
|
||||
CMD ["--help"]
|
||||
ENTRYPOINT ["ffmpeg"]
|
||||
|
||||
COPY --from=build /usr/local /usr/local/
|
||||
|
||||
# Run ffmpeg with -c:v h264_v4l2m2m to enable HW accell for decoding on raspberry pi4 64-bit
|
||||
468
docker/Dockerfile.ffmpeg.amd64
Normal file
@@ -0,0 +1,468 @@
|
||||
# inspired by:
|
||||
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
|
||||
# https://github.com/jrottenberg/ffmpeg/pull/158/files
|
||||
# https://github.com/jrottenberg/ffmpeg/pull/239
|
||||
FROM ubuntu:20.04 AS base
|
||||
|
||||
WORKDIR /tmp/workdir
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
RUN apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
|
||||
apt-get autoremove -y && \
|
||||
apt-get clean -y
|
||||
|
||||
FROM base as build
|
||||
|
||||
ENV FFMPEG_VERSION=4.3.1 \
|
||||
AOM_VERSION=v1.0.0 \
|
||||
FDKAAC_VERSION=0.1.5 \
|
||||
FREETYPE_VERSION=2.5.5 \
|
||||
FRIBIDI_VERSION=0.19.7 \
|
||||
KVAZAAR_VERSION=1.2.0 \
|
||||
LAME_VERSION=3.100 \
|
||||
LIBPTHREAD_STUBS_VERSION=0.4 \
|
||||
LIBVIDSTAB_VERSION=1.1.0 \
|
||||
LIBXCB_VERSION=1.13.1 \
|
||||
XCBPROTO_VERSION=1.13 \
|
||||
OGG_VERSION=1.3.2 \
|
||||
OPENCOREAMR_VERSION=0.1.5 \
|
||||
OPUS_VERSION=1.2 \
|
||||
OPENJPEG_VERSION=2.1.2 \
|
||||
THEORA_VERSION=1.1.1 \
|
||||
VORBIS_VERSION=1.3.5 \
|
||||
VPX_VERSION=1.8.0 \
|
||||
WEBP_VERSION=1.0.2 \
|
||||
X264_VERSION=20170226-2245-stable \
|
||||
X265_VERSION=3.1.1 \
|
||||
XAU_VERSION=1.0.9 \
|
||||
XORG_MACROS_VERSION=1.19.2 \
|
||||
XPROTO_VERSION=7.0.31 \
|
||||
XVID_VERSION=1.3.4 \
|
||||
LIBZMQ_VERSION=4.3.2 \
|
||||
SRC=/usr/local
|
||||
|
||||
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
|
||||
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
|
||||
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
|
||||
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
|
||||
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
|
||||
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
|
||||
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
|
||||
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
|
||||
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
|
||||
|
||||
|
||||
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
|
||||
ARG MAKEFLAGS="-j2"
|
||||
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
|
||||
ARG PREFIX=/opt/ffmpeg
|
||||
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
|
||||
|
||||
|
||||
RUN buildDeps="autoconf \
|
||||
automake \
|
||||
cmake \
|
||||
curl \
|
||||
bzip2 \
|
||||
libexpat1-dev \
|
||||
g++ \
|
||||
gcc \
|
||||
git \
|
||||
gperf \
|
||||
libtool \
|
||||
make \
|
||||
nasm \
|
||||
perl \
|
||||
pkg-config \
|
||||
python \
|
||||
libssl-dev \
|
||||
yasm \
|
||||
libva-dev \
|
||||
libmfx-dev \
|
||||
zlib1g-dev" && \
|
||||
apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ${buildDeps}
|
||||
## opencore-amr https://sourceforge.net/projects/opencore-amr/
|
||||
RUN \
|
||||
DIR=/tmp/opencore-amr && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## x264 http://www.videolan.org/developers/x264.html
|
||||
RUN \
|
||||
DIR=/tmp/x264 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
|
||||
tar -jx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### x265 http://x265.org/
|
||||
RUN \
|
||||
DIR=/tmp/x265 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
|
||||
tar -zx && \
|
||||
cd x265_${X265_VERSION}/build/linux && \
|
||||
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
|
||||
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
|
||||
./multilib.sh && \
|
||||
make -C 8bit install && \
|
||||
rm -rf ${DIR}
|
||||
### libogg https://www.xiph.org/ogg/
|
||||
RUN \
|
||||
DIR=/tmp/ogg && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
|
||||
echo ${OGG_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libopus https://www.opus-codec.org/
|
||||
RUN \
|
||||
DIR=/tmp/opus && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
|
||||
echo ${OPUS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
|
||||
autoreconf -fiv && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libvorbis https://xiph.org/vorbis/
|
||||
RUN \
|
||||
DIR=/tmp/vorbis && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
|
||||
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libtheora http://www.theora.org/
|
||||
RUN \
|
||||
DIR=/tmp/theora && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
|
||||
echo ${THEORA_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libvpx https://www.webmproject.org/code/
|
||||
RUN \
|
||||
DIR=/tmp/vpx && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
|
||||
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libwebp https://developers.google.com/speed/webp/
|
||||
RUN \
|
||||
DIR=/tmp/vebp && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libmp3lame http://lame.sourceforge.net/
|
||||
RUN \
|
||||
DIR=/tmp/lame && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### xvid https://www.xvid.com/
|
||||
RUN \
|
||||
DIR=/tmp/xvid && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
|
||||
echo ${XVID_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
|
||||
cd xvidcore/build/generic && \
|
||||
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### fdk-aac https://github.com/mstorsjo/fdk-aac
|
||||
RUN \
|
||||
DIR=/tmp/fdk-aac && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
autoreconf -fiv && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## openjpeg https://github.com/uclouvain/openjpeg
|
||||
RUN \
|
||||
DIR=/tmp/openjpeg && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## freetype https://www.freetype.org/
|
||||
RUN \
|
||||
DIR=/tmp/freetype && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
|
||||
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## libvstab https://github.com/georgmartius/vid.stab
|
||||
RUN \
|
||||
DIR=/tmp/vid.stab && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
|
||||
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
|
||||
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## fridibi https://www.fribidi.org/
|
||||
RUN \
|
||||
DIR=/tmp/fribidi && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
|
||||
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
|
||||
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
|
||||
./bootstrap --no-config --auto && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j1 && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## kvazaar https://github.com/ultravideo/kvazaar
|
||||
RUN \
|
||||
DIR=/tmp/kvazaar && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/aom && \
|
||||
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
|
||||
cd ${DIR} ; \
|
||||
rm -rf CMakeCache.txt CMakeFiles ; \
|
||||
mkdir -p ./aom_build ; \
|
||||
cd ./aom_build ; \
|
||||
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
|
||||
make ; \
|
||||
make install ; \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
|
||||
RUN \
|
||||
DIR=/tmp/xorg-macros && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/xproto && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libXau && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libpthread-stubs && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libxcb-proto && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
|
||||
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libxcb && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
|
||||
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libzmq https://github.com/zeromq/libzmq/
|
||||
RUN \
|
||||
DIR=/tmp/libzmq && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
|
||||
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
|
||||
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make check && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## ffmpeg https://ffmpeg.org/
|
||||
RUN \
|
||||
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
|
||||
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
|
||||
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
|
||||
|
||||
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
|
||||
./configure \
|
||||
--disable-debug \
|
||||
--disable-doc \
|
||||
--disable-ffplay \
|
||||
--enable-shared \
|
||||
--enable-avresample \
|
||||
--enable-libopencore-amrnb \
|
||||
--enable-libopencore-amrwb \
|
||||
--enable-gpl \
|
||||
--enable-libfreetype \
|
||||
--enable-libvidstab \
|
||||
--enable-libmfx \
|
||||
--enable-libmp3lame \
|
||||
--enable-libopus \
|
||||
--enable-libtheora \
|
||||
--enable-libvorbis \
|
||||
--enable-libvpx \
|
||||
--enable-libwebp \
|
||||
--enable-libxcb \
|
||||
--enable-libx265 \
|
||||
--enable-libxvid \
|
||||
--enable-libx264 \
|
||||
--enable-nonfree \
|
||||
--enable-openssl \
|
||||
--enable-libfdk_aac \
|
||||
--enable-postproc \
|
||||
--enable-small \
|
||||
--enable-version3 \
|
||||
--enable-libzmq \
|
||||
--extra-libs=-ldl \
|
||||
--prefix="${PREFIX}" \
|
||||
--enable-libopenjpeg \
|
||||
--enable-libkvazaar \
|
||||
--enable-libaom \
|
||||
--extra-libs=-lpthread \
|
||||
--enable-vaapi \
|
||||
--extra-cflags="-I${PREFIX}/include" \
|
||||
--extra-ldflags="-L${PREFIX}/lib" && \
|
||||
make && \
|
||||
make install && \
|
||||
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
|
||||
make distclean && \
|
||||
hash -r && \
|
||||
cd tools && \
|
||||
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
|
||||
|
||||
## cleanup
|
||||
RUN \
|
||||
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
|
||||
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
|
||||
cp ${PREFIX}/bin/* /usr/local/bin/ && \
|
||||
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
|
||||
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
|
||||
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
|
||||
mkdir -p /usr/local/lib/pkgconfig && \
|
||||
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
|
||||
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
|
||||
done
|
||||
|
||||
FROM base AS release
|
||||
|
||||
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
|
||||
|
||||
CMD ["--help"]
|
||||
ENTRYPOINT ["ffmpeg"]
|
||||
|
||||
COPY --from=build /usr/local /usr/local/
|
||||
|
||||
RUN \
|
||||
apt-get update -y && \
|
||||
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver mesa-va-drivers && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
549
docker/Dockerfile.ffmpeg.amd64nvidia
Normal file
@@ -0,0 +1,549 @@
|
||||
# inspired by https://github.com/jrottenberg/ffmpeg/blob/master/docker-images/4.3/ubuntu1804/Dockerfile
|
||||
|
||||
# ffmpeg - http://ffmpeg.org/download.html
|
||||
#
|
||||
# From https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu
|
||||
#
|
||||
# https://hub.docker.com/r/jrottenberg/ffmpeg/
|
||||
#
|
||||
#
|
||||
|
||||
FROM nvidia/cuda:11.1-devel-ubuntu20.04 AS devel-base
|
||||
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
WORKDIR /tmp/workdir
|
||||
|
||||
RUN apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
|
||||
apt-get autoremove -y && \
|
||||
apt-get clean -y
|
||||
|
||||
FROM nvidia/cuda:11.1-runtime-ubuntu20.04 AS runtime-base
|
||||
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
WORKDIR /tmp/workdir
|
||||
|
||||
RUN apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 libxcb-shape0-dev && \
|
||||
apt-get autoremove -y && \
|
||||
apt-get clean -y
|
||||
|
||||
|
||||
FROM devel-base as build
|
||||
|
||||
ENV NVIDIA_HEADERS_VERSION=9.1.23.1
|
||||
|
||||
ENV FFMPEG_VERSION=4.3.1 \
|
||||
AOM_VERSION=v1.0.0 \
|
||||
FDKAAC_VERSION=0.1.5 \
|
||||
FREETYPE_VERSION=2.5.5 \
|
||||
FRIBIDI_VERSION=0.19.7 \
|
||||
KVAZAAR_VERSION=1.2.0 \
|
||||
LAME_VERSION=3.100 \
|
||||
LIBPTHREAD_STUBS_VERSION=0.4 \
|
||||
LIBVIDSTAB_VERSION=1.1.0 \
|
||||
LIBXCB_VERSION=1.13.1 \
|
||||
XCBPROTO_VERSION=1.13 \
|
||||
OGG_VERSION=1.3.2 \
|
||||
OPENCOREAMR_VERSION=0.1.5 \
|
||||
OPUS_VERSION=1.2 \
|
||||
OPENJPEG_VERSION=2.1.2 \
|
||||
THEORA_VERSION=1.1.1 \
|
||||
VORBIS_VERSION=1.3.5 \
|
||||
VPX_VERSION=1.8.0 \
|
||||
WEBP_VERSION=1.0.2 \
|
||||
X264_VERSION=20170226-2245-stable \
|
||||
X265_VERSION=3.1.1 \
|
||||
XAU_VERSION=1.0.9 \
|
||||
XORG_MACROS_VERSION=1.19.2 \
|
||||
XPROTO_VERSION=7.0.31 \
|
||||
XVID_VERSION=1.3.4 \
|
||||
LIBZMQ_VERSION=4.3.2 \
|
||||
LIBSRT_VERSION=1.4.1 \
|
||||
LIBARIBB24_VERSION=1.0.3 \
|
||||
LIBPNG_VERSION=1.6.9 \
|
||||
SRC=/usr/local
|
||||
|
||||
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
|
||||
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
|
||||
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
|
||||
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
|
||||
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
|
||||
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
|
||||
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
|
||||
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
|
||||
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
|
||||
ARG LIBARIBB24_SHA256SUM="f61560738926e57f9173510389634d8c06cabedfa857db4b28fb7704707ff128 v1.0.3.tar.gz"
|
||||
|
||||
|
||||
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
|
||||
ARG MAKEFLAGS="-j2"
|
||||
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
|
||||
ARG PREFIX=/opt/ffmpeg
|
||||
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64"
|
||||
|
||||
|
||||
RUN buildDeps="autoconf \
|
||||
automake \
|
||||
cmake \
|
||||
curl \
|
||||
bzip2 \
|
||||
libexpat1-dev \
|
||||
g++ \
|
||||
gcc \
|
||||
git \
|
||||
gperf \
|
||||
libtool \
|
||||
make \
|
||||
nasm \
|
||||
perl \
|
||||
pkg-config \
|
||||
python \
|
||||
libssl-dev \
|
||||
yasm \
|
||||
zlib1g-dev" && \
|
||||
apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ${buildDeps}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/nv-codec-headers && \
|
||||
git clone https://github.com/FFmpeg/nv-codec-headers ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
git checkout n${NVIDIA_HEADERS_VERSION} && \
|
||||
make PREFIX="${PREFIX}" && \
|
||||
make install PREFIX="${PREFIX}" && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## opencore-amr https://sourceforge.net/projects/opencore-amr/
|
||||
RUN \
|
||||
DIR=/tmp/opencore-amr && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## x264 http://www.videolan.org/developers/x264.html
|
||||
RUN \
|
||||
DIR=/tmp/x264 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
|
||||
tar -jx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### x265 http://x265.org/
|
||||
RUN \
|
||||
DIR=/tmp/x265 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
|
||||
tar -zx && \
|
||||
cd x265_${X265_VERSION}/build/linux && \
|
||||
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
|
||||
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
|
||||
./multilib.sh && \
|
||||
make -C 8bit install && \
|
||||
rm -rf ${DIR}
|
||||
### libogg https://www.xiph.org/ogg/
|
||||
RUN \
|
||||
DIR=/tmp/ogg && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
|
||||
echo ${OGG_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libopus https://www.opus-codec.org/
|
||||
RUN \
|
||||
DIR=/tmp/opus && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
|
||||
echo ${OPUS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
|
||||
autoreconf -fiv && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libvorbis https://xiph.org/vorbis/
|
||||
RUN \
|
||||
DIR=/tmp/vorbis && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
|
||||
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libtheora http://www.theora.org/
|
||||
RUN \
|
||||
DIR=/tmp/theora && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
|
||||
echo ${THEORA_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libvpx https://www.webmproject.org/code/
|
||||
RUN \
|
||||
DIR=/tmp/vpx && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
|
||||
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libwebp https://developers.google.com/speed/webp/
|
||||
RUN \
|
||||
DIR=/tmp/vebp && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### libmp3lame http://lame.sourceforge.net/
|
||||
RUN \
|
||||
DIR=/tmp/lame && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### xvid https://www.xvid.com/
|
||||
RUN \
|
||||
DIR=/tmp/xvid && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
|
||||
echo ${XVID_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
|
||||
cd xvidcore/build/generic && \
|
||||
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
### fdk-aac https://github.com/mstorsjo/fdk-aac
|
||||
RUN \
|
||||
DIR=/tmp/fdk-aac && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
autoreconf -fiv && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## openjpeg https://github.com/uclouvain/openjpeg
|
||||
RUN \
|
||||
DIR=/tmp/openjpeg && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## freetype https://www.freetype.org/
|
||||
RUN \
|
||||
DIR=/tmp/freetype && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
|
||||
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## libvstab https://github.com/georgmartius/vid.stab
|
||||
RUN \
|
||||
DIR=/tmp/vid.stab && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
|
||||
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
|
||||
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## fridibi https://www.fribidi.org/
|
||||
RUN \
|
||||
DIR=/tmp/fribidi && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
|
||||
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
|
||||
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
|
||||
./bootstrap --no-config --auto && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j1 && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
## kvazaar https://github.com/ultravideo/kvazaar
|
||||
RUN \
|
||||
DIR=/tmp/kvazaar && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/aom && \
|
||||
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
|
||||
cd ${DIR} ; \
|
||||
rm -rf CMakeCache.txt CMakeFiles ; \
|
||||
mkdir -p ./aom_build ; \
|
||||
cd ./aom_build ; \
|
||||
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
|
||||
make ; \
|
||||
make install ; \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
|
||||
RUN \
|
||||
DIR=/tmp/xorg-macros && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/xproto && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libXau && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libpthread-stubs && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libxcb-proto && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
|
||||
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libxcb && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
|
||||
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libzmq https://github.com/zeromq/libzmq/
|
||||
RUN \
|
||||
DIR=/tmp/libzmq && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
|
||||
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
|
||||
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make check && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libsrt https://github.com/Haivision/srt
|
||||
RUN \
|
||||
DIR=/tmp/srt && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/Haivision/srt/archive/v${LIBSRT_VERSION}.tar.gz && \
|
||||
tar -xz --strip-components=1 -f v${LIBSRT_VERSION}.tar.gz && \
|
||||
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libpng
|
||||
RUN \
|
||||
DIR=/tmp/png && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
git clone https://git.code.sf.net/p/libpng/code ${DIR} -b v${LIBPNG_VERSION} --depth 1 && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make check && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libaribb24
|
||||
RUN \
|
||||
DIR=/tmp/b24 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/nkoriyama/aribb24/archive/v${LIBARIBB24_VERSION}.tar.gz && \
|
||||
echo ${LIBARIBB24_SHA256SUM} | sha256sum --check && \
|
||||
tar -xz --strip-components=1 -f v${LIBARIBB24_VERSION}.tar.gz && \
|
||||
autoreconf -fiv && \
|
||||
./configure CFLAGS="-I${PREFIX}/include -fPIC" --prefix="${PREFIX}" && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## ffmpeg https://ffmpeg.org/
|
||||
RUN \
|
||||
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
|
||||
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
|
||||
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
|
||||
|
||||
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
|
||||
./configure \
|
||||
--disable-debug \
|
||||
--disable-doc \
|
||||
--disable-ffplay \
|
||||
--enable-shared \
|
||||
--enable-avresample \
|
||||
--enable-libopencore-amrnb \
|
||||
--enable-libopencore-amrwb \
|
||||
--enable-gpl \
|
||||
--enable-libfreetype \
|
||||
--enable-libvidstab \
|
||||
--enable-libmp3lame \
|
||||
--enable-libopus \
|
||||
--enable-libtheora \
|
||||
--enable-libvorbis \
|
||||
--enable-libvpx \
|
||||
--enable-libwebp \
|
||||
--enable-libxcb \
|
||||
--enable-libx265 \
|
||||
--enable-libxvid \
|
||||
--enable-libx264 \
|
||||
--enable-nonfree \
|
||||
--enable-openssl \
|
||||
--enable-libfdk_aac \
|
||||
--enable-postproc \
|
||||
--enable-small \
|
||||
--enable-version3 \
|
||||
--enable-libzmq \
|
||||
--extra-libs=-ldl \
|
||||
--prefix="${PREFIX}" \
|
||||
--enable-libopenjpeg \
|
||||
--enable-libkvazaar \
|
||||
--enable-libaom \
|
||||
--extra-libs=-lpthread \
|
||||
--enable-libsrt \
|
||||
--enable-libaribb24 \
|
||||
--enable-nvenc \
|
||||
--enable-cuda \
|
||||
--enable-cuvid \
|
||||
--enable-libnpp \
|
||||
--extra-cflags="-I${PREFIX}/include -I${PREFIX}/include/ffnvcodec -I/usr/local/cuda/include/" \
|
||||
--extra-ldflags="-L${PREFIX}/lib -L/usr/local/cuda/lib64 -L/usr/local/cuda/lib32/" && \
|
||||
make && \
|
||||
make install && \
|
||||
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
|
||||
make distclean && \
|
||||
hash -r && \
|
||||
cd tools && \
|
||||
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
|
||||
|
||||
## cleanup
|
||||
RUN \
|
||||
LD_LIBRARY_PATH="${PREFIX}/lib:${PREFIX}/lib64:${LD_LIBRARY_PATH}" ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
|
||||
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
|
||||
cp ${PREFIX}/bin/* /usr/local/bin/ && \
|
||||
cp -r ${PREFIX}/share/* /usr/local/share/ && \
|
||||
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
|
||||
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
|
||||
mkdir -p /usr/local/lib/pkgconfig && \
|
||||
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
|
||||
sed "s:${PREFIX}:/usr/local:g; s:/lib64:/lib:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
|
||||
done
|
||||
|
||||
|
||||
|
||||
FROM runtime-base AS release
|
||||
|
||||
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64
|
||||
|
||||
CMD ["--help"]
|
||||
ENTRYPOINT ["ffmpeg"]
|
||||
|
||||
# copy only needed files, without copying nvidia dev files
|
||||
COPY --from=build /usr/local/bin /usr/local/bin/
|
||||
COPY --from=build /usr/local/share /usr/local/share/
|
||||
COPY --from=build /usr/local/lib /usr/local/lib/
|
||||
COPY --from=build /usr/local/include /usr/local/include/
|
||||
|
||||
# Let's make sure the app built correctly
|
||||
# Convenient to verify on https://hub.docker.com/r/jrottenberg/ffmpeg/builds/ console output
|
||||
490
docker/Dockerfile.ffmpeg.armv7
Normal file
@@ -0,0 +1,490 @@
|
||||
# inspired by:
|
||||
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
|
||||
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
|
||||
# https://github.com/jrottenberg/ffmpeg/pull/158/files
|
||||
# https://github.com/jrottenberg/ffmpeg/pull/239
|
||||
FROM ubuntu:20.04 AS base
|
||||
|
||||
WORKDIR /tmp/workdir
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
RUN apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
|
||||
apt-get autoremove -y && \
|
||||
apt-get clean -y
|
||||
|
||||
FROM base as build
|
||||
|
||||
ENV FFMPEG_VERSION=4.3.1 \
|
||||
AOM_VERSION=v1.0.0 \
|
||||
FDKAAC_VERSION=0.1.5 \
|
||||
FREETYPE_VERSION=2.5.5 \
|
||||
FRIBIDI_VERSION=0.19.7 \
|
||||
KVAZAAR_VERSION=1.2.0 \
|
||||
LAME_VERSION=3.100 \
|
||||
LIBPTHREAD_STUBS_VERSION=0.4 \
|
||||
LIBVIDSTAB_VERSION=1.1.0 \
|
||||
LIBXCB_VERSION=1.13.1 \
|
||||
XCBPROTO_VERSION=1.13 \
|
||||
OGG_VERSION=1.3.2 \
|
||||
OPENCOREAMR_VERSION=0.1.5 \
|
||||
OPUS_VERSION=1.2 \
|
||||
OPENJPEG_VERSION=2.1.2 \
|
||||
THEORA_VERSION=1.1.1 \
|
||||
VORBIS_VERSION=1.3.5 \
|
||||
VPX_VERSION=1.8.0 \
|
||||
WEBP_VERSION=1.0.2 \
|
||||
X264_VERSION=20170226-2245-stable \
|
||||
X265_VERSION=3.1.1 \
|
||||
XAU_VERSION=1.0.9 \
|
||||
XORG_MACROS_VERSION=1.19.2 \
|
||||
XPROTO_VERSION=7.0.31 \
|
||||
XVID_VERSION=1.3.4 \
|
||||
LIBZMQ_VERSION=4.3.3 \
|
||||
SRC=/usr/local
|
||||
|
||||
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
|
||||
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
|
||||
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
|
||||
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
|
||||
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
|
||||
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
|
||||
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
|
||||
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
|
||||
|
||||
|
||||
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
|
||||
ARG MAKEFLAGS="-j2"
|
||||
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig:/opt/vc/lib/pkgconfig"
|
||||
ARG PREFIX=/opt/ffmpeg
|
||||
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib:/opt/vc/lib"
|
||||
|
||||
|
||||
RUN buildDeps="autoconf \
|
||||
automake \
|
||||
cmake \
|
||||
curl \
|
||||
bzip2 \
|
||||
libexpat1-dev \
|
||||
g++ \
|
||||
gcc \
|
||||
git \
|
||||
gperf \
|
||||
libtool \
|
||||
make \
|
||||
nasm \
|
||||
perl \
|
||||
pkg-config \
|
||||
python \
|
||||
sudo \
|
||||
libssl-dev \
|
||||
yasm \
|
||||
linux-headers-raspi2 \
|
||||
libomxil-bellagio-dev \
|
||||
libx265-dev \
|
||||
libaom-dev \
|
||||
zlib1g-dev" && \
|
||||
apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ${buildDeps}
|
||||
## opencore-amr https://sourceforge.net/projects/opencore-amr/
|
||||
RUN \
|
||||
DIR=/tmp/opencore-amr && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## x264 http://www.videolan.org/developers/x264.html
|
||||
RUN \
|
||||
DIR=/tmp/x264 && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
|
||||
tar -jx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
# ### x265 http://x265.org/
|
||||
# RUN \
|
||||
# DIR=/tmp/x265 && \
|
||||
# mkdir -p ${DIR} && \
|
||||
# cd ${DIR} && \
|
||||
# curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
|
||||
# tar -zx && \
|
||||
# cd x265_${X265_VERSION}/build/linux && \
|
||||
# sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
|
||||
# sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
|
||||
# # export CXXFLAGS="${CXXFLAGS} -fPIC" && \
|
||||
# ./multilib.sh && \
|
||||
# make -C 8bit install && \
|
||||
# rm -rf ${DIR}
|
||||
### libogg https://www.xiph.org/ogg/
|
||||
RUN \
|
||||
DIR=/tmp/ogg && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
|
||||
echo ${OGG_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libopus https://www.opus-codec.org/
|
||||
RUN \
|
||||
DIR=/tmp/opus && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
|
||||
echo ${OPUS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
|
||||
autoreconf -fiv && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libvorbis https://xiph.org/vorbis/
|
||||
RUN \
|
||||
DIR=/tmp/vorbis && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
|
||||
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libtheora http://www.theora.org/
|
||||
RUN \
|
||||
DIR=/tmp/theora && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
|
||||
echo ${THEORA_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
|
||||
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
|
||||
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
|
||||
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libvpx https://www.webmproject.org/code/
|
||||
RUN \
|
||||
DIR=/tmp/vpx && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
|
||||
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libwebp https://developers.google.com/speed/webp/
|
||||
RUN \
|
||||
DIR=/tmp/vebp && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### libmp3lame http://lame.sourceforge.net/
|
||||
RUN \
|
||||
DIR=/tmp/lame && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### xvid https://www.xvid.com/
|
||||
RUN \
|
||||
DIR=/tmp/xvid && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
|
||||
echo ${XVID_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
|
||||
cd xvidcore/build/generic && \
|
||||
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
### fdk-aac https://github.com/mstorsjo/fdk-aac
|
||||
RUN \
|
||||
DIR=/tmp/fdk-aac && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
autoreconf -fiv && \
|
||||
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## openjpeg https://github.com/uclouvain/openjpeg
|
||||
RUN \
|
||||
DIR=/tmp/openjpeg && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
|
||||
tar -zx --strip-components=1 && \
|
||||
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
|
||||
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## freetype https://www.freetype.org/
|
||||
RUN \
|
||||
DIR=/tmp/freetype && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
|
||||
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## libvstab https://github.com/georgmartius/vid.stab
|
||||
RUN \
|
||||
DIR=/tmp/vid.stab && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
|
||||
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
|
||||
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
## fridibi https://www.fribidi.org/
|
||||
RUN \
|
||||
DIR=/tmp/fribidi && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
|
||||
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
|
||||
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
|
||||
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
|
||||
./bootstrap --no-config --auto && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j1 && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## kvazaar https://github.com/ultravideo/kvazaar
|
||||
RUN \
|
||||
DIR=/tmp/kvazaar && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
# RUN \
|
||||
# DIR=/tmp/aom && \
|
||||
# git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
|
||||
# cd ${DIR} ; \
|
||||
# rm -rf CMakeCache.txt CMakeFiles ; \
|
||||
# mkdir -p ./aom_build ; \
|
||||
# cd ./aom_build ; \
|
||||
# cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
|
||||
# make ; \
|
||||
# make install ; \
|
||||
# rm -rf ${DIR}
|
||||
|
||||
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
|
||||
RUN \
|
||||
DIR=/tmp/xorg-macros && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/xproto && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
|
||||
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
|
||||
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libXau && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
|
||||
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libpthread-stubs && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libxcb-proto && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
|
||||
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/libxcb && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
|
||||
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
|
||||
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## libzmq https://github.com/zeromq/libzmq/
|
||||
RUN \
|
||||
DIR=/tmp/libzmq && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
|
||||
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
|
||||
./autogen.sh && \
|
||||
./configure --prefix="${PREFIX}" && \
|
||||
make -j $(nproc) && \
|
||||
# make check && \
|
||||
make -j $(nproc) install && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## userland https://github.com/raspberrypi/userland
|
||||
RUN \
|
||||
DIR=/tmp/userland && \
|
||||
mkdir -p ${DIR} && \
|
||||
cd ${DIR} && \
|
||||
git clone --depth 1 https://github.com/raspberrypi/userland.git . && \
|
||||
./buildme && \
|
||||
rm -rf ${DIR}
|
||||
|
||||
## ffmpeg https://ffmpeg.org/
|
||||
RUN \
|
||||
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
|
||||
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
|
||||
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
|
||||
|
||||
RUN \
|
||||
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
|
||||
./configure \
|
||||
--disable-debug \
|
||||
--disable-doc \
|
||||
--disable-ffplay \
|
||||
--enable-shared \
|
||||
--enable-avresample \
|
||||
--enable-libopencore-amrnb \
|
||||
--enable-libopencore-amrwb \
|
||||
--enable-gpl \
|
||||
--enable-libfreetype \
|
||||
--enable-libvidstab \
|
||||
--enable-libmp3lame \
|
||||
--enable-libopus \
|
||||
--enable-libtheora \
|
||||
--enable-libvorbis \
|
||||
--enable-libvpx \
|
||||
--enable-libwebp \
|
||||
--enable-libxcb \
|
||||
--enable-libx265 \
|
||||
--enable-libxvid \
|
||||
--enable-libx264 \
|
||||
--enable-nonfree \
|
||||
--enable-openssl \
|
||||
--enable-libfdk_aac \
|
||||
--enable-postproc \
|
||||
--enable-small \
|
||||
--enable-version3 \
|
||||
--enable-libzmq \
|
||||
--extra-libs=-ldl \
|
||||
--prefix="${PREFIX}" \
|
||||
--enable-libopenjpeg \
|
||||
--enable-libkvazaar \
|
||||
--enable-libaom \
|
||||
--extra-libs=-lpthread \
|
||||
--enable-omx \
|
||||
--enable-omx-rpi \
|
||||
--enable-mmal \
|
||||
--enable-v4l2_m2m \
|
||||
--enable-neon \
|
||||
--extra-cflags="-I${PREFIX}/include" \
|
||||
--extra-ldflags="-L${PREFIX}/lib" && \
|
||||
make -j $(nproc) && \
|
||||
make -j $(nproc) install && \
|
||||
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
|
||||
make distclean && \
|
||||
hash -r && \
|
||||
cd tools && \
|
||||
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
|
||||
|
||||
## cleanup
|
||||
RUN \
|
||||
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
|
||||
# copy userland lib too
|
||||
ldd ${PREFIX}/bin/ffmpeg | grep opt/vc | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
|
||||
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
|
||||
cp ${PREFIX}/bin/* /usr/local/bin/ && \
|
||||
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
|
||||
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
|
||||
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
|
||||
mkdir -p /usr/local/lib/pkgconfig && \
|
||||
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
|
||||
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
|
||||
done
|
||||
|
||||
FROM base AS release
|
||||
|
||||
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
|
||||
|
||||
RUN \
|
||||
apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends libx265-dev libaom-dev && \
|
||||
apt-get autoremove -y && \
|
||||
apt-get clean -y
|
||||
|
||||
CMD ["--help"]
|
||||
ENTRYPOINT ["ffmpeg"]
|
||||
|
||||
COPY --from=build /usr/local /usr/local/
|
||||
9
docker/Dockerfile.web
Normal file
@@ -0,0 +1,9 @@
|
||||
ARG NODE_VERSION=14.0
|
||||
|
||||
FROM node:${NODE_VERSION}
|
||||
|
||||
WORKDIR /opt/frigate
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN npm install && npm run build
|
||||
42
docker/Dockerfile.wheels
Normal file
@@ -0,0 +1,42 @@
|
||||
FROM ubuntu:20.04 as build
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
python3 \
|
||||
python3-dev \
|
||||
wget \
|
||||
# opencv dependencies
|
||||
build-essential cmake git pkg-config libgtk-3-dev \
|
||||
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
|
||||
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
|
||||
gfortran openexr libatlas-base-dev libssl-dev\
|
||||
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
|
||||
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
|
||||
# scipy dependencies
|
||||
gcc gfortran libopenblas-dev liblapack-dev cython
|
||||
|
||||
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
&& python3 get-pip.py "pip==20.2.4"
|
||||
|
||||
RUN pip3 install scikit-build
|
||||
|
||||
RUN pip3 wheel --wheel-dir=/wheels \
|
||||
opencv-python-headless \
|
||||
# pinning due to issue in 1.19.5 https://github.com/numpy/numpy/issues/18131
|
||||
numpy==1.19.4 \
|
||||
imutils \
|
||||
scipy \
|
||||
psutil \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib \
|
||||
click \
|
||||
setproctitle \
|
||||
peewee
|
||||
|
||||
FROM scratch
|
||||
|
||||
COPY --from=build /wheels /wheels
|
||||
20
docs/.gitignore
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
# Dependencies
|
||||
/node_modules
|
||||
|
||||
# Production
|
||||
/build
|
||||
|
||||
# Generated files
|
||||
.docusaurus
|
||||
.cache-loader
|
||||
|
||||
# Misc
|
||||
.DS_Store
|
||||
.env.local
|
||||
.env.development.local
|
||||
.env.test.local
|
||||
.env.production.local
|
||||
|
||||
npm-debug.log*
|
||||
yarn-debug.log*
|
||||
yarn-error.log*
|
||||
@@ -1,74 +0,0 @@
|
||||
# Configuration Examples
|
||||
|
||||
### Default (most RTSP cameras)
|
||||
This is the default ffmpeg command and should work with most RTSP cameras that send h264 video
|
||||
```yaml
|
||||
ffmpeg:
|
||||
global_args:
|
||||
- -hide_banner
|
||||
- -loglevel
|
||||
- panic
|
||||
hwaccel_args: []
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -fflags
|
||||
- nobuffer
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -vsync
|
||||
- drop
|
||||
- -rtsp_transport
|
||||
- tcp
|
||||
- -stimeout
|
||||
- '5000000'
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
output_args:
|
||||
- -vf
|
||||
- mpdecimate
|
||||
- -f
|
||||
- rawvideo
|
||||
- -pix_fmt
|
||||
- rgb24
|
||||
```
|
||||
|
||||
### RTMP Cameras
|
||||
The input parameters need to be adjusted for RTMP cameras
|
||||
```yaml
|
||||
ffmpeg:
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -fflags
|
||||
- nobuffer
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -vsync
|
||||
- drop
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
```
|
||||
|
||||
|
||||
### Hardware Acceleration
|
||||
|
||||
Intel Quicksync
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- vaapi
|
||||
- -hwaccel_device
|
||||
- /dev/dri/renderD128
|
||||
- -hwaccel_output_format
|
||||
- yuv420p
|
||||
```
|
||||
33
docs/README.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# Website
|
||||
|
||||
This website is built using [Docusaurus 2](https://v2.docusaurus.io/), a modern static website generator.
|
||||
|
||||
## Installation
|
||||
|
||||
```console
|
||||
yarn install
|
||||
```
|
||||
|
||||
## Local Development
|
||||
|
||||
```console
|
||||
yarn start
|
||||
```
|
||||
|
||||
This command starts a local development server and open up a browser window. Most changes are reflected live without having to restart the server.
|
||||
|
||||
## Build
|
||||
|
||||
```console
|
||||
yarn build
|
||||
```
|
||||
|
||||
This command generates static content into the `build` directory and can be served using any static contents hosting service.
|
||||
|
||||
## Deployment
|
||||
|
||||
```console
|
||||
GIT_USER=<Your GitHub username> USE_SSH=true yarn deploy
|
||||
```
|
||||
|
||||
If you are using GitHub pages for hosting, this command is a convenient way to build the website and push to the `gh-pages` branch.
|
||||
3
docs/babel.config.js
Normal file
@@ -0,0 +1,3 @@
|
||||
module.exports = {
|
||||
presets: [require.resolve('@docusaurus/core/lib/babel/preset')],
|
||||
};
|
||||
139
docs/docs/configuration/advanced.md
Normal file
@@ -0,0 +1,139 @@
|
||||
---
|
||||
id: advanced
|
||||
title: Advanced
|
||||
sidebar_label: Advanced
|
||||
---
|
||||
|
||||
## Advanced configuration
|
||||
|
||||
### `motion`
|
||||
|
||||
Global motion detection config. These may also be defined at the camera level.
|
||||
|
||||
```yaml
|
||||
motion:
|
||||
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
|
||||
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
|
||||
# The value should be between 1 and 255.
|
||||
threshold: 25
|
||||
# Optional: Minimum size in pixels in the resized motion image that counts as motion
|
||||
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
|
||||
# moving objects.
|
||||
contour_area: 100
|
||||
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
|
||||
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
|
||||
# Too low and a fast moving person wont be detected as motion.
|
||||
delta_alpha: 0.2
|
||||
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
|
||||
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
|
||||
# Low values will cause things like moving shadows to be detected as motion for longer.
|
||||
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
|
||||
frame_alpha: 0.2
|
||||
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height)
|
||||
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
|
||||
# Lower values result in less CPU, but small changes may not register as motion.
|
||||
frame_height: 180
|
||||
```
|
||||
|
||||
### `detect`
|
||||
|
||||
Global object detection settings. These may also be defined at the camera level.
|
||||
|
||||
```yaml
|
||||
detect:
|
||||
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: double the frame rate)
|
||||
max_disappeared: 10
|
||||
```
|
||||
|
||||
### `logger`
|
||||
|
||||
Change the default log level for troubleshooting purposes.
|
||||
|
||||
```yaml
|
||||
logger:
|
||||
# Optional: default log level (default: shown below)
|
||||
default: info
|
||||
# Optional: module by module log level configuration
|
||||
logs:
|
||||
frigate.mqtt: error
|
||||
```
|
||||
|
||||
Available log levels are: `debug`, `info`, `warning`, `error`, `critical`
|
||||
|
||||
Examples of available modules are:
|
||||
|
||||
- `frigate.app`
|
||||
- `frigate.mqtt`
|
||||
- `frigate.edgetpu`
|
||||
- `frigate.zeroconf`
|
||||
- `detector.<detector_name>`
|
||||
- `watchdog.<camera_name>`
|
||||
- `ffmpeg.<camera_name>.<sorted_roles>` NOTE: All FFmpeg logs are sent as `error` level.
|
||||
|
||||
### `environment_vars`
|
||||
|
||||
This section can be used to set environment variables for those unable to modify the environment of the container (ie. within Hass.io)
|
||||
|
||||
```yaml
|
||||
environment_vars:
|
||||
EXAMPLE_VAR: value
|
||||
```
|
||||
|
||||
### `database`
|
||||
|
||||
Event and clip information is managed in a sqlite database at `/media/frigate/clips/frigate.db`. If that database is deleted, clips will be orphaned and will need to be cleaned up manually. They also won't show up in the Media Browser within HomeAssistant.
|
||||
|
||||
If you are storing your clips on a network share (SMB, NFS, etc), you may get a `database is locked` error message on startup. You can customize the location of the database in the config if necessary.
|
||||
|
||||
This may need to be in a custom location if network storage is used for clips.
|
||||
|
||||
```yaml
|
||||
database:
|
||||
path: /media/frigate/clips/frigate.db
|
||||
```
|
||||
|
||||
### `detectors`
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
# Required: name of the detector
|
||||
coral:
|
||||
# Required: type of the detector
|
||||
# Valid values are 'edgetpu' (requires device property below) and 'cpu'. type: edgetpu
|
||||
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
|
||||
device: usb
|
||||
# Optional: num_threads value passed to the tflite.Interpreter (default: shown below)
|
||||
# This value is only used for CPU types
|
||||
num_threads: 3
|
||||
```
|
||||
|
||||
### `model`
|
||||
|
||||
```yaml
|
||||
model:
|
||||
# Required: height of the trained model
|
||||
height: 320
|
||||
# Required: width of the trained model
|
||||
width: 320
|
||||
```
|
||||
|
||||
## Custom Models
|
||||
|
||||
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
|
||||
|
||||
- CPU Model: `/cpu_model.tflite`
|
||||
- EdgeTPU Model: `/edgetpu_model.tflite`
|
||||
- Labels: `/labelmap.txt`
|
||||
|
||||
You also need to update the model width/height in the config if they differ from the defaults.
|
||||
|
||||
### Customizing the Labelmap
|
||||
|
||||
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
|
||||
|
||||
- Download the [COCO labelmap](https://dl.google.com/coral/canned_models/coco_labels.txt)
|
||||
- Modify the label names as desired. For example, change `7 truck` to `7 car`
|
||||
- Mount the new file at `/labelmap.txt` in the container with an additional volume
|
||||
```
|
||||
-v ./config/labelmap.txt:/labelmap.txt
|
||||
```
|
||||
410
docs/docs/configuration/cameras.md
Normal file
@@ -0,0 +1,410 @@
|
||||
---
|
||||
id: cameras
|
||||
title: Cameras
|
||||
---
|
||||
|
||||
## Setting Up Camera Inputs
|
||||
|
||||
Up to 4 inputs can be configured for each camera and the role of each input can be mixed and matched based on your needs. This allows you to use a lower resolution stream for object detection, but create clips from a higher resolution stream, or vice versa.
|
||||
|
||||
Each role can only be assigned to one input per camera. The options for roles are as follows:
|
||||
|
||||
| Role | Description |
|
||||
| -------- | ------------------------------------------------------------------------------------ |
|
||||
| `detect` | Main feed for object detection |
|
||||
| `clips` | Clips of events from objects detected in the `detect` feed. [docs](#recording-clips) |
|
||||
| `record` | Saves 60 second segments of the video feed. [docs](#247-recordings) |
|
||||
| `rtmp` | Broadcast as an RTMP feed for other services to consume. [docs](#rtmp-streams) |
|
||||
|
||||
### Example
|
||||
|
||||
```yaml
|
||||
mqtt:
|
||||
host: mqtt.server.com
|
||||
cameras:
|
||||
back:
|
||||
ffmpeg:
|
||||
inputs:
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/live
|
||||
roles:
|
||||
- clips
|
||||
- record
|
||||
width: 1280
|
||||
height: 720
|
||||
fps: 5
|
||||
```
|
||||
|
||||
## Masks & Zones
|
||||
|
||||
### Masks
|
||||
Masks are used to ignore initial detection in areas of your camera's field of view.
|
||||
|
||||
There are two types of masks available:
|
||||
- **Motion masks**: Motion masks are used to prevent unwanted types of motion from triggering detection. Try watching the video feed with `Motion Boxes` enabled to see what may be regularly detected as motion. For example, you want to mask out your timestamp, the sky, rooftops, etc. Keep in mind that this mask only prevents motion from being detected and does not prevent objects from being detected if object detection was started due to motion in unmasked areas. Motion is also used during object tracking to refine the object detection area in the next frame. Over masking will make it more difficult for objects to be tracked. To see this effect, create a mask, and then watch the video feed with `Motion Boxes` enabled again.
|
||||
- **Object filter masks**: Object filter masks are used to filter out false positives for a given object type. These should be used to filter any areas where it is not possible for an object of that type to be. The bottom center of the detected object's bounding box is evaluated against the mask. If it is in a masked area, it is assumed to be a false positive. For example, you may want to mask out rooftops, walls, the sky, treetops for people. For cars, masking locations other than the street or your driveway will tell frigate that anything in your yard is a false positive.
|
||||
|
||||
To create a poly mask:
|
||||
|
||||
1. Visit the [web UI](/usage/web)
|
||||
1. Click the camera you wish to create a mask for
|
||||
1. Click "Mask & Zone creator"
|
||||
1. Click "Add" on the type of mask or zone you would like to create
|
||||
1. Click on the camera's latest image to create a masked area. The yaml representation will be updated in real-time
|
||||
1. When you've finished creating your mask, click "Copy" and paste the contents into your `config.yaml` file and restart Frigate
|
||||
|
||||
Example of a finished row corresponding to the below example image:
|
||||
|
||||
```yaml
|
||||
motion:
|
||||
mask: '0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432'
|
||||
```
|
||||
|
||||

|
||||
|
||||
```yaml
|
||||
# Optional: camera level motion config
|
||||
motion:
|
||||
# Optional: motion mask
|
||||
# NOTE: see docs for more detailed info on creating masks
|
||||
mask: 0,900,1080,900,1080,1920,0,1920
|
||||
```
|
||||
|
||||
### Zones
|
||||
|
||||
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
|
||||
|
||||
During testing, `draw_zones` should be set in the config to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
|
||||
|
||||
To create a zone, follow the same steps above for a "Motion mask", but use the section of the web UI for creating a zone instead.
|
||||
|
||||
```yaml
|
||||
# Optional: zones for this camera
|
||||
zones:
|
||||
# Required: name of the zone
|
||||
# NOTE: This must be different than any camera names, but can match with another zone on another
|
||||
# camera.
|
||||
front_steps:
|
||||
# Required: List of x,y coordinates to define the polygon of the zone.
|
||||
# NOTE: Coordinates can be generated at https://www.image-map.net/
|
||||
coordinates: 545,1077,747,939,788,805
|
||||
# Optional: Zone level object filters.
|
||||
# NOTE: The global and camera filters are applied upstream.
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.7
|
||||
```
|
||||
|
||||
## Objects
|
||||
|
||||
```yaml
|
||||
# Optional: Camera level object filters config.
|
||||
objects:
|
||||
track:
|
||||
- person
|
||||
- car
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
min_score: 0.5
|
||||
threshold: 0.7
|
||||
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
|
||||
# Checks based on the bottom center of the bounding box of the object
|
||||
mask: 0,0,1000,0,1000,200,0,200
|
||||
```
|
||||
|
||||
## Clips
|
||||
|
||||
Frigate can save video clips without any CPU overhead for encoding by simply copying the stream directly with FFmpeg. It leverages FFmpeg's segment functionality to maintain a cache of video for each camera. The cache files are written to disk at `/tmp/cache` and do not introduce memory overhead. When an object is being tracked, it will extend the cache to ensure it can assemble a clip when the event ends. Once the event ends, it again uses FFmpeg to assemble a clip by combining the video clips without any encoding by the CPU. Assembled clips are are saved to `/media/frigate/clips`. Clips are retained according to the retention settings defined on the config for each object type.
|
||||
|
||||
:::caution
|
||||
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
|
||||
:::
|
||||
|
||||
```yaml
|
||||
clips:
|
||||
# Required: enables clips for the camera (default: shown below)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: False
|
||||
# Optional: Number of seconds before the event to include in the clips (default: shown below)
|
||||
pre_capture: 5
|
||||
# Optional: Number of seconds after the event to include in the clips (default: shown below)
|
||||
post_capture: 5
|
||||
# Optional: Objects to save clips for. (default: all tracked objects)
|
||||
objects:
|
||||
- person
|
||||
# Optional: Camera override for retention settings (default: global values)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
```
|
||||
|
||||
## Snapshots
|
||||
|
||||
Frigate can save a snapshot image to `/media/frigate/clips` for each event named as `<camera>-<id>.jpg`.
|
||||
|
||||
```yaml
|
||||
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
|
||||
snapshots:
|
||||
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: False
|
||||
# Optional: print a timestamp on the snapshots (default: shown below)
|
||||
timestamp: False
|
||||
# Optional: draw bounding box on the snapshots (default: shown below)
|
||||
bounding_box: False
|
||||
# Optional: crop the snapshot (default: shown below)
|
||||
crop: False
|
||||
# Optional: height to resize the snapshot to (default: original size)
|
||||
height: 175
|
||||
# Optional: Camera override for retention settings (default: global values)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
```
|
||||
|
||||
## 24/7 Recordings
|
||||
|
||||
24/7 recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding and are available in HomeAssistant's media browser. Each camera supports a configurable retention policy in the config.
|
||||
|
||||
:::caution
|
||||
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
|
||||
:::
|
||||
|
||||
```yaml
|
||||
# Optional: 24/7 recording configuration
|
||||
record:
|
||||
# Optional: Enable recording (default: global setting)
|
||||
enabled: False
|
||||
# Optional: Number of days to retain (default: global setting)
|
||||
retain_days: 30
|
||||
```
|
||||
|
||||
## RTMP streams
|
||||
|
||||
Frigate can re-stream your video feed as a RTMP feed for other applications such as HomeAssistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and HomeAssistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
|
||||
|
||||
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.
|
||||
|
||||
## Full example
|
||||
|
||||
The following is a full example of all of the options together for a camera configuration
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
# Required: name of the camera
|
||||
back:
|
||||
# Required: ffmpeg settings for the camera
|
||||
ffmpeg:
|
||||
# Required: A list of input streams for the camera. See documentation for more information.
|
||||
inputs:
|
||||
# Required: the path to the stream
|
||||
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
# Required: list of roles for this stream. valid values are: detect,record,clips,rtmp
|
||||
# NOTICE: In addition to assigning the record, clips, and rtmp roles,
|
||||
# they must also be enabled in the camera config.
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
# Optional: stream specific global args (default: inherit)
|
||||
global_args:
|
||||
# Optional: stream specific hwaccel args (default: inherit)
|
||||
hwaccel_args:
|
||||
# Optional: stream specific input args (default: inherit)
|
||||
input_args:
|
||||
|
||||
# Optional: camera specific global args (default: inherit)
|
||||
global_args:
|
||||
# Optional: camera specific hwaccel args (default: inherit)
|
||||
hwaccel_args:
|
||||
# Optional: camera specific input args (default: inherit)
|
||||
input_args:
|
||||
# Optional: camera specific output args (default: inherit)
|
||||
output_args:
|
||||
|
||||
# Required: width of the frame for the input with the detect role
|
||||
width: 1280
|
||||
# Required: height of the frame for the input with the detect role
|
||||
height: 720
|
||||
# Optional: desired fps for your camera for the input with the detect role
|
||||
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
|
||||
# Frigate will attempt to autodetect if not specified.
|
||||
fps: 5
|
||||
|
||||
# Optional: camera level motion config
|
||||
motion:
|
||||
# Optional: motion mask
|
||||
# NOTE: see docs for more detailed info on creating masks
|
||||
mask: 0,900,1080,900,1080,1920,0,1920
|
||||
|
||||
# Optional: timeout for highest scoring image before allowing it
|
||||
# to be replaced by a newer image. (default: shown below)
|
||||
best_image_timeout: 60
|
||||
|
||||
# Optional: zones for this camera
|
||||
zones:
|
||||
# Required: name of the zone
|
||||
# NOTE: This must be different than any camera names, but can match with another zone on another
|
||||
# camera.
|
||||
front_steps:
|
||||
# Required: List of x,y coordinates to define the polygon of the zone.
|
||||
# NOTE: Coordinates can be generated at https://www.image-map.net/
|
||||
coordinates: 545,1077,747,939,788,805
|
||||
# Optional: Zone level object filters.
|
||||
# NOTE: The global and camera filters are applied upstream.
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.7
|
||||
|
||||
# Optional: Camera level detect settings
|
||||
detect:
|
||||
# Optional: enables detection for the camera (default: True)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: True
|
||||
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: double the frame rate)
|
||||
max_disappeared: 10
|
||||
|
||||
# Optional: save clips configuration
|
||||
clips:
|
||||
# Required: enables clips for the camera (default: shown below)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: False
|
||||
# Optional: Number of seconds before the event to include in the clips (default: shown below)
|
||||
pre_capture: 5
|
||||
# Optional: Number of seconds after the event to include in the clips (default: shown below)
|
||||
post_capture: 5
|
||||
# Optional: Objects to save clips for. (default: all tracked objects)
|
||||
objects:
|
||||
- person
|
||||
# Optional: Camera override for retention settings (default: global values)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
|
||||
# Optional: 24/7 recording configuration
|
||||
record:
|
||||
# Optional: Enable recording (default: global setting)
|
||||
enabled: False
|
||||
# Optional: Number of days to retain (default: global setting)
|
||||
retain_days: 30
|
||||
|
||||
# Optional: RTMP re-stream configuration
|
||||
rtmp:
|
||||
# Required: Enable the live stream (default: True)
|
||||
enabled: True
|
||||
|
||||
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
|
||||
snapshots:
|
||||
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
|
||||
# This value can be set via MQTT and will be updated in startup based on retained value
|
||||
enabled: False
|
||||
# Optional: print a timestamp on the snapshots (default: shown below)
|
||||
timestamp: False
|
||||
# Optional: draw bounding box on the snapshots (default: shown below)
|
||||
bounding_box: False
|
||||
# Optional: crop the snapshot (default: shown below)
|
||||
crop: False
|
||||
# Optional: height to resize the snapshot to (default: original size)
|
||||
height: 175
|
||||
# Optional: Camera override for retention settings (default: global values)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
|
||||
# Optional: Configuration for the jpg snapshots published via MQTT
|
||||
mqtt:
|
||||
# Optional: Enable publishing snapshot via mqtt for camera (default: shown below)
|
||||
# NOTE: Only applies to publishing image data to MQTT via 'frigate/<camera_name>/<object_name>/snapshot'.
|
||||
# All other messages will still be published.
|
||||
enabled: True
|
||||
# Optional: print a timestamp on the snapshots (default: shown below)
|
||||
timestamp: True
|
||||
# Optional: draw bounding box on the snapshots (default: shown below)
|
||||
bounding_box: True
|
||||
# Optional: crop the snapshot (default: shown below)
|
||||
crop: True
|
||||
# Optional: height to resize the snapshot to (default: shown below)
|
||||
height: 270
|
||||
|
||||
# Optional: Camera level object filters config.
|
||||
objects:
|
||||
track:
|
||||
- person
|
||||
- car
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
min_score: 0.5
|
||||
threshold: 0.7
|
||||
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
|
||||
# Checks based on the bottom center of the bounding box of the object
|
||||
mask: 0,0,1000,0,1000,200,0,200
|
||||
```
|
||||
|
||||
## Camera specific configuration
|
||||
|
||||
### RTMP Cameras
|
||||
|
||||
The input parameters need to be adjusted for RTMP cameras
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -fflags
|
||||
- nobuffer
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
```
|
||||
|
||||
### Blue Iris RTSP Cameras
|
||||
|
||||
You will need to remove `nobuffer` flag for Blue Iris RTSP cameras
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
input_args:
|
||||
- -avoid_negative_ts
|
||||
- make_zero
|
||||
- -flags
|
||||
- low_delay
|
||||
- -strict
|
||||
- experimental
|
||||
- -fflags
|
||||
- +genpts+discardcorrupt
|
||||
- -rtsp_transport
|
||||
- tcp
|
||||
- -stimeout
|
||||
- '5000000'
|
||||
- -use_wallclock_as_timestamps
|
||||
- '1'
|
||||
```
|
||||
53
docs/docs/configuration/detectors.md
Normal file
@@ -0,0 +1,53 @@
|
||||
---
|
||||
id: detectors
|
||||
title: Detectors
|
||||
---
|
||||
|
||||
The default config will look for a USB Coral device. If you do not have a Coral, you will need to configure a CPU detector. If you have PCI or multiple Coral devices, you need to configure your detector devices in the config file. When using multiple detectors, they run in dedicated processes, but pull from a common queue of requested detections across all cameras.
|
||||
|
||||
Frigate supports `edgetpu` and `cpu` as detector types. The device value should be specified according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api).
|
||||
|
||||
**Note**: There is no support for Nvidia GPUs to perform object detection with tensorflow. It can be used for ffmpeg decoding, but not object detection.
|
||||
|
||||
Single USB Coral:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
coral:
|
||||
type: edgetpu
|
||||
device: usb
|
||||
```
|
||||
|
||||
Multiple USB Corals:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
coral1:
|
||||
type: edgetpu
|
||||
device: usb:0
|
||||
coral2:
|
||||
type: edgetpu
|
||||
device: usb:1
|
||||
```
|
||||
|
||||
Mixing Corals:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
coral_usb:
|
||||
type: edgetpu
|
||||
device: usb
|
||||
coral_pci:
|
||||
type: edgetpu
|
||||
device: pci
|
||||
```
|
||||
|
||||
CPU Detectors (not recommended):
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
cpu1:
|
||||
type: cpu
|
||||
cpu2:
|
||||
type: cpu
|
||||
```
|
||||
19
docs/docs/configuration/false_positives.md
Normal file
@@ -0,0 +1,19 @@
|
||||
---
|
||||
id: false_positives
|
||||
title: Reducing false positives
|
||||
---
|
||||
|
||||
Tune your object filters to adjust false positives: `min_area`, `max_area`, `min_score`, `threshold`.
|
||||
|
||||
For object filters in your configuration, any single detection below `min_score` will be ignored as a false positive. `threshold` is based on the median of the history of scores (padded to 3 values) for a tracked object. Consider the following frames when `min_score` is set to 0.6 and threshold is set to 0.85:
|
||||
|
||||
| Frame | Current Score | Score History | Computed Score | Detected Object |
|
||||
| ----- | ------------- | --------------------------------- | -------------- | --------------- |
|
||||
| 1 | 0.7 | 0.0, 0, 0.7 | 0.0 | No |
|
||||
| 2 | 0.55 | 0.0, 0.7, 0.0 | 0.0 | No |
|
||||
| 3 | 0.85 | 0.7, 0.0, 0.85 | 0.7 | No |
|
||||
| 4 | 0.90 | 0.7, 0.85, 0.95, 0.90 | 0.875 | Yes |
|
||||
| 5 | 0.88 | 0.7, 0.85, 0.95, 0.90, 0.88 | 0.88 | Yes |
|
||||
| 6 | 0.95 | 0.7, 0.85, 0.95, 0.90, 0.88, 0.95 | 0.89 | Yes |
|
||||
|
||||
In frame 2, the score is below the `min_score` value, so frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.
|
||||
137
docs/docs/configuration/index.md
Normal file
@@ -0,0 +1,137 @@
|
||||
---
|
||||
id: index
|
||||
title: Configuration
|
||||
---
|
||||
|
||||
HassOS users can manage their configuration directly in the addon Configuration tab. For other installations, the default location for the config file is `/config/config.yml`. This can be overridden with the `CONFIG_FILE` environment variable. Camera specific ffmpeg parameters are documented [here](/configuration/cameras.md).
|
||||
|
||||
It is recommended to start with a minimal configuration and add to it:
|
||||
|
||||
```yaml
|
||||
mqtt:
|
||||
host: mqtt.server.com
|
||||
cameras:
|
||||
back:
|
||||
ffmpeg:
|
||||
inputs:
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
width: 1280
|
||||
height: 720
|
||||
fps: 5
|
||||
```
|
||||
|
||||
## Required
|
||||
|
||||
## `mqtt`
|
||||
|
||||
```yaml
|
||||
mqtt:
|
||||
# Required: host name
|
||||
host: mqtt.server.com
|
||||
# Optional: port (default: shown below)
|
||||
port: 1883
|
||||
# Optional: topic prefix (default: shown below)
|
||||
# WARNING: must be unique if you are running multiple instances
|
||||
topic_prefix: frigate
|
||||
# Optional: client id (default: shown below)
|
||||
# WARNING: must be unique if you are running multiple instances
|
||||
client_id: frigate
|
||||
# Optional: user
|
||||
user: mqtt_user
|
||||
# Optional: password
|
||||
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}.
|
||||
# eg. password: '{FRIGATE_MQTT_PASSWORD}'
|
||||
password: password
|
||||
# Optional: interval in seconds for publishing stats (default: shown below)
|
||||
stats_interval: 60
|
||||
```
|
||||
|
||||
## `cameras`
|
||||
|
||||
Each of your cameras must be configured. The following is the minimum required to register a camera in Frigate. Check the [camera configuration page](cameras) for a complete list of options.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
# Name of your camera
|
||||
front_door:
|
||||
ffmpeg:
|
||||
inputs:
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
width: 1280
|
||||
height: 720
|
||||
fps: 5
|
||||
```
|
||||
|
||||
## Optional
|
||||
|
||||
### `clips`
|
||||
|
||||
```yaml
|
||||
clips:
|
||||
# Optional: Maximum length of time to retain video during long events. (default: shown below)
|
||||
# NOTE: If an object is being tracked for longer than this amount of time, the cache
|
||||
# will begin to expire and the resulting clip will be the last x seconds of the event.
|
||||
max_seconds: 300
|
||||
# Optional: size of tmpfs mount to create for cache files (default: not set)
|
||||
# mount -t tmpfs -o size={tmpfs_cache_size} tmpfs /tmp/cache
|
||||
# Notice: If you have mounted a tmpfs volume through docker, this value should not be set in your config
|
||||
tmpfs_cache_size: 256m
|
||||
# Optional: Retention settings for clips (default: shown below)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
```
|
||||
|
||||
### `ffmpeg`
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
# Optional: global ffmpeg args (default: shown below)
|
||||
global_args: -hide_banner -loglevel fatal
|
||||
# Optional: global hwaccel args (default: shown below)
|
||||
# NOTE: See hardware acceleration docs for your specific device
|
||||
hwaccel_args: []
|
||||
# Optional: global input args (default: shown below)
|
||||
input_args: -avoid_negative_ts make_zero -fflags +genpts+discardcorrupt -rtsp_transport tcp -stimeout 5000000 -use_wallclock_as_timestamps 1
|
||||
# Optional: global output args
|
||||
output_args:
|
||||
# Optional: output args for detect streams (default: shown below)
|
||||
detect: -f rawvideo -pix_fmt yuv420p
|
||||
# Optional: output args for record streams (default: shown below)
|
||||
record: -f segment -segment_time 60 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
|
||||
# Optional: output args for clips streams (default: shown below)
|
||||
clips: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
|
||||
# Optional: output args for rtmp streams (default: shown below)
|
||||
rtmp: -c copy -f flv
|
||||
```
|
||||
|
||||
### `objects`
|
||||
|
||||
Can be overridden at the camera level
|
||||
|
||||
```yaml
|
||||
objects:
|
||||
# Optional: list of objects to track from labelmap.txt (default: shown below)
|
||||
track:
|
||||
- person
|
||||
# Optional: filters to reduce false positives for specific object types
|
||||
filters:
|
||||
person:
|
||||
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
|
||||
min_area: 5000
|
||||
# Optional: maximum width*height of the bounding box for the detected object (default: 24000000)
|
||||
max_area: 100000
|
||||
# Optional: minimum score for the object to initiate tracking (default: shown below)
|
||||
min_score: 0.5
|
||||
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
|
||||
threshold: 0.7
|
||||
```
|
||||
110
docs/docs/configuration/nvdec.md
Normal file
@@ -0,0 +1,110 @@
|
||||
---
|
||||
id: nvdec
|
||||
title: nVidia hardware decoder
|
||||
---
|
||||
|
||||
Certain nvidia cards include a hardware decoder, which can greatly improve the
|
||||
performance of video decoding. In order to use NVDEC, a special build of
|
||||
ffmpeg with NVDEC support is required. The special docker architecture 'amd64nvidia'
|
||||
includes this support for amd64 platforms. An aarch64 for the Jetson, which
|
||||
also includes NVDEC may be added in the future.
|
||||
|
||||
## Docker setup
|
||||
|
||||
### Requirements
|
||||
|
||||
[nVidia closed source driver](https://www.nvidia.com/en-us/drivers/unix/) required to access NVDEC.
|
||||
[nvidia-docker](https://github.com/NVIDIA/nvidia-docker) required to pass NVDEC to docker.
|
||||
|
||||
### Setting up docker-compose
|
||||
|
||||
In order to pass NVDEC, the docker engine must be set to `nvidia` and the environment variables
|
||||
`NVIDIA_VISIBLE_DEVICES=all` and `NVIDIA_DRIVER_CAPABILITIES=compute,utility,video` must be set.
|
||||
|
||||
In a docker compose file, these lines need to be set:
|
||||
|
||||
```
|
||||
services:
|
||||
frigate:
|
||||
...
|
||||
image: blakeblackshear/frigate:stable-amd64nvidia
|
||||
runtime: nvidia
|
||||
environment:
|
||||
- NVIDIA_VISIBLE_DEVICES=all
|
||||
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
|
||||
```
|
||||
|
||||
### Setting up the configuration file
|
||||
|
||||
In your frigate config.yml, you'll need to set ffmpeg to use the hardware decoder.
|
||||
The decoder you choose will depend on the input video.
|
||||
|
||||
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get a list)
|
||||
|
||||
```
|
||||
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
|
||||
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
|
||||
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
|
||||
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
|
||||
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
|
||||
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
|
||||
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
|
||||
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
|
||||
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
|
||||
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
|
||||
```
|
||||
|
||||
For example, for H265 video (hevc), you'll select `hevc_cuvid`. Add
|
||||
`-c:v hevc_covid` to your ffmpeg input arguments:
|
||||
|
||||
```
|
||||
ffmpeg:
|
||||
input_args:
|
||||
...
|
||||
- -c:v
|
||||
- hevc_cuvid
|
||||
```
|
||||
|
||||
If everything is working correctly, you should see a significant improvement in performance.
|
||||
Verify that hardware decoding is working by running `nvidia-smi`, which should show the ffmpeg
|
||||
processes:
|
||||
|
||||
```
|
||||
+-----------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 455.38 Driver Version: 455.38 CUDA Version: 11.1 |
|
||||
|-------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|
||||
| | | MIG M. |
|
||||
|===============================+======================+======================|
|
||||
| 0 GeForce GTX 166... Off | 00000000:03:00.0 Off | N/A |
|
||||
| 38% 41C P2 36W / 125W | 2082MiB / 5942MiB | 5% Default |
|
||||
| | | N/A |
|
||||
+-------------------------------+----------------------+----------------------+
|
||||
|
||||
+-----------------------------------------------------------------------------+
|
||||
| Processes: |
|
||||
| GPU GI CI PID Type Process name GPU Memory |
|
||||
| ID ID Usage |
|
||||
|=============================================================================|
|
||||
| 0 N/A N/A 12737 C ffmpeg 249MiB |
|
||||
| 0 N/A N/A 12751 C ffmpeg 249MiB |
|
||||
| 0 N/A N/A 12772 C ffmpeg 249MiB |
|
||||
| 0 N/A N/A 12775 C ffmpeg 249MiB |
|
||||
| 0 N/A N/A 12800 C ffmpeg 249MiB |
|
||||
| 0 N/A N/A 12811 C ffmpeg 417MiB |
|
||||
| 0 N/A N/A 12827 C ffmpeg 417MiB |
|
||||
+-----------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
To further improve performance, you can set ffmpeg to skip frames in the output,
|
||||
using the fps filter:
|
||||
|
||||
```
|
||||
output_args:
|
||||
- -filter:v
|
||||
- fps=fps=5
|
||||
```
|
||||
|
||||
This setting, for example, allows Frigate to consume my 10-15fps camera streams on
|
||||
my relatively low powered Haswell machine with relatively low cpu usage.
|
||||
72
docs/docs/configuration/optimizing.md
Normal file
@@ -0,0 +1,72 @@
|
||||
---
|
||||
id: optimizing
|
||||
title: Optimizing performance
|
||||
---
|
||||
|
||||
- **Google Coral**: It is strongly recommended to use a Google Coral, but Frigate will fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU. Frigate should work with any supported Coral device from https://coral.ai
|
||||
- **Resolution**: For the `detect` input, choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
|
||||
- **FPS**: 5 frames per second should be adequate. Higher frame rates will require more CPU usage without improving detections or accuracy. Reducing the frame rate on your camera will have the greatest improvement on system resources.
|
||||
- **Hardware Acceleration**: Make sure you configure the `hwaccel_args` for your hardware. They provide a significant reduction in CPU usage if they are available.
|
||||
- **Masks**: Masks can be used to ignore motion and reduce your idle CPU load. If you have areas with regular motion such as timestamps or trees blowing in the wind, frigate will constantly try to determine if that motion is from a person or other object you are tracking. Those detections not only increase your average CPU usage, but also clog the pipeline for detecting objects elsewhere. If you are experiencing high values for `detection_fps` when no objects of interest are in the cameras, you should use masks to tell frigate to ignore movement from trees, bushes, timestamps, or any part of the image where detections should not be wasted looking for objects.
|
||||
|
||||
### FFmpeg Hardware Acceleration
|
||||
|
||||
Frigate works on Raspberry Pi 3b/4 and x86 machines. It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible.
|
||||
|
||||
Raspberry Pi 3/4 (32-bit OS)
|
||||
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -c:v
|
||||
- h264_mmal
|
||||
```
|
||||
|
||||
Raspberry Pi 3/4 (64-bit OS)
|
||||
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -c:v
|
||||
- h264_v4l2m2m
|
||||
```
|
||||
|
||||
Intel-based CPUs (<10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- vaapi
|
||||
- -hwaccel_device
|
||||
- /dev/dri/renderD128
|
||||
- -hwaccel_output_format
|
||||
- yuv420p
|
||||
```
|
||||
|
||||
Intel-based CPUs (>=10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- qsv
|
||||
- -qsv_device
|
||||
- /dev/dri/renderD128
|
||||
```
|
||||
|
||||
AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
**Note:** You also need to set `LIBVA_DRIVER_NAME=radeonsi` as an environment variable on the container.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- vaapi
|
||||
- -hwaccel_device
|
||||
- /dev/dri/renderD128
|
||||
```
|
||||
|
||||
Nvidia GPU based decoding via NVDEC is supported, but requires special configuration. See the [nvidia NVDEC documentation](/configuration/nvdec) for more details.
|
||||
20
docs/docs/hardware.md
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
id: hardware
|
||||
title: Recommended hardware
|
||||
---
|
||||
|
||||
## Cameras
|
||||
|
||||
Cameras that output H.264 video and AAC audio will offer the most compatibility with all features of Frigate and HomeAssistant. It is also helpful if your camera supports multiple substreams to allow different resolutions to be used for detection, streaming, clips, and recordings without re-encoding.
|
||||
|
||||
## Computer
|
||||
|
||||
| Name | Inference Speed | Notes |
|
||||
| ----------------------- | --------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Atomic Pi | 16ms | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
|
||||
| Intel NUC NUC7i3BNK | 8-10ms | Great performance. Can handle many cameras at 5fps depending on typical amounts of motion. |
|
||||
| BMAX B2 Plus | 10-12ms | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
|
||||
| Minisforum GK41 | 9-10ms | Great alternative to a NUC with dual Gigabit NICs. Easily handles several 1080p cameras. |
|
||||
| Raspberry Pi 3B (32bit) | 60ms | Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0. |
|
||||
| Raspberry Pi 4 (32bit) | 15-20ms | Can handle a small number of cameras. The 2GB version runs fine. |
|
||||
| Raspberry Pi 4 (64bit) | 10-15ms | Can handle a small number of cameras. The 2GB version runs fine. |
|
||||
13
docs/docs/how-it-works.md
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
id: how-it-works
|
||||
title: How Frigate Works
|
||||
sidebar_label: How it works
|
||||
---
|
||||
|
||||
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
|
||||
|
||||

|
||||
|
||||
1. Look for Motion
|
||||
2. Calculate Detection Regions
|
||||
3. Run Object Detection
|
||||
25
docs/docs/index.md
Normal file
@@ -0,0 +1,25 @@
|
||||
---
|
||||
id: index
|
||||
title: Frigate
|
||||
sidebar_label: Features
|
||||
slug: /
|
||||
---
|
||||
|
||||
A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
|
||||
|
||||
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
|
||||
|
||||
- Tight integration with HomeAssistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
|
||||
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
|
||||
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
|
||||
- Uses a very low overhead motion detection to determine where to run object detection
|
||||
- Object detection with TensorFlow runs in separate processes for maximum FPS
|
||||
- Communicates over MQTT for easy integration into other systems
|
||||
- 24/7 recording
|
||||
- Re-streaming via RTMP to reduce the number of connections to your camera
|
||||
|
||||
## Screenshots
|
||||
|
||||

|
||||
|
||||

|
||||
115
docs/docs/installation.md
Normal file
@@ -0,0 +1,115 @@
|
||||
---
|
||||
id: installation
|
||||
title: Installation
|
||||
---
|
||||
|
||||
Frigate is a Docker container that can be run on any Docker host including as a [HassOS Addon](https://www.home-assistant.io/addons/). See instructions below for installing the HassOS addon.
|
||||
|
||||
For HomeAssistant users, there is also a [custom component (aka integration)](https://github.com/blakeblackshear/frigate-hass-integration). This custom component adds tighter integration with HomeAssistant by automatically setting up camera entities, sensors, media browser for clips and recordings, and a public API to simplify notifications.
|
||||
|
||||
Note that HassOS Addons and custom components are different things. If you are already running Frigate with Docker directly, you do not need the Addon since the Addon would run another instance of Frigate.
|
||||
|
||||
## HassOS Addon
|
||||
|
||||
HassOS users can install via the addon repository. Frigate requires an MQTT server.
|
||||
|
||||
1. Navigate to Supervisor > Add-on Store > Repositories
|
||||
1. Add https://github.com/blakeblackshear/frigate-hass-addons
|
||||
1. Setup your configuration in the `Configuration` tab
|
||||
1. Start the addon container
|
||||
|
||||
## Docker
|
||||
|
||||
Make sure you choose the right image for your architecture:
|
||||
|
||||
|Arch|Image Name|
|
||||
|-|-|
|
||||
|amd64|blakeblackshear/frigate:stable-amd64|
|
||||
|amd64nvidia|blakeblackshear/frigate:stable-amd64nvidia|
|
||||
|armv7|blakeblackshear/frigate:stable-armv7|
|
||||
|aarch64|blakeblackshear/frigate:stable-aarch64|
|
||||
|
||||
It is recommended to run with docker-compose:
|
||||
|
||||
```yaml
|
||||
version: '3.6'
|
||||
services:
|
||||
frigate:
|
||||
container_name: frigate
|
||||
restart: unless-stopped
|
||||
privileged: true
|
||||
image: blakeblackshear/frigate:0.8.0-beta2-amd64
|
||||
volumes:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
- <path_to_config>:/config
|
||||
- <path_to_directory_for_clips>:/media/frigate/clips
|
||||
- <path_to_directory_for_recordings>:/media/frigate/recordings
|
||||
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
|
||||
target: /tmp/cache
|
||||
tmpfs:
|
||||
size: 1000000000
|
||||
ports:
|
||||
- '5000:5000'
|
||||
- '1935:1935' # RTMP feeds
|
||||
environment:
|
||||
FRIGATE_RTSP_PASSWORD: 'password'
|
||||
```
|
||||
|
||||
If you can't use docker compose, you can run the container with something similar to this:
|
||||
|
||||
```bash
|
||||
docker run --rm \
|
||||
--name frigate \
|
||||
--privileged \
|
||||
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
|
||||
-v /dev/bus/usb:/dev/bus/usb \
|
||||
-v <path_to_directory_for_clips>:/media/frigate/clips \
|
||||
-v <path_to_directory_for_recordings>:/media/frigate/recordings \
|
||||
-v <path_to_config>:/config:ro \
|
||||
-v /etc/localtime:/etc/localtime:ro \
|
||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||
-p 5000:5000 \
|
||||
-p 1935:1935 \
|
||||
blakeblackshear/frigate:0.8.0-beta2-amd64
|
||||
```
|
||||
|
||||
## Kubernetes
|
||||
|
||||
Use the [helm chart](https://github.com/k8s-at-home/charts/tree/master/charts/frigate).
|
||||
|
||||
## Virtualization
|
||||
|
||||
For ideal performance, Frigate needs access to underlying hardware for the Coral and GPU devices for ffmpeg decoding. Running Frigate in a VM on top of Proxmox, ESXi, Virtualbox, etc. is not recommended. The virtualization layer typically introduces a sizable amount of overhead for communication with Coral devices.
|
||||
|
||||
## Proxmox
|
||||
|
||||
Some people have had success running Frigate in LXC directly with the following config:
|
||||
|
||||
```
|
||||
arch: amd64
|
||||
cores: 2
|
||||
features: nesting=1
|
||||
hostname: FrigateLXC
|
||||
memory: 4096
|
||||
net0: name=eth0,bridge=vmbr0,firewall=1,hwaddr=2E:76:AE:5A:58:48,ip=dhcp,ip6=auto,type=veth
|
||||
ostype: debian
|
||||
rootfs: local-lvm:vm-115-disk-0,size=12G
|
||||
swap: 512
|
||||
lxc.cgroup.devices.allow: c 189:385 rwm
|
||||
lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file
|
||||
lxc.mount.entry: /dev/bus/usb/004/002 dev/bus/usb/004/002 none bind,optional,create=file
|
||||
lxc.apparmor.profile: unconfined
|
||||
lxc.cgroup.devices.allow: a
|
||||
lxc.cap.drop:
|
||||
```
|
||||
|
||||
### Calculating shm-size
|
||||
|
||||
The default shm-size of 64m is fine for setups with 3 or less 1080p cameras. If frigate is exiting with "Bus error" messages, it could be because you have too many high resolution cameras and you need to specify a higher shm size.
|
||||
|
||||
You can calculate the necessary shm-size for each camera with the following formula:
|
||||
|
||||
```
|
||||
(width * height * 1.5 * 7 + 270480)/1048576 = <shm size in mb>
|
||||
```
|
||||
17
docs/docs/mdx.md
Normal file
@@ -0,0 +1,17 @@
|
||||
---
|
||||
id: mdx
|
||||
title: Powered by MDX
|
||||
---
|
||||
|
||||
You can write JSX and use React components within your Markdown thanks to [MDX](https://mdxjs.com/).
|
||||
|
||||
export const Highlight = ({children, color}) => ( <span style={{
|
||||
backgroundColor: color,
|
||||
borderRadius: '2px',
|
||||
color: '#fff',
|
||||
padding: '0.2rem',
|
||||
}}>{children}</span> );
|
||||
|
||||
<Highlight color="#25c2a0">Docusaurus green</Highlight> and <Highlight color="#1877F2">Facebook blue</Highlight> are my favorite colors.
|
||||
|
||||
I can write **Markdown** alongside my _JSX_!
|
||||
26
docs/docs/troubleshooting.md
Normal file
@@ -0,0 +1,26 @@
|
||||
---
|
||||
id: troubleshooting
|
||||
title: Troubleshooting
|
||||
---
|
||||
|
||||
### My mjpeg stream or snapshots look green and crazy
|
||||
This almost always means that the width/height defined for your camera are not correct. Double check the resolution with vlc or another player. Also make sure you don't have the width and height values backwards.
|
||||
|
||||

|
||||
|
||||
## "[mov,mp4,m4a,3gp,3g2,mj2 @ 0x5639eeb6e140] moov atom not found"
|
||||
|
||||
These messages in the logs are expected in certain situations. Frigate checks the integrity of the video cache before assembling clips. Occasionally these cached files will be invalid and cleaned up automatically.
|
||||
|
||||
## "ffmpeg didnt return a frame. something is wrong"
|
||||
|
||||
Turn on logging for the ffmpeg process by overriding the global_args and setting the log level to `info` (the default is `fatal`). Note that all ffmpeg logs show up in the Frigate logs as `ERROR` level. This does not mean they are actually errors.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
global_args: -hide_banner -loglevel info
|
||||
```
|
||||
|
||||
## "On connect called"
|
||||
|
||||
If you see repeated "On connect called" messages in your config, check for another instance of frigate. This happens when multiple frigate containers are trying to connect to mqtt with the same client_id.
|
||||
179
docs/docs/usage/api.md
Normal file
@@ -0,0 +1,179 @@
|
||||
---
|
||||
id: api
|
||||
title: HTTP API
|
||||
---
|
||||
|
||||
A web server is available on port 5000 with the following endpoints.
|
||||
|
||||
### `/api/<camera_name>`
|
||||
|
||||
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
|
||||
|
||||
Accepts the following query string parameters:
|
||||
|
||||
| param | Type | Description |
|
||||
| ----------- | ---- | ------------------------------------------------------------------ |
|
||||
| `fps` | int | Frame rate |
|
||||
| `h` | int | Height in pixels |
|
||||
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
|
||||
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
|
||||
| `zones` | int | Draw the zones on the image (0 or 1) |
|
||||
| `mask` | int | Overlay the mask on the image (0 or 1) |
|
||||
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
|
||||
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
|
||||
|
||||
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`.
|
||||
|
||||
### `/api/<camera_name>/<object_name>/best.jpg[?h=300&crop=1]`
|
||||
|
||||
The best snapshot for any object type. It is a full resolution image by default.
|
||||
|
||||
Example parameters:
|
||||
|
||||
- `h=300`: resizes the image to 300 pixes tall
|
||||
- `crop=1`: crops the image to the region of the detection rather than returning the entire image
|
||||
|
||||
### `/api/<camera_name>/latest.jpg[?h=300]`
|
||||
|
||||
The most recent frame that frigate has finished processing. It is a full resolution image by default.
|
||||
|
||||
Accepts the following query string parameters:
|
||||
|
||||
| param | Type | Description |
|
||||
| ----------- | ---- | ------------------------------------------------------------------ |
|
||||
| `h` | int | Height in pixels |
|
||||
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
|
||||
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
|
||||
| `zones` | int | Draw the zones on the image (0 or 1) |
|
||||
| `mask` | int | Overlay the mask on the image (0 or 1) |
|
||||
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
|
||||
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
|
||||
|
||||
Example parameters:
|
||||
|
||||
- `h=300`: resizes the image to 300 pixes tall
|
||||
|
||||
### `/api/stats`
|
||||
|
||||
Contains some granular debug info that can be used for sensors in HomeAssistant.
|
||||
|
||||
Sample response:
|
||||
|
||||
```json
|
||||
{
|
||||
/* Per Camera Stats */
|
||||
"back": {
|
||||
/***************
|
||||
* Frames per second being consumed from your camera. If this is higher
|
||||
* than it is supposed to be, you should set -r FPS in your input_args.
|
||||
* camera_fps = process_fps + skipped_fps
|
||||
***************/
|
||||
"camera_fps": 5.0,
|
||||
/***************
|
||||
* Number of times detection is run per second. This can be higher than
|
||||
* your camera FPS because frigate often looks at the same frame multiple times
|
||||
* or in multiple locations
|
||||
***************/
|
||||
"detection_fps": 1.5,
|
||||
/***************
|
||||
* PID for the ffmpeg process that consumes this camera
|
||||
***************/
|
||||
"capture_pid": 27,
|
||||
/***************
|
||||
* PID for the process that runs detection for this camera
|
||||
***************/
|
||||
"pid": 34,
|
||||
/***************
|
||||
* Frames per second being processed by frigate.
|
||||
***************/
|
||||
"process_fps": 5.1,
|
||||
/***************
|
||||
* Frames per second skip for processing by frigate.
|
||||
***************/
|
||||
"skipped_fps": 0.0
|
||||
},
|
||||
/***************
|
||||
* Sum of detection_fps across all cameras and detectors.
|
||||
* This should be the sum of all detection_fps values from cameras.
|
||||
***************/
|
||||
"detection_fps": 5.0,
|
||||
/* Detectors Stats */
|
||||
"detectors": {
|
||||
"coral": {
|
||||
/***************
|
||||
* Timestamp when object detection started. If this value stays non-zero and constant
|
||||
* for a long time, that means the detection process is stuck.
|
||||
***************/
|
||||
"detection_start": 0.0,
|
||||
/***************
|
||||
* Time spent running object detection in milliseconds.
|
||||
***************/
|
||||
"inference_speed": 10.48,
|
||||
/***************
|
||||
* PID for the shared process that runs object detection on the Coral.
|
||||
***************/
|
||||
"pid": 25321
|
||||
}
|
||||
},
|
||||
"service": {
|
||||
/* Uptime in seconds */
|
||||
"uptime": 10,
|
||||
"version": "0.8.0-8883709"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `/api/config`
|
||||
|
||||
A json representation of your configuration
|
||||
|
||||
### `/api/version`
|
||||
|
||||
Version info
|
||||
|
||||
### `/api/events`
|
||||
|
||||
Events from the database. Accepts the following query string parameters:
|
||||
|
||||
| param | Type | Description |
|
||||
| -------------- | ---- | --------------------------------------------- |
|
||||
| `before` | int | Epoch time |
|
||||
| `after` | int | Epoch time |
|
||||
| `camera` | str | Camera name |
|
||||
| `label` | str | Label name |
|
||||
| `zone` | str | Zone name |
|
||||
| `limit` | int | Limit the number of events returned |
|
||||
| `has_snapshot` | int | Filter to events that have snapshots (0 or 1) |
|
||||
| `has_clip` | int | Filter to events that have clips (0 or 1) |
|
||||
|
||||
### `/api/events/summary`
|
||||
|
||||
Returns summary data for events in the database. Used by the HomeAssistant integration.
|
||||
|
||||
### `/api/events/<id>`
|
||||
|
||||
Returns data for a single event.
|
||||
|
||||
### `/api/events/<id>/thumbnail.jpg`
|
||||
|
||||
Returns a thumbnail for the event id optimized for notifications. Works while the event is in progress and after completion. Passing `?format=android` will convert the thumbnail to 2:1 aspect ratio.
|
||||
|
||||
### `/api/events/<id>/snapshot.jpg`
|
||||
Returns the snapshot image for the event id. Works while the event is in progress and after completion.
|
||||
|
||||
Accepts the following query string parameters, but they are only applied when an event is in progress. After the event is completed, the saved snapshot is returned from disk without modification:
|
||||
|
||||
|param|Type|Description|
|
||||
|----|-----|--|
|
||||
|`h`|int|Height in pixels|
|
||||
|`bbox`|int|Show bounding boxes for detected objects (0 or 1)|
|
||||
|`timestamp`|int|Print the timestamp in the upper left (0 or 1)|
|
||||
|`crop`|int|Crop the snapshot to the (0 or 1)|
|
||||
|
||||
### `/clips/<camera>-<id>.mp4`
|
||||
|
||||
Video clip for the given camera and event id.
|
||||
|
||||
### `/clips/<camera>-<id>.jpg`
|
||||
|
||||
JPG snapshot for the given camera and event id.
|
||||
120
docs/docs/usage/home-assistant.md
Normal file
@@ -0,0 +1,120 @@
|
||||
---
|
||||
id: home-assistant
|
||||
title: Integration with Home Assistant
|
||||
sidebar_label: Home Assistant
|
||||
---
|
||||
|
||||
The best way to integrate with HomeAssistant is to use the [official integration](https://github.com/blakeblackshear/frigate-hass-integration). When configuring the integration, you will be asked for the `Host` of your frigate instance. This value should be the url you use to access Frigate in the browser and will look like `http://<host>:5000/`. If you are using HassOS with the addon, the host should be `http://ccab4aaf-frigate:5000` (or `http://ccab4aaf-frigate-beta:5000` if your are using the beta version of the addon). HomeAssistant needs access to port 5000 (api) and 1935 (rtmp) for all features. The integration will setup the following entities within HomeAssistant:
|
||||
|
||||
## Sensors:
|
||||
|
||||
- Stats to monitor frigate performance
|
||||
- Object counts for all zones and cameras
|
||||
|
||||
## Cameras:
|
||||
|
||||
- Cameras for image of the last detected object for each camera
|
||||
- Camera entities with stream support (requires RTMP)
|
||||
|
||||
## Media Browser:
|
||||
|
||||
- Rich UI with thumbnails for browsing event clips
|
||||
- Rich UI for browsing 24/7 recordings by month, day, camera, time
|
||||
|
||||
## API:
|
||||
|
||||
- Notification API with public facing endpoints for images in notifications
|
||||
|
||||
### Notifications
|
||||
|
||||
Frigate publishes event information in the form of a change feed via MQTT. This allows lots of customization for notifications to meet your needs. Event changes are published with `before` and `after` information as shown [here](#frigateevents).
|
||||
|
||||
Here is a simple example of a notification automation of events which will update the existing notification for each change. This means the image you see in the notification will update as frigate finds a "better" image.
|
||||
|
||||
```yaml
|
||||
automation:
|
||||
- alias: Notify of events
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
|
||||
data:
|
||||
image: 'https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg?format=android'
|
||||
tag: '{{trigger.payload_json["after"]["id"]}}'
|
||||
```
|
||||
|
||||
```yaml
|
||||
automation:
|
||||
- alias: When a person enters a zone named yard
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
conditions:
|
||||
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
|
||||
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
|
||||
data:
|
||||
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
|
||||
tag: "{{trigger.payload_json['after']['id']}}"
|
||||
```
|
||||
|
||||
```yaml
|
||||
- alias: When a person leaves a zone named yard
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
conditions:
|
||||
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
|
||||
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
|
||||
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
|
||||
data:
|
||||
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
|
||||
tag: "{{trigger.payload_json['after']['id']}}"
|
||||
```
|
||||
|
||||
```yaml
|
||||
- alias: Notify for dogs in the front with a high top score
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
conditions:
|
||||
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
|
||||
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
|
||||
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: 'High confidence dog detection.'
|
||||
data:
|
||||
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
|
||||
tag: "{{trigger.payload_json['after']['id']}}"
|
||||
```
|
||||
|
||||
If you are using telegram, you can fetch the image directly from Frigate:
|
||||
|
||||
```yaml
|
||||
automation:
|
||||
- alias: Notify of events
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
action:
|
||||
- service: notify.telegram_full
|
||||
data_template:
|
||||
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
|
||||
data:
|
||||
photo:
|
||||
# this url should work for addon users
|
||||
- url: 'http://ccab4aaf-frigate:5000/api/events/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg'
|
||||
caption: 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
|
||||
```
|
||||
99
docs/docs/usage/mqtt.md
Normal file
@@ -0,0 +1,99 @@
|
||||
---
|
||||
id: mqtt
|
||||
title: MQTT
|
||||
---
|
||||
|
||||
These are the MQTT messages generated by Frigate. The default topic_prefix is `frigate`, but can be changed in the config file.
|
||||
|
||||
### `frigate/available`
|
||||
|
||||
Designed to be used as an availability topic with HomeAssistant. Possible message are:
|
||||
"online": published when frigate is running (on startup)
|
||||
"offline": published right before frigate stops
|
||||
|
||||
### `frigate/<camera_name>/<object_name>`
|
||||
|
||||
Publishes the count of objects for the camera for use as a sensor in HomeAssistant.
|
||||
|
||||
### `frigate/<zone_name>/<object_name>`
|
||||
|
||||
Publishes the count of objects for the zone for use as a sensor in HomeAssistant.
|
||||
|
||||
### `frigate/<camera_name>/<object_name>/snapshot`
|
||||
|
||||
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
|
||||
is published again.
|
||||
|
||||
The height and crop of snapshots can be configured in the config.
|
||||
|
||||
### `frigate/events`
|
||||
|
||||
Message published for each changed event. The first message is published when the tracked object is no longer marked as a false_positive. When frigate finds a better snapshot of the tracked object or when a zone change occurs, it will publish a message with the same id. When the event ends, a final message is published with `end_time` set.
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "update", // new, update, or end
|
||||
"before": {
|
||||
"id": "1607123955.475377-mxklsc",
|
||||
"camera": "front_door",
|
||||
"frame_time": 1607123961.837752,
|
||||
"label": "person",
|
||||
"top_score": 0.958984375,
|
||||
"false_positive": false,
|
||||
"start_time": 1607123955.475377,
|
||||
"end_time": null,
|
||||
"score": 0.7890625,
|
||||
"box": [424, 500, 536, 712],
|
||||
"area": 23744,
|
||||
"region": [264, 450, 667, 853],
|
||||
"current_zones": ["driveway"],
|
||||
"entered_zones": ["yard", "driveway"],
|
||||
"thumbnail": null
|
||||
},
|
||||
"after": {
|
||||
"id": "1607123955.475377-mxklsc",
|
||||
"camera": "front_door",
|
||||
"frame_time": 1607123962.082975,
|
||||
"label": "person",
|
||||
"top_score": 0.958984375,
|
||||
"false_positive": false,
|
||||
"start_time": 1607123955.475377,
|
||||
"end_time": null,
|
||||
"score": 0.87890625,
|
||||
"box": [432, 496, 544, 854],
|
||||
"area": 40096,
|
||||
"region": [218, 440, 693, 915],
|
||||
"current_zones": ["yard", "driveway"],
|
||||
"entered_zones": ["yard", "driveway"],
|
||||
"thumbnail": null
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### `frigate/stats`
|
||||
|
||||
Same data available at `/api/stats` published at a configurable interval.
|
||||
|
||||
### `frigate/<camera_name>/detect/set`
|
||||
|
||||
Topic to turn detection for a camera on and off. Expected values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/detect/state`
|
||||
|
||||
Topic with current state of detection for a camera. Published values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/clips/set`
|
||||
|
||||
Topic to turn clips for a camera on and off. Expected values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/clips/state`
|
||||
|
||||
Topic with current state of clips for a camera. Published values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/snapshots/set`
|
||||
|
||||
Topic to turn snapshots for a camera on and off. Expected values are `ON` and `OFF`.
|
||||
|
||||
### `frigate/<camera_name>/snapshots/state`
|
||||
|
||||
Topic with current state of snapshots for a camera. Published values are `ON` and `OFF`.
|
||||
10
docs/docs/usage/web.md
Normal file
@@ -0,0 +1,10 @@
|
||||
---
|
||||
id: web
|
||||
title: Web Interface
|
||||
---
|
||||
|
||||
Frigate comes bundled with a simple web ui that supports the following:
|
||||
|
||||
- Show cameras
|
||||
- Browse events
|
||||
- Mask helper
|
||||
76
docs/docusaurus.config.js
Normal file
@@ -0,0 +1,76 @@
|
||||
module.exports = {
|
||||
title: 'Frigate',
|
||||
tagline: 'NVR With Realtime Object Detection for IP Cameras',
|
||||
url: 'https://blakeblackshear.github.io',
|
||||
baseUrl: '/frigate/',
|
||||
onBrokenLinks: 'throw',
|
||||
onBrokenMarkdownLinks: 'warn',
|
||||
favicon: 'img/favicon.ico',
|
||||
organizationName: 'blakeblackshear',
|
||||
projectName: 'frigate',
|
||||
themeConfig: {
|
||||
algolia: {
|
||||
apiKey: '81ec882db78f7fed05c51daf973f0362',
|
||||
indexName: 'frigate'
|
||||
},
|
||||
navbar: {
|
||||
title: 'Frigate',
|
||||
logo: {
|
||||
alt: 'Frigate',
|
||||
src: 'img/logo.svg',
|
||||
srcDark: 'img/logo-dark.svg',
|
||||
},
|
||||
items: [
|
||||
{
|
||||
to: '/',
|
||||
activeBasePath: 'docs',
|
||||
label: 'Docs',
|
||||
position: 'left',
|
||||
},
|
||||
{
|
||||
href: 'https://github.com/blakeblackshear/frigate',
|
||||
label: 'GitHub',
|
||||
position: 'right',
|
||||
},
|
||||
],
|
||||
},
|
||||
sidebarCollapsible: false,
|
||||
hideableSidebar: true,
|
||||
footer: {
|
||||
style: 'dark',
|
||||
links: [
|
||||
{
|
||||
title: 'Community',
|
||||
items: [
|
||||
{
|
||||
label: 'GitHub',
|
||||
href: 'https://github.com/blakeblackshear/frigate',
|
||||
},
|
||||
{
|
||||
label: 'Discussions',
|
||||
href: 'https://github.com/blakeblackshear/frigate/discussions',
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
copyright: `Copyright © ${new Date().getFullYear()} Blake Blackshear`,
|
||||
},
|
||||
},
|
||||
presets: [
|
||||
[
|
||||
'@docusaurus/preset-classic',
|
||||
{
|
||||
docs: {
|
||||
routeBasePath: '/',
|
||||
sidebarPath: require.resolve('./sidebars.js'),
|
||||
// Please change this to your repo.
|
||||
editUrl: 'https://github.com/blakeblackshear/frigate/edit/master/docs/',
|
||||
},
|
||||
|
||||
theme: {
|
||||
customCss: require.resolve('./src/css/custom.css'),
|
||||
},
|
||||
},
|
||||
],
|
||||
],
|
||||
};
|
||||
14035
docs/package-lock.json
generated
Normal file
34
docs/package.json
Normal file
@@ -0,0 +1,34 @@
|
||||
{
|
||||
"name": "docs",
|
||||
"version": "0.0.0",
|
||||
"private": true,
|
||||
"scripts": {
|
||||
"docusaurus": "docusaurus",
|
||||
"start": "docusaurus start",
|
||||
"build": "docusaurus build",
|
||||
"swizzle": "docusaurus swizzle",
|
||||
"deploy": "docusaurus deploy",
|
||||
"serve": "docusaurus serve",
|
||||
"clear": "docusaurus clear"
|
||||
},
|
||||
"dependencies": {
|
||||
"@docusaurus/core": "2.0.0-alpha.70",
|
||||
"@docusaurus/preset-classic": "2.0.0-alpha.70",
|
||||
"@mdx-js/react": "^1.6.21",
|
||||
"clsx": "^1.1.1",
|
||||
"react": "^16.8.4",
|
||||
"react-dom": "^16.8.4"
|
||||
},
|
||||
"browserslist": {
|
||||
"production": [
|
||||
">0.5%",
|
||||
"not dead",
|
||||
"not op_mini all"
|
||||
],
|
||||
"development": [
|
||||
"last 1 chrome version",
|
||||
"last 1 firefox version",
|
||||
"last 1 safari version"
|
||||
]
|
||||
}
|
||||
}
|
||||
14
docs/sidebars.js
Normal file
@@ -0,0 +1,14 @@
|
||||
module.exports = {
|
||||
docs: {
|
||||
Frigate: ['index', 'how-it-works', 'hardware', 'installation', 'troubleshooting'],
|
||||
Configuration: [
|
||||
'configuration/index',
|
||||
'configuration/cameras',
|
||||
'configuration/optimizing',
|
||||
'configuration/detectors',
|
||||
'configuration/false_positives',
|
||||
'configuration/advanced',
|
||||
],
|
||||
Usage: ['usage/home-assistant', 'usage/web', 'usage/api', 'usage/mqtt'],
|
||||
},
|
||||
};
|
||||
25
docs/src/css/custom.css
Normal file
@@ -0,0 +1,25 @@
|
||||
/* stylelint-disable docusaurus/copyright-header */
|
||||
/**
|
||||
* Any CSS included here will be global. The classic template
|
||||
* bundles Infima by default. Infima is a CSS framework designed to
|
||||
* work well for content-centric websites.
|
||||
*/
|
||||
|
||||
/* You can override the default Infima variables here. */
|
||||
:root {
|
||||
--ifm-color-primary: #3b82f7;
|
||||
--ifm-color-primary-dark: #1d4ed8;
|
||||
--ifm-color-primary-darker: #1e40af;
|
||||
--ifm-color-primary-darkest: #1e3a8a;
|
||||
--ifm-color-primary-light: #60a5fa;
|
||||
--ifm-color-primary-lighter: #93c5fd;
|
||||
--ifm-color-primary-lightest: #dbeafe;
|
||||
--ifm-code-font-size: 95%;
|
||||
}
|
||||
|
||||
.docusaurus-highlight-code-line {
|
||||
background-color: rgb(72, 77, 91);
|
||||
display: block;
|
||||
margin: 0 calc(-1 * var(--ifm-pre-padding));
|
||||
padding: 0 var(--ifm-pre-padding);
|
||||
}
|
||||
0
docs/static/.nojekyll
vendored
Normal file
BIN
docs/static/img/camera-ui.png
vendored
Normal file
|
After Width: | Height: | Size: 944 KiB |
BIN
docs/static/img/diagram.png
vendored
Normal file
|
After Width: | Height: | Size: 132 KiB |
BIN
docs/static/img/events-ui.png
vendored
Normal file
|
After Width: | Height: | Size: 132 KiB |
BIN
docs/static/img/example-mask-poly.png
vendored
Normal file
|
After Width: | Height: | Size: 1.1 MiB |
BIN
docs/static/img/favicon.ico
vendored
Normal file
|
After Width: | Height: | Size: 15 KiB |
BIN
docs/static/img/frigate.png
vendored
Normal file
|
After Width: | Height: | Size: 12 KiB |
BIN
docs/static/img/home-ui.png
vendored
Normal file
|
After Width: | Height: | Size: 2.2 MiB |
3
docs/static/img/logo-dark.svg
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.4999 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="white"/>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 936 B |
3
docs/static/img/logo.svg
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.5 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="black"/>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 933 B |
BIN
docs/static/img/media_browser.png
vendored
Normal file
|
After Width: | Height: | Size: 781 KiB |
BIN
docs/static/img/mismatched-resolution.jpg
vendored
Normal file
|
After Width: | Height: | Size: 64 KiB |
BIN
docs/static/img/notification.png
vendored
Normal file
|
After Width: | Height: | Size: 1.5 MiB |
0
frigate/__init__.py
Normal file
15
frigate/__main__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
import faulthandler; faulthandler.enable()
|
||||
import sys
|
||||
import threading
|
||||
|
||||
threading.current_thread().name = "frigate"
|
||||
|
||||
from frigate.app import FrigateApp
|
||||
|
||||
cli = sys.modules['flask.cli']
|
||||
cli.show_server_banner = lambda *x: None
|
||||
|
||||
if __name__ == '__main__':
|
||||
frigate_app = FrigateApp()
|
||||
|
||||
frigate_app.start()
|
||||
262
frigate/app.py
Normal file
@@ -0,0 +1,262 @@
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
from logging.handlers import QueueHandler
|
||||
from typing import Dict, List
|
||||
import sys
|
||||
import signal
|
||||
|
||||
import yaml
|
||||
from peewee_migrate import Router
|
||||
from playhouse.sqlite_ext import SqliteExtDatabase
|
||||
from playhouse.sqliteq import SqliteQueueDatabase
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
|
||||
from frigate.edgetpu import EdgeTPUProcess
|
||||
from frigate.events import EventProcessor, EventCleanup
|
||||
from frigate.http import create_app
|
||||
from frigate.log import log_process, root_configurer
|
||||
from frigate.models import Event
|
||||
from frigate.mqtt import create_mqtt_client
|
||||
from frigate.object_processing import TrackedObjectProcessor
|
||||
from frigate.record import RecordingMaintainer
|
||||
from frigate.stats import StatsEmitter, stats_init
|
||||
from frigate.video import capture_camera, track_camera
|
||||
from frigate.watchdog import FrigateWatchdog
|
||||
from frigate.zeroconf import broadcast_zeroconf
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class FrigateApp():
|
||||
def __init__(self):
|
||||
self.stop_event = mp.Event()
|
||||
self.config: FrigateConfig = None
|
||||
self.detection_queue = mp.Queue()
|
||||
self.detectors: Dict[str, EdgeTPUProcess] = {}
|
||||
self.detection_out_events: Dict[str, mp.Event] = {}
|
||||
self.detection_shms: List[mp.shared_memory.SharedMemory] = []
|
||||
self.log_queue = mp.Queue()
|
||||
self.camera_metrics = {}
|
||||
|
||||
def set_environment_vars(self):
|
||||
for key, value in self.config.environment_vars.items():
|
||||
os.environ[key] = value
|
||||
|
||||
def ensure_dirs(self):
|
||||
for d in [RECORD_DIR, CLIPS_DIR, CACHE_DIR]:
|
||||
if not os.path.exists(d) and not os.path.islink(d):
|
||||
logger.info(f"Creating directory: {d}")
|
||||
os.makedirs(d)
|
||||
else:
|
||||
logger.debug(f"Skipping directory: {d}")
|
||||
|
||||
tmpfs_size = self.config.clips.tmpfs_cache_size
|
||||
if tmpfs_size:
|
||||
logger.info(f"Creating tmpfs of size {tmpfs_size}")
|
||||
rc = os.system(f"mount -t tmpfs -o size={tmpfs_size} tmpfs {CACHE_DIR}")
|
||||
if rc != 0:
|
||||
logger.error(f"Failed to create tmpfs, error code: {rc}")
|
||||
|
||||
def init_logger(self):
|
||||
self.log_process = mp.Process(target=log_process, args=(self.log_queue,), name='log_process')
|
||||
self.log_process.daemon = True
|
||||
self.log_process.start()
|
||||
root_configurer(self.log_queue)
|
||||
|
||||
def init_config(self):
|
||||
config_file = os.environ.get('CONFIG_FILE', '/config/config.yml')
|
||||
self.config = FrigateConfig(config_file=config_file)
|
||||
|
||||
for camera_name in self.config.cameras.keys():
|
||||
# create camera_metrics
|
||||
self.camera_metrics[camera_name] = {
|
||||
'camera_fps': mp.Value('d', 0.0),
|
||||
'skipped_fps': mp.Value('d', 0.0),
|
||||
'process_fps': mp.Value('d', 0.0),
|
||||
'detection_enabled': mp.Value('i', self.config.cameras[camera_name].detect.enabled),
|
||||
'detection_fps': mp.Value('d', 0.0),
|
||||
'detection_frame': mp.Value('d', 0.0),
|
||||
'read_start': mp.Value('d', 0.0),
|
||||
'ffmpeg_pid': mp.Value('i', 0),
|
||||
'frame_queue': mp.Queue(maxsize=2),
|
||||
}
|
||||
|
||||
def check_config(self):
|
||||
for name, camera in self.config.cameras.items():
|
||||
assigned_roles = list(set([r for i in camera.ffmpeg.inputs for r in i.roles]))
|
||||
if not camera.clips.enabled and 'clips' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has clips assigned to an input, but clips is not enabled.")
|
||||
elif camera.clips.enabled and not 'clips' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has clips enabled, but clips is not assigned to an input.")
|
||||
|
||||
if not camera.record.enabled and 'record' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has record assigned to an input, but record is not enabled.")
|
||||
elif camera.record.enabled and not 'record' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has record enabled, but record is not assigned to an input.")
|
||||
|
||||
if not camera.rtmp.enabled and 'rtmp' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled.")
|
||||
elif camera.rtmp.enabled and not 'rtmp' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input.")
|
||||
|
||||
def set_log_levels(self):
|
||||
logging.getLogger().setLevel(self.config.logger.default)
|
||||
for log, level in self.config.logger.logs.items():
|
||||
logging.getLogger(log).setLevel(level)
|
||||
|
||||
if not 'werkzeug' in self.config.logger.logs:
|
||||
logging.getLogger('werkzeug').setLevel('ERROR')
|
||||
|
||||
def init_queues(self):
|
||||
# Queues for clip processing
|
||||
self.event_queue = mp.Queue()
|
||||
self.event_processed_queue = mp.Queue()
|
||||
|
||||
# Queue for cameras to push tracked objects to
|
||||
self.detected_frames_queue = mp.Queue(maxsize=len(self.config.cameras.keys())*2)
|
||||
|
||||
def init_database(self):
|
||||
migrate_db = SqliteExtDatabase(self.config.database.path)
|
||||
|
||||
# Run migrations
|
||||
del(logging.getLogger('peewee_migrate').handlers[:])
|
||||
router = Router(migrate_db)
|
||||
router.run()
|
||||
|
||||
migrate_db.close()
|
||||
|
||||
self.db = SqliteQueueDatabase(self.config.database.path)
|
||||
models = [Event]
|
||||
self.db.bind(models)
|
||||
|
||||
def init_stats(self):
|
||||
self.stats_tracking = stats_init(self.camera_metrics, self.detectors)
|
||||
|
||||
def init_web_server(self):
|
||||
self.flask_app = create_app(self.config, self.db, self.stats_tracking, self.detected_frames_processor)
|
||||
|
||||
def init_mqtt(self):
|
||||
self.mqtt_client = create_mqtt_client(self.config, self.camera_metrics)
|
||||
|
||||
def start_detectors(self):
|
||||
model_shape = (self.config.model.height, self.config.model.width)
|
||||
for name in self.config.cameras.keys():
|
||||
self.detection_out_events[name] = mp.Event()
|
||||
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=self.config.model.height*self.config.model.width*3)
|
||||
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
|
||||
self.detection_shms.append(shm_in)
|
||||
self.detection_shms.append(shm_out)
|
||||
|
||||
for name, detector in self.config.detectors.items():
|
||||
if detector.type == 'cpu':
|
||||
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, 'cpu', detector.num_threads)
|
||||
if detector.type == 'edgetpu':
|
||||
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads)
|
||||
|
||||
def start_detected_frames_processor(self):
|
||||
self.detected_frames_processor = TrackedObjectProcessor(self.config, self.mqtt_client, self.config.mqtt.topic_prefix,
|
||||
self.detected_frames_queue, self.event_queue, self.event_processed_queue, self.stop_event)
|
||||
self.detected_frames_processor.start()
|
||||
|
||||
def start_camera_processors(self):
|
||||
model_shape = (self.config.model.height, self.config.model.width)
|
||||
for name, config in self.config.cameras.items():
|
||||
camera_process = mp.Process(target=track_camera, name=f"camera_processor:{name}", args=(name, config, model_shape,
|
||||
self.detection_queue, self.detection_out_events[name], self.detected_frames_queue,
|
||||
self.camera_metrics[name]))
|
||||
camera_process.daemon = True
|
||||
self.camera_metrics[name]['process'] = camera_process
|
||||
camera_process.start()
|
||||
logger.info(f"Camera processor started for {name}: {camera_process.pid}")
|
||||
|
||||
def start_camera_capture_processes(self):
|
||||
for name, config in self.config.cameras.items():
|
||||
capture_process = mp.Process(target=capture_camera, name=f"camera_capture:{name}", args=(name, config,
|
||||
self.camera_metrics[name]))
|
||||
capture_process.daemon = True
|
||||
self.camera_metrics[name]['capture_process'] = capture_process
|
||||
capture_process.start()
|
||||
logger.info(f"Capture process started for {name}: {capture_process.pid}")
|
||||
|
||||
def start_event_processor(self):
|
||||
self.event_processor = EventProcessor(self.config, self.camera_metrics, self.event_queue, self.event_processed_queue, self.stop_event)
|
||||
self.event_processor.start()
|
||||
|
||||
def start_event_cleanup(self):
|
||||
self.event_cleanup = EventCleanup(self.config, self.stop_event)
|
||||
self.event_cleanup.start()
|
||||
|
||||
def start_recording_maintainer(self):
|
||||
self.recording_maintainer = RecordingMaintainer(self.config, self.stop_event)
|
||||
self.recording_maintainer.start()
|
||||
|
||||
def start_stats_emitter(self):
|
||||
self.stats_emitter = StatsEmitter(self.config, self.stats_tracking, self.mqtt_client, self.config.mqtt.topic_prefix, self.stop_event)
|
||||
self.stats_emitter.start()
|
||||
|
||||
def start_watchdog(self):
|
||||
self.frigate_watchdog = FrigateWatchdog(self.detectors, self.stop_event)
|
||||
self.frigate_watchdog.start()
|
||||
|
||||
def start(self):
|
||||
self.init_logger()
|
||||
try:
|
||||
try:
|
||||
self.init_config()
|
||||
except Exception as e:
|
||||
print(f"Error parsing config: {e}")
|
||||
self.log_process.terminate()
|
||||
sys.exit(1)
|
||||
self.set_environment_vars()
|
||||
self.ensure_dirs()
|
||||
self.check_config()
|
||||
self.set_log_levels()
|
||||
self.init_queues()
|
||||
self.init_database()
|
||||
self.init_mqtt()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
self.log_process.terminate()
|
||||
sys.exit(1)
|
||||
self.start_detectors()
|
||||
self.start_detected_frames_processor()
|
||||
self.start_camera_processors()
|
||||
self.start_camera_capture_processes()
|
||||
self.init_stats()
|
||||
self.init_web_server()
|
||||
self.start_event_processor()
|
||||
self.start_event_cleanup()
|
||||
self.start_recording_maintainer()
|
||||
self.start_stats_emitter()
|
||||
self.start_watchdog()
|
||||
# self.zeroconf = broadcast_zeroconf(self.config.mqtt.client_id)
|
||||
|
||||
def receiveSignal(signalNumber, frame):
|
||||
self.stop()
|
||||
sys.exit()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
|
||||
self.flask_app.run(host='127.0.0.1', port=5001, debug=False)
|
||||
self.stop()
|
||||
|
||||
def stop(self):
|
||||
logger.info(f"Stopping...")
|
||||
self.stop_event.set()
|
||||
|
||||
self.detected_frames_processor.join()
|
||||
self.event_processor.join()
|
||||
self.event_cleanup.join()
|
||||
self.recording_maintainer.join()
|
||||
self.stats_emitter.join()
|
||||
self.frigate_watchdog.join()
|
||||
|
||||
for detector in self.detectors.values():
|
||||
detector.stop()
|
||||
|
||||
while len(self.detection_shms) > 0:
|
||||
shm = self.detection_shms.pop()
|
||||
shm.close()
|
||||
shm.unlink()
|
||||
1072
frigate/config.py
Normal file
3
frigate/const.py
Normal file
@@ -0,0 +1,3 @@
|
||||
CLIPS_DIR = '/media/frigate/clips'
|
||||
RECORD_DIR = '/media/frigate/recordings'
|
||||
CACHE_DIR = '/tmp/cache'
|
||||
226
frigate/edgetpu.py
Normal file
@@ -0,0 +1,226 @@
|
||||
import datetime
|
||||
import hashlib
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import queue
|
||||
import threading
|
||||
import signal
|
||||
from abc import ABC, abstractmethod
|
||||
from multiprocessing.connection import Connection
|
||||
from setproctitle import setproctitle
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
|
||||
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def load_labels(path, encoding='utf-8'):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
Args:
|
||||
path: path to label file.
|
||||
encoding: label file encoding.
|
||||
Returns:
|
||||
Dictionary mapping indices to labels.
|
||||
"""
|
||||
with open(path, 'r', encoding=encoding) as f:
|
||||
lines = f.readlines()
|
||||
if not lines:
|
||||
return {}
|
||||
|
||||
if lines[0].split(' ', maxsplit=1)[0].isdigit():
|
||||
pairs = [line.split(' ', maxsplit=1) for line in lines]
|
||||
return {int(index): label.strip() for index, label in pairs}
|
||||
else:
|
||||
return {index: line.strip() for index, line in enumerate(lines)}
|
||||
|
||||
class ObjectDetector(ABC):
|
||||
@abstractmethod
|
||||
def detect(self, tensor_input, threshold = .4):
|
||||
pass
|
||||
|
||||
class LocalObjectDetector(ObjectDetector):
|
||||
def __init__(self, tf_device=None, num_threads=3, labels=None):
|
||||
self.fps = EventsPerSecond()
|
||||
if labels is None:
|
||||
self.labels = {}
|
||||
else:
|
||||
self.labels = load_labels(labels)
|
||||
|
||||
device_config = {"device": "usb"}
|
||||
if not tf_device is None:
|
||||
device_config = {"device": tf_device}
|
||||
|
||||
edge_tpu_delegate = None
|
||||
|
||||
if tf_device != 'cpu':
|
||||
try:
|
||||
logger.info(f"Attempting to load TPU as {device_config['device']}")
|
||||
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
|
||||
logger.info("TPU found")
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/edgetpu_model.tflite',
|
||||
experimental_delegates=[edge_tpu_delegate])
|
||||
except ValueError:
|
||||
logger.info("No EdgeTPU detected.")
|
||||
raise
|
||||
else:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/cpu_model.tflite', num_threads=num_threads)
|
||||
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
detections = []
|
||||
|
||||
raw_detections = self.detect_raw(tensor_input)
|
||||
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
self.fps.update()
|
||||
return detections
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
|
||||
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
|
||||
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
|
||||
|
||||
detections = np.zeros((20,6), np.float32)
|
||||
for i, score in enumerate(scores):
|
||||
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
|
||||
|
||||
return detections
|
||||
|
||||
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, model_shape, tf_device, num_threads):
|
||||
threading.current_thread().name = f"detector:{name}"
|
||||
logger = logging.getLogger(f"detector.{name}")
|
||||
logger.info(f"Starting detection process: {os.getpid()}")
|
||||
setproctitle(f"frigate.detector.{name}")
|
||||
listen()
|
||||
|
||||
stop_event = mp.Event()
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
object_detector = LocalObjectDetector(tf_device=tf_device, num_threads=num_threads)
|
||||
|
||||
outputs = {}
|
||||
for name in out_events.keys():
|
||||
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
|
||||
out_np = np.ndarray((20,6), dtype=np.float32, buffer=out_shm.buf)
|
||||
outputs[name] = {
|
||||
'shm': out_shm,
|
||||
'np': out_np
|
||||
}
|
||||
|
||||
while True:
|
||||
if stop_event.is_set():
|
||||
break
|
||||
|
||||
try:
|
||||
connection_id = detection_queue.get(timeout=5)
|
||||
except queue.Empty:
|
||||
continue
|
||||
input_frame = frame_manager.get(connection_id, (1,model_shape[0],model_shape[1],3))
|
||||
|
||||
if input_frame is None:
|
||||
continue
|
||||
|
||||
# detect and send the output
|
||||
start.value = datetime.datetime.now().timestamp()
|
||||
detections = object_detector.detect_raw(input_frame)
|
||||
duration = datetime.datetime.now().timestamp()-start.value
|
||||
outputs[connection_id]['np'][:] = detections[:]
|
||||
out_events[connection_id].set()
|
||||
start.value = 0.0
|
||||
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self, name, detection_queue, out_events, model_shape, tf_device=None, num_threads=3):
|
||||
self.name = name
|
||||
self.out_events = out_events
|
||||
self.detection_queue = detection_queue
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
self.detection_start = mp.Value('d', 0.0)
|
||||
self.detect_process = None
|
||||
self.model_shape = model_shape
|
||||
self.tf_device = tf_device
|
||||
self.num_threads = num_threads
|
||||
self.start_or_restart()
|
||||
|
||||
def stop(self):
|
||||
self.detect_process.terminate()
|
||||
logging.info("Waiting for detection process to exit gracefully...")
|
||||
self.detect_process.join(timeout=30)
|
||||
if self.detect_process.exitcode is None:
|
||||
logging.info("Detection process didnt exit. Force killing...")
|
||||
self.detect_process.kill()
|
||||
self.detect_process.join()
|
||||
|
||||
def start_or_restart(self):
|
||||
self.detection_start.value = 0.0
|
||||
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||
self.stop()
|
||||
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.model_shape, self.tf_device, self.num_threads))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
class RemoteObjectDetector():
|
||||
def __init__(self, name, labels, detection_queue, event, model_shape):
|
||||
self.labels = load_labels(labels)
|
||||
self.name = name
|
||||
self.fps = EventsPerSecond()
|
||||
self.detection_queue = detection_queue
|
||||
self.event = event
|
||||
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
|
||||
self.np_shm = np.ndarray((1,model_shape[0],model_shape[1],3), dtype=np.uint8, buffer=self.shm.buf)
|
||||
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
|
||||
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
detections = []
|
||||
|
||||
# copy input to shared memory
|
||||
self.np_shm[:] = tensor_input[:]
|
||||
self.event.clear()
|
||||
self.detection_queue.put(self.name)
|
||||
result = self.event.wait(timeout=10.0)
|
||||
|
||||
# if it timed out
|
||||
if result is None:
|
||||
return detections
|
||||
|
||||
for d in self.out_np_shm:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
self.fps.update()
|
||||
return detections
|
||||
|
||||
def cleanup(self):
|
||||
self.shm.unlink()
|
||||
self.out_shm.unlink()
|
||||
313
frigate/events.py
Normal file
@@ -0,0 +1,313 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import queue
|
||||
import subprocess as sp
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import psutil
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
|
||||
from frigate.models import Event
|
||||
|
||||
from peewee import fn
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class EventProcessor(threading.Thread):
|
||||
def __init__(self, config, camera_processes, event_queue, event_processed_queue, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'event_processor'
|
||||
self.config = config
|
||||
self.camera_processes = camera_processes
|
||||
self.cached_clips = {}
|
||||
self.event_queue = event_queue
|
||||
self.event_processed_queue = event_processed_queue
|
||||
self.events_in_process = {}
|
||||
self.stop_event = stop_event
|
||||
|
||||
def refresh_cache(self):
|
||||
cached_files = os.listdir(CACHE_DIR)
|
||||
|
||||
files_in_use = []
|
||||
for process in psutil.process_iter():
|
||||
try:
|
||||
if process.name() != 'ffmpeg':
|
||||
continue
|
||||
|
||||
flist = process.open_files()
|
||||
if flist:
|
||||
for nt in flist:
|
||||
if nt.path.startswith(CACHE_DIR):
|
||||
files_in_use.append(nt.path.split('/')[-1])
|
||||
except:
|
||||
continue
|
||||
|
||||
for f in cached_files:
|
||||
if f in files_in_use or f in self.cached_clips:
|
||||
continue
|
||||
|
||||
camera = '-'.join(f.split('-')[:-1])
|
||||
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
|
||||
|
||||
ffprobe_cmd = " ".join([
|
||||
'ffprobe',
|
||||
'-v',
|
||||
'error',
|
||||
'-show_entries',
|
||||
'format=duration',
|
||||
'-of',
|
||||
'default=noprint_wrappers=1:nokey=1',
|
||||
f"{os.path.join(CACHE_DIR,f)}"
|
||||
])
|
||||
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
||||
(output, err) = p.communicate()
|
||||
p_status = p.wait()
|
||||
if p_status == 0:
|
||||
duration = float(output.decode('utf-8').strip())
|
||||
else:
|
||||
logger.info(f"bad file: {f}")
|
||||
os.remove(os.path.join(CACHE_DIR,f))
|
||||
continue
|
||||
|
||||
self.cached_clips[f] = {
|
||||
'path': f,
|
||||
'camera': camera,
|
||||
'start_time': start_time.timestamp(),
|
||||
'duration': duration
|
||||
}
|
||||
|
||||
if len(self.events_in_process) > 0:
|
||||
earliest_event = min(self.events_in_process.values(), key=lambda x:x['start_time'])['start_time']
|
||||
else:
|
||||
earliest_event = datetime.datetime.now().timestamp()
|
||||
|
||||
# if the earliest event exceeds the max seconds, cap it
|
||||
max_seconds = self.config.clips.max_seconds
|
||||
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
|
||||
earliest_event = datetime.datetime.now().timestamp()-max_seconds
|
||||
|
||||
for f, data in list(self.cached_clips.items()):
|
||||
if earliest_event-90 > data['start_time']+data['duration']:
|
||||
del self.cached_clips[f]
|
||||
logger.debug(f"Cleaning up cached file {f}")
|
||||
os.remove(os.path.join(CACHE_DIR,f))
|
||||
|
||||
def create_clip(self, camera, event_data, pre_capture, post_capture):
|
||||
# get all clips from the camera with the event sorted
|
||||
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
|
||||
|
||||
# if there are no clips in the cache or we are still waiting on a needed file check every 5 seconds
|
||||
wait_count = 0
|
||||
while len(sorted_clips) == 0 or sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']+post_capture:
|
||||
if wait_count > 4:
|
||||
logger.warning(f"Unable to create clip for {camera} and event {event_data['id']}. There were no cache files for this event.")
|
||||
return False
|
||||
logger.debug(f"No cache clips for {camera}. Waiting...")
|
||||
time.sleep(5)
|
||||
self.refresh_cache()
|
||||
# get all clips from the camera with the event sorted
|
||||
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
|
||||
wait_count += 1
|
||||
|
||||
playlist_start = event_data['start_time']-pre_capture
|
||||
playlist_end = event_data['end_time']+post_capture
|
||||
playlist_lines = []
|
||||
for clip in sorted_clips:
|
||||
# clip ends before playlist start time, skip
|
||||
if clip['start_time']+clip['duration'] < playlist_start:
|
||||
continue
|
||||
# clip starts after playlist ends, finish
|
||||
if clip['start_time'] > playlist_end:
|
||||
break
|
||||
playlist_lines.append(f"file '{os.path.join(CACHE_DIR,clip['path'])}'")
|
||||
# if this is the starting clip, add an inpoint
|
||||
if clip['start_time'] < playlist_start:
|
||||
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
|
||||
# if this is the ending clip, add an outpoint
|
||||
if clip['start_time']+clip['duration'] > playlist_end:
|
||||
playlist_lines.append(f"outpoint {int(playlist_end-clip['start_time'])}")
|
||||
|
||||
clip_name = f"{camera}-{event_data['id']}"
|
||||
ffmpeg_cmd = [
|
||||
'ffmpeg',
|
||||
'-y',
|
||||
'-protocol_whitelist',
|
||||
'pipe,file',
|
||||
'-f',
|
||||
'concat',
|
||||
'-safe',
|
||||
'0',
|
||||
'-i',
|
||||
'-',
|
||||
'-c',
|
||||
'copy',
|
||||
'-movflags',
|
||||
'+faststart',
|
||||
f"{os.path.join(CLIPS_DIR, clip_name)}.mp4"
|
||||
]
|
||||
|
||||
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
|
||||
if p.returncode != 0:
|
||||
logger.error(p.stderr)
|
||||
return False
|
||||
return True
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting event processor...")
|
||||
break
|
||||
|
||||
try:
|
||||
event_type, camera, event_data = self.event_queue.get(timeout=10)
|
||||
except queue.Empty:
|
||||
if not self.stop_event.is_set():
|
||||
self.refresh_cache()
|
||||
continue
|
||||
|
||||
logger.debug(f"Event received: {event_type} {camera} {event_data['id']}")
|
||||
self.refresh_cache()
|
||||
|
||||
if event_type == 'start':
|
||||
self.events_in_process[event_data['id']] = event_data
|
||||
|
||||
if event_type == 'end':
|
||||
clips_config = self.config.cameras[camera].clips
|
||||
|
||||
if not event_data['false_positive']:
|
||||
clip_created = False
|
||||
if clips_config.enabled and (clips_config.objects is None or event_data['label'] in clips_config.objects):
|
||||
clip_created = self.create_clip(camera, event_data, clips_config.pre_capture, clips_config.post_capture)
|
||||
|
||||
Event.create(
|
||||
id=event_data['id'],
|
||||
label=event_data['label'],
|
||||
camera=camera,
|
||||
start_time=event_data['start_time'],
|
||||
end_time=event_data['end_time'],
|
||||
top_score=event_data['top_score'],
|
||||
false_positive=event_data['false_positive'],
|
||||
zones=list(event_data['entered_zones']),
|
||||
thumbnail=event_data['thumbnail'],
|
||||
has_clip=clip_created,
|
||||
has_snapshot=event_data['has_snapshot'],
|
||||
)
|
||||
del self.events_in_process[event_data['id']]
|
||||
self.event_processed_queue.put((event_data['id'], camera))
|
||||
|
||||
class EventCleanup(threading.Thread):
|
||||
def __init__(self, config: FrigateConfig, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'event_cleanup'
|
||||
self.config = config
|
||||
self.stop_event = stop_event
|
||||
self.camera_keys = list(self.config.cameras.keys())
|
||||
|
||||
def expire(self, media):
|
||||
## Expire events from unlisted cameras based on the global config
|
||||
if media == 'clips':
|
||||
retain_config = self.config.clips.retain
|
||||
file_extension = 'mp4'
|
||||
update_params = {'has_clip': False}
|
||||
else:
|
||||
retain_config = self.config.snapshots.retain
|
||||
file_extension = 'jpg'
|
||||
update_params = {'has_snapshot': False}
|
||||
|
||||
distinct_labels = (Event.select(Event.label)
|
||||
.where(Event.camera.not_in(self.camera_keys))
|
||||
.distinct())
|
||||
|
||||
# loop over object types in db
|
||||
for l in distinct_labels:
|
||||
# get expiration time for this label
|
||||
expire_days = retain_config.objects.get(l.label, retain_config.default)
|
||||
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
|
||||
# grab all events after specific time
|
||||
expired_events = (
|
||||
Event.select()
|
||||
.where(Event.camera.not_in(self.camera_keys),
|
||||
Event.start_time < expire_after,
|
||||
Event.label == l.label)
|
||||
)
|
||||
# delete the media from disk
|
||||
for event in expired_events:
|
||||
media_name = f"{event.camera}-{event.id}"
|
||||
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
|
||||
media.unlink(missing_ok=True)
|
||||
# update the clips attribute for the db entry
|
||||
update_query = (
|
||||
Event.update(update_params)
|
||||
.where(Event.camera.not_in(self.camera_keys),
|
||||
Event.start_time < expire_after,
|
||||
Event.label == l.label)
|
||||
)
|
||||
update_query.execute()
|
||||
|
||||
## Expire events from cameras based on the camera config
|
||||
for name, camera in self.config.cameras.items():
|
||||
if media == 'clips':
|
||||
retain_config = camera.clips.retain
|
||||
else:
|
||||
retain_config = camera.snapshots.retain
|
||||
# get distinct objects in database for this camera
|
||||
distinct_labels = (Event.select(Event.label)
|
||||
.where(Event.camera == name)
|
||||
.distinct())
|
||||
|
||||
# loop over object types in db
|
||||
for l in distinct_labels:
|
||||
# get expiration time for this label
|
||||
expire_days = retain_config.objects.get(l.label, retain_config.default)
|
||||
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
|
||||
# grab all events after specific time
|
||||
expired_events = (
|
||||
Event.select()
|
||||
.where(Event.camera == name,
|
||||
Event.start_time < expire_after,
|
||||
Event.label == l.label)
|
||||
)
|
||||
# delete the grabbed clips from disk
|
||||
for event in expired_events:
|
||||
media_name = f"{event.camera}-{event.id}"
|
||||
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
|
||||
media.unlink(missing_ok=True)
|
||||
# update the clips attribute for the db entry
|
||||
update_query = (
|
||||
Event.update(update_params)
|
||||
.where( Event.camera == name,
|
||||
Event.start_time < expire_after,
|
||||
Event.label == l.label)
|
||||
)
|
||||
update_query.execute()
|
||||
|
||||
def run(self):
|
||||
counter = 0
|
||||
while(True):
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting event cleanup...")
|
||||
break
|
||||
|
||||
# only expire events every 10 minutes, but check for stop events every 10 seconds
|
||||
time.sleep(10)
|
||||
counter = counter + 1
|
||||
if counter < 60:
|
||||
continue
|
||||
counter = 0
|
||||
|
||||
self.expire('clips')
|
||||
self.expire('snapshots')
|
||||
|
||||
# drop events from db where has_clip and has_snapshot are false
|
||||
delete_query = (
|
||||
Event.delete()
|
||||
.where( Event.has_clip == False,
|
||||
Event.has_snapshot == False)
|
||||
)
|
||||
delete_query.execute()
|
||||
301
frigate/http.py
Normal file
@@ -0,0 +1,301 @@
|
||||
import base64
|
||||
import datetime
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from functools import reduce
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from flask import (Blueprint, Flask, Response, current_app, jsonify,
|
||||
make_response, request)
|
||||
from peewee import SqliteDatabase, operator, fn, DoesNotExist
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.const import CLIPS_DIR
|
||||
from frigate.models import Event
|
||||
from frigate.stats import stats_snapshot
|
||||
from frigate.util import calculate_region
|
||||
from frigate.version import VERSION
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
bp = Blueprint('frigate', __name__)
|
||||
|
||||
def create_app(frigate_config, database: SqliteDatabase, stats_tracking, detected_frames_processor):
|
||||
app = Flask(__name__)
|
||||
|
||||
@app.before_request
|
||||
def _db_connect():
|
||||
database.connect()
|
||||
|
||||
@app.teardown_request
|
||||
def _db_close(exc):
|
||||
if not database.is_closed():
|
||||
database.close()
|
||||
|
||||
app.frigate_config = frigate_config
|
||||
app.stats_tracking = stats_tracking
|
||||
app.detected_frames_processor = detected_frames_processor
|
||||
|
||||
app.register_blueprint(bp)
|
||||
|
||||
return app
|
||||
|
||||
@bp.route('/')
|
||||
def is_healthy():
|
||||
return "Frigate is running. Alive and healthy!"
|
||||
|
||||
@bp.route('/events/summary')
|
||||
def events_summary():
|
||||
has_clip = request.args.get('has_clip', type=int)
|
||||
has_snapshot = request.args.get('has_snapshot', type=int)
|
||||
|
||||
clauses = []
|
||||
|
||||
if not has_clip is None:
|
||||
clauses.append((Event.has_clip == has_clip))
|
||||
|
||||
if not has_snapshot is None:
|
||||
clauses.append((Event.has_snapshot == has_snapshot))
|
||||
|
||||
if len(clauses) == 0:
|
||||
clauses.append((1 == 1))
|
||||
|
||||
groups = (
|
||||
Event
|
||||
.select(
|
||||
Event.camera,
|
||||
Event.label,
|
||||
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'),
|
||||
Event.zones,
|
||||
fn.COUNT(Event.id).alias('count')
|
||||
)
|
||||
.where(reduce(operator.and_, clauses))
|
||||
.group_by(
|
||||
Event.camera,
|
||||
Event.label,
|
||||
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')),
|
||||
Event.zones
|
||||
)
|
||||
)
|
||||
|
||||
return jsonify([e for e in groups.dicts()])
|
||||
|
||||
@bp.route('/events/<id>')
|
||||
def event(id):
|
||||
try:
|
||||
return model_to_dict(Event.get(Event.id == id))
|
||||
except DoesNotExist:
|
||||
return "Event not found", 404
|
||||
|
||||
@bp.route('/events/<id>/thumbnail.jpg')
|
||||
def event_thumbnail(id):
|
||||
format = request.args.get('format', 'ios')
|
||||
thumbnail_bytes = None
|
||||
try:
|
||||
event = Event.get(Event.id == id)
|
||||
thumbnail_bytes = base64.b64decode(event.thumbnail)
|
||||
except DoesNotExist:
|
||||
# see if the object is currently being tracked
|
||||
try:
|
||||
for camera_state in current_app.detected_frames_processor.camera_states.values():
|
||||
if id in camera_state.tracked_objects:
|
||||
tracked_obj = camera_state.tracked_objects.get(id)
|
||||
if not tracked_obj is None:
|
||||
thumbnail_bytes = tracked_obj.get_thumbnail()
|
||||
except:
|
||||
return "Event not found", 404
|
||||
|
||||
if thumbnail_bytes is None:
|
||||
return "Event not found", 404
|
||||
|
||||
# android notifications prefer a 2:1 ratio
|
||||
if format == 'android':
|
||||
jpg_as_np = np.frombuffer(thumbnail_bytes, dtype=np.uint8)
|
||||
img = cv2.imdecode(jpg_as_np, flags=1)
|
||||
thumbnail = cv2.copyMakeBorder(img, 0, 0, int(img.shape[1]*0.5), int(img.shape[1]*0.5), cv2.BORDER_CONSTANT, (0,0,0))
|
||||
ret, jpg = cv2.imencode('.jpg', thumbnail)
|
||||
thumbnail_bytes = jpg.tobytes()
|
||||
|
||||
response = make_response(thumbnail_bytes)
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
|
||||
@bp.route('/events/<id>/snapshot.jpg')
|
||||
def event_snapshot(id):
|
||||
jpg_bytes = None
|
||||
try:
|
||||
event = Event.get(Event.id == id)
|
||||
if not event.has_snapshot:
|
||||
return "Snapshot not available", 404
|
||||
# read snapshot from disk
|
||||
with open(os.path.join(CLIPS_DIR, f"{event.camera}-{id}.jpg"), 'rb') as image_file:
|
||||
jpg_bytes = image_file.read()
|
||||
except DoesNotExist:
|
||||
# see if the object is currently being tracked
|
||||
try:
|
||||
for camera_state in current_app.detected_frames_processor.camera_states.values():
|
||||
if id in camera_state.tracked_objects:
|
||||
tracked_obj = camera_state.tracked_objects.get(id)
|
||||
if not tracked_obj is None:
|
||||
jpg_bytes = tracked_obj.get_jpg_bytes(
|
||||
timestamp=request.args.get('timestamp', type=int),
|
||||
bounding_box=request.args.get('bbox', type=int),
|
||||
crop=request.args.get('crop', type=int),
|
||||
height=request.args.get('h', type=int)
|
||||
)
|
||||
except:
|
||||
return "Event not found", 404
|
||||
except:
|
||||
return "Event not found", 404
|
||||
|
||||
response = make_response(jpg_bytes)
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
|
||||
@bp.route('/events')
|
||||
def events():
|
||||
limit = request.args.get('limit', 100)
|
||||
camera = request.args.get('camera')
|
||||
label = request.args.get('label')
|
||||
zone = request.args.get('zone')
|
||||
after = request.args.get('after', type=int)
|
||||
before = request.args.get('before', type=int)
|
||||
has_clip = request.args.get('has_clip', type=int)
|
||||
has_snapshot = request.args.get('has_snapshot', type=int)
|
||||
|
||||
clauses = []
|
||||
|
||||
if camera:
|
||||
clauses.append((Event.camera == camera))
|
||||
|
||||
if label:
|
||||
clauses.append((Event.label == label))
|
||||
|
||||
if zone:
|
||||
clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*"))
|
||||
|
||||
if after:
|
||||
clauses.append((Event.start_time >= after))
|
||||
|
||||
if before:
|
||||
clauses.append((Event.start_time <= before))
|
||||
|
||||
if not has_clip is None:
|
||||
clauses.append((Event.has_clip == has_clip))
|
||||
|
||||
if not has_snapshot is None:
|
||||
clauses.append((Event.has_snapshot == has_snapshot))
|
||||
|
||||
if len(clauses) == 0:
|
||||
clauses.append((1 == 1))
|
||||
|
||||
events = (Event.select()
|
||||
.where(reduce(operator.and_, clauses))
|
||||
.order_by(Event.start_time.desc())
|
||||
.limit(limit))
|
||||
|
||||
return jsonify([model_to_dict(e) for e in events])
|
||||
|
||||
@bp.route('/config')
|
||||
def config():
|
||||
return jsonify(current_app.frigate_config.to_dict())
|
||||
|
||||
@bp.route('/version')
|
||||
def version():
|
||||
return VERSION
|
||||
|
||||
@bp.route('/stats')
|
||||
def stats():
|
||||
stats = stats_snapshot(current_app.stats_tracking)
|
||||
return jsonify(stats)
|
||||
|
||||
@bp.route('/<camera_name>/<label>/best.jpg')
|
||||
def best(camera_name, label):
|
||||
if camera_name in current_app.frigate_config.cameras:
|
||||
best_object = current_app.detected_frames_processor.get_best(camera_name, label)
|
||||
best_frame = best_object.get('frame')
|
||||
if best_frame is None:
|
||||
best_frame = np.zeros((720,1280,3), np.uint8)
|
||||
else:
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
|
||||
|
||||
crop = bool(request.args.get('crop', 0, type=int))
|
||||
if crop:
|
||||
box = best_object.get('box', (0,0,300,300))
|
||||
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
|
||||
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
||||
|
||||
height = int(request.args.get('h', str(best_frame.shape[0])))
|
||||
width = int(height*best_frame.shape[1]/best_frame.shape[0])
|
||||
|
||||
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
@bp.route('/<camera_name>')
|
||||
def mjpeg_feed(camera_name):
|
||||
fps = int(request.args.get('fps', '3'))
|
||||
height = int(request.args.get('h', '360'))
|
||||
draw_options = {
|
||||
'bounding_boxes': request.args.get('bbox', type=int),
|
||||
'timestamp': request.args.get('timestamp', type=int),
|
||||
'zones': request.args.get('zones', type=int),
|
||||
'mask': request.args.get('mask', type=int),
|
||||
'motion_boxes': request.args.get('motion', type=int),
|
||||
'regions': request.args.get('regions', type=int),
|
||||
}
|
||||
if camera_name in current_app.frigate_config.cameras:
|
||||
# return a multipart response
|
||||
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height, draw_options),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
@bp.route('/<camera_name>/latest.jpg')
|
||||
def latest_frame(camera_name):
|
||||
draw_options = {
|
||||
'bounding_boxes': request.args.get('bbox', type=int),
|
||||
'timestamp': request.args.get('timestamp', type=int),
|
||||
'zones': request.args.get('zones', type=int),
|
||||
'mask': request.args.get('mask', type=int),
|
||||
'motion_boxes': request.args.get('motion', type=int),
|
||||
'regions': request.args.get('regions', type=int),
|
||||
}
|
||||
if camera_name in current_app.frigate_config.cameras:
|
||||
# max out at specified FPS
|
||||
frame = current_app.detected_frames_processor.get_current_frame(camera_name, draw_options)
|
||||
if frame is None:
|
||||
frame = np.zeros((720,1280,3), np.uint8)
|
||||
|
||||
height = int(request.args.get('h', str(frame.shape[0])))
|
||||
width = int(height*frame.shape[1]/frame.shape[0])
|
||||
|
||||
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
|
||||
while True:
|
||||
# max out at specified FPS
|
||||
time.sleep(1/fps)
|
||||
frame = detected_frames_processor.get_current_frame(camera_name, draw_options)
|
||||
if frame is None:
|
||||
frame = np.zeros((height,int(height*16/9),3), np.uint8)
|
||||
|
||||
width = int(height*frame.shape[1]/frame.shape[0])
|
||||
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
77
frigate/log.py
Normal file
@@ -0,0 +1,77 @@
|
||||
# adapted from https://medium.com/@jonathonbao/python3-logging-with-multiprocessing-f51f460b8778
|
||||
import logging
|
||||
import threading
|
||||
import os
|
||||
import signal
|
||||
import queue
|
||||
import multiprocessing as mp
|
||||
from logging import handlers
|
||||
from setproctitle import setproctitle
|
||||
|
||||
|
||||
def listener_configurer():
|
||||
root = logging.getLogger()
|
||||
console_handler = logging.StreamHandler()
|
||||
formatter = logging.Formatter('%(name)-30s %(levelname)-8s: %(message)s')
|
||||
console_handler.setFormatter(formatter)
|
||||
root.addHandler(console_handler)
|
||||
root.setLevel(logging.INFO)
|
||||
|
||||
def root_configurer(queue):
|
||||
h = handlers.QueueHandler(queue)
|
||||
root = logging.getLogger()
|
||||
root.addHandler(h)
|
||||
root.setLevel(logging.INFO)
|
||||
|
||||
def log_process(log_queue):
|
||||
stop_event = mp.Event()
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
threading.current_thread().name = f"logger"
|
||||
setproctitle("frigate.logger")
|
||||
listener_configurer()
|
||||
while True:
|
||||
if stop_event.is_set() and log_queue.empty():
|
||||
break
|
||||
try:
|
||||
record = log_queue.get(timeout=5)
|
||||
except queue.Empty:
|
||||
continue
|
||||
logger = logging.getLogger(record.name)
|
||||
logger.handle(record)
|
||||
|
||||
# based on https://codereview.stackexchange.com/a/17959
|
||||
class LogPipe(threading.Thread):
|
||||
def __init__(self, log_name, level):
|
||||
"""Setup the object with a logger and a loglevel
|
||||
and start the thread
|
||||
"""
|
||||
threading.Thread.__init__(self)
|
||||
self.daemon = False
|
||||
self.logger = logging.getLogger(log_name)
|
||||
self.level = level
|
||||
self.fdRead, self.fdWrite = os.pipe()
|
||||
self.pipeReader = os.fdopen(self.fdRead)
|
||||
self.start()
|
||||
|
||||
def fileno(self):
|
||||
"""Return the write file descriptor of the pipe
|
||||
"""
|
||||
return self.fdWrite
|
||||
|
||||
def run(self):
|
||||
"""Run the thread, logging everything.
|
||||
"""
|
||||
for line in iter(self.pipeReader.readline, ''):
|
||||
self.logger.log(self.level, line.strip('\n'))
|
||||
|
||||
self.pipeReader.close()
|
||||
|
||||
def close(self):
|
||||
"""Close the write end of the pipe.
|
||||
"""
|
||||
os.close(self.fdWrite)
|
||||
16
frigate/models.py
Normal file
@@ -0,0 +1,16 @@
|
||||
from peewee import *
|
||||
from playhouse.sqlite_ext import *
|
||||
|
||||
|
||||
class Event(Model):
|
||||
id = CharField(null=False, primary_key=True, max_length=30)
|
||||
label = CharField(index=True, max_length=20)
|
||||
camera = CharField(index=True, max_length=20)
|
||||
start_time = DateTimeField()
|
||||
end_time = DateTimeField()
|
||||
top_score = FloatField()
|
||||
false_positive = BooleanField()
|
||||
zones = JSONField()
|
||||
thumbnail = TextField()
|
||||
has_clip = BooleanField(default=True)
|
||||
has_snapshot = BooleanField(default=True)
|
||||
85
frigate/motion.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import cv2
|
||||
import imutils
|
||||
import numpy as np
|
||||
from frigate.config import MotionConfig
|
||||
|
||||
|
||||
class MotionDetector():
|
||||
def __init__(self, frame_shape, config: MotionConfig):
|
||||
self.config = config
|
||||
self.frame_shape = frame_shape
|
||||
self.resize_factor = frame_shape[0]/config.frame_height
|
||||
self.motion_frame_size = (config.frame_height, config.frame_height*frame_shape[1]//frame_shape[0])
|
||||
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
|
||||
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
|
||||
self.motion_frame_count = 0
|
||||
self.frame_counter = 0
|
||||
resized_mask = cv2.resize(config.mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
self.mask = np.where(resized_mask==[0])
|
||||
|
||||
def detect(self, frame):
|
||||
motion_boxes = []
|
||||
|
||||
gray = frame[0:self.frame_shape[0], 0:self.frame_shape[1]]
|
||||
|
||||
# resize frame
|
||||
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# TODO: can I improve the contrast of the grayscale image here?
|
||||
|
||||
# convert to grayscale
|
||||
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# mask frame
|
||||
resized_frame[self.mask] = [255]
|
||||
|
||||
# it takes ~30 frames to establish a baseline
|
||||
# dont bother looking for motion
|
||||
if self.frame_counter < 30:
|
||||
self.frame_counter += 1
|
||||
else:
|
||||
# compare to average
|
||||
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
|
||||
|
||||
# compute the average delta over the past few frames
|
||||
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
||||
# register as motion, too low and a fast moving person wont be detected as motion
|
||||
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
|
||||
|
||||
# compute the threshold image for the current frame
|
||||
# TODO: threshold
|
||||
current_thresh = cv2.threshold(frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# black out everything in the avg_delta where there isnt motion in the current frame
|
||||
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
|
||||
avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
|
||||
|
||||
# then look for deltas above the threshold, but only in areas where there is a delta
|
||||
# in the current frame. this prevents deltas from previous frames from being included
|
||||
thresh = cv2.threshold(avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# loop over the contours
|
||||
for c in cnts:
|
||||
# if the contour is big enough, count it as motion
|
||||
contour_area = cv2.contourArea(c)
|
||||
if contour_area > self.config.contour_area:
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
motion_boxes.append((int(x*self.resize_factor), int(y*self.resize_factor), int((x+w)*self.resize_factor), int((y+h)*self.resize_factor)))
|
||||
|
||||
if len(motion_boxes) > 0:
|
||||
self.motion_frame_count += 1
|
||||
if self.motion_frame_count >= 10:
|
||||
# only average in the current frame if the difference persists for a bit
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
|
||||
else:
|
||||
# when no motion, just keep averaging the frames together
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
|
||||
self.motion_frame_count = 0
|
||||
|
||||
return motion_boxes
|
||||
152
frigate/mqtt.py
@@ -1,41 +1,125 @@
|
||||
import json
|
||||
import cv2
|
||||
import logging
|
||||
import threading
|
||||
|
||||
class MqttObjectPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_person_frame):
|
||||
threading.Thread.__init__(self)
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.best_person_frame = best_person_frame
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
def run(self):
|
||||
last_sent_payload = ""
|
||||
while True:
|
||||
from frigate.config import FrigateConfig
|
||||
|
||||
# initialize the payload
|
||||
payload = {}
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
def create_mqtt_client(config: FrigateConfig, camera_metrics):
|
||||
mqtt_config = config.mqtt
|
||||
|
||||
# add all the person scores in detected objects
|
||||
detected_objects = self._detected_objects.copy()
|
||||
person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])
|
||||
# if the person score is more than 100, set person to ON
|
||||
payload['person'] = 'ON' if int(person_score*100) > 100 else 'OFF'
|
||||
def on_clips_command(client, userdata, message):
|
||||
payload = message.payload.decode()
|
||||
logger.debug(f"on_clips_toggle: {message.topic} {payload}")
|
||||
|
||||
# send message for objects if different
|
||||
new_payload = json.dumps(payload, sort_keys=True)
|
||||
if new_payload != last_sent_payload:
|
||||
last_sent_payload = new_payload
|
||||
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
|
||||
# send the snapshot over mqtt as well
|
||||
if not self.best_person_frame.best_frame is None:
|
||||
ret, jpg = cv2.imencode('.jpg', self.best_person_frame.best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/snapshot', jpg_bytes, retain=True)
|
||||
camera_name = message.topic.split('/')[-3]
|
||||
|
||||
clips_settings = config.cameras[camera_name].clips
|
||||
|
||||
if payload == 'ON':
|
||||
if not clips_settings.enabled:
|
||||
logger.info(f"Turning on clips for {camera_name} via mqtt")
|
||||
clips_settings._enabled = True
|
||||
elif payload == 'OFF':
|
||||
if clips_settings.enabled:
|
||||
logger.info(f"Turning off clips for {camera_name} via mqtt")
|
||||
clips_settings._enabled = False
|
||||
else:
|
||||
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
|
||||
|
||||
state_topic = f"{message.topic[:-4]}/state"
|
||||
client.publish(state_topic, payload, retain=True)
|
||||
|
||||
def on_snapshots_command(client, userdata, message):
|
||||
payload = message.payload.decode()
|
||||
logger.debug(f"on_snapshots_toggle: {message.topic} {payload}")
|
||||
|
||||
camera_name = message.topic.split('/')[-3]
|
||||
|
||||
snapshots_settings = config.cameras[camera_name].snapshots
|
||||
|
||||
if payload == 'ON':
|
||||
if not snapshots_settings.enabled:
|
||||
logger.info(f"Turning on snapshots for {camera_name} via mqtt")
|
||||
snapshots_settings._enabled = True
|
||||
elif payload == 'OFF':
|
||||
if snapshots_settings.enabled:
|
||||
logger.info(f"Turning off snapshots for {camera_name} via mqtt")
|
||||
snapshots_settings._enabled = False
|
||||
else:
|
||||
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
|
||||
|
||||
state_topic = f"{message.topic[:-4]}/state"
|
||||
client.publish(state_topic, payload, retain=True)
|
||||
|
||||
def on_detect_command(client, userdata, message):
|
||||
payload = message.payload.decode()
|
||||
logger.debug(f"on_detect_toggle: {message.topic} {payload}")
|
||||
|
||||
camera_name = message.topic.split('/')[-3]
|
||||
|
||||
detect_settings = config.cameras[camera_name].detect
|
||||
|
||||
if payload == 'ON':
|
||||
if not camera_metrics[camera_name]["detection_enabled"].value:
|
||||
logger.info(f"Turning on detection for {camera_name} via mqtt")
|
||||
camera_metrics[camera_name]["detection_enabled"].value = True
|
||||
detect_settings._enabled = True
|
||||
elif payload == 'OFF':
|
||||
if camera_metrics[camera_name]["detection_enabled"].value:
|
||||
logger.info(f"Turning off detection for {camera_name} via mqtt")
|
||||
camera_metrics[camera_name]["detection_enabled"].value = False
|
||||
detect_settings._enabled = False
|
||||
else:
|
||||
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
|
||||
|
||||
state_topic = f"{message.topic[:-4]}/state"
|
||||
client.publish(state_topic, payload, retain=True)
|
||||
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
threading.current_thread().name = "mqtt"
|
||||
if rc != 0:
|
||||
if rc == 3:
|
||||
logger.error("MQTT Server unavailable")
|
||||
elif rc == 4:
|
||||
logger.error("MQTT Bad username or password")
|
||||
elif rc == 5:
|
||||
logger.error("MQTT Not authorized")
|
||||
else:
|
||||
logger.error("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
|
||||
|
||||
logger.info("MQTT connected")
|
||||
client.publish(mqtt_config.topic_prefix+'/available', 'online', retain=True)
|
||||
|
||||
client = mqtt.Client(client_id=mqtt_config.client_id)
|
||||
client.on_connect = on_connect
|
||||
client.will_set(mqtt_config.topic_prefix+'/available', payload='offline', qos=1, retain=True)
|
||||
|
||||
# register callbacks
|
||||
for name in config.cameras.keys():
|
||||
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/clips/set", on_clips_command)
|
||||
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/snapshots/set", on_snapshots_command)
|
||||
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/detect/set", on_detect_command)
|
||||
|
||||
if not mqtt_config.user is None:
|
||||
client.username_pw_set(mqtt_config.user, password=mqtt_config.password)
|
||||
try:
|
||||
client.connect(mqtt_config.host, mqtt_config.port, 60)
|
||||
except Exception as e:
|
||||
logger.error(f"Unable to connect to MQTT server: {e}")
|
||||
raise
|
||||
|
||||
client.loop_start()
|
||||
|
||||
for name in config.cameras.keys():
|
||||
client.publish(f"{mqtt_config.topic_prefix}/{name}/clips/state", 'ON' if config.cameras[name].clips.enabled else 'OFF', retain=True)
|
||||
client.publish(f"{mqtt_config.topic_prefix}/{name}/snapshots/state", 'ON' if config.cameras[name].snapshots.enabled else 'OFF', retain=True)
|
||||
client.publish(f"{mqtt_config.topic_prefix}/{name}/detect/state", 'ON' if config.cameras[name].detect.enabled else 'OFF', retain=True)
|
||||
|
||||
client.subscribe(f"{mqtt_config.topic_prefix}/+/clips/set")
|
||||
client.subscribe(f"{mqtt_config.topic_prefix}/+/snapshots/set")
|
||||
client.subscribe(f"{mqtt_config.topic_prefix}/+/detect/set")
|
||||
|
||||
return client
|
||||
|
||||
@@ -1,112 +0,0 @@
|
||||
import datetime
|
||||
import time
|
||||
import cv2
|
||||
import threading
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
from . util import tonumpyarray
|
||||
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
# List of the strings that is used to add correct label for each box.
|
||||
PATH_TO_LABELS = '/label_map.pbtext'
|
||||
|
||||
# Function to read labels from text files.
|
||||
def ReadLabelFile(file_path):
|
||||
with open(file_path, 'r') as f:
|
||||
lines = f.readlines()
|
||||
ret = {}
|
||||
for line in lines:
|
||||
pair = line.strip().split(maxsplit=1)
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, cameras, prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.cameras = cameras
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
self.labels = ReadLabelFile(PATH_TO_LABELS)
|
||||
|
||||
def run(self):
|
||||
# process queue...
|
||||
while True:
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=frame['region_threshold'], top_k=3)
|
||||
# print(self.engine.get_inference_time())
|
||||
|
||||
# parse and pass detected objects back to the camera
|
||||
parsed_objects = []
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
parsed_objects.append({
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
|
||||
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
|
||||
})
|
||||
self.cameras[frame['camera_name']].add_objects(parsed_objects)
|
||||
|
||||
|
||||
# should this be a region class?
|
||||
class FramePrepper(threading.Thread):
|
||||
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
||||
frame_lock,
|
||||
region_size, region_x_offset, region_y_offset, region_threshold,
|
||||
prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_name = camera_name
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.region_size = region_size
|
||||
self.region_x_offset = region_x_offset
|
||||
self.region_y_offset = region_y_offset
|
||||
self.region_threshold = region_threshold
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
with self.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# make a copy of the cropped frame
|
||||
with self.frame_lock:
|
||||
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
if not self.prepped_frame_queue.full():
|
||||
self.prepped_frame_queue.put({
|
||||
'camera_name': self.camera_name,
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
'region_threshold': self.region_threshold,
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
else:
|
||||
print("queue full. moving on")
|
||||
559
frigate/object_processing.py
Normal file
@@ -0,0 +1,559 @@
|
||||
import copy
|
||||
import base64
|
||||
import datetime
|
||||
import hashlib
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from collections import Counter, defaultdict
|
||||
from statistics import mean, median
|
||||
from typing import Callable, Dict
|
||||
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import FrigateConfig, CameraConfig
|
||||
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
|
||||
from frigate.edgetpu import load_labels
|
||||
from frigate.util import SharedMemoryFrameManager, draw_box_with_label, calculate_region
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
PATH_TO_LABELS = '/labelmap.txt'
|
||||
|
||||
LABELS = load_labels(PATH_TO_LABELS)
|
||||
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
||||
|
||||
COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
|
||||
def on_edge(box, frame_shape):
|
||||
if (
|
||||
box[0] == 0 or
|
||||
box[1] == 0 or
|
||||
box[2] == frame_shape[1]-1 or
|
||||
box[3] == frame_shape[0]-1
|
||||
):
|
||||
return True
|
||||
|
||||
def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
|
||||
# larger is better
|
||||
# cutoff images are less ideal, but they should also be smaller?
|
||||
# better scores are obviously better too
|
||||
|
||||
# if the new_thumb is on an edge, and the current thumb is not
|
||||
if on_edge(new_obj['box'], frame_shape) and not on_edge(current_thumb['box'], frame_shape):
|
||||
return False
|
||||
|
||||
# if the score is better by more than 5%
|
||||
if new_obj['score'] > current_thumb['score']+.05:
|
||||
return True
|
||||
|
||||
# if the area is 10% larger
|
||||
if new_obj['area'] > current_thumb['area']*1.1:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
class TrackedObject():
|
||||
def __init__(self, camera, camera_config: CameraConfig, frame_cache, obj_data):
|
||||
self.obj_data = obj_data
|
||||
self.camera = camera
|
||||
self.camera_config = camera_config
|
||||
self.frame_cache = frame_cache
|
||||
self.current_zones = []
|
||||
self.entered_zones = set()
|
||||
self.false_positive = True
|
||||
self.top_score = self.computed_score = 0.0
|
||||
self.thumbnail_data = None
|
||||
self.last_updated = 0
|
||||
self.last_published = 0
|
||||
self.frame = None
|
||||
self.previous = self.to_dict()
|
||||
|
||||
# start the score history
|
||||
self.score_history = [self.obj_data['score']]
|
||||
|
||||
def _is_false_positive(self):
|
||||
# once a true positive, always a true positive
|
||||
if not self.false_positive:
|
||||
return False
|
||||
|
||||
threshold = self.camera_config.objects.filters[self.obj_data['label']].threshold
|
||||
if self.computed_score < threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
def compute_score(self):
|
||||
scores = self.score_history[:]
|
||||
# pad with zeros if you dont have at least 3 scores
|
||||
if len(scores) < 3:
|
||||
scores += [0.0]*(3 - len(scores))
|
||||
return median(scores)
|
||||
|
||||
def update(self, current_frame_time, obj_data):
|
||||
significant_update = False
|
||||
self.obj_data.update(obj_data)
|
||||
# if the object is not in the current frame, add a 0.0 to the score history
|
||||
if self.obj_data['frame_time'] != current_frame_time:
|
||||
self.score_history.append(0.0)
|
||||
else:
|
||||
self.score_history.append(self.obj_data['score'])
|
||||
# only keep the last 10 scores
|
||||
if len(self.score_history) > 10:
|
||||
self.score_history = self.score_history[-10:]
|
||||
|
||||
# calculate if this is a false positive
|
||||
self.computed_score = self.compute_score()
|
||||
if self.computed_score > self.top_score:
|
||||
self.top_score = self.computed_score
|
||||
self.false_positive = self._is_false_positive()
|
||||
|
||||
if not self.false_positive:
|
||||
# determine if this frame is a better thumbnail
|
||||
if (
|
||||
self.thumbnail_data is None
|
||||
or is_better_thumbnail(self.thumbnail_data, self.obj_data, self.camera_config.frame_shape)
|
||||
):
|
||||
self.thumbnail_data = {
|
||||
'frame_time': self.obj_data['frame_time'],
|
||||
'box': self.obj_data['box'],
|
||||
'area': self.obj_data['area'],
|
||||
'region': self.obj_data['region'],
|
||||
'score': self.obj_data['score']
|
||||
}
|
||||
significant_update = True
|
||||
|
||||
# check zones
|
||||
current_zones = []
|
||||
bottom_center = (self.obj_data['centroid'][0], self.obj_data['box'][3])
|
||||
# check each zone
|
||||
for name, zone in self.camera_config.zones.items():
|
||||
contour = zone.contour
|
||||
# check if the object is in the zone
|
||||
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
|
||||
# if the object passed the filters once, dont apply again
|
||||
if name in self.current_zones or not zone_filtered(self, zone.filters):
|
||||
current_zones.append(name)
|
||||
self.entered_zones.add(name)
|
||||
|
||||
# if the zones changed, signal an update
|
||||
if not self.false_positive and set(self.current_zones) != set(current_zones):
|
||||
significant_update = True
|
||||
|
||||
self.current_zones = current_zones
|
||||
return significant_update
|
||||
|
||||
def to_dict(self, include_thumbnail: bool = False):
|
||||
return {
|
||||
'id': self.obj_data['id'],
|
||||
'camera': self.camera,
|
||||
'frame_time': self.obj_data['frame_time'],
|
||||
'label': self.obj_data['label'],
|
||||
'top_score': self.top_score,
|
||||
'false_positive': self.false_positive,
|
||||
'start_time': self.obj_data['start_time'],
|
||||
'end_time': self.obj_data.get('end_time', None),
|
||||
'score': self.obj_data['score'],
|
||||
'box': self.obj_data['box'],
|
||||
'area': self.obj_data['area'],
|
||||
'region': self.obj_data['region'],
|
||||
'current_zones': self.current_zones.copy(),
|
||||
'entered_zones': list(self.entered_zones).copy(),
|
||||
'thumbnail': base64.b64encode(self.get_thumbnail()).decode('utf-8') if include_thumbnail else None
|
||||
}
|
||||
|
||||
def get_thumbnail(self):
|
||||
if self.thumbnail_data is None or not self.thumbnail_data['frame_time'] in self.frame_cache:
|
||||
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
|
||||
|
||||
jpg_bytes = self.get_jpg_bytes(timestamp=False, bounding_box=False, crop=True, height=175)
|
||||
|
||||
if jpg_bytes:
|
||||
return jpg_bytes
|
||||
else:
|
||||
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
|
||||
return jpg.tobytes()
|
||||
|
||||
def get_jpg_bytes(self, timestamp=False, bounding_box=False, crop=False, height=None):
|
||||
if self.thumbnail_data is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
|
||||
except KeyError:
|
||||
logger.warning(f"Unable to create jpg because frame {self.thumbnail_data['frame_time']} is not in the cache")
|
||||
return None
|
||||
|
||||
if bounding_box:
|
||||
thickness = 2
|
||||
color = COLOR_MAP[self.obj_data['label']]
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = self.thumbnail_data['box']
|
||||
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'], f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
|
||||
|
||||
if crop:
|
||||
box = self.thumbnail_data['box']
|
||||
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
|
||||
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
||||
|
||||
if height:
|
||||
width = int(height*best_frame.shape[1]/best_frame.shape[0])
|
||||
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
if timestamp:
|
||||
time_to_show = datetime.datetime.fromtimestamp(self.thumbnail_data['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
|
||||
text_width = size[0][0]
|
||||
desired_size = max(150, 0.33*best_frame.shape[1])
|
||||
font_scale = desired_size/text_width
|
||||
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
fontScale=font_scale, color=(255, 255, 255), thickness=2)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
return jpg.tobytes()
|
||||
else:
|
||||
return None
|
||||
|
||||
def zone_filtered(obj: TrackedObject, object_config):
|
||||
object_name = obj.obj_data['label']
|
||||
|
||||
if object_name in object_config:
|
||||
obj_settings = object_config[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.min_area > obj.obj_data['area']:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.max_area < obj.obj_data['area']:
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.threshold > obj.computed_score:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
# Maintains the state of a camera
|
||||
class CameraState():
|
||||
def __init__(self, name, config, frame_manager):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.camera_config = config.cameras[name]
|
||||
self.frame_manager = frame_manager
|
||||
self.best_objects: Dict[str, TrackedObject] = {}
|
||||
self.object_counts = defaultdict(lambda: 0)
|
||||
self.tracked_objects: Dict[str, TrackedObject] = {}
|
||||
self.frame_cache = {}
|
||||
self.zone_objects = defaultdict(lambda: [])
|
||||
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
|
||||
self.current_frame_lock = threading.Lock()
|
||||
self.current_frame_time = 0.0
|
||||
self.motion_boxes = []
|
||||
self.regions = []
|
||||
self.previous_frame_id = None
|
||||
self.callbacks = defaultdict(lambda: [])
|
||||
|
||||
def get_current_frame(self, draw_options={}):
|
||||
with self.current_frame_lock:
|
||||
frame_copy = np.copy(self._current_frame)
|
||||
frame_time = self.current_frame_time
|
||||
tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
|
||||
motion_boxes = self.motion_boxes.copy()
|
||||
regions = self.regions.copy()
|
||||
|
||||
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
|
||||
# draw on the frame
|
||||
if draw_options.get('bounding_boxes'):
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects.values():
|
||||
thickness = 2
|
||||
color = COLOR_MAP[obj['label']]
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
|
||||
if draw_options.get('regions'):
|
||||
for region in regions:
|
||||
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
|
||||
|
||||
if draw_options.get('zones'):
|
||||
for name, zone in self.camera_config.zones.items():
|
||||
thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
|
||||
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
|
||||
|
||||
if draw_options.get('mask'):
|
||||
mask_overlay = np.where(self.camera_config.motion.mask==[0])
|
||||
frame_copy[mask_overlay] = [0,0,0]
|
||||
|
||||
if draw_options.get('motion_boxes'):
|
||||
for m_box in motion_boxes:
|
||||
cv2.rectangle(frame_copy, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0,0,255), 2)
|
||||
|
||||
if draw_options.get('timestamp'):
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
return frame_copy
|
||||
|
||||
def finished(self, obj_id):
|
||||
del self.tracked_objects[obj_id]
|
||||
|
||||
def on(self, event_type: str, callback: Callable[[Dict], None]):
|
||||
self.callbacks[event_type].append(callback)
|
||||
|
||||
def update(self, frame_time, current_detections, motion_boxes, regions):
|
||||
self.current_frame_time = frame_time
|
||||
self.motion_boxes = motion_boxes
|
||||
self.regions = regions
|
||||
# get the new frame
|
||||
frame_id = f"{self.name}{frame_time}"
|
||||
current_frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape_yuv)
|
||||
|
||||
current_ids = current_detections.keys()
|
||||
previous_ids = self.tracked_objects.keys()
|
||||
removed_ids = list(set(previous_ids).difference(current_ids))
|
||||
new_ids = list(set(current_ids).difference(previous_ids))
|
||||
updated_ids = list(set(current_ids).intersection(previous_ids))
|
||||
|
||||
for id in new_ids:
|
||||
new_obj = self.tracked_objects[id] = TrackedObject(self.name, self.camera_config, self.frame_cache, current_detections[id])
|
||||
|
||||
# call event handlers
|
||||
for c in self.callbacks['start']:
|
||||
c(self.name, new_obj, frame_time)
|
||||
|
||||
for id in updated_ids:
|
||||
updated_obj = self.tracked_objects[id]
|
||||
significant_update = updated_obj.update(frame_time, current_detections[id])
|
||||
|
||||
if significant_update:
|
||||
# ensure this frame is stored in the cache
|
||||
if updated_obj.thumbnail_data['frame_time'] == frame_time and frame_time not in self.frame_cache:
|
||||
self.frame_cache[frame_time] = np.copy(current_frame)
|
||||
|
||||
updated_obj.last_updated = frame_time
|
||||
|
||||
# if it has been more than 5 seconds since the last publish
|
||||
# and the last update is greater than the last publish
|
||||
if frame_time - updated_obj.last_published > 5 and updated_obj.last_updated > updated_obj.last_published:
|
||||
# call event handlers
|
||||
for c in self.callbacks['update']:
|
||||
c(self.name, updated_obj, frame_time)
|
||||
updated_obj.last_published = frame_time
|
||||
|
||||
for id in removed_ids:
|
||||
# publish events to mqtt
|
||||
removed_obj = self.tracked_objects[id]
|
||||
if not 'end_time' in removed_obj.obj_data:
|
||||
removed_obj.obj_data['end_time'] = frame_time
|
||||
for c in self.callbacks['end']:
|
||||
c(self.name, removed_obj, frame_time)
|
||||
|
||||
# TODO: can i switch to looking this up and only changing when an event ends?
|
||||
# maintain best objects
|
||||
for obj in self.tracked_objects.values():
|
||||
object_type = obj.obj_data['label']
|
||||
# if the object's thumbnail is not from the current frame
|
||||
if obj.false_positive or obj.thumbnail_data['frame_time'] != self.current_frame_time:
|
||||
continue
|
||||
if object_type in self.best_objects:
|
||||
current_best = self.best_objects[object_type]
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is older than desired, use the new object
|
||||
if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
|
||||
or (now - current_best.thumbnail_data['frame_time']) > self.camera_config.best_image_timeout):
|
||||
self.best_objects[object_type] = obj
|
||||
for c in self.callbacks['snapshot']:
|
||||
c(self.name, self.best_objects[object_type], frame_time)
|
||||
else:
|
||||
self.best_objects[object_type] = obj
|
||||
for c in self.callbacks['snapshot']:
|
||||
c(self.name, self.best_objects[object_type], frame_time)
|
||||
|
||||
# update overall camera state for each object type
|
||||
obj_counter = Counter()
|
||||
for obj in self.tracked_objects.values():
|
||||
if not obj.false_positive:
|
||||
obj_counter[obj.obj_data['label']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, count in obj_counter.items():
|
||||
if count != self.object_counts[obj_name]:
|
||||
self.object_counts[obj_name] = count
|
||||
for c in self.callbacks['object_status']:
|
||||
c(self.name, obj_name, count)
|
||||
|
||||
# expire any objects that are >0 and no longer detected
|
||||
expired_objects = [obj_name for obj_name, count in self.object_counts.items() if count > 0 and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
self.object_counts[obj_name] = 0
|
||||
for c in self.callbacks['object_status']:
|
||||
c(self.name, obj_name, 0)
|
||||
for c in self.callbacks['snapshot']:
|
||||
c(self.name, self.best_objects[obj_name], frame_time)
|
||||
|
||||
# cleanup thumbnail frame cache
|
||||
current_thumb_frames = set([obj.thumbnail_data['frame_time'] for obj in self.tracked_objects.values() if not obj.false_positive])
|
||||
current_best_frames = set([obj.thumbnail_data['frame_time'] for obj in self.best_objects.values()])
|
||||
thumb_frames_to_delete = [t for t in self.frame_cache.keys() if not t in current_thumb_frames and not t in current_best_frames]
|
||||
for t in thumb_frames_to_delete:
|
||||
del self.frame_cache[t]
|
||||
|
||||
with self.current_frame_lock:
|
||||
self._current_frame = current_frame
|
||||
if not self.previous_frame_id is None:
|
||||
self.frame_manager.delete(self.previous_frame_id)
|
||||
self.previous_frame_id = frame_id
|
||||
|
||||
class TrackedObjectProcessor(threading.Thread):
|
||||
def __init__(self, config: FrigateConfig, client, topic_prefix, tracked_objects_queue, event_queue, event_processed_queue, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = "detected_frames_processor"
|
||||
self.config = config
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.event_queue = event_queue
|
||||
self.event_processed_queue = event_processed_queue
|
||||
self.stop_event = stop_event
|
||||
self.camera_states: Dict[str, CameraState] = {}
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
|
||||
def start(camera, obj: TrackedObject, current_frame_time):
|
||||
self.event_queue.put(('start', camera, obj.to_dict()))
|
||||
|
||||
def update(camera, obj: TrackedObject, current_frame_time):
|
||||
after = obj.to_dict()
|
||||
message = { 'before': obj.previous, 'after': after, 'type': 'new' if obj.previous['false_positive'] else 'update' }
|
||||
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
|
||||
obj.previous = after
|
||||
|
||||
def end(camera, obj: TrackedObject, current_frame_time):
|
||||
snapshot_config = self.config.cameras[camera].snapshots
|
||||
event_data = obj.to_dict(include_thumbnail=True)
|
||||
event_data['has_snapshot'] = False
|
||||
if not obj.false_positive:
|
||||
message = { 'before': obj.previous, 'after': obj.to_dict(), 'type': 'end' }
|
||||
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
|
||||
# write snapshot to disk if enabled
|
||||
if snapshot_config.enabled:
|
||||
jpg_bytes = obj.get_jpg_bytes(
|
||||
timestamp=snapshot_config.timestamp,
|
||||
bounding_box=snapshot_config.bounding_box,
|
||||
crop=snapshot_config.crop,
|
||||
height=snapshot_config.height
|
||||
)
|
||||
with open(os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"), 'wb') as j:
|
||||
j.write(jpg_bytes)
|
||||
event_data['has_snapshot'] = True
|
||||
self.event_queue.put(('end', camera, event_data))
|
||||
|
||||
def snapshot(camera, obj: TrackedObject, current_frame_time):
|
||||
mqtt_config = self.config.cameras[camera].mqtt
|
||||
if mqtt_config.enabled:
|
||||
jpg_bytes = obj.get_jpg_bytes(
|
||||
timestamp=mqtt_config.timestamp,
|
||||
bounding_box=mqtt_config.bounding_box,
|
||||
crop=mqtt_config.crop,
|
||||
height=mqtt_config.height
|
||||
)
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", jpg_bytes, retain=True)
|
||||
|
||||
def object_status(camera, object_name, status):
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
|
||||
|
||||
for camera in self.config.cameras.keys():
|
||||
camera_state = CameraState(camera, self.config, self.frame_manager)
|
||||
camera_state.on('start', start)
|
||||
camera_state.on('update', update)
|
||||
camera_state.on('end', end)
|
||||
camera_state.on('snapshot', snapshot)
|
||||
camera_state.on('object_status', object_status)
|
||||
self.camera_states[camera] = camera_state
|
||||
|
||||
# {
|
||||
# 'zone_name': {
|
||||
# 'person': {
|
||||
# 'camera_1': 2,
|
||||
# 'camera_2': 1
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
self.zone_data = defaultdict(lambda: defaultdict(lambda: {}))
|
||||
|
||||
def get_best(self, camera, label):
|
||||
# TODO: need a lock here
|
||||
camera_state = self.camera_states[camera]
|
||||
if label in camera_state.best_objects:
|
||||
best_obj = camera_state.best_objects[label]
|
||||
best = best_obj.thumbnail_data.copy()
|
||||
best['frame'] = camera_state.frame_cache.get(best_obj.thumbnail_data['frame_time'])
|
||||
return best
|
||||
else:
|
||||
return {}
|
||||
|
||||
def get_current_frame(self, camera, draw_options={}):
|
||||
return self.camera_states[camera].get_current_frame(draw_options)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting object processor...")
|
||||
break
|
||||
|
||||
try:
|
||||
camera, frame_time, current_tracked_objects, motion_boxes, regions = self.tracked_objects_queue.get(True, 10)
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
camera_state = self.camera_states[camera]
|
||||
|
||||
camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
|
||||
|
||||
# update zone counts for each label
|
||||
# for each zone in the current camera
|
||||
for zone in self.config.cameras[camera].zones.keys():
|
||||
# count labels for the camera in the zone
|
||||
obj_counter = Counter()
|
||||
for obj in camera_state.tracked_objects.values():
|
||||
if zone in obj.current_zones and not obj.false_positive:
|
||||
obj_counter[obj.obj_data['label']] += 1
|
||||
|
||||
# update counts and publish status
|
||||
for label in set(list(self.zone_data[zone].keys()) + list(obj_counter.keys())):
|
||||
# if we have previously published a count for this zone/label
|
||||
zone_label = self.zone_data[zone][label]
|
||||
if camera in zone_label:
|
||||
current_count = sum(zone_label.values())
|
||||
zone_label[camera] = obj_counter[label] if label in obj_counter else 0
|
||||
new_count = sum(zone_label.values())
|
||||
if new_count != current_count:
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", new_count, retain=False)
|
||||
# if this is a new zone/label combo for this camera
|
||||
else:
|
||||
if label in obj_counter:
|
||||
zone_label[camera] = obj_counter[label]
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", obj_counter[label], retain=False)
|
||||
|
||||
# cleanup event finished queue
|
||||
while not self.event_processed_queue.empty():
|
||||
event_id, camera = self.event_processed_queue.get()
|
||||
self.camera_states[camera].finished(event_id)
|
||||
@@ -1,92 +1,149 @@
|
||||
import time
|
||||
import copy
|
||||
import datetime
|
||||
import itertools
|
||||
import multiprocessing as mp
|
||||
import random
|
||||
import string
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
|
||||
import cv2
|
||||
from . util import draw_box_with_label
|
||||
import numpy as np
|
||||
from scipy.spatial import distance as dist
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, objects_parsed, detected_objects):
|
||||
threading.Thread.__init__(self)
|
||||
self._objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
|
||||
# wait a bit before checking for expired frames
|
||||
time.sleep(0.2)
|
||||
|
||||
# expire the objects that are more than 1 second old
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# look for the first object found within the last second
|
||||
# (newest objects are appended to the end)
|
||||
detected_objects = self._detected_objects.copy()
|
||||
|
||||
num_to_delete = 0
|
||||
for obj in detected_objects:
|
||||
if now-obj['frame_time']<2:
|
||||
break
|
||||
num_to_delete += 1
|
||||
if num_to_delete > 0:
|
||||
del self._detected_objects[:num_to_delete]
|
||||
|
||||
# notify that parsed objects were changed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
from frigate.config import DetectConfig
|
||||
from frigate.util import draw_box_with_label
|
||||
|
||||
|
||||
# Maintains the frame and person with the highest score from the most recent
|
||||
# motion event
|
||||
class BestPersonFrame(threading.Thread):
|
||||
def __init__(self, objects_parsed, recent_frames, detected_objects):
|
||||
threading.Thread.__init__(self)
|
||||
self.objects_parsed = objects_parsed
|
||||
self.recent_frames = recent_frames
|
||||
self.detected_objects = detected_objects
|
||||
self.best_person = None
|
||||
self.best_frame = None
|
||||
class ObjectTracker():
|
||||
def __init__(self, config: DetectConfig):
|
||||
self.tracked_objects = {}
|
||||
self.disappeared = {}
|
||||
self.max_disappeared = config.max_disappeared
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
def register(self, index, obj):
|
||||
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
||||
id = f"{obj['frame_time']}-{rand_id}"
|
||||
obj['id'] = id
|
||||
obj['start_time'] = obj['frame_time']
|
||||
self.tracked_objects[id] = obj
|
||||
self.disappeared[id] = 0
|
||||
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
def deregister(self, id):
|
||||
del self.tracked_objects[id]
|
||||
del self.disappeared[id]
|
||||
|
||||
def update(self, id, new_obj):
|
||||
self.disappeared[id] = 0
|
||||
self.tracked_objects[id].update(new_obj)
|
||||
|
||||
# make a copy of detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
|
||||
def match_and_update(self, frame_time, new_objects):
|
||||
# group by name
|
||||
new_object_groups = defaultdict(lambda: [])
|
||||
for obj in new_objects:
|
||||
new_object_groups[obj[0]].append({
|
||||
'label': obj[0],
|
||||
'score': obj[1],
|
||||
'box': obj[2],
|
||||
'area': obj[3],
|
||||
'region': obj[4],
|
||||
'frame_time': frame_time
|
||||
})
|
||||
|
||||
# update any tracked objects with labels that are not
|
||||
# seen in the current objects and deregister if needed
|
||||
for obj in list(self.tracked_objects.values()):
|
||||
if not obj['label'] in new_object_groups:
|
||||
if self.disappeared[obj['id']] >= self.max_disappeared:
|
||||
self.deregister(obj['id'])
|
||||
else:
|
||||
self.disappeared[obj['id']] += 1
|
||||
|
||||
if len(new_objects) == 0:
|
||||
return
|
||||
|
||||
# track objects for each label type
|
||||
for label, group in new_object_groups.items():
|
||||
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
|
||||
current_ids = [o['id'] for o in current_objects]
|
||||
current_centroids = np.array([o['centroid'] for o in current_objects])
|
||||
|
||||
# get the highest scoring person
|
||||
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
|
||||
# compute centroids of new objects
|
||||
for obj in group:
|
||||
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
|
||||
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
|
||||
obj['centroid'] = (centroid_x, centroid_y)
|
||||
|
||||
# if there isnt a person, continue
|
||||
if new_best_person is None:
|
||||
continue
|
||||
if len(current_objects) == 0:
|
||||
for index, obj in enumerate(group):
|
||||
self.register(index, obj)
|
||||
return
|
||||
|
||||
new_centroids = np.array([o['centroid'] for o in group])
|
||||
|
||||
# if there is no current best_person
|
||||
if self.best_person is None:
|
||||
self.best_person = new_best_person
|
||||
# if there is already a best_person
|
||||
# compute the distance between each pair of tracked
|
||||
# centroids and new centroids, respectively -- our
|
||||
# goal will be to match each new centroid to an existing
|
||||
# object centroid
|
||||
D = dist.cdist(current_centroids, new_centroids)
|
||||
|
||||
# in order to perform this matching we must (1) find the
|
||||
# smallest value in each row and then (2) sort the row
|
||||
# indexes based on their minimum values so that the row
|
||||
# with the smallest value is at the *front* of the index
|
||||
# list
|
||||
rows = D.min(axis=1).argsort()
|
||||
|
||||
# next, we perform a similar process on the columns by
|
||||
# finding the smallest value in each column and then
|
||||
# sorting using the previously computed row index list
|
||||
cols = D.argmin(axis=1)[rows]
|
||||
|
||||
# in order to determine if we need to update, register,
|
||||
# or deregister an object we need to keep track of which
|
||||
# of the rows and column indexes we have already examined
|
||||
usedRows = set()
|
||||
usedCols = set()
|
||||
|
||||
# loop over the combination of the (row, column) index
|
||||
# tuples
|
||||
for (row, col) in zip(rows, cols):
|
||||
# if we have already examined either the row or
|
||||
# column value before, ignore it
|
||||
if row in usedRows or col in usedCols:
|
||||
continue
|
||||
|
||||
# otherwise, grab the object ID for the current row,
|
||||
# set its new centroid, and reset the disappeared
|
||||
# counter
|
||||
objectID = current_ids[row]
|
||||
self.update(objectID, group[col])
|
||||
|
||||
# indicate that we have examined each of the row and
|
||||
# column indexes, respectively
|
||||
usedRows.add(row)
|
||||
usedCols.add(col)
|
||||
|
||||
# compute the column index we have NOT yet examined
|
||||
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
||||
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
||||
|
||||
# in the event that the number of object centroids is
|
||||
# equal or greater than the number of input centroids
|
||||
# we need to check and see if some of these objects have
|
||||
# potentially disappeared
|
||||
if D.shape[0] >= D.shape[1]:
|
||||
for row in unusedRows:
|
||||
id = current_ids[row]
|
||||
|
||||
if self.disappeared[id] >= self.max_disappeared:
|
||||
self.deregister(id)
|
||||
else:
|
||||
self.disappeared[id] += 1
|
||||
# if the number of input centroids is greater
|
||||
# than the number of existing object centroids we need to
|
||||
# register each new input centroid as a trackable object
|
||||
else:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the new best person is a higher score than the current best person
|
||||
# or the current person is more than 1 minute old, use the new best person
|
||||
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
|
||||
self.best_person = new_best_person
|
||||
|
||||
# make a copy of the recent frames
|
||||
recent_frames = self.recent_frames.copy()
|
||||
|
||||
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
|
||||
best_frame = recent_frames[self.best_person['frame_time']]
|
||||
|
||||
label = "{}: {}% {}".format(self.best_person['name'],int(self.best_person['score']*100),int(self.best_person['area']))
|
||||
draw_box_with_label(best_frame, self.best_person['xmin'], self.best_person['ymin'],
|
||||
self.best_person['xmax'], self.best_person['ymax'], label)
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(self.best_person['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
for col in unusedCols:
|
||||
self.register(col, group[col])
|
||||
|
||||
208
frigate/process_clip.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import subprocess as sp
|
||||
import sys
|
||||
from unittest import TestCase, main
|
||||
|
||||
import click
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
|
||||
from frigate.edgetpu import LocalObjectDetector
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.object_processing import COLOR_MAP, CameraState
|
||||
from frigate.objects import ObjectTracker
|
||||
from frigate.util import (DictFrameManager, EventsPerSecond,
|
||||
SharedMemoryFrameManager, draw_box_with_label)
|
||||
from frigate.video import (capture_frames, process_frames,
|
||||
start_or_restart_ffmpeg)
|
||||
|
||||
logging.basicConfig()
|
||||
logging.root.setLevel(logging.DEBUG)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def get_frame_shape(source):
|
||||
ffprobe_cmd = " ".join([
|
||||
'ffprobe',
|
||||
'-v',
|
||||
'panic',
|
||||
'-show_error',
|
||||
'-show_streams',
|
||||
'-of',
|
||||
'json',
|
||||
'"'+source+'"'
|
||||
])
|
||||
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
||||
(output, err) = p.communicate()
|
||||
p_status = p.wait()
|
||||
info = json.loads(output)
|
||||
|
||||
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
|
||||
|
||||
if video_info['height'] != 0 and video_info['width'] != 0:
|
||||
return (video_info['height'], video_info['width'], 3)
|
||||
|
||||
# fallback to using opencv if ffprobe didnt succeed
|
||||
video = cv2.VideoCapture(source)
|
||||
ret, frame = video.read()
|
||||
frame_shape = frame.shape
|
||||
video.release()
|
||||
return frame_shape
|
||||
|
||||
class ProcessClip():
|
||||
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
|
||||
self.clip_path = clip_path
|
||||
self.camera_name = 'camera'
|
||||
self.config = config
|
||||
self.camera_config = self.config.cameras['camera']
|
||||
self.frame_shape = self.camera_config.frame_shape
|
||||
self.ffmpeg_cmd = [c['cmd'] for c in self.camera_config.ffmpeg_cmds if 'detect' in c['roles']][0]
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
self.frame_queue = mp.Queue()
|
||||
self.detected_objects_queue = mp.Queue()
|
||||
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
|
||||
|
||||
def load_frames(self):
|
||||
fps = EventsPerSecond()
|
||||
skipped_fps = EventsPerSecond()
|
||||
current_frame = mp.Value('d', 0.0)
|
||||
frame_size = self.camera_config.frame_shape_yuv[0] * self.camera_config.frame_shape_yuv[1]
|
||||
ffmpeg_process = start_or_restart_ffmpeg(self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size)
|
||||
capture_frames(ffmpeg_process, self.camera_name, self.camera_config.frame_shape_yuv, self.frame_manager,
|
||||
self.frame_queue, fps, skipped_fps, current_frame)
|
||||
ffmpeg_process.wait()
|
||||
ffmpeg_process.communicate()
|
||||
|
||||
def process_frames(self, objects_to_track=['person'], object_filters={}):
|
||||
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
mask[:] = 255
|
||||
motion_detector = MotionDetector(self.frame_shape, mask, self.camera_config.motion)
|
||||
|
||||
object_detector = LocalObjectDetector(labels='/labelmap.txt')
|
||||
object_tracker = ObjectTracker(self.camera_config.detect)
|
||||
process_info = {
|
||||
'process_fps': mp.Value('d', 0.0),
|
||||
'detection_fps': mp.Value('d', 0.0),
|
||||
'detection_frame': mp.Value('d', 0.0)
|
||||
}
|
||||
stop_event = mp.Event()
|
||||
model_shape = (self.config.model.height, self.config.model.width)
|
||||
|
||||
process_frames(self.camera_name, self.frame_queue, self.frame_shape, model_shape,
|
||||
self.frame_manager, motion_detector, object_detector, object_tracker,
|
||||
self.detected_objects_queue, process_info,
|
||||
objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
|
||||
|
||||
def top_object(self, debug_path=None):
|
||||
obj_detected = False
|
||||
top_computed_score = 0.0
|
||||
def handle_event(name, obj, frame_time):
|
||||
nonlocal obj_detected
|
||||
nonlocal top_computed_score
|
||||
if obj.computed_score > top_computed_score:
|
||||
top_computed_score = obj.computed_score
|
||||
if not obj.false_positive:
|
||||
obj_detected = True
|
||||
self.camera_state.on('new', handle_event)
|
||||
self.camera_state.on('update', handle_event)
|
||||
|
||||
while(not self.detected_objects_queue.empty()):
|
||||
camera_name, frame_time, current_tracked_objects, motion_boxes, regions = self.detected_objects_queue.get()
|
||||
if not debug_path is None:
|
||||
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
|
||||
|
||||
self.camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
|
||||
|
||||
self.frame_manager.delete(self.camera_state.previous_frame_id)
|
||||
|
||||
return {
|
||||
'object_detected': obj_detected,
|
||||
'top_score': top_computed_score
|
||||
}
|
||||
|
||||
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
|
||||
current_frame = cv2.cvtColor(self.frame_manager.get(f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv), cv2.COLOR_YUV2BGR_I420)
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects:
|
||||
thickness = 2
|
||||
color = (0,0,175)
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
else:
|
||||
color = (255,255,0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['id'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
|
||||
|
||||
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", current_frame)
|
||||
|
||||
@click.command()
|
||||
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
|
||||
@click.option("-l", "--label", default='person', help="Label name to detect.")
|
||||
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
|
||||
@click.option("-s", "--scores", default=None, help="File to save csv of top scores")
|
||||
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
|
||||
def process(path, label, threshold, scores, debug_path):
|
||||
clips = []
|
||||
if os.path.isdir(path):
|
||||
files = os.listdir(path)
|
||||
files.sort()
|
||||
clips = [os.path.join(path, file) for file in files]
|
||||
elif os.path.isfile(path):
|
||||
clips.append(path)
|
||||
|
||||
json_config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'camera': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'path.mp4', 'global_args': '', 'input_args': '', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1920,
|
||||
'width': 1080
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
results = []
|
||||
for c in clips:
|
||||
logger.info(c)
|
||||
frame_shape = get_frame_shape(c)
|
||||
|
||||
json_config['cameras']['camera']['height'] = frame_shape[0]
|
||||
json_config['cameras']['camera']['width'] = frame_shape[1]
|
||||
json_config['cameras']['camera']['ffmpeg']['inputs'][0]['path'] = c
|
||||
|
||||
config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
|
||||
|
||||
process_clip = ProcessClip(c, frame_shape, config)
|
||||
process_clip.load_frames()
|
||||
process_clip.process_frames(objects_to_track=[label])
|
||||
|
||||
results.append((c, process_clip.top_object(debug_path)))
|
||||
|
||||
if not scores is None:
|
||||
with open(scores, 'w') as writer:
|
||||
for result in results:
|
||||
writer.write(f"{result[0]},{result[1]['top_score']}\n")
|
||||
|
||||
positive_count = sum(1 for result in results if result[1]['object_detected'])
|
||||
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
|
||||
|
||||
if __name__ == '__main__':
|
||||
process()
|
||||
125
frigate/record.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import queue
|
||||
import subprocess as sp
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import psutil
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
SECONDS_IN_DAY = 60 * 60 * 24
|
||||
|
||||
def remove_empty_directories(directory):
|
||||
# list all directories recursively and sort them by path,
|
||||
# longest first
|
||||
paths = sorted(
|
||||
[x[0] for x in os.walk(RECORD_DIR)],
|
||||
key=lambda p: len(str(p)),
|
||||
reverse=True,
|
||||
)
|
||||
for path in paths:
|
||||
# don't delete the parent
|
||||
if path == RECORD_DIR:
|
||||
continue
|
||||
if len(os.listdir(path)) == 0:
|
||||
os.rmdir(path)
|
||||
|
||||
class RecordingMaintainer(threading.Thread):
|
||||
def __init__(self, config: FrigateConfig, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'recording_maint'
|
||||
self.config = config
|
||||
self.stop_event = stop_event
|
||||
|
||||
def move_files(self):
|
||||
recordings = [d for d in os.listdir(RECORD_DIR) if os.path.isfile(os.path.join(RECORD_DIR, d)) and d.endswith(".mp4")]
|
||||
|
||||
files_in_use = []
|
||||
for process in psutil.process_iter():
|
||||
try:
|
||||
if process.name() != 'ffmpeg':
|
||||
continue
|
||||
flist = process.open_files()
|
||||
if flist:
|
||||
for nt in flist:
|
||||
if nt.path.startswith(RECORD_DIR):
|
||||
files_in_use.append(nt.path.split('/')[-1])
|
||||
except:
|
||||
continue
|
||||
|
||||
for f in recordings:
|
||||
if f in files_in_use:
|
||||
continue
|
||||
|
||||
camera = '-'.join(f.split('-')[:-1])
|
||||
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
|
||||
|
||||
ffprobe_cmd = " ".join([
|
||||
'ffprobe',
|
||||
'-v',
|
||||
'error',
|
||||
'-show_entries',
|
||||
'format=duration',
|
||||
'-of',
|
||||
'default=noprint_wrappers=1:nokey=1',
|
||||
f"{os.path.join(RECORD_DIR,f)}"
|
||||
])
|
||||
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
||||
(output, err) = p.communicate()
|
||||
p_status = p.wait()
|
||||
if p_status == 0:
|
||||
duration = float(output.decode('utf-8').strip())
|
||||
else:
|
||||
logger.info(f"bad file: {f}")
|
||||
os.remove(os.path.join(RECORD_DIR,f))
|
||||
continue
|
||||
|
||||
directory = os.path.join(RECORD_DIR, start_time.strftime('%Y-%m/%d/%H'), camera)
|
||||
|
||||
if not os.path.exists(directory):
|
||||
os.makedirs(directory)
|
||||
|
||||
file_name = f"{start_time.strftime('%M.%S.mp4')}"
|
||||
|
||||
os.rename(os.path.join(RECORD_DIR,f), os.path.join(directory,file_name))
|
||||
|
||||
def expire_files(self):
|
||||
delete_before = {}
|
||||
for name, camera in self.config.cameras.items():
|
||||
delete_before[name] = datetime.datetime.now().timestamp() - SECONDS_IN_DAY*camera.record.retain_days
|
||||
|
||||
for p in Path('/media/frigate/recordings').rglob("*.mp4"):
|
||||
if not p.parent.name in delete_before:
|
||||
continue
|
||||
if p.stat().st_mtime < delete_before[p.parent.name]:
|
||||
p.unlink(missing_ok=True)
|
||||
|
||||
def run(self):
|
||||
counter = 0
|
||||
self.expire_files()
|
||||
while(True):
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting recording maintenance...")
|
||||
break
|
||||
|
||||
# only expire events every 10 minutes, but check for new files every 10 seconds
|
||||
time.sleep(10)
|
||||
counter = counter + 1
|
||||
if counter > 60:
|
||||
self.expire_files()
|
||||
remove_empty_directories(RECORD_DIR)
|
||||
counter = 0
|
||||
|
||||
self.move_files()
|
||||
|
||||
|
||||
|
||||
70
frigate/stats.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import json
|
||||
import logging
|
||||
import threading
|
||||
import time
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.version import VERSION
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def stats_init(camera_metrics, detectors):
|
||||
stats_tracking = {
|
||||
'camera_metrics': camera_metrics,
|
||||
'detectors': detectors,
|
||||
'started': int(time.time())
|
||||
}
|
||||
return stats_tracking
|
||||
|
||||
def stats_snapshot(stats_tracking):
|
||||
camera_metrics = stats_tracking['camera_metrics']
|
||||
stats = {}
|
||||
|
||||
total_detection_fps = 0
|
||||
|
||||
for name, camera_stats in camera_metrics.items():
|
||||
total_detection_fps += camera_stats['detection_fps'].value
|
||||
stats[name] = {
|
||||
'camera_fps': round(camera_stats['camera_fps'].value, 2),
|
||||
'process_fps': round(camera_stats['process_fps'].value, 2),
|
||||
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
||||
'detection_fps': round(camera_stats['detection_fps'].value, 2),
|
||||
'pid': camera_stats['process'].pid,
|
||||
'capture_pid': camera_stats['capture_process'].pid
|
||||
}
|
||||
|
||||
stats['detectors'] = {}
|
||||
for name, detector in stats_tracking["detectors"].items():
|
||||
stats['detectors'][name] = {
|
||||
'inference_speed': round(detector.avg_inference_speed.value * 1000, 2),
|
||||
'detection_start': detector.detection_start.value,
|
||||
'pid': detector.detect_process.pid
|
||||
}
|
||||
stats['detection_fps'] = round(total_detection_fps, 2)
|
||||
|
||||
stats['service'] = {
|
||||
'uptime': (int(time.time()) - stats_tracking['started']),
|
||||
'version': VERSION
|
||||
}
|
||||
|
||||
return stats
|
||||
|
||||
class StatsEmitter(threading.Thread):
|
||||
def __init__(self, config: FrigateConfig, stats_tracking, mqtt_client, topic_prefix, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'frigate_stats_emitter'
|
||||
self.config = config
|
||||
self.stats_tracking = stats_tracking
|
||||
self.mqtt_client = mqtt_client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.stop_event = stop_event
|
||||
|
||||
def run(self):
|
||||
time.sleep(10)
|
||||
while True:
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting watchdog...")
|
||||
break
|
||||
stats = stats_snapshot(self.stats_tracking)
|
||||
self.mqtt_client.publish(f"{self.topic_prefix}/stats", json.dumps(stats), retain=False)
|
||||
time.sleep(self.config.mqtt.stats_interval)
|
||||
0
frigate/test/__init__.py
Normal file
342
frigate/test/test_config.py
Normal file
@@ -0,0 +1,342 @@
|
||||
import json
|
||||
from unittest import TestCase, main
|
||||
import voluptuous as vol
|
||||
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
|
||||
|
||||
class TestConfig(TestCase):
|
||||
def setUp(self):
|
||||
self.minimal = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
def test_empty(self):
|
||||
FRIGATE_CONFIG_SCHEMA({})
|
||||
|
||||
def test_minimal(self):
|
||||
FRIGATE_CONFIG_SCHEMA(self.minimal)
|
||||
|
||||
def test_config_class(self):
|
||||
FrigateConfig(config=self.minimal)
|
||||
|
||||
def test_inherit_tracked_objects(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog']
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('dog' in frigate_config.cameras['back'].objects.track)
|
||||
|
||||
def test_override_tracked_objects(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog']
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'objects': {
|
||||
'track': ['cat']
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('cat' in frigate_config.cameras['back'].objects.track)
|
||||
|
||||
def test_default_object_filters(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog']
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('dog' in frigate_config.cameras['back'].objects.filters)
|
||||
|
||||
def test_inherit_object_filters(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog'],
|
||||
'filters': {
|
||||
'dog': {
|
||||
'threshold': 0.7
|
||||
}
|
||||
}
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('dog' in frigate_config.cameras['back'].objects.filters)
|
||||
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
|
||||
|
||||
def test_override_object_filters(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'objects': {
|
||||
'track': ['person', 'dog'],
|
||||
'filters': {
|
||||
'dog': {
|
||||
'threshold': 0.7
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('dog' in frigate_config.cameras['back'].objects.filters)
|
||||
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
|
||||
|
||||
def test_ffmpeg_params(self):
|
||||
config = {
|
||||
'ffmpeg': {
|
||||
'input_args': ['-re']
|
||||
},
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'objects': {
|
||||
'track': ['person', 'dog'],
|
||||
'filters': {
|
||||
'dog': {
|
||||
'threshold': 0.7
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert('-re' in frigate_config.cameras['back'].ffmpeg_cmds[0]['cmd'])
|
||||
|
||||
def test_inherit_clips_retention(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'clips': {
|
||||
'retain': {
|
||||
'default': 20,
|
||||
'objects': {
|
||||
'person': 30
|
||||
}
|
||||
}
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
frigate_config = FrigateConfig(config=config)
|
||||
assert(frigate_config.cameras['back'].clips.retain.objects['person'] == 30)
|
||||
|
||||
def test_roles_listed_twice_throws_error(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'clips': {
|
||||
'retain': {
|
||||
'default': 20,
|
||||
'objects': {
|
||||
'person': 30
|
||||
}
|
||||
}
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] },
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video2', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
|
||||
|
||||
def test_zone_matching_camera_name_throws_error(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'clips': {
|
||||
'retain': {
|
||||
'default': 20,
|
||||
'objects': {
|
||||
'person': 30
|
||||
}
|
||||
}
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'zones': {
|
||||
'back': {
|
||||
'coordinates': '1,1,1,1,1,1'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
|
||||
|
||||
def test_clips_should_default_to_global_objects(self):
|
||||
config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'clips': {
|
||||
'retain': {
|
||||
'default': 20,
|
||||
'objects': {
|
||||
'person': 30
|
||||
}
|
||||
}
|
||||
},
|
||||
'objects': {
|
||||
'track': ['person', 'dog']
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920,
|
||||
'clips': {
|
||||
'enabled': True
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
config = FrigateConfig(config=config)
|
||||
assert(config.cameras['back'].clips.objects is None)
|
||||
|
||||
def test_role_assigned_but_not_enabled(self):
|
||||
json_config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect', 'rtmp'] },
|
||||
{ 'path': 'rtsp://10.0.0.1:554/record', 'roles': ['record'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
config = FrigateConfig(config=json_config)
|
||||
ffmpeg_cmds = config.cameras['back'].ffmpeg_cmds
|
||||
assert(len(ffmpeg_cmds) == 1)
|
||||
assert(not 'clips' in ffmpeg_cmds[0]['roles'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(verbosity=2)
|
||||
39
frigate/test/test_yuv_region_2_rgb.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from unittest import TestCase, main
|
||||
from frigate.util import yuv_region_2_rgb
|
||||
|
||||
class TestYuvRegion2RGB(TestCase):
|
||||
def setUp(self):
|
||||
self.bgr_frame = np.zeros((100, 200, 3), np.uint8)
|
||||
self.bgr_frame[:] = (0, 0, 255)
|
||||
self.bgr_frame[5:55, 5:55] = (255,0,0)
|
||||
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
|
||||
self.yuv_frame = cv2.cvtColor(self.bgr_frame, cv2.COLOR_BGR2YUV_I420)
|
||||
|
||||
def test_crop_yuv(self):
|
||||
cropped = yuv_region_2_rgb(self.yuv_frame, (10,10,50,50))
|
||||
# ensure the upper left pixel is blue
|
||||
assert(np.all(cropped[0, 0] == [0, 0, 255]))
|
||||
|
||||
def test_crop_yuv_out_of_bounds(self):
|
||||
cropped = yuv_region_2_rgb(self.yuv_frame, (0,0,200,200))
|
||||
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
|
||||
# ensure the upper left pixel is red
|
||||
# the yuv conversion has some noise
|
||||
assert(np.all(cropped[0, 0] == [255, 1, 0]))
|
||||
# ensure the bottom right is black
|
||||
assert(np.all(cropped[199, 199] == [0, 0, 0]))
|
||||
|
||||
def test_crop_yuv_portrait(self):
|
||||
bgr_frame = np.zeros((1920, 1080, 3), np.uint8)
|
||||
bgr_frame[:] = (0, 0, 255)
|
||||
bgr_frame[5:55, 5:55] = (255,0,0)
|
||||
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
|
||||
yuv_frame = cv2.cvtColor(bgr_frame, cv2.COLOR_BGR2YUV_I420)
|
||||
|
||||
cropped = yuv_region_2_rgb(yuv_frame, (0, 852, 648, 1500))
|
||||
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(verbosity=2)
|
||||
374
frigate/util.py
Normal file → Executable file
@@ -1,26 +1,374 @@
|
||||
import numpy as np
|
||||
import collections
|
||||
import datetime
|
||||
import hashlib
|
||||
import json
|
||||
import logging
|
||||
import signal
|
||||
import subprocess as sp
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from abc import ABC, abstractmethod
|
||||
from multiprocessing import shared_memory
|
||||
from typing import AnyStr
|
||||
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
def tonumpyarray(mp_arr):
|
||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label):
|
||||
color = (255,0,0)
|
||||
cv2.rectangle(frame, (x_min, y_min),
|
||||
(x_max, y_max),
|
||||
color, 2)
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
||||
if color is None:
|
||||
color = (0,0,255)
|
||||
display_text = "{}: {}".format(label, info)
|
||||
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
|
||||
font_scale = 0.5
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
# get the width and height of the text box
|
||||
size = cv2.getTextSize(label, font, fontScale=font_scale, thickness=2)
|
||||
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
|
||||
text_width = size[0][0]
|
||||
text_height = size[0][1]
|
||||
line_height = text_height + size[1]
|
||||
# set the text start position
|
||||
text_offset_x = x_min
|
||||
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||
if position == 'ul':
|
||||
text_offset_x = x_min
|
||||
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||
elif position == 'ur':
|
||||
text_offset_x = x_max - (text_width+8)
|
||||
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||
elif position == 'bl':
|
||||
text_offset_x = x_min
|
||||
text_offset_y = y_max
|
||||
elif position == 'br':
|
||||
text_offset_x = x_max - (text_width+8)
|
||||
text_offset_y = y_max
|
||||
# make the coords of the box with a small padding of two pixels
|
||||
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
|
||||
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
|
||||
cv2.putText(frame, label, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
||||
# size is the longest edge and divisible by 4
|
||||
size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
|
||||
# dont go any smaller than 300
|
||||
if size < 300:
|
||||
size = 300
|
||||
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
# if outside the image
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = max(0, (frame_shape[1]-size))
|
||||
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# # if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
elif y_offset > (frame_shape[0]-size):
|
||||
y_offset = max(0, (frame_shape[0]-size))
|
||||
|
||||
return (x_offset, y_offset, x_offset+size, y_offset+size)
|
||||
|
||||
def get_yuv_crop(frame_shape, crop):
|
||||
# crop should be (x1,y1,x2,y2)
|
||||
frame_height = frame_shape[0]//3*2
|
||||
frame_width = frame_shape[1]
|
||||
|
||||
# compute the width/height of the uv channels
|
||||
uv_width = frame_width//2 # width of the uv channels
|
||||
uv_height = frame_height//4 # height of the uv channels
|
||||
|
||||
# compute the offset for upper left corner of the uv channels
|
||||
uv_x_offset = crop[0]//2 # x offset of the uv channels
|
||||
uv_y_offset = crop[1]//4 # y offset of the uv channels
|
||||
|
||||
# compute the width/height of the uv crops
|
||||
uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
|
||||
uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
|
||||
|
||||
# ensure crop dimensions are multiples of 2 and 4
|
||||
y = (
|
||||
crop[0],
|
||||
crop[1],
|
||||
crop[0] + uv_crop_width*2,
|
||||
crop[1] + uv_crop_height*4
|
||||
)
|
||||
|
||||
u1 = (
|
||||
0 + uv_x_offset,
|
||||
frame_height + uv_y_offset,
|
||||
0 + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
u2 = (
|
||||
uv_width + uv_x_offset,
|
||||
frame_height + uv_y_offset,
|
||||
uv_width + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
v1 = (
|
||||
0 + uv_x_offset,
|
||||
frame_height + uv_height + uv_y_offset,
|
||||
0 + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
v2 = (
|
||||
uv_width + uv_x_offset,
|
||||
frame_height + uv_height + uv_y_offset,
|
||||
uv_width + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
return y, u1, u2, v1, v2
|
||||
|
||||
def yuv_region_2_rgb(frame, region):
|
||||
try:
|
||||
height = frame.shape[0]//3*2
|
||||
width = frame.shape[1]
|
||||
|
||||
# get the crop box if the region extends beyond the frame
|
||||
crop_x1 = max(0, region[0])
|
||||
crop_y1 = max(0, region[1])
|
||||
# ensure these are a multiple of 4
|
||||
crop_x2 = min(width, region[2])
|
||||
crop_y2 = min(height, region[3])
|
||||
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
|
||||
|
||||
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
|
||||
|
||||
# if the region starts outside the frame, indent the start point in the cropped frame
|
||||
y_channel_x_offset = abs(min(0, region[0]))
|
||||
y_channel_y_offset = abs(min(0, region[1]))
|
||||
|
||||
uv_channel_x_offset = y_channel_x_offset//2
|
||||
uv_channel_y_offset = y_channel_y_offset//4
|
||||
|
||||
# create the yuv region frame
|
||||
# make sure the size is a multiple of 4
|
||||
size = (region[3] - region[1])//4*4
|
||||
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
|
||||
# fill in black
|
||||
yuv_cropped_frame[:] = 128
|
||||
yuv_cropped_frame[0:size,0:size] = 16
|
||||
|
||||
# copy the y channel
|
||||
yuv_cropped_frame[
|
||||
y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
|
||||
y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
|
||||
] = frame[
|
||||
y[1]:y[3],
|
||||
y[0]:y[2]
|
||||
]
|
||||
|
||||
uv_crop_width = u1[2] - u1[0]
|
||||
uv_crop_height = u1[3] - u1[1]
|
||||
|
||||
# copy u1
|
||||
yuv_cropped_frame[
|
||||
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
|
||||
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
u1[1]:u1[3],
|
||||
u1[0]:u1[2]
|
||||
]
|
||||
|
||||
# copy u2
|
||||
yuv_cropped_frame[
|
||||
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
|
||||
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
u2[1]:u2[3],
|
||||
u2[0]:u2[2]
|
||||
]
|
||||
|
||||
# copy v1
|
||||
yuv_cropped_frame[
|
||||
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
|
||||
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
v1[1]:v1[3],
|
||||
v1[0]:v1[2]
|
||||
]
|
||||
|
||||
# copy v2
|
||||
yuv_cropped_frame[
|
||||
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
|
||||
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
v2[1]:v2[3],
|
||||
v2[0]:v2[2]
|
||||
]
|
||||
|
||||
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
|
||||
except:
|
||||
print(f"frame.shape: {frame.shape}")
|
||||
print(f"region: {region}")
|
||||
raise
|
||||
|
||||
def intersection(box_a, box_b):
|
||||
return (
|
||||
max(box_a[0], box_b[0]),
|
||||
max(box_a[1], box_b[1]),
|
||||
min(box_a[2], box_b[2]),
|
||||
min(box_a[3], box_b[3])
|
||||
)
|
||||
|
||||
def area(box):
|
||||
return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
|
||||
|
||||
def intersection_over_union(box_a, box_b):
|
||||
# determine the (x, y)-coordinates of the intersection rectangle
|
||||
intersect = intersection(box_a, box_b)
|
||||
|
||||
# compute the area of intersection rectangle
|
||||
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
|
||||
|
||||
if inter_area == 0:
|
||||
return 0.0
|
||||
|
||||
# compute the area of both the prediction and ground-truth
|
||||
# rectangles
|
||||
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
|
||||
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
|
||||
|
||||
# compute the intersection over union by taking the intersection
|
||||
# area and dividing it by the sum of prediction + ground-truth
|
||||
# areas - the interesection area
|
||||
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
||||
|
||||
# return the intersection over union value
|
||||
return iou
|
||||
|
||||
def clipped(obj, frame_shape):
|
||||
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||
# consider the object to be clipped
|
||||
box = obj[2]
|
||||
region = obj[4]
|
||||
if ((region[0] > 5 and box[0]-region[0] <= 5) or
|
||||
(region[1] > 5 and box[1]-region[1] <= 5) or
|
||||
(frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
|
||||
(frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
class EventsPerSecond:
|
||||
def __init__(self, max_events=1000):
|
||||
self._start = None
|
||||
self._max_events = max_events
|
||||
self._timestamps = []
|
||||
|
||||
def start(self):
|
||||
self._start = datetime.datetime.now().timestamp()
|
||||
|
||||
def update(self):
|
||||
if self._start is None:
|
||||
self.start()
|
||||
self._timestamps.append(datetime.datetime.now().timestamp())
|
||||
# truncate the list when it goes 100 over the max_size
|
||||
if len(self._timestamps) > self._max_events+100:
|
||||
self._timestamps = self._timestamps[(1-self._max_events):]
|
||||
|
||||
def eps(self, last_n_seconds=10):
|
||||
if self._start is None:
|
||||
self.start()
|
||||
# compute the (approximate) events in the last n seconds
|
||||
now = datetime.datetime.now().timestamp()
|
||||
seconds = min(now-self._start, last_n_seconds)
|
||||
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
|
||||
|
||||
def print_stack(sig, frame):
|
||||
traceback.print_stack(frame)
|
||||
|
||||
def listen():
|
||||
signal.signal(signal.SIGUSR1, print_stack)
|
||||
|
||||
def create_mask(frame_shape, mask):
|
||||
mask_img = np.zeros(frame_shape, np.uint8)
|
||||
mask_img[:] = 255
|
||||
|
||||
if isinstance(mask, list):
|
||||
for m in mask:
|
||||
add_mask(m, mask_img)
|
||||
|
||||
elif isinstance(mask, str):
|
||||
add_mask(mask, mask_img)
|
||||
|
||||
return mask_img
|
||||
|
||||
def add_mask(mask, mask_img):
|
||||
points = mask.split(',')
|
||||
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
cv2.fillPoly(mask_img, pts=[contour], color=(0))
|
||||
|
||||
class FrameManager(ABC):
|
||||
@abstractmethod
|
||||
def create(self, name, size) -> AnyStr:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get(self, name, timeout_ms=0):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def close(self, name):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def delete(self, name):
|
||||
pass
|
||||
|
||||
class DictFrameManager(FrameManager):
|
||||
def __init__(self):
|
||||
self.frames = {}
|
||||
|
||||
def create(self, name, size) -> AnyStr:
|
||||
mem = bytearray(size)
|
||||
self.frames[name] = mem
|
||||
return mem
|
||||
|
||||
def get(self, name, shape):
|
||||
mem = self.frames[name]
|
||||
return np.ndarray(shape, dtype=np.uint8, buffer=mem)
|
||||
|
||||
def close(self, name):
|
||||
pass
|
||||
|
||||
def delete(self, name):
|
||||
del self.frames[name]
|
||||
|
||||
class SharedMemoryFrameManager(FrameManager):
|
||||
def __init__(self):
|
||||
self.shm_store = {}
|
||||
|
||||
def create(self, name, size) -> AnyStr:
|
||||
shm = shared_memory.SharedMemory(name=name, create=True, size=size)
|
||||
self.shm_store[name] = shm
|
||||
return shm.buf
|
||||
|
||||
def get(self, name, shape):
|
||||
if name in self.shm_store:
|
||||
shm = self.shm_store[name]
|
||||
else:
|
||||
shm = shared_memory.SharedMemory(name=name)
|
||||
self.shm_store[name] = shm
|
||||
return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
|
||||
|
||||
def close(self, name):
|
||||
if name in self.shm_store:
|
||||
self.shm_store[name].close()
|
||||
del self.shm_store[name]
|
||||
|
||||
def delete(self, name):
|
||||
if name in self.shm_store:
|
||||
self.shm_store[name].close()
|
||||
self.shm_store[name].unlink()
|
||||
del self.shm_store[name]
|
||||
|
||||
695
frigate/video.py
Normal file → Executable file
@@ -1,328 +1,429 @@
|
||||
import os
|
||||
import time
|
||||
import datetime
|
||||
import cv2
|
||||
import threading
|
||||
import base64
|
||||
import copy
|
||||
import ctypes
|
||||
import datetime
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import queue
|
||||
import subprocess as sp
|
||||
import signal
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from setproctitle import setproctitle
|
||||
from typing import Dict, List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from . util import tonumpyarray, draw_box_with_label
|
||||
from . object_detection import FramePrepper
|
||||
from . objects import ObjectCleaner, BestPersonFrame
|
||||
from . mqtt import MqttObjectPublisher
|
||||
|
||||
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
||||
class FrameTracker(threading.Thread):
|
||||
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
|
||||
threading.Thread.__init__(self)
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.recent_frames = recent_frames
|
||||
from frigate.config import CameraConfig
|
||||
from frigate.edgetpu import RemoteObjectDetector
|
||||
from frigate.log import LogPipe
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.objects import ObjectTracker
|
||||
from frigate.util import (EventsPerSecond, FrameManager,
|
||||
SharedMemoryFrameManager, area, calculate_region,
|
||||
clipped, draw_box_with_label, intersection,
|
||||
intersection_over_union, listen, yuv_region_2_rgb)
|
||||
|
||||
def run(self):
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# wait for a frame
|
||||
with self.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# lock and make a copy of the frame
|
||||
with self.frame_lock:
|
||||
frame = self.shared_frame.copy()
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
# add the frame to recent frames
|
||||
self.recent_frames[frame_time] = frame
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
for k in stored_frame_times:
|
||||
if (now - k) > 2:
|
||||
del self.recent_frames[k]
|
||||
def filtered(obj, objects_to_track, object_filters):
|
||||
object_name = obj[0]
|
||||
|
||||
def get_frame_shape(source):
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
# size can be allocated in memory
|
||||
video = cv2.VideoCapture(source)
|
||||
ret, frame = video.read()
|
||||
frame_shape = frame.shape
|
||||
video.release()
|
||||
return frame_shape
|
||||
if not object_name in objects_to_track:
|
||||
return True
|
||||
|
||||
if object_name in object_filters:
|
||||
obj_settings = object_filters[object_name]
|
||||
|
||||
def get_ffmpeg_input(ffmpeg_input):
|
||||
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||
return ffmpeg_input.format(**frigate_vars)
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.min_area > obj[3]:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.max_area < obj[3]:
|
||||
return True
|
||||
|
||||
# if the score is lower than the min_score, skip
|
||||
if obj_settings.min_score > obj[1]:
|
||||
return True
|
||||
|
||||
if not obj_settings.mask is None:
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj[2][3]), len(obj_settings.mask)-1)
|
||||
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(obj_settings.mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if obj_settings.mask[y_location][x_location] == 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def create_tensor_input(frame, model_shape, region):
|
||||
cropped_frame = yuv_region_2_rgb(frame, region)
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
def stop_ffmpeg(ffmpeg_process, logger):
|
||||
logger.info("Terminating the existing ffmpeg process...")
|
||||
ffmpeg_process.terminate()
|
||||
try:
|
||||
logger.info("Waiting for ffmpeg to exit gracefully...")
|
||||
ffmpeg_process.communicate(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
logger.info("FFmpeg didnt exit. Force killing...")
|
||||
ffmpeg_process.kill()
|
||||
ffmpeg_process.communicate()
|
||||
ffmpeg_process = None
|
||||
|
||||
def start_or_restart_ffmpeg(ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None):
|
||||
if not ffmpeg_process is None:
|
||||
stop_ffmpeg(ffmpeg_process, logger)
|
||||
|
||||
if frame_size is None:
|
||||
process = sp.Popen(ffmpeg_cmd, stdout = sp.DEVNULL, stderr=logpipe, stdin = sp.DEVNULL, start_new_session=True)
|
||||
else:
|
||||
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stderr=logpipe, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
|
||||
return process
|
||||
|
||||
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
|
||||
frame_queue, fps:mp.Value, skipped_fps: mp.Value, current_frame: mp.Value):
|
||||
|
||||
frame_size = frame_shape[0] * frame_shape[1]
|
||||
frame_rate = EventsPerSecond()
|
||||
frame_rate.start()
|
||||
skipped_eps = EventsPerSecond()
|
||||
skipped_eps.start()
|
||||
while True:
|
||||
fps.value = frame_rate.eps()
|
||||
skipped_fps = skipped_eps.eps()
|
||||
|
||||
current_frame.value = datetime.datetime.now().timestamp()
|
||||
frame_name = f"{camera_name}{current_frame.value}"
|
||||
frame_buffer = frame_manager.create(frame_name, frame_size)
|
||||
try:
|
||||
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
|
||||
except Exception as e:
|
||||
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
|
||||
|
||||
if ffmpeg_process.poll() != None:
|
||||
logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
|
||||
frame_manager.delete(frame_name)
|
||||
break
|
||||
continue
|
||||
|
||||
frame_rate.update()
|
||||
|
||||
# if the queue is full, skip this frame
|
||||
if frame_queue.full():
|
||||
skipped_eps.update()
|
||||
frame_manager.delete(frame_name)
|
||||
continue
|
||||
|
||||
# close the frame
|
||||
frame_manager.close(frame_name)
|
||||
|
||||
# add to the queue
|
||||
frame_queue.put(current_frame.value)
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
def __init__(self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
|
||||
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 10:
|
||||
print("last frame is more than 10 seconds old, restarting camera capture...")
|
||||
self.camera.start_or_restart_capture()
|
||||
time.sleep(5)
|
||||
|
||||
# Thread to read the stdout of the ffmpeg process and update the current frame
|
||||
class CameraCapture(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
frame_num = 0
|
||||
while True:
|
||||
if self.camera.ffmpeg_process.poll() != None:
|
||||
print("ffmpeg process is not running. exiting capture thread...")
|
||||
break
|
||||
|
||||
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
|
||||
|
||||
if len(raw_image) == 0:
|
||||
print("ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
|
||||
break
|
||||
|
||||
frame_num += 1
|
||||
if (frame_num % self.camera.take_frame) != 0:
|
||||
continue
|
||||
|
||||
with self.camera.frame_lock:
|
||||
self.camera.frame_time.value = datetime.datetime.now().timestamp()
|
||||
|
||||
self.camera.current_frame[:] = (
|
||||
np
|
||||
.frombuffer(raw_image, np.uint8)
|
||||
.reshape(self.camera.frame_shape)
|
||||
)
|
||||
# Notify with the condition that a new frame is ready
|
||||
with self.camera.frame_ready:
|
||||
self.camera.frame_ready.notify_all()
|
||||
|
||||
class Camera:
|
||||
def __init__(self, name, ffmpeg_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
self.name = name
|
||||
self.logger = logging.getLogger(f"watchdog.{camera_name}")
|
||||
self.camera_name = camera_name
|
||||
self.config = config
|
||||
self.detected_objects = []
|
||||
self.recent_frames = {}
|
||||
|
||||
self.ffmpeg = config.get('ffmpeg', {})
|
||||
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
|
||||
self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
|
||||
self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
|
||||
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
|
||||
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
|
||||
|
||||
self.take_frame = self.config.get('take_frame', 1)
|
||||
self.regions = self.config['regions']
|
||||
self.frame_shape = get_frame_shape(self.ffmpeg_input)
|
||||
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
|
||||
self.mqtt_client = mqtt_client
|
||||
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
||||
|
||||
# create a numpy array for the current frame in initialize to zeros
|
||||
self.current_frame = np.zeros(self.frame_shape, np.uint8)
|
||||
# create shared value for storing the frame_time
|
||||
self.frame_time = mp.Value('d', 0.0)
|
||||
# Lock to control access to the frame
|
||||
self.frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
self.frame_ready = mp.Condition()
|
||||
# Condition for notifying that objects were parsed
|
||||
self.objects_parsed = mp.Condition()
|
||||
|
||||
self.ffmpeg_process = None
|
||||
self.capture_thread = None
|
||||
self.ffmpeg_detect_process = None
|
||||
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect", logging.ERROR)
|
||||
self.ffmpeg_other_processes = []
|
||||
self.camera_fps = camera_fps
|
||||
self.ffmpeg_pid = ffmpeg_pid
|
||||
self.frame_queue = frame_queue
|
||||
self.frame_shape = self.config.frame_shape_yuv
|
||||
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
|
||||
self.stop_event = stop_event
|
||||
|
||||
# for each region, create a separate thread to resize the region and prep for detection
|
||||
self.detection_prep_threads = []
|
||||
for region in self.config['regions']:
|
||||
# set a default threshold of 0.5 if not defined
|
||||
if not 'threshold' in region:
|
||||
region['threshold'] = 0.5
|
||||
if not isinstance(region['threshold'], float):
|
||||
print('Threshold is not a float. Setting to 0.5 default.')
|
||||
region['threshold'] = 0.5
|
||||
self.detection_prep_threads.append(FramePrepper(
|
||||
self.name,
|
||||
self.current_frame,
|
||||
self.frame_time,
|
||||
self.frame_ready,
|
||||
self.frame_lock,
|
||||
region['size'], region['x_offset'], region['y_offset'], region['threshold'],
|
||||
prepped_frame_queue
|
||||
))
|
||||
def run(self):
|
||||
self.start_ffmpeg_detect()
|
||||
|
||||
for c in self.config.ffmpeg_cmds:
|
||||
if 'detect' in c['roles']:
|
||||
continue
|
||||
logpipe = LogPipe(f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}", logging.ERROR)
|
||||
self.ffmpeg_other_processes.append({
|
||||
'cmd': c['cmd'],
|
||||
'logpipe': logpipe,
|
||||
'process': start_or_restart_ffmpeg(c['cmd'], self.logger, logpipe)
|
||||
})
|
||||
|
||||
# start a thread to store recent motion frames for processing
|
||||
self.frame_tracker = FrameTracker(self.current_frame, self.frame_time,
|
||||
self.frame_ready, self.frame_lock, self.recent_frames)
|
||||
self.frame_tracker.start()
|
||||
time.sleep(10)
|
||||
while True:
|
||||
if self.stop_event.is_set():
|
||||
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
|
||||
for p in self.ffmpeg_other_processes:
|
||||
stop_ffmpeg(p['process'], self.logger)
|
||||
p['logpipe'].close()
|
||||
self.logpipe.close()
|
||||
break
|
||||
|
||||
# start a thread to store the highest scoring recent person frame
|
||||
self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
|
||||
self.best_person_frame.start()
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
# start a thread to expire objects from the detected objects list
|
||||
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
|
||||
self.object_cleaner.start()
|
||||
|
||||
# start a thread to publish object scores (currently only person)
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_person_frame)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# create a watchdog thread for capture process
|
||||
self.watchdog = CameraWatchdog(self)
|
||||
|
||||
# load in the mask for person detection
|
||||
if 'mask' in self.config:
|
||||
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
self.mask = None
|
||||
|
||||
if self.mask is None:
|
||||
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
self.mask[:] = 255
|
||||
|
||||
|
||||
def start_or_restart_capture(self):
|
||||
if not self.ffmpeg_process is None:
|
||||
print("Terminating the existing ffmpeg process...")
|
||||
self.ffmpeg_process.terminate()
|
||||
try:
|
||||
print("Waiting for ffmpeg to exit gracefully...")
|
||||
self.ffmpeg_process.wait(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
print("FFmpeg didnt exit. Force killing...")
|
||||
self.ffmpeg_process.kill()
|
||||
self.ffmpeg_process.wait()
|
||||
|
||||
print("Waiting for the capture thread to exit...")
|
||||
self.capture_thread.join()
|
||||
self.ffmpeg_process = None
|
||||
self.capture_thread = None
|
||||
if not self.capture_thread.is_alive():
|
||||
self.start_ffmpeg_detect()
|
||||
elif now - self.capture_thread.current_frame.value > 20:
|
||||
self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
|
||||
self.ffmpeg_detect_process.terminate()
|
||||
try:
|
||||
self.logger.info("Waiting for ffmpeg to exit gracefully...")
|
||||
self.ffmpeg_detect_process.communicate(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
self.logger.info("FFmpeg didnt exit. Force killing...")
|
||||
self.ffmpeg_detect_process.kill()
|
||||
self.ffmpeg_detect_process.communicate()
|
||||
|
||||
# create the process to capture frames from the input stream and store in a shared array
|
||||
print("Creating a new ffmpeg process...")
|
||||
self.start_ffmpeg()
|
||||
|
||||
print("Creating a new capture thread...")
|
||||
self.capture_thread = CameraCapture(self)
|
||||
print("Starting a new capture thread...")
|
||||
for p in self.ffmpeg_other_processes:
|
||||
poll = p['process'].poll()
|
||||
if poll == None:
|
||||
continue
|
||||
p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
|
||||
|
||||
# wait a bit before checking again
|
||||
time.sleep(10)
|
||||
|
||||
def start_ffmpeg_detect(self):
|
||||
ffmpeg_cmd = [c['cmd'] for c in self.config.ffmpeg_cmds if 'detect' in c['roles']][0]
|
||||
self.ffmpeg_detect_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.logger, self.logpipe, self.frame_size)
|
||||
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
|
||||
self.capture_thread = CameraCapture(self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue,
|
||||
self.camera_fps)
|
||||
self.capture_thread.start()
|
||||
|
||||
def start_ffmpeg(self):
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
self.ffmpeg_global_args +
|
||||
self.ffmpeg_hwaccel_args +
|
||||
self.ffmpeg_input_args +
|
||||
['-i', self.ffmpeg_input] +
|
||||
self.ffmpeg_output_args +
|
||||
['pipe:'])
|
||||
|
||||
print(" ".join(ffmpeg_cmd))
|
||||
class CameraCapture(threading.Thread):
|
||||
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = f"capture:{camera_name}"
|
||||
self.camera_name = camera_name
|
||||
self.frame_shape = frame_shape
|
||||
self.frame_queue = frame_queue
|
||||
self.fps = fps
|
||||
self.skipped_fps = EventsPerSecond()
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
self.ffmpeg_process = ffmpeg_process
|
||||
self.current_frame = mp.Value('d', 0.0)
|
||||
self.last_frame = 0
|
||||
|
||||
def run(self):
|
||||
self.skipped_fps.start()
|
||||
capture_frames(self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue,
|
||||
self.fps, self.skipped_fps, self.current_frame)
|
||||
|
||||
def capture_camera(name, config: CameraConfig, process_info):
|
||||
stop_event = mp.Event()
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
frame_queue = process_info['frame_queue']
|
||||
camera_watchdog = CameraWatchdog(name, config, frame_queue, process_info['camera_fps'], process_info['ffmpeg_pid'], stop_event)
|
||||
camera_watchdog.start()
|
||||
camera_watchdog.join()
|
||||
|
||||
def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
|
||||
stop_event = mp.Event()
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
threading.current_thread().name = f"process:{name}"
|
||||
setproctitle(f"frigate.process:{name}")
|
||||
listen()
|
||||
|
||||
frame_queue = process_info['frame_queue']
|
||||
detection_enabled = process_info['detection_enabled']
|
||||
|
||||
frame_shape = config.frame_shape
|
||||
objects_to_track = config.objects.track
|
||||
object_filters = config.objects.filters
|
||||
|
||||
motion_detector = MotionDetector(frame_shape, config.motion)
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
|
||||
|
||||
object_tracker = ObjectTracker(config.detect)
|
||||
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
|
||||
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
|
||||
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, detection_enabled, stop_event)
|
||||
|
||||
logger.info(f"{name}: exiting subprocess")
|
||||
|
||||
def reduce_boxes(boxes):
|
||||
if len(boxes) == 0:
|
||||
return []
|
||||
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
|
||||
return [tuple(b) for b in reduced_boxes]
|
||||
|
||||
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters):
|
||||
tensor_input = create_tensor_input(frame, model_shape, region)
|
||||
|
||||
detections = []
|
||||
region_detections = object_detector.detect(tensor_input)
|
||||
for d in region_detections:
|
||||
box = d[2]
|
||||
size = region[2]-region[0]
|
||||
x_min = int((box[1] * size) + region[0])
|
||||
y_min = int((box[0] * size) + region[1])
|
||||
x_max = int((box[3] * size) + region[0])
|
||||
y_max = int((box[2] * size) + region[1])
|
||||
det = (d[0],
|
||||
d[1],
|
||||
(x_min, y_min, x_max, y_max),
|
||||
(x_max-x_min)*(y_max-y_min),
|
||||
region)
|
||||
# apply object filters
|
||||
if filtered(det, objects_to_track, object_filters):
|
||||
continue
|
||||
detections.append(det)
|
||||
return detections
|
||||
|
||||
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
|
||||
frame_manager: FrameManager, motion_detector: MotionDetector,
|
||||
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
|
||||
detected_objects_queue: mp.Queue, process_info: Dict,
|
||||
objects_to_track: List[str], object_filters, detection_enabled: mp.Value, stop_event,
|
||||
exit_on_empty: bool = False):
|
||||
|
||||
fps = process_info['process_fps']
|
||||
detection_fps = process_info['detection_fps']
|
||||
current_frame_time = process_info['detection_frame']
|
||||
|
||||
fps_tracker = EventsPerSecond()
|
||||
fps_tracker.start()
|
||||
|
||||
while True:
|
||||
if stop_event.is_set():
|
||||
break
|
||||
|
||||
if exit_on_empty and frame_queue.empty():
|
||||
logger.info(f"Exiting track_objects...")
|
||||
break
|
||||
|
||||
try:
|
||||
frame_time = frame_queue.get(True, 10)
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
current_frame_time.value = frame_time
|
||||
|
||||
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
|
||||
|
||||
if frame is None:
|
||||
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
|
||||
continue
|
||||
|
||||
if not detection_enabled.value:
|
||||
fps.value = fps_tracker.eps()
|
||||
object_tracker.match_and_update(frame_time, [])
|
||||
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, [], []))
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
frame_manager.close(f"{camera_name}{frame_time}")
|
||||
continue
|
||||
|
||||
# look for motion
|
||||
motion_boxes = motion_detector.detect(frame)
|
||||
|
||||
tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values()]
|
||||
|
||||
# combine motion boxes with known locations of existing objects
|
||||
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
|
||||
|
||||
# compute regions
|
||||
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
|
||||
for a in combined_boxes]
|
||||
|
||||
# combine overlapping regions
|
||||
combined_regions = reduce_boxes(regions)
|
||||
|
||||
# re-compute regions
|
||||
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
|
||||
for a in combined_regions]
|
||||
|
||||
# resize regions and detect
|
||||
detections = []
|
||||
for region in regions:
|
||||
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
|
||||
|
||||
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
|
||||
|
||||
def start(self):
|
||||
self.start_or_restart_capture()
|
||||
# start the object detection prep threads
|
||||
for detection_prep_thread in self.detection_prep_threads:
|
||||
detection_prep_thread.start()
|
||||
self.watchdog.start()
|
||||
|
||||
def join(self):
|
||||
self.capture_thread.join()
|
||||
|
||||
def get_capture_pid(self):
|
||||
return self.ffmpeg_process.pid
|
||||
|
||||
def add_objects(self, objects):
|
||||
if len(objects) == 0:
|
||||
return
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to 4 times
|
||||
#########
|
||||
refining = True
|
||||
refine_count = 0
|
||||
while refining and refine_count < 4:
|
||||
refining = False
|
||||
|
||||
for obj in objects:
|
||||
# Store object area to use in bounding box labels
|
||||
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
|
||||
if obj['name'] == 'person':
|
||||
# find the matching region
|
||||
region = None
|
||||
for r in self.regions:
|
||||
if (
|
||||
obj['xmin'] >= r['x_offset'] and
|
||||
obj['ymin'] >= r['y_offset'] and
|
||||
obj['xmax'] <= r['x_offset']+r['size'] and
|
||||
obj['ymax'] <= r['y_offset']+r['size']
|
||||
):
|
||||
region = r
|
||||
break
|
||||
|
||||
# if the min person area is larger than the
|
||||
# detected person, don't add it to detected objects
|
||||
if region and 'min_person_area' in region and region['min_person_area'] > obj['area']:
|
||||
continue
|
||||
|
||||
# if the detected person is larger than the
|
||||
# max person area, don't add it to detected objects
|
||||
if region and 'max_person_area' in region and region['max_person_area'] < obj['area']:
|
||||
continue
|
||||
|
||||
# compute the coordinates of the person and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj['ymax']), len(self.mask)-1)
|
||||
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
|
||||
# if the person is in a masked location, continue
|
||||
if self.mask[y_location][x_location] == [0]:
|
||||
continue
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
|
||||
for o in group]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
self.detected_objects.append(obj)
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
if clipped(obj, frame_shape):
|
||||
box = obj[2]
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
region = calculate_region(frame_shape,
|
||||
box[0], box[1],
|
||||
box[2], box[3])
|
||||
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.notify_all()
|
||||
regions.append(region)
|
||||
|
||||
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
|
||||
|
||||
def get_best_person(self):
|
||||
return self.best_person_frame.best_frame
|
||||
|
||||
def get_current_frame_with_objects(self):
|
||||
# make a copy of the current detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
# lock and make a copy of the current frame
|
||||
with self.frame_lock:
|
||||
frame = self.current_frame.copy()
|
||||
frame_time = self.frame_time.value
|
||||
refining = True
|
||||
else:
|
||||
selected_objects.append(obj)
|
||||
# set the detections list to only include top, complete objects
|
||||
# and new detections
|
||||
detections = selected_objects
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in detected_objects:
|
||||
label = "{}: {}% {}".format(obj['name'],int(obj['score']*100),int(obj['area']))
|
||||
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], label)
|
||||
if refining:
|
||||
refine_count += 1
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
# now that we have refined our detections, we need to track objects
|
||||
object_tracker.match_and_update(frame_time, detections)
|
||||
|
||||
# convert to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
|
||||
|
||||
# add to the queue if not full
|
||||
if(detected_objects_queue.full()):
|
||||
frame_manager.delete(f"{camera_name}{frame_time}")
|
||||
continue
|
||||
else:
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
frame_manager.close(f"{camera_name}{frame_time}")
|
||||
|
||||
38
frigate/watchdog.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import datetime
|
||||
import logging
|
||||
import threading
|
||||
import time
|
||||
import os
|
||||
import signal
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class FrigateWatchdog(threading.Thread):
|
||||
def __init__(self, detectors, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = 'frigate_watchdog'
|
||||
self.detectors = detectors
|
||||
self.stop_event = stop_event
|
||||
|
||||
def run(self):
|
||||
time.sleep(10)
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
|
||||
if self.stop_event.is_set():
|
||||
logger.info(f"Exiting watchdog...")
|
||||
break
|
||||
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
# check the detection processes
|
||||
for detector in self.detectors.values():
|
||||
detection_start = detector.detection_start.value
|
||||
if (detection_start > 0.0 and
|
||||
now - detection_start > 10):
|
||||
logger.info("Detection appears to be stuck. Restarting detection process")
|
||||
detector.start_or_restart()
|
||||
elif not detector.detect_process.is_alive():
|
||||
logger.info("Detection appears to have stopped. Restarting frigate")
|
||||
os.kill(os.getpid(), signal.SIGTERM)
|
||||
58
frigate/zeroconf.py
Normal file
@@ -0,0 +1,58 @@
|
||||
import logging
|
||||
import socket
|
||||
|
||||
from zeroconf import (
|
||||
ServiceInfo,
|
||||
NonUniqueNameException,
|
||||
InterfaceChoice,
|
||||
IPVersion,
|
||||
Zeroconf,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
ZEROCONF_TYPE = "_frigate._tcp.local."
|
||||
|
||||
# Taken from: http://stackoverflow.com/a/11735897
|
||||
def get_local_ip() -> str:
|
||||
"""Try to determine the local IP address of the machine."""
|
||||
try:
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
||||
|
||||
# Use Google Public DNS server to determine own IP
|
||||
sock.connect(("8.8.8.8", 80))
|
||||
|
||||
return sock.getsockname()[0] # type: ignore
|
||||
except OSError:
|
||||
try:
|
||||
return socket.gethostbyname(socket.gethostname())
|
||||
except socket.gaierror:
|
||||
return "127.0.0.1"
|
||||
finally:
|
||||
sock.close()
|
||||
|
||||
def broadcast_zeroconf(frigate_id):
|
||||
zeroconf = Zeroconf(interfaces=InterfaceChoice.Default, ip_version=IPVersion.V4Only)
|
||||
|
||||
host_ip = get_local_ip()
|
||||
|
||||
try:
|
||||
host_ip_pton = socket.inet_pton(socket.AF_INET, host_ip)
|
||||
except OSError:
|
||||
host_ip_pton = socket.inet_pton(socket.AF_INET6, host_ip)
|
||||
|
||||
info = ServiceInfo(
|
||||
ZEROCONF_TYPE,
|
||||
name=f"{frigate_id}.{ZEROCONF_TYPE}",
|
||||
addresses=[host_ip_pton],
|
||||
port=5000,
|
||||
)
|
||||
|
||||
logger.info("Starting Zeroconf broadcast")
|
||||
try:
|
||||
zeroconf.register_service(info)
|
||||
except NonUniqueNameException:
|
||||
logger.error(
|
||||
"Frigate instance with identical name present in the local network"
|
||||
)
|
||||
return zeroconf
|
||||
80
labelmap.txt
Normal file
@@ -0,0 +1,80 @@
|
||||
0 person
|
||||
1 bicycle
|
||||
2 car
|
||||
3 motorcycle
|
||||
4 airplane
|
||||
5 bus
|
||||
6 train
|
||||
7 car
|
||||
8 boat
|
||||
9 traffic light
|
||||
10 fire hydrant
|
||||
12 stop sign
|
||||
13 parking meter
|
||||
14 bench
|
||||
15 bird
|
||||
16 cat
|
||||
17 dog
|
||||
18 horse
|
||||
19 sheep
|
||||
20 cow
|
||||
21 elephant
|
||||
22 bear
|
||||
23 zebra
|
||||
24 giraffe
|
||||
26 backpack
|
||||
27 umbrella
|
||||
30 handbag
|
||||
31 tie
|
||||
32 suitcase
|
||||
33 frisbee
|
||||
34 skis
|
||||
35 snowboard
|
||||
36 sports ball
|
||||
37 kite
|
||||
38 baseball bat
|
||||
39 baseball glove
|
||||
40 skateboard
|
||||
41 surfboard
|
||||
42 tennis racket
|
||||
43 bottle
|
||||
45 wine glass
|
||||
46 cup
|
||||
47 fork
|
||||
48 knife
|
||||
49 spoon
|
||||
50 bowl
|
||||
51 banana
|
||||
52 apple
|
||||
53 sandwich
|
||||
54 orange
|
||||
55 broccoli
|
||||
56 carrot
|
||||
57 hot dog
|
||||
58 pizza
|
||||
59 donut
|
||||
60 cake
|
||||
61 chair
|
||||
62 couch
|
||||
63 potted plant
|
||||
64 bed
|
||||
66 dining table
|
||||
69 toilet
|
||||
71 tv
|
||||
72 laptop
|
||||
73 mouse
|
||||
74 remote
|
||||
75 keyboard
|
||||
76 cell phone
|
||||
77 microwave
|
||||
78 oven
|
||||
79 toaster
|
||||
80 sink
|
||||
81 refrigerator
|
||||
83 book
|
||||
84 clock
|
||||
85 vase
|
||||
86 scissors
|
||||
87 teddy bear
|
||||
88 hair drier
|
||||
89 toothbrush
|
||||
41
migrations/001_create_events_table.py
Normal file
@@ -0,0 +1,41 @@
|
||||
"""Peewee migrations -- 001_create_events_table.py.
|
||||
|
||||
Some examples (model - class or model name)::
|
||||
|
||||
> Model = migrator.orm['model_name'] # Return model in current state by name
|
||||
|
||||
> migrator.sql(sql) # Run custom SQL
|
||||
> migrator.python(func, *args, **kwargs) # Run python code
|
||||
> migrator.create_model(Model) # Create a model (could be used as decorator)
|
||||
> migrator.remove_model(model, cascade=True) # Remove a model
|
||||
> migrator.add_fields(model, **fields) # Add fields to a model
|
||||
> migrator.change_fields(model, **fields) # Change fields
|
||||
> migrator.remove_fields(model, *field_names, cascade=True)
|
||||
> migrator.rename_field(model, old_field_name, new_field_name)
|
||||
> migrator.rename_table(model, new_table_name)
|
||||
> migrator.add_index(model, *col_names, unique=False)
|
||||
> migrator.drop_index(model, *col_names)
|
||||
> migrator.add_not_null(model, *field_names)
|
||||
> migrator.drop_not_null(model, *field_names)
|
||||
> migrator.add_default(model, field_name, default)
|
||||
|
||||
"""
|
||||
|
||||
import datetime as dt
|
||||
import peewee as pw
|
||||
from decimal import ROUND_HALF_EVEN
|
||||
|
||||
try:
|
||||
import playhouse.postgres_ext as pw_pext
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
SQL = pw.SQL
|
||||
|
||||
def migrate(migrator, database, fake=False, **kwargs):
|
||||
migrator.sql('CREATE TABLE IF NOT EXISTS "event" ("id" VARCHAR(30) NOT NULL PRIMARY KEY, "label" VARCHAR(20) NOT NULL, "camera" VARCHAR(20) NOT NULL, "start_time" DATETIME NOT NULL, "end_time" DATETIME NOT NULL, "top_score" REAL NOT NULL, "false_positive" INTEGER NOT NULL, "zones" JSON NOT NULL, "thumbnail" TEXT NOT NULL)')
|
||||
migrator.sql('CREATE INDEX IF NOT EXISTS "event_label" ON "event" ("label")')
|
||||
migrator.sql('CREATE INDEX IF NOT EXISTS "event_camera" ON "event" ("camera")')
|
||||
|
||||
def rollback(migrator, database, fake=False, **kwargs):
|
||||
pass
|
||||
41
migrations/002_add_clip_snapshot.py
Normal file
@@ -0,0 +1,41 @@
|
||||
"""Peewee migrations -- 002_add_clip_snapshot.py.
|
||||
|
||||
Some examples (model - class or model name)::
|
||||
|
||||
> Model = migrator.orm['model_name'] # Return model in current state by name
|
||||
|
||||
> migrator.sql(sql) # Run custom SQL
|
||||
> migrator.python(func, *args, **kwargs) # Run python code
|
||||
> migrator.create_model(Model) # Create a model (could be used as decorator)
|
||||
> migrator.remove_model(model, cascade=True) # Remove a model
|
||||
> migrator.add_fields(model, **fields) # Add fields to a model
|
||||
> migrator.change_fields(model, **fields) # Change fields
|
||||
> migrator.remove_fields(model, *field_names, cascade=True)
|
||||
> migrator.rename_field(model, old_field_name, new_field_name)
|
||||
> migrator.rename_table(model, new_table_name)
|
||||
> migrator.add_index(model, *col_names, unique=False)
|
||||
> migrator.drop_index(model, *col_names)
|
||||
> migrator.add_not_null(model, *field_names)
|
||||
> migrator.drop_not_null(model, *field_names)
|
||||
> migrator.add_default(model, field_name, default)
|
||||
|
||||
"""
|
||||
|
||||
import datetime as dt
|
||||
import peewee as pw
|
||||
from decimal import ROUND_HALF_EVEN
|
||||
from frigate.models import Event
|
||||
|
||||
try:
|
||||
import playhouse.postgres_ext as pw_pext
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
SQL = pw.SQL
|
||||
|
||||
|
||||
def migrate(migrator, database, fake=False, **kwargs):
|
||||
migrator.add_fields(Event, has_clip=pw.BooleanField(default=True), has_snapshot=pw.BooleanField(default=True))
|
||||
|
||||
def rollback(migrator, database, fake=False, **kwargs):
|
||||
migrator.remove_fields(Event, ['has_clip', 'has_snapshot'])
|
||||
134
nginx/nginx.conf
Normal file
@@ -0,0 +1,134 @@
|
||||
worker_processes 1;
|
||||
|
||||
error_log /var/log/nginx/error.log warn;
|
||||
pid /var/run/nginx.pid;
|
||||
|
||||
load_module "modules/ngx_rtmp_module.so";
|
||||
|
||||
events {
|
||||
worker_connections 1024;
|
||||
}
|
||||
|
||||
http {
|
||||
include /etc/nginx/mime.types;
|
||||
default_type application/octet-stream;
|
||||
|
||||
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
|
||||
'$status $body_bytes_sent "$http_referer" '
|
||||
'"$http_user_agent" "$http_x_forwarded_for"';
|
||||
|
||||
access_log /var/log/nginx/access.log main;
|
||||
|
||||
sendfile on;
|
||||
|
||||
keepalive_timeout 65;
|
||||
|
||||
upstream frigate_api {
|
||||
server localhost:5001;
|
||||
keepalive 1024;
|
||||
}
|
||||
|
||||
server {
|
||||
listen 5000;
|
||||
|
||||
location /stream/ {
|
||||
add_header 'Cache-Control' 'no-cache';
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
|
||||
add_header 'Access-Control-Allow-Credentials' 'true';
|
||||
add_header 'Access-Control-Expose-Headers' 'Content-Length';
|
||||
if ($request_method = 'OPTIONS') {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin";
|
||||
add_header 'Access-Control-Max-Age' 1728000;
|
||||
add_header 'Content-Type' 'text/plain charset=UTF-8';
|
||||
add_header 'Content-Length' 0;
|
||||
return 204;
|
||||
}
|
||||
|
||||
types {
|
||||
application/dash+xml mpd;
|
||||
application/vnd.apple.mpegurl m3u8;
|
||||
video/mp2t ts;
|
||||
image/jpeg jpg;
|
||||
}
|
||||
|
||||
root /tmp;
|
||||
}
|
||||
|
||||
location /clips/ {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
|
||||
add_header 'Access-Control-Allow-Credentials' 'true';
|
||||
add_header 'Access-Control-Expose-Headers' 'Content-Length';
|
||||
if ($request_method = 'OPTIONS') {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin";
|
||||
add_header 'Access-Control-Max-Age' 1728000;
|
||||
add_header 'Content-Type' 'text/plain charset=UTF-8';
|
||||
add_header 'Content-Length' 0;
|
||||
return 204;
|
||||
}
|
||||
|
||||
types {
|
||||
video/mp4 mp4;
|
||||
image/jpeg jpg;
|
||||
}
|
||||
|
||||
autoindex on;
|
||||
root /media/frigate;
|
||||
}
|
||||
|
||||
location /recordings/ {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
|
||||
add_header 'Access-Control-Allow-Credentials' 'true';
|
||||
add_header 'Access-Control-Expose-Headers' 'Content-Length';
|
||||
if ($request_method = 'OPTIONS') {
|
||||
add_header 'Access-Control-Allow-Origin' "$http_origin";
|
||||
add_header 'Access-Control-Max-Age' 1728000;
|
||||
add_header 'Content-Type' 'text/plain charset=UTF-8';
|
||||
add_header 'Content-Length' 0;
|
||||
return 204;
|
||||
}
|
||||
|
||||
types {
|
||||
video/mp4 mp4;
|
||||
}
|
||||
|
||||
autoindex on;
|
||||
autoindex_format json;
|
||||
root /media/frigate;
|
||||
}
|
||||
|
||||
location /api/ {
|
||||
add_header 'Access-Control-Allow-Origin' '*';
|
||||
proxy_pass http://frigate_api/;
|
||||
proxy_pass_request_headers on;
|
||||
proxy_set_header Host $host;
|
||||
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
|
||||
proxy_set_header X-Forwarded-Proto $scheme;
|
||||
}
|
||||
|
||||
location / {
|
||||
sub_filter 'href="/' 'href="$http_x_ingress_path/';
|
||||
sub_filter 'url(/' 'url($http_x_ingress_path/';
|
||||
sub_filter '"/js/' '"$http_x_ingress_path/js/';
|
||||
sub_filter '<body>' '<body><script>window.baseUrl="$http_x_ingress_path";</script>';
|
||||
sub_filter_types text/css application/javascript;
|
||||
sub_filter_once off;
|
||||
root /opt/frigate/web;
|
||||
try_files $uri $uri/ /index.html;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
rtmp {
|
||||
server {
|
||||
listen 1935;
|
||||
chunk_size 4096;
|
||||
allow publish 127.0.0.1;
|
||||
deny publish all;
|
||||
allow play all;
|
||||
application live {
|
||||
live on;
|
||||
record off;
|
||||
meta copy;
|
||||
}
|
||||
}
|
||||
}
|
||||
4
run.sh
Normal file
@@ -0,0 +1,4 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
service nginx start
|
||||
exec python3 -u -m frigate
|
||||
@@ -1,50 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
CPU_ARCH=$(uname -m)
|
||||
OS_VERSION=$(uname -v)
|
||||
|
||||
echo "CPU_ARCH ${CPU_ARCH}"
|
||||
echo "OS_VERSION ${OS_VERSION}"
|
||||
|
||||
if [[ "${CPU_ARCH}" == "x86_64" ]]; then
|
||||
echo "Recognized as Linux on x86_64."
|
||||
LIBEDGETPU_SUFFIX=x86_64
|
||||
HOST_GNU_TYPE=x86_64-linux-gnu
|
||||
elif [[ "${CPU_ARCH}" == "armv7l" ]]; then
|
||||
echo "Recognized as Linux on ARM32 platform."
|
||||
LIBEDGETPU_SUFFIX=arm32
|
||||
HOST_GNU_TYPE=arm-linux-gnueabihf
|
||||
elif [[ "${CPU_ARCH}" == "aarch64" ]]; then
|
||||
echo "Recognized as generic ARM64 platform."
|
||||
LIBEDGETPU_SUFFIX=arm64
|
||||
HOST_GNU_TYPE=aarch64-linux-gnu
|
||||
fi
|
||||
|
||||
if [[ -z "${HOST_GNU_TYPE}" ]]; then
|
||||
echo "Your platform is not supported."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Using maximum operating frequency."
|
||||
LIBEDGETPU_SRC="libedgetpu/libedgetpu_${LIBEDGETPU_SUFFIX}.so"
|
||||
LIBEDGETPU_DST="/usr/lib/${HOST_GNU_TYPE}/libedgetpu.so.1.0"
|
||||
|
||||
# Runtime library.
|
||||
echo "Installing Edge TPU runtime library [${LIBEDGETPU_DST}]..."
|
||||
if [[ -f "${LIBEDGETPU_DST}" ]]; then
|
||||
echo "File already exists. Replacing it..."
|
||||
rm -f "${LIBEDGETPU_DST}"
|
||||
fi
|
||||
|
||||
cp -p "${LIBEDGETPU_SRC}" "${LIBEDGETPU_DST}"
|
||||
ldconfig
|
||||
echo "Done."
|
||||
|
||||
# Python API.
|
||||
WHEEL=$(ls edgetpu-*-py3-none-any.whl 2>/dev/null)
|
||||
if [[ $? == 0 ]]; then
|
||||
echo "Installing Edge TPU Python API..."
|
||||
python3 -m pip install --no-deps "${WHEEL}"
|
||||
echo "Done."
|
||||
fi
|
||||
@@ -1,5 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys D986B59D
|
||||
|
||||
echo "deb http://deb.odroid.in/5422-s bionic main" > /etc/apt/sources.list.d/odroid.list
|
||||
1
web/.dockerignore
Normal file
@@ -0,0 +1 @@
|
||||
node_modules
|
||||
8
web/README.md
Normal file
@@ -0,0 +1,8 @@
|
||||
# Frigate Web UI
|
||||
|
||||
## Development
|
||||
|
||||
1. Build the docker images in the root of the repository `make amd64_all` (or appropriate for your system)
|
||||
2. Create a config file in `config/`
|
||||
3. Run the container: `docker run --rm --name frigate --privileged -v $PWD/config:/config:ro -v /etc/localtime:/etc/localtime:ro -p 5000:5000 frigate`
|
||||
4. Run the dev ui: `cd web && npm run start`
|
||||
8497
web/package-lock.json
generated
Normal file
24
web/package.json
Normal file
@@ -0,0 +1,24 @@
|
||||
{
|
||||
"name": "frigate",
|
||||
"private": true,
|
||||
"scripts": {
|
||||
"start": "cross-env SNOWPACK_PUBLIC_API_HOST=http://localhost:5000 snowpack dev",
|
||||
"prebuild": "rimraf build",
|
||||
"build": "snowpack build"
|
||||
},
|
||||
"dependencies": {
|
||||
"@prefresh/snowpack": "^3.0.1",
|
||||
"@snowpack/plugin-optimize": "^0.2.13",
|
||||
"@snowpack/plugin-postcss": "^1.1.0",
|
||||
"@snowpack/plugin-webpack": "^2.3.0",
|
||||
"autoprefixer": "^10.2.1",
|
||||
"cross-env": "^7.0.3",
|
||||
"postcss": "^8.2.2",
|
||||
"postcss-cli": "^8.3.1",
|
||||
"preact": "^10.5.9",
|
||||
"preact-router": "^3.2.1",
|
||||
"rimraf": "^3.0.2",
|
||||
"snowpack": "^3.0.0",
|
||||
"tailwindcss": "^2.0.2"
|
||||
}
|
||||
}
|
||||
8
web/postcss.config.js
Normal file
@@ -0,0 +1,8 @@
|
||||
'use strict';
|
||||
|
||||
module.exports = {
|
||||
plugins: [
|
||||
require('tailwindcss'),
|
||||
require('autoprefixer'),
|
||||
],
|
||||
};
|
||||