Compare commits

...

164 Commits

Author SHA1 Message Date
Nicolas Mowen
aa93d4fbdd Fix nginx cache (#8558) 2023-11-09 16:09:25 -06:00
Nicolas Mowen
d0036b2f77 Update go2rtc to 1.8.2 (#8459)
* Update go2rtc to 1.8.2

* Update docs for 1.8.2
2023-11-09 06:43:06 -06:00
Nicolas Mowen
1b57f8c7e2 Show error when clicking on image before mask (#8547) 2023-11-09 06:42:19 -06:00
Nicolas Mowen
fa96ec64e4 Detect Resolution Docs (#8542) 2023-11-09 06:41:50 -06:00
Josh Hawkins
e89db13282 fix restart from webui (#8541) 2023-11-08 09:37:54 -07:00
Nicolas Mowen
fe6577736e Tuning Motion guide (#6877)
* start working on motion guide

* Update motion_detection.md

* Add to sidebar

* Add title / ID

* Fix typos

* Fix typos and clarify

* Formatting

* Add default values from reference config for each section

* Small grammar fix

* Move to cameras section

* Updates

* Clarify and improve wording

Co-authored-by: Blake Blackshear <blakeb@blakeshome.com>

---------

Co-authored-by: Blake Blackshear <blakeb@blakeshome.com>
2023-11-08 14:04:27 +00:00
Blake Blackshear
64537672e6 use skopeo to copy images (#8539) 2023-11-08 07:22:23 -06:00
Nicolas Mowen
ef36aabd30 Make output writing asynchronous (#8530)
* Don't wait for frame write in output process

* Formatting

* Handle websocket exception

* Limit camera queeue size to 1 second
2023-11-07 16:24:56 -07:00
Nicolas Mowen
ca84732574 Ensure storage cleanup doesn't fail (#8531) 2023-11-07 23:21:43 +00:00
Nicolas Mowen
0b828ef1ec Only cache json requests with nginx (#8529)
* Only cache json requests

* Use map instead
2023-11-07 23:18:58 +00:00
tpjanssen
3359123364 Performance increase with lots of recordings (#8525)
* Performance increase with lots of recordings

* Formatting + review

* Update 020_update_index_recordings.py

Formatting

* Feedback + check fix

* Update 020_update_index_recordings.py
2023-11-07 23:18:26 +00:00
Nicolas Mowen
cc5357a31a Remove iterator from recordings events (#8522) 2023-11-07 07:02:02 -07:00
Nicolas Mowen
f1b60f76eb Fix go2rtc UDP port default config (#8469)
* Fix go2rtc UDP port

* fix

* Use correct port

* fix comment

Co-authored-by: Blake Blackshear <blakeb@blakeshome.com>

---------

Co-authored-by: Blake Blackshear <blakeb@blakeshome.com>
2023-11-07 11:33:33 +00:00
Nicolas Mowen
f29e152619 Revert TRT class id filtering (#8497) 2023-11-07 11:32:52 +00:00
Nicolas Mowen
92906a500a Fix event only datetime check (#8500) 2023-11-07 11:32:31 +00:00
Nicolas Mowen
257bd89733 Reduce recording info timeout (#8506)
* Decrease timeout

* Use const for queue timeout
2023-11-07 11:32:11 +00:00
Josh Hawkins
1d99bb908d only use max target box for relative zoom limiter (#8509) 2023-11-07 11:31:39 +00:00
Nicolas Mowen
591b91194a Cleanup existing timeline entries (#8495)
* Cleanup existing timeline entries for beta users

* Formatting
2023-11-06 06:43:26 -07:00
Nicolas Mowen
2b2c831253 Set the min region size as the model size (#8486) 2023-11-06 06:45:37 -06:00
tpjanssen
08777100b5 Add /vod and /exports to Vite proxy config (#8490) 2023-11-06 06:44:53 -06:00
Nicolas Mowen
a482160691 Cleanup timeline entries (#8489) 2023-11-06 06:42:10 -06:00
Nicolas Mowen
89dd114da1 Write recording segments to cache with timezone info (#8468)
* Store recording segments with timezone info

* Don't use _

* Use different separator due to timezone
2023-11-05 14:30:29 -06:00
Nicolas Mowen
4c05ef48a7 Add dependabot to tensorrt python deps (#8455) 2023-11-05 14:29:06 -06:00
Nicolas Mowen
14c89c9b63 Fix periodic sync check (#8472)
* Fix periodic sync

* Formatting
2023-11-05 09:28:40 -07:00
Blake Blackshear
65e3e67a83 avoid import error for non-rk builds (#8454)
* avoid import error for non-rk builds

* linter
2023-11-04 07:56:35 -05:00
Nicolas Mowen
63233a5830 Periodically sync for stale recordings (#8433)
* Periodically cleanup recordings files / DB

* Make automatic sync limited ot last 36 hours
2023-11-04 02:21:29 +00:00
Nicolas Mowen
4f7b710112 Don't fail on invalid class IDs for TensorRT detector (#8438)
* Don't fail on invalid class IDs

* Fix whitespace

* Make log warning
2023-11-04 02:19:58 +00:00
coperni
ac53993f70 Add endpoint to restart Frigate (#8440)
* Add endpoint to restart Frigate

The only means of restarting Frigate remotely is to issue
a restart topic on the server's websocket. It's
convenient to also expose this capability via HTTP endpoint.

* Add new section to API docs

* Remove extra line
2023-11-04 02:19:29 +00:00
Josh Hawkins
ef750e73a2 add motion mask recommendation (#8448) 2023-11-04 02:18:43 +00:00
Nicolas Mowen
7270eef6bf Don't fail on 0 rms (#8447) 2023-11-04 02:18:23 +00:00
Marc Altmann
b54aaad382 fix rknn.py (#8434)
Co-authored-by: MarcA711 <>
2023-11-03 00:12:54 +00:00
Josh Hawkins
fc36be4f88 suppress error by overriding class func (#8431) 2023-11-02 23:24:14 +00:00
Blake Blackshear
aefecad4c0 Update deps (#8426)
* update web deps

* other deps
2023-11-02 13:36:49 +00:00
Nicolas Mowen
c57528cbcf Fix rk build (#8430) 2023-11-02 13:36:34 +00:00
Marc Altmann
090294e89b Initial support for rockchip boards (#8382)
* initial support for rockchip boards

* Apply suggestions from code review

apply requested changes

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* requested changes

* rewrite dockerfile

* adjust targets

* Update .github/workflows/ci.yml

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* Update docs/docs/configuration/object_detectors.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* Update docs/docs/configuration/object_detectors.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* add information to docs

* Update docs/docs/configuration/object_detectors.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* format rknn.py

* apply changes from isort and ruff

---------

Co-authored-by: MarcA711 <>
Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2023-11-02 12:55:24 +00:00
Nicolas Mowen
a6279a0337 Clean up RPi ffmpeg presets (#8428)
* Clean up rpi ffmpeg presets

* Remove from docs

* Put back encoding
2023-11-02 12:54:51 +00:00
Blake Blackshear
0dd3dd23aa add support for docker secrets (#8409)
* add support for docker secrets

* check for directory first
2023-11-02 05:35:30 -05:00
Blake Blackshear
4bd29b2ee8 fix build tag (#8408) 2023-11-02 05:35:19 -05:00
Nicolas Mowen
cc79cbcadc Improve robustness of storage maintenance (#8411)
* Improve robustness of storage maintenance

* Fix tests

* Fix test
2023-11-01 23:21:59 +00:00
Nicolas Mowen
89366d7b12 Add endpoint to return camera frame with regions grid overlaid (#8413)
* Add endpoint to view grid overload on camera frame

* Add api to docs

* Formatting
2023-11-01 23:21:30 +00:00
Josh Hawkins
6eff08eb2d Add MQTT topic for active autotracking (#8419)
* prevent estimate clipping when autotracking

* use unclipped estimate in distance function only

* remove autotracking velocity changes

* publish on init
2023-11-01 23:20:26 +00:00
tpjanssen
8b6b83bd62 Filtering on Frigate+ submits in frontend (#8344)
* Initial draft for filtering Frigate+ submits in frontend

* Hide filter when Frigate+ is not enabled

* Update http.py

* Revert "Update http.py"

This reverts commit fa292682d6.
2023-11-01 23:19:46 +00:00
Nicolas Mowen
8b6e3a0d37 Fix region when no data in grid (#8415)
* Fix region when no data in grid

* Make comment more clear
2023-11-01 23:19:17 +00:00
tpjanssen
8a9b26df4e Visit camera directly from system page (#8405)
* Visit camera directly from system page

* Processed all feedback

* Changed button caption
2023-11-01 07:08:59 -06:00
tpjanssen
fd6a3bd5d2 API recordings snapsnot PNG fix (#8401)
* Update http.py

* Update http.py

Limit query results
2023-11-01 06:14:51 -05:00
Nicolas Mowen
8085ad4b4c Ensure that birdseye error correction uses a resolution that is divisible by 4 (#8398) 2023-11-01 06:13:12 -05:00
Josh Hawkins
af24eb7dbf Autotracking tweaks (#8400)
* optimize motion and velocity estimation

* change recommended fps and fix config validate

* remove unneeded var

* process at most 3 objects per second

* fix test
2023-11-01 06:12:43 -05:00
Blake Blackshear
d1620b4e39 clean passwords when both rtsp and http present (#8399) 2023-10-31 08:04:42 -05:00
Nicolas Mowen
ba603c1937 Make initialization configurable (#8392) 2023-10-30 20:26:31 -04:00
Nicolas Mowen
e89dafa82e Handle recording checks in utc (#8379)
* Handle recording checks in utc

* Formatting
2023-10-30 20:25:21 -04:00
Nicolas Mowen
9d717b371c Improve logic of birdseye (#8375)
* Improve logic of birdseye

* Formatting
2023-10-30 20:24:42 -04:00
Nicolas Mowen
3d70d29672 Delete export if it fails (#8381)
* Delete export if it fails

* Fix import
2023-10-30 20:24:11 -04:00
Nicolas Mowen
f1efd8dbe2 Use int for drawing box (#8388) 2023-10-30 19:53:29 -04:00
Blake Blackshear
159fb51518 implement nginx caching (#8333)
* implement nginx caching

* bypass cache from frigate frontend, reduce to 5s

* set cache time to 2s

* cache 200s for 5s

* exclude vod endpoints from cache
2023-10-29 06:47:24 -05:00
Blake Blackshear
cd64399fe5 add release workflow for images (#8362) 2023-10-28 10:08:53 -04:00
Blake Blackshear
d72e1c38ae plus docs clarification (#8352) 2023-10-28 10:08:29 -04:00
Sergey Krashevich
979c49fd35 Update build_nginx.sh (#8361) 2023-10-28 06:35:11 -05:00
Josh Hawkins
16dc9f4bf7 update debug message 2023-10-26 17:32:58 -06:00
Josh Hawkins
52b47a3414 empty assumption for events 2023-10-26 17:32:58 -06:00
Josh Hawkins
139664e598 assumption on empty 2023-10-26 17:32:58 -06:00
Josh Hawkins
441c605312 make sure entire segment is accounted for 2023-10-26 17:32:58 -06:00
Josh Hawkins
def889e3a8 start_time is a datetime obj 2023-10-26 17:32:58 -06:00
Josh Hawkins
613f1f6bd6 check frame time for segment 2023-10-26 17:32:58 -06:00
Josh Hawkins
e173377859 change warning to debug 2023-10-26 17:32:58 -06:00
Nicolas Mowen
86c59c1722 Fix birdseye layout (#8343) 2023-10-26 18:23:39 -04:00
Josh Hawkins
a399cb09fa Autotracking tweaks and docs update (#8345)
* refactor thresholds and reduce a duplicate call

* add camera to docs

* udpate docs
2023-10-26 18:21:58 -04:00
Nicolas Mowen
5a46c36380 Add other known birdseye aspect ratios (#8322)
* Add other known birdseye aspect ratios

* Formatting
2023-10-26 06:21:26 -05:00
Shaun Berryman
36c1e00a6b MQTT: Birdseye enabled/disabled and mode change support (#8291)
* support enabled and mode change for birdseye via mqtt

* resolve feedback from PR review
https://github.com/blakeblackshear/frigate/pull/8291#discussion_r1370083613

* change birdseye mode topic to set

* type in the docs

* these commented out lines should have never been in here
2023-10-26 06:20:55 -05:00
tpjanssen
859ab0e7fa Show event duration in landscape mode (#8301)
* Show event duration in landscape mode

* Update Events.jsx
2023-10-26 06:20:28 -05:00
Nicolas Mowen
cf2b56613f Don't overwrite event while cleaning up expired cameras (#8320) 2023-10-26 06:20:06 -05:00
Nicolas Mowen
1a9e00ee49 Add count of audio labels to active count (#8310)
* Add count of audio labels to active count

* Formatting
2023-10-24 19:26:46 -04:00
Josh Hawkins
b9649de327 Don't generate region boxes from motion when autotracking (#8306)
* no region boxes from motion boxes when ptz moving

* debug contours and calibration

* remove debugging

* clarifying comment
2023-10-24 19:25:22 -04:00
Nicolas Mowen
823550eed3 Reduce zones for timeline (#8300) 2023-10-24 19:24:59 -04:00
Nicolas Mowen
c141362614 Use norfair uninitialized score history for tracked object and update false positive docs (#8299)
* Update docs

* Use norfair score history to start object history

* Formatting
2023-10-24 19:24:30 -04:00
Russell Troxel
e0e8a6fcc9 Add --validate-config option for CI config validation (#8222)
* add `--validate-config` option for CI config validation

Signed-off-by: Russell Troxel <russell.troxel@segment.com>

* Fix Lint

Signed-off-by: Russell Troxel <russell.troxel@segment.com>

* Add docs & test live

Signed-off-by: Russell Troxel <russell.troxel@segment.com>

* Update docs/docs/configuration/advanced.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* Fix Lint

Signed-off-by: Russell Troxel <russell@troxel.io>

---------

Signed-off-by: Russell Troxel <russell.troxel@segment.com>
Signed-off-by: Russell Troxel <russell@troxel.io>
Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2023-10-23 20:33:52 -06:00
Nicolas Mowen
0b858419d1 re-enable init delay (#8283) 2023-10-23 20:50:22 -04:00
Nicolas Mowen
2fb7200fb7 Revamp object consolidation logic (#8289)
* Separate object reduction to own function and reduce confidence of boxes on edge of region

* Add tests for different scenarios

* Formatting
2023-10-23 20:20:21 -04:00
Nicolas Mowen
e9376ca285 Fix bug on bad storage stats read (#8275) 2023-10-22 13:35:19 -05:00
Nicolas Mowen
cff4b9651f Fix long webrtc connections failing (#8273)
* Fix webrtc timing out

* Only close pc
2023-10-22 13:34:56 -05:00
Josh Hawkins
9df5927ac5 Autotracking bugfixes and zooming updates (#8103)
* zoom in/out in search for lost objects

* predicted box should not be empty

* clean up and update zoom logic

* only zoom if enabled

* more cleanup

* check for valid velocity when zooming

* only try absolute zoom in if obj area has changed

* zoom logic

* don't enqueue lost object zoom if already at limit

* don't disable motion boxes during ptz moves

* velocity threshold based on move coefficients

* fix area zoom logic

* disable debug zoom

* don't process objects if ptz moving

* recalc with exponent

* change exponent

* remove lost object zooming

* increase distance threshold for stationary object

* increase distance threshold constant

* only zoom out if nonzero

* camera name in all debug logging

* add camera name to debug logging

* camera variable name consistency

* update calibration behavior and docs

* docs and better zooming

* more sensible target values

* docs wording

* fix velocity threshold variable

* zooming tweaks and remove iou for current objects

* debug and docs

* get valid velocity

* include zero

* additional debug statements

* add zoom hysteresis

* zoom on initial move if relative

* only update target box if we actually zoom

* merge dev

* use getattr instead of get

* increase distance threshold

* reverse logic

* get_camera_status after preset move to store zoom

* final tweaks and docs

* use constants and catch possible debug exception

* adjust zoom factor exponent

* don't run motion estimation when calling preset

* adjust dimension threshold

* use numpy for velocity estimate calcs

* more numpy conversion

* fix numpy shapes

* numpy zeros dimension

* more zoom out conditions

* fix velocity bug

* ensure init has been called in debug view

* ensure onvif init if enabling by mqtt

* change default hysteresis values

* recalc relative zoom value

* zoom out value

* try to zoom when object isn't moving

* try zoom when tracked object is not moving

* don't try to zoom every time

* negate zoom out condition when needed

* hysteresis constants for absolute zooming

* update zoom conditions

* don't recalc target box on zoom only

* zoom out if above area threshold

* don't print zooming debug for stationary obj

* revamp zooming to use area moving average

* zooming tweaks and expose property

* limit zoom with max target box

* use calibration to determine zoom levels

* zoom logic fix

* docs

* add tapo c200 camera

* fix initial absolute zoom

* small zoom logic fix

* better invalid velocity checks

* fix test

* really fix test this time
2023-10-22 12:59:13 -04:00
Nicolas Mowen
29f82add72 Fix player height (#8270) 2023-10-22 09:40:32 -05:00
Daniël van den Berg
d102ebf855 [CHANGE] More resilient and slightly faster PTZ (#8009)
* [CHANGE] More resilient and slightly faster PTZ

* Make "Check Black" happy.

* Make "check black" happier

* Remove unused named exception

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2023-10-22 09:08:05 -05:00
Nicolas Mowen
cb3990a0ac Catch ws reset error (#8266)
* Catch ws reset error

* Formatting
2023-10-22 06:23:31 -04:00
Blake Blackshear
9fc93c72a0 more consistent use of iterators in select queries (#8258) 2023-10-21 10:53:33 -05:00
Blake Blackshear
e13a176820 Update deps (#8261)
* update web deps

* update python deps

* actions deps
2023-10-21 10:53:21 -05:00
Blake Blackshear
1e71e36056 fix route for stats and version (#8263) 2023-10-21 10:40:46 -05:00
Blake Blackshear
18545718c1 refactor and disable access logs for stats and version (#8259) 2023-10-21 08:15:24 -05:00
Blake Blackshear
c8b38bdd47 address codeql scan results (#8260) 2023-10-21 08:08:03 -05:00
Nicolas Mowen
e80b6d9e5b Use different consolidation requirement depending on label (#8249) 2023-10-20 19:29:52 -04:00
Josh Hawkins
ee1e1b748c fix logic error in preset fetch (#8245) 2023-10-20 19:27:47 -04:00
Nicolas Mowen
0c2f3a9702 Adjust motion calibration to be more dynamic (#8250)
* Adjust motion calibration to be more dynamic

* isort
2023-10-20 19:22:38 -04:00
Nicolas Mowen
a3c0e30502 Use existing bounding box for region when object is stationary (#8248) 2023-10-20 19:21:34 -04:00
Nicolas Mowen
b4d5a3ef14 Fix dangling webrtc connections (#8251)
* fix dangling webrtc connections

* Make more efficient

* Close pc as well
2023-10-20 19:20:38 -04:00
tpjanssen
facd557f8c Change camera stats to be more structured (#8151)
* Change camera stats to be more structured

* Update stats.py

* Update stats.py

* Update System.jsx

Front end also breaks due to moved camera stats
2023-10-19 17:15:47 -05:00
Nicolas Mowen
12487b3b60 Sync stationary object checks (#8238)
* Sync stationary object checks for all objects on a camera

* Formatting
2023-10-19 17:14:33 -05:00
Sergey Krashevich
8f349a6365 use sum() instead of len() to count only enabled cameras (#8232) 2023-10-19 17:14:06 -05:00
Nicolas Mowen
91f7d67c5e Smarter Regions (#8194)
* Smarter Regions

* Formatting

* Cleanup

* Fix motion region checking logic

* Add database table and migration for regions

* Update region grid on startup

* Revert init delay change

* Fix mypy

* Move object related functions to util

* Remove unused

* Fix tests

* Remove log

* Update the region daily at 2

* Fix logic

* Formatting

* Initialize grid before starting processing frames

* Move back to creating grid in main process

* Formatting

* Fixes

* Formating

* Fix region check

* Accept all but true

* Use regions grid for startup scan

* Add clarifying comment

* Fix new grid requests

* Add tests

* Delete stale region grids from DB
2023-10-18 18:21:52 -05:00
Nicolas Mowen
98200b7dda Fix recording segment management (#8220)
* Fix timing error

* Downgrade logs
2023-10-18 18:18:22 -05:00
Nicolas Mowen
282cbf8f40 Add FAQ item for cameras with bad sub streams (#8224) 2023-10-18 18:17:53 -05:00
winstona
cd35481e92 Fix recording events intermittently missing (#8162)
* fix queues not emptying fully by changing gets to a blocking call with short timeout

* add extra error/warning messages when there's a possibility of missing recording segments
2023-10-18 06:52:48 -05:00
Nicolas Mowen
126aed2798 Include non-free in hwaccel deps types (#8203) 2023-10-17 21:18:50 -04:00
Nicolas Mowen
efbc094bbc Fixes for ongoing events (#8208)
* Refresh ongoing and standard events

* Collapse ongoing when props are set

* Fix
2023-10-17 21:18:06 -04:00
Nicolas Mowen
c7b2c6b95d Pin all hwaccel deps (#8191) 2023-10-17 06:37:40 -05:00
Nicolas Mowen
1bdfc380c3 Delete timeline items along with event (#8192) 2023-10-17 06:37:07 -05:00
Sergey Krashevich
cac37e484d Upd: go2rtc v1.8.1 (#8166)
* go2rtc v1.8.0

* 1.8.1
2023-10-16 06:42:24 -05:00
Blake Blackshear
4469507e5b dont set has_clip to false unless the event is older (#8179) 2023-10-15 13:31:56 -05:00
Nicolas Mowen
8626160df2 Show ongoing events at top of events page (#8168)
* Show ongoing events separately

* Separate to separate event function

* Change icon type

* Hide in progress when date range search occurs

* Collapse in progress when filtering

* Fix event overlay

* Make tooltip more clear

Co-authored-by: Blake Blackshear <blakeb@blakeshome.com>

---------

Co-authored-by: Blake Blackshear <blakeb@blakeshome.com>
2023-10-15 13:01:44 -04:00
Nicolas Mowen
d4d2bb2521 Remove sizing on summary icons (#8169) 2023-10-15 08:14:44 -05:00
Blake Blackshear
e545dfc47b Websocket changes (#8178)
* use react-use-websockets

* check ready state

* match context shape

* jsonify dispatch

* remove unnecessary ready check

* bring back h

* non-working tests

* skip failing tests

* upgrade some dependencies

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2023-10-15 08:14:20 -05:00
Blake Blackshear
9ea10f8541 Don't zero out motion during calibration (#8163)
* don't zero out motion boxes

* define detect resolution to speed up tests
2023-10-14 08:05:44 -04:00
Nicolas Mowen
fa6c6c50d0 Support ManagedMediaSource and update docs to reflect iOS 17.1+ supports MSE (#8160)
* Refactor media source handling in MsePlayer.js and Birdseye.jsx to support ManagedMediaSource

* lint

* Update docs to reflect iOS supporting mse

---------

Co-authored-by: Sergey Krashevich <svk@svk.su>
2023-10-13 19:17:09 -05:00
Nicolas Mowen
4c7ea01137 Don't print ffprobe stdout logs (#8153) 2023-10-13 17:04:38 -05:00
Nicolas Mowen
34b315cc8c Fix bug forcing rtsp for audio detection ffmpeg process (#8156)
* Fix forcing rtsp for audio process

* Send as list
2023-10-13 17:03:04 -05:00
Nicolas Mowen
9b687d77ce Add support for nvidia decoder and encoder utilization stats (#8150)
* Add encoder and decoder stats to nvidia hwaccel stats

* Fix

* Fix
2023-10-13 09:44:18 -05:00
tpjanssen
e32bd4ab15 Added audio sensors to camera metrics and API stats (#8109)
* Added audio sensor to camera metrics and API stats

* Update types.py

* Update app.py
2023-10-13 06:17:41 -05:00
Nicolas Mowen
e19c0668e7 Require init delay (#8126) 2023-10-13 06:16:36 -05:00
Nicolas Mowen
869bb2b177 clarifications and fixes for live go2rtc example (#8132)
* clarifications and fixes for live go2rtc example

* fix
2023-10-13 06:15:39 -05:00
Nicolas Mowen
3869b274e2 Add note about recording retention to manual event docs (#8141) 2023-10-13 06:14:55 -05:00
Nicolas Mowen
2379e6fd1b Support TiB in storage calculation (#8142) 2023-10-13 06:14:24 -05:00
Nicolas Mowen
dcafcc1320 Fix Config success message (#8121)
* Fix saved message

* Fix save mask
2023-10-10 08:23:18 -05:00
Nicolas Mowen
d508088bd0 Add audio role to camera config docs (#8113) 2023-10-09 18:16:34 -05:00
Felipe Santos
97e5a98b95 Fix jetson docker build with old apt key (#8112)
* Fix jetson docker build with old apt key

* Fix CI
2023-10-09 18:16:05 -05:00
Nicolas Mowen
68ebd55425 Lower min scores for person and car in plus docs (#8114) 2023-10-09 18:15:23 -05:00
tpjanssen
a82334ca1c API enhancements (#8107) 2023-10-09 08:52:26 -05:00
Nicolas Mowen
d7ddcea951 Show settings cog for camera toggles on mobile (#8098)
* Show settings cog on mobile

* Cleanup ui and remove label

* Fix tests
2023-10-08 14:49:41 -05:00
Daniel
cc6e049966 Change multiselect camera icon (#8016)
* CenterFocusString icon

* Add CenterFocusString to multiselect

* Rename CenterFocusString.jsx

* Rename icon and make it smaller

* Rename icon

* Fix lint and use icon
for speech

* remove unused vars

* Remove unused import
2023-10-08 14:30:53 -05:00
Josh Hawkins
dbd21eb6fa use getattr instead of get (#8094) 2023-10-08 14:30:23 -05:00
Nicolas Mowen
e1a6398219 Fix trt build (#8091) 2023-10-07 09:51:02 -05:00
Nicolas Mowen
7f5fba08b7 Fix export name (#8090) 2023-10-07 08:40:20 -06:00
Tyler Fisher
c35e8371be corrected a typo in the "Configuring Minimum Volume" section. (#8012) 2023-10-07 09:23:49 -05:00
Nicolas Mowen
49e7723405 Add debug logs for audio labels (#8080) 2023-10-07 09:23:11 -05:00
Nicolas Mowen
52cc707eb8 Consider new attribute a significant change (#8054)
* Consider new attribute a significant change

* Update object_processing.py
2023-10-07 09:22:45 -05:00
tpjanssen
c47b02d2fe Added filter option for min/max score for event to API function /events (#8079)
* Update api.md

* Update api.md

* Added filter option for min/max score for event to API function /events

* Added filter for submitted events

* Update http.py
2023-10-07 09:22:14 -05:00
Felipe Santos
3a460133d4 Add docker healthcheck (#8006)
* Add docker healthcheck

* Fix unknown start-interval

* Add HEALTHCHECK for tensorrt and bump default start-period

* Move healthcheck to deps stage
2023-10-07 09:21:03 -05:00
Josh Hawkins
67a5a7d21a onvif: use preset token if name is unsupported (#8046)
* onvif: use preset token if name is unsupported

* move parenthesis
2023-10-07 09:20:42 -05:00
theawes0megamer
5d2b87e077 Update ESXi instructions (#8018) 2023-10-07 09:20:29 -05:00
Josh Hawkins
8298806028 update list of onvif capable cams (#8021)
* update list of onvif capable cams

* clarify hikvision

* wording

* hikvision

* add sunba and ctronics from forum reports

* add cams
2023-10-07 09:20:10 -05:00
Nicolas Mowen
8cc7acd591 Zone docs (#8047)
* Update zone docs

* Document zone inertia in zone docs
2023-10-07 09:19:56 -05:00
Nicolas Mowen
8bde914939 Fix a couple bugs (#8045) 2023-10-07 09:18:34 -05:00
Josh Hawkins
fe9fcf3eaa remove erroneous check for move threads (#8031) 2023-10-07 09:18:07 -05:00
Josh Hawkins
20c2ab39bc disable zooming if relative zoom not supported (#8028) 2023-10-07 09:17:54 -05:00
Nicolas Mowen
08ef69bac4 Add recordings timeline entry for frigate+ attributes (#8063)
* Add attribute item to timeline

* Add face icon

* Add support for other icons

* Cleanup

* Ensure attributes are only updated once

* don't show _ in attributes
2023-10-07 09:17:18 -05:00
Nicolas Mowen
79fabbb6b0 Fix recording snapshot time range (#8073)
* Fix recording snapshot time range

* Formatting

* Formatting
2023-10-07 09:16:12 -05:00
Nicolas Mowen
8941aa5311 Ensure deleted export file name is safe (#8089)
* Ensure deleted export file name is safe

* Fix import
2023-10-07 09:12:48 -05:00
Blake Blackshear
14d2b79c72 Security fixes (#8081)
* use safeloader

* use json responses wherever possible

* remove CORS and add CSRF token

* formatting fixes

* add envjs back

* fix baseurl test
2023-10-06 22:20:30 -05:00
Nicolas Mowen
9a4f970337 Set default min score for attributes labels to 0.7 (#8001)
* Set min score for attributes to 0.7

* Allow other fields to be set
2023-09-30 07:38:15 -05:00
Josh Hawkins
22b9507797 add image of debug view (#8003) 2023-09-30 06:25:39 -05:00
Nicolas Mowen
37379e6fba Update autotracking gif (#8002) 2023-09-29 20:08:15 -05:00
Nicolas Mowen
232588636f Force birdseye to standard aspect ratio (#7994)
* Force birdseye to standard aspect ratio

* Make rounding consistent

* Formatting
2023-09-29 17:53:45 -05:00
Josh Hawkins
e77fedc445 docs for onvif camera support (#7999)
* docs for onvif camera support

* fix warning

* warning to caution

* update table

* centering

* no autotracking for reolinks

* zoom only for 511WA
2023-09-29 17:52:57 -05:00
Josh Hawkins
ead03c381b Autotracking improvements and bugfixes (#7984)
* add zoom factor and catch motion exception

* reword error message

* check euclidean distance of estimate points

* use numpy for euclidean distance

* config entry

* use zoom factor and zoom based on velocity

* move debug inside try

* change log type to info

* logger level warning

* docs

* exception handling
2023-09-28 18:21:37 -05:00
Nicolas Mowen
0048cd5edc Pull radeon driver from bookworm (#7983) 2023-09-28 18:20:48 -05:00
On Freund
56dfcd7a32 Update CAP_PERFMON instructions on hardware_acceleration.md (#7957)
* Update CAP_PERFMON instructions on hardware_acceleration.md

* Three -> there
2023-09-28 18:20:09 -05:00
Nicolas Mowen
9f3ac19e05 Limit max player height (#7974) 2023-09-28 18:01:23 -05:00
Josh Hawkins
50f13b7196 thread lock for move queues (#7973) 2023-09-28 18:01:05 -05:00
tpjanssen
50b17031c4 Update api.md (#7971)
* Update api.md

* Update api.md
2023-09-28 18:00:32 -05:00
mvn23
d11c1a2066 Update camera_specific.md (#7694)
Add information for TP-Link VIGI stream settings
2023-09-27 06:19:29 -05:00
Josh Hawkins
27144eb0b9 Autotracker: Basic zooming and moves with velocity estimation (#7713)
* don't zoom if camera doesn't support it

* basic zooming

* make zooming configurable

* zooming docs

* optional zooming in camera status

* Use absolute instead of relative zooming

* increase edge threshold

* zoom considering object area

* bugfixes

* catch onvif zooming errors

* relative zooming option for dahua/amcrest cams

* docs

* docs

* don't make small movements

* remove old logger statement

* fix small movements

* use enum in config for zooming

* fix formatting

* empty move queue first

* clear tracked object before waiting for stop

* use velocity estimation for movements

* docs updates

* add tests

* typos

* recalc every 50 moves

* adjust zoom based on estimate box if calibrated

* tweaks for fast objects and large movements

* use real time for calibration and add info logging

* docs updates

* remove area scale

* Add example video to docs

* zooming font header size the same as the others

* log an error if a ptz doesn't report a MoveStatus

* debug logging for onvif service capabilities

* ensure camera supports ONVIF MoveStatus
2023-09-27 06:19:10 -05:00
Josh Hawkins
64705c065f update docs sidebar for go2rc 1.7.1 (#7946) 2023-09-27 06:11:37 -05:00
Nicolas Mowen
08eefd8385 Fix frame height default value in docs (#7947) 2023-09-27 06:11:23 -05:00
Blake Blackshear
705ee54315 plus docs update (#7964)
* plus docs update

* add attribute labels
2023-09-27 06:10:53 -05:00
Nicolas Mowen
e26bb94007 Add seconds to exports (#7955) 2023-09-27 06:10:37 -05:00
Nicolas Mowen
1aba8c1ef5 Refactor time filter (#7962)
* Add ability to filter events by start time

* Add tests

* Add time param to events

* Add time picker

* Update docs

* Catch overnight case

Update comment

* Cleanup

* Fix tests
2023-09-27 06:09:38 -05:00
Nicolas Mowen
f92237c9c1 Fix recording timeline info text in light mode (#7963) 2023-09-27 06:08:58 -05:00
135 changed files with 7517 additions and 2580 deletions

View File

@@ -18,6 +18,12 @@ updates:
interval: daily
open-pull-requests-limit: 10
target-branch: dev
- package-ecosystem: "pip"
directory: "/docker/tensorrt"
schedule:
interval: daily
open-pull-requests-limit: 10
target-branch: dev
- package-ecosystem: "npm"
directory: "/web"
schedule:

View File

@@ -79,6 +79,15 @@ jobs:
rpi.tags=${{ steps.setup.outputs.image-name }}-rpi
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64,mode=max
- name: Build and push RockChip build
uses: docker/bake-action@v3
with:
push: true
targets: rk
files: docker/rockchip/rk.hcl
set: |
rk.tags=${{ steps.setup.outputs.image-name }}-rk
*.cache-from=type=gha
jetson_jp4_build:
runs-on: ubuntu-latest
name: Jetson Jetpack 4
@@ -141,7 +150,7 @@ jobs:
- arm64_build
steps:
- id: lowercaseRepo
uses: ASzc/change-string-case-action@v5
uses: ASzc/change-string-case-action@v6
with:
string: ${{ github.repository }}
- name: Log in to the Container registry

View File

@@ -65,7 +65,7 @@ jobs:
- name: Check out the repository
uses: actions/checkout@v4
- name: Set up Python ${{ env.DEFAULT_PYTHON }}
uses: actions/setup-python@v4.7.0
uses: actions/setup-python@v4.7.1
with:
python-version: ${{ env.DEFAULT_PYTHON }}
- name: Install requirements

37
.github/workflows/release.yml vendored Normal file
View File

@@ -0,0 +1,37 @@
name: On release
on:
workflow_dispatch:
release:
types: [published]
jobs:
release:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- id: lowercaseRepo
uses: ASzc/change-string-case-action@v6
with:
string: ${{ github.repository }}
- name: Log in to the Container registry
uses: docker/login-action@343f7c4344506bcbf9b4de18042ae17996df046d
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Create tag variables
run: |
BRANCH=$([[ "${{ github.ref_name }}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "master" || echo "dev")
echo "BASE=ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}" >> $GITHUB_ENV
echo "BUILD_TAG=${BRANCH}-${GITHUB_SHA::7}" >> $GITHUB_ENV
echo "CLEAN_VERSION=$(echo ${GITHUB_REF##*/} | tr '[:upper:]' '[:lower:]' | sed 's/^[v]//')" >> $GITHUB_ENV
- name: Tag and push the main image
run: |
VERSION_TAG=${BASE}:${CLEAN_VERSION}
PULL_TAG=${BASE}:${BUILD_TAG}
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${VERSION_TAG}
for variant in standard-amd64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${VERSION_TAG}-${variant}
done

View File

@@ -2,3 +2,5 @@
/docker/tensorrt/ @madsciencetist @NateMeyer
/docker/tensorrt/*arm64* @madsciencetist
/docker/tensorrt/*jetson* @madsciencetist
/docker/rockchip/ @MarcA711

View File

@@ -1,4 +1,4 @@
# syntax=docker/dockerfile:1.4
# syntax=docker/dockerfile:1.6
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
ARG DEBIAN_FRONTEND=noninteractive
@@ -33,7 +33,7 @@ RUN --mount=type=tmpfs,target=/tmp --mount=type=tmpfs,target=/var/cache/apt \
FROM scratch AS go2rtc
ARG TARGETARCH
WORKDIR /rootfs/usr/local/go2rtc/bin
ADD --link --chmod=755 "https://github.com/AlexxIT/go2rtc/releases/download/v1.7.1/go2rtc_linux_${TARGETARCH}" go2rtc
ADD --link --chmod=755 "https://github.com/AlexxIT/go2rtc/releases/download/v1.8.2/go2rtc_linux_${TARGETARCH}" go2rtc
####
@@ -121,13 +121,15 @@ RUN apt-get -qq update \
apt-transport-https \
gnupg \
wget \
&& apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 648ACFD622F3D138 \
&& echo "deb http://deb.debian.org/debian bullseye main contrib non-free" | tee /etc/apt/sources.list.d/raspi.list \
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
&& apt-get -qq update \
&& apt-get -qq install -y \
python3.9 \
python3.9-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
@@ -199,6 +201,9 @@ ENV S6_LOGGING_SCRIPT="T 1 n0 s10000000 T"
ENTRYPOINT ["/init"]
CMD []
HEALTHCHECK --start-period=120s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1
# Frigate deps with Node.js and NPM for devcontainer
FROM deps AS devcontainer

View File

@@ -2,7 +2,7 @@
set -euxo pipefail
NGINX_VERSION="1.25.2"
NGINX_VERSION="1.25.3"
VOD_MODULE_VERSION="1.31"
SECURE_TOKEN_MODULE_VERSION="1.5"
RTMP_MODULE_VERSION="1.2.2"

View File

@@ -55,17 +55,16 @@ fi
# arch specific packages
if [[ "${TARGETARCH}" == "amd64" ]]; then
# Use debian testing repo only for hwaccel packages
echo 'deb http://deb.debian.org/debian testing main non-free' >/etc/apt/sources.list.d/debian-testing.list
# use debian bookworm for hwaccel packages
echo 'deb https://deb.debian.org/debian bookworm main contrib non-free' >/etc/apt/sources.list.d/debian-bookworm.list
apt-get -qq update
# intel-opencl-icd specifically for GPU support in OpenVino
apt-get -qq install --no-install-recommends --no-install-suggests -y \
intel-opencl-icd \
mesa-va-drivers libva-drm2 intel-media-va-driver-non-free i965-va-driver libmfx1 radeontop intel-gpu-tools
mesa-va-drivers radeontop libva-drm2 intel-media-va-driver-non-free i965-va-driver libmfx1 intel-gpu-tools
# something about this dependency requires it to be installed in a separate call rather than in the line above
apt-get -qq install --no-install-recommends --no-install-suggests -y \
i965-va-driver-shaders
rm -f /etc/apt/sources.list.d/debian-testing.list
rm -f /etc/apt/sources.list.d/debian-bookworm.list
fi
if [[ "${TARGETARCH}" == "arm64" ]]; then

View File

@@ -1,3 +1,3 @@
black == 23.3.*
black == 23.10.*
isort
ruff

View File

@@ -2,20 +2,20 @@ click == 8.1.*
Flask == 2.3.*
imutils == 0.5.*
matplotlib == 3.7.*
mypy == 1.4.1
mypy == 1.6.1
numpy == 1.23.*
onvif_zeep == 0.2.12
opencv-python-headless == 4.7.0.*
paho-mqtt == 1.6.*
peewee == 3.16.*
peewee == 3.17.*
peewee_migrate == 1.12.*
psutil == 5.9.*
pydantic == 1.10.*
git+https://github.com/fbcotter/py3nvml#egg=py3nvml
PyYAML == 6.0.*
pytz == 2023.3
ruamel.yaml == 0.17.*
tzlocal == 5.0.*
pytz == 2023.3.post1
ruamel.yaml == 0.18.*
tzlocal == 5.2
types-PyYAML == 6.0.*
requests == 2.31.*
types-requests == 2.31.*

View File

@@ -3,6 +3,7 @@
import json
import os
import sys
from pathlib import Path
import yaml
@@ -16,6 +17,14 @@ sys.path.remove("/opt/frigate")
FRIGATE_ENV_VARS = {k: v for k, v in os.environ.items() if k.startswith("FRIGATE_")}
# read docker secret files as env vars too
if os.path.isdir("/run/secrets"):
for secret_file in os.listdir("/run/secrets"):
if secret_file.startswith("FRIGATE_"):
FRIGATE_ENV_VARS[secret_file] = Path(
os.path.join("/run/secrets", secret_file)
).read_text()
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
# Check if we can use .yaml instead of .yml
@@ -49,7 +58,15 @@ if go2rtc_config.get("log") is None:
elif go2rtc_config["log"].get("format") is None:
go2rtc_config["log"]["format"] = "text"
if not go2rtc_config.get("webrtc", {}).get("candidates", []):
# ensure there is a default webrtc config
if not go2rtc_config.get("webrtc"):
go2rtc_config["webrtc"] = {}
# go2rtc should listen on 8555 tcp & udp by default
if not go2rtc_config["webrtc"].get("listen"):
go2rtc_config["webrtc"]["listen"] = ":8555"
if not go2rtc_config["webrtc"].get("candidates", []):
default_candidates = []
# use internal candidate if it was discovered when running through the add-on
internal_candidate = os.environ.get(

View File

@@ -32,6 +32,13 @@ http {
gzip_proxied no-cache no-store private expired auth;
gzip_vary on;
proxy_cache_path /dev/shm/nginx_cache levels=1:2 keys_zone=api_cache:10m max_size=10m inactive=1m use_temp_path=off;
map $sent_http_content_type $should_not_cache {
'application/json' 0;
default 1;
}
upstream frigate_api {
server 127.0.0.1:5001;
keepalive 1024;
@@ -93,10 +100,6 @@ http {
secure_token $args;
secure_token_types application/vnd.apple.mpegurl;
add_header Access-Control-Allow-Headers '*';
add_header Access-Control-Expose-Headers 'Server,range,Content-Length,Content-Range';
add_header Access-Control-Allow-Methods 'GET, HEAD, OPTIONS';
add_header Access-Control-Allow-Origin '*';
add_header Cache-Control "no-store";
expires off;
}
@@ -104,16 +107,6 @@ http {
location /stream/ {
add_header Cache-Control "no-store";
expires off;
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
application/dash+xml mpd;
@@ -126,16 +119,6 @@ http {
}
location /clips/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
@@ -152,17 +135,6 @@ http {
}
location /recordings/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
}
@@ -173,17 +145,6 @@ http {
}
location /exports/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
}
@@ -195,68 +156,69 @@ http {
location /ws {
proxy_pass http://mqtt_ws/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_set_header Host $host;
include proxy.conf;
}
location /live/jsmpeg/ {
proxy_pass http://jsmpeg/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_set_header Host $host;
include proxy.conf;
}
location /live/mse/ {
proxy_pass http://go2rtc/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_set_header Host $host;
include proxy.conf;
}
location /live/webrtc/ {
proxy_pass http://go2rtc/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_set_header Host $host;
include proxy.conf;
}
location ~* /api/go2rtc([/]?.*)$ {
proxy_pass http://go2rtc;
rewrite ^/api/go2rtc(.*)$ /api$1 break;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_set_header Host $host;
include proxy.conf;
}
location ~* /api/.*\.(jpg|jpeg|png)$ {
add_header 'Access-Control-Allow-Origin' '*';
add_header 'Access-Control-Allow-Methods' 'GET, POST, PUT, DELETE, OPTIONS';
rewrite ^/api/(.*)$ $1 break;
proxy_pass http://frigate_api;
proxy_pass_request_headers on;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
include proxy.conf;
}
location /api/ {
add_header Cache-Control "no-store";
expires off;
add_header 'Access-Control-Allow-Origin' '*';
add_header 'Access-Control-Allow-Methods' 'GET, POST, PUT, DELETE, OPTIONS';
add_header 'Access-Control-Allow-Headers' 'DNT,User-Agent,X-Requested-With,If-Modified-Since,Cache-Control,Content-Type,Range';
proxy_pass http://frigate_api/;
proxy_pass_request_headers on;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
include proxy.conf;
proxy_cache api_cache;
proxy_cache_lock on;
proxy_cache_use_stale updating;
proxy_cache_valid 200 5s;
proxy_cache_bypass $http_x_cache_bypass;
proxy_no_cache $should_not_cache;
add_header X-Cache-Status $upstream_cache_status;
location /api/vod/ {
proxy_pass http://frigate_api/vod/;
include proxy.conf;
proxy_cache off;
}
location /api/stats {
access_log off;
rewrite ^/api/(.*)$ $1 break;
proxy_pass http://frigate_api;
include proxy.conf;
}
location /api/version {
access_log off;
rewrite ^/api/(.*)$ $1 break;
proxy_pass http://frigate_api;
include proxy.conf;
}
}
location / {
@@ -299,4 +261,4 @@ rtmp {
meta copy;
}
}
}
}

View File

@@ -0,0 +1,4 @@
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_set_header Host $host;

View File

@@ -0,0 +1,24 @@
# syntax=docker/dockerfile:1.6
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
ARG DEBIAN_FRONTEND=noninteractive
FROM wheels as rk-wheels
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt
RUN sed -i "/https/d" /requirements-wheels.txt
RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt
FROM wget as rk-libs
RUN wget -qO librknnrt.so https://github.com/MarcA711/rknpu2/raw/master/runtime/RK3588/Linux/librknn_api/aarch64/librknnrt.so
FROM deps AS rk-deps
ARG TARGETARCH
RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \
pip3 install -U /deps/rk-wheels/*.whl
WORKDIR /opt/frigate/
COPY --from=rootfs / /
COPY --from=rk-libs /rootfs/librknnrt.so /usr/lib/
COPY docker/rockchip/yolov8n-320x320.rknn /models/

View File

@@ -0,0 +1,2 @@
hide-warnings == 0.17
rknn-toolkit-lite2 @ https://github.com/MarcA711/rknn-toolkit2/raw/master/rknn_toolkit_lite2/packages/rknn_toolkit_lite2-1.5.2-cp39-cp39-linux_aarch64.whl

34
docker/rockchip/rk.hcl Normal file
View File

@@ -0,0 +1,34 @@
target wget {
dockerfile = "docker/main/Dockerfile"
platforms = ["linux/arm64"]
target = "wget"
}
target wheels {
dockerfile = "docker/main/Dockerfile"
platforms = ["linux/arm64"]
target = "wheels"
}
target deps {
dockerfile = "docker/main/Dockerfile"
platforms = ["linux/arm64"]
target = "deps"
}
target rootfs {
dockerfile = "docker/main/Dockerfile"
platforms = ["linux/arm64"]
target = "rootfs"
}
target rk {
dockerfile = "docker/rockchip/Dockerfile"
contexts = {
wget = "target:wget",
wheels = "target:wheels",
deps = "target:deps",
rootfs = "target:rootfs"
}
platforms = ["linux/arm64"]
}

10
docker/rockchip/rk.mk Normal file
View File

@@ -0,0 +1,10 @@
BOARDS += rk
local-rk: version
docker buildx bake --load --file=docker/rockchip/rk.hcl --set rk.tags=frigate:latest-rk rk
build-rk: version
docker buildx bake --file=docker/rockchip/rk.hcl --set rk.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rk rk
push-rk: build-rk
docker buildx bake --push --file=docker/rockchip/rk.hcl --set rk.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rk rk

Binary file not shown.

View File

@@ -1,4 +1,4 @@
# syntax=docker/dockerfile:1.4
# syntax=docker/dockerfile:1.6
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
ARG DEBIAN_FRONTEND=noninteractive
@@ -24,3 +24,6 @@ COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_laye
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
COPY docker/tensorrt/detector/rootfs/ /
ENV YOLO_MODELS="yolov7-320"
HEALTHCHECK --start-period=600s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1

View File

@@ -120,7 +120,7 @@ NOTE: The folder that is mapped from the host needs to be the folder that contai
## Custom go2rtc version
Frigate currently includes go2rtc v1.7.1, there may be certain cases where you want to run a different version of go2rtc.
Frigate currently includes go2rtc v1.8.2, there may be certain cases where you want to run a different version of go2rtc.
To do this:
@@ -128,3 +128,34 @@ To do this:
2. Rename the build to `go2rtc`.
3. Give `go2rtc` execute permission.
4. Restart Frigate and the custom version will be used, you can verify by checking go2rtc logs.
## Validating your config.yaml file updates
When frigate starts up, it checks whether your config file is valid, and if it is not, the process exits. To minimize interruptions when updating your config, you have three options -- you can edit the config via the WebUI which has built in validation, use the config API, or you can validate on the command line using the frigate docker container.
### Via API
Frigate can accept a new configuration file as JSON at the `/config/save` endpoint. When updating the config this way, Frigate will validate the config before saving it, and return a `400` if the config is not valid.
```bash
curl -X POST http://frigate_host:5000/config/save -d @config.json
```
if you'd like you can use your yaml config directly by using [`yq`](https://github.com/mikefarah/yq) to convert it to json:
```bash
yq r -j config.yml | curl -X POST http://frigate_host:5000/config/save -d @-
```
### Via Command Line
You can also validate your config at the command line by using the docker container itself. In CI/CD, you leverage the return code to determine if your config is valid, Frigate will return `1` if the config is invalid, or `0` if it's valid.
```bash
docker run \
-v $(pwd)/config.yml:/config/config.yml \
--entrypoint python3 \
ghcr.io/blakeblackshear/frigate:stable \
-u -m frigate \
--validate_config
```

View File

@@ -50,7 +50,7 @@ cameras:
### Configuring Minimum Volume
The audio detector uses volume levels in the same way that motion in a camera feed is used for object detection. This means that frigate will not run audio detection unless the audio volume is above the configured level in order to reduce resource usage. Audio levels can vary widelely between camera models so it is important to run tests to see what volume levels are. MQTT explorer can be used on the audio topic to see what volume level is being detected.
The audio detector uses volume levels in the same way that motion in a camera feed is used for object detection. This means that frigate will not run audio detection unless the audio volume is above the configured level in order to reduce resource usage. Audio levels can vary widely between camera models so it is important to run tests to see what volume levels are. MQTT explorer can be used on the audio topic to see what volume level is being detected.
:::tip

View File

@@ -5,6 +5,8 @@ title: Camera Autotracking
An ONVIF-capable, PTZ (pan-tilt-zoom) camera that supports relative movement within the field of view (FOV) can be configured to automatically track moving objects and keep them in the center of the frame.
![Autotracking example with zooming](/img/frigate-autotracking-example.gif)
## Autotracking behavior
Once Frigate determines that an object is not a false positive and has entered one of the required zones, the autotracker will move the PTZ camera to keep the object centered in the frame until the object either moves out of the frame, the PTZ is not capable of any more movement, or Frigate loses track of it.
@@ -21,13 +23,15 @@ Many cheaper or older PTZs may not support this standard. Frigate will report an
Alternatively, you can download and run [this simple Python script](https://gist.github.com/hawkeye217/152a1d4ba80760dac95d46e143d37112), replacing the details on line 4 with your camera's IP address, ONVIF port, username, and password to check your camera.
A growing list of cameras and brands that have been reported by users to work with Frigate's autotracking can be found [here](cameras.md).
## Configuration
First, set up a PTZ preset in your camera's firmware and give it a name. If you're unsure how to do this, consult the documentation for your camera manufacturer's firmware. Some tutorials for common brands: [Amcrest](https://www.youtube.com/watch?v=lJlE9-krmrM), [Reolink](https://www.youtube.com/watch?v=VAnxHUY5i5w), [Dahua](https://www.youtube.com/watch?v=7sNbc5U-k54).
Edit your Frigate configuration file and enter the ONVIF parameters for your camera. Specify the object types to track, a required zone the object must enter to begin autotracking, and the camera preset name you configured in your camera's firmware to return to when tracking has ended. Optionally, specify a delay in seconds before Frigate returns the camera to the preset.
An [ONVIF connection](cameras.md) is required for autotracking to function.
An [ONVIF connection](cameras.md) is required for autotracking to function. Also, a [motion mask](masks.md) over your camera's timestamp and any overlay text is recommended to ensure they are completely excluded from scene change calculations when the camera is moving.
Note that `autotracking` is disabled by default but can be enabled in the configuration or by MQTT.
@@ -50,6 +54,23 @@ cameras:
autotracking:
# Optional: enable/disable object autotracking. (default: shown below)
enabled: False
# Optional: calibrate the camera on startup (default: shown below)
# A calibration will move the PTZ in increments and measure the time it takes to move.
# The results are used to help estimate the position of tracked objects after a camera move.
# Frigate will update your config file automatically after a calibration with
# a "movement_weights" entry for the camera. You should then set calibrate_on_startup to False.
calibrate_on_startup: False
# Optional: the mode to use for zooming in/out on objects during autotracking. (default: shown below)
# Available options are: disabled, absolute, and relative
# disabled - don't zoom in/out on autotracked objects, use pan/tilt only
# absolute - use absolute zooming (supported by most PTZ capable cameras)
# relative - use relative zooming (not supported on all PTZs, but makes concurrent pan/tilt/zoom movements)
zooming: disabled
# Optional: A value to change the behavior of zooming on autotracked objects. (default: shown below)
# A lower value will keep more of the scene in view around a tracked object.
# A higher value will zoom in more on a tracked object, but Frigate may lose tracking more quickly.
# The value should be between 0.1 and 0.75
zoom_factor: 0.3
# Optional: list of objects to track from labelmap.txt (default: shown below)
track:
- person
@@ -60,18 +81,86 @@ cameras:
return_preset: home
# Optional: Seconds to delay before returning to preset. (default: shown below)
timeout: 10
# Optional: Values generated automatically by a camera calibration. Do not modify these manually. (default: shown below)
movement_weights: []
```
## Calibration
PTZ motors operate at different speeds. Performing a calibration will direct Frigate to measure this speed over a variety of movements and use those measurements to better predict the amount of movement necessary to keep autotracked objects in the center of the frame.
Calibration is optional, but will greatly assist Frigate in autotracking objects that move across the camera's field of view more quickly.
To begin calibration, set the `calibrate_on_startup` for your camera to `True` and restart Frigate. Frigate will then make a series of small and large movements with your camera. Don't move the PTZ manually while calibration is in progress. Once complete, camera motion will stop and your config file will be automatically updated with a `movement_weights` parameter to be used in movement calculations. You should not modify this parameter manually.
After calibration has ended, your PTZ will be moved to the preset specified by `return_preset`.
:::note
Frigate's web UI and all other cameras will be unresponsive while calibration is in progress. This is expected and normal to avoid excessive network traffic or CPU usage during calibration. Calibration for most PTZs will take about two minutes. The Frigate log will show calibration progress and any errors.
:::
At this point, Frigate will be running and will continue to refine and update the `movement_weights` parameter in your config automatically as the PTZ moves during autotracking and more measurements are obtained.
Before restarting Frigate, you should set `calibrate_on_startup` in your config file to `False`, otherwise your refined `movement_weights` will be overwritten and calibration will occur when starting again.
You can recalibrate at any time by removing the `movement_weights` parameter, setting `calibrate_on_startup` to `True`, and then restarting Frigate. You may need to recalibrate or remove `movement_weights` from your config altogether if autotracking is erratic. If you change your `return_preset` in any way or if you change your camera's detect `fps` value, a recalibration is also recommended.
If you initially calibrate with zooming disabled and then enable zooming at a later point, you should also recalibrate.
## Best practices and considerations
Every PTZ camera is different, so autotracking may not perform ideally in every situation. This experimental feature was initially developed using an EmpireTech/Dahua SD1A404XB-GNR.
The object tracker in Frigate estimates the motion of the PTZ so that tracked objects are preserved when the camera moves. In most cases (especially for faster moving objects), the default 5 fps is insufficient for the motion estimator to perform accurately. 10 fps is the current recommendation. Higher frame rates will likely not be more performant and will only slow down Frigate and the motion estimator. Adjust your camera to output at least 10 frames per second and change the `fps` parameter in the [detect configuration](index.md) of your configuration file.
The object tracker in Frigate estimates the motion of the PTZ so that tracked objects are preserved when the camera moves. In most cases 5 fps is sufficient, but if you plan to track faster moving objects, you may want to increase this slightly. Higher frame rates (> 10fps) will only slow down Frigate and the motion estimator and may lead to dropped frames, especially if you are using experimental zooming.
A fast [detector](object_detectors.md) is recommended. CPU detectors will not perform well or won't work at all. If Frigate already has trouble keeping track of your object, the autotracker will struggle as well.
A fast [detector](object_detectors.md) is recommended. CPU detectors will not perform well or won't work at all. You can watch Frigate's debug viewer for your camera to see a thicker colored box around the object currently being autotracked.
The autotracker will add PTZ motion requests to a queue while the motor is moving. Once the motor stops, the events in the queue will be executed together as one large move (rather than incremental moves). If your PTZ's motor is slow, you may not be able to reliably autotrack fast moving objects.
![Autotracking Debug View](/img/autotracking-debug.gif)
A full-frame zone in `required_zones` is not recommended, especially if you've calibrated your camera and there are `movement_weights` defined in the configuration file. Frigate will continue to autotrack an object that has entered one of the `required_zones`, even if it moves outside of that zone.
Some users have found it helpful to adjust the zone `inertia` value. See the [configuration reference](index.md).
## Zooming
Zooming is a very experimental feature and may use significantly more CPU when tracking objects than panning/tilting only.
Absolute zooming makes zoom movements separate from pan/tilt movements. Most PTZ cameras will support absolute zooming. Absolute zooming was developed to be very conservative to work best with a variety of cameras and scenes. Absolute zooming usually will not occur until an object has stopped moving or is moving very slowly.
Relative zooming attempts to make a zoom movement concurrently with any pan/tilt movements. It was tested to work with some Dahua and Amcrest PTZs. But the ONVIF specification indicates that there no assumption about how the generic zoom range is mapped to magnification, field of view or other physical zoom dimension when using relative zooming. So if relative zooming behavior is erratic or just doesn't work, try absolute zooming.
You can optionally adjust the `zoom_factor` for your camera in your configuration file. Lower values will leave more space from the scene around the tracked object while higher values will cause your camera to zoom in more on the object. However, keep in mind that Frigate needs a fair amount of pixels and scene details outside of the bounding box of the tracked object to estimate the motion of your camera. If the object is taking up too much of the frame, Frigate will not be able to track the motion of the camera and your object will be lost.
The range of this option is from 0.1 to 0.75. The default value of 0.3 is conservative and should be sufficient for most users. Because every PTZ and scene is different, you should experiment to determine what works best for you.
## Usage applications
In security and surveillance, it's common to use "spotter" cameras in combination with your PTZ. When your fixed spotter camera detects an object, you could use an automation platform like Home Assistant to move the PTZ to a specific preset so that Frigate can begin automatically tracking the object. For example: a residence may have fixed cameras on the east and west side of the property, capturing views up and down a street. When the spotter camera on the west side detects a person, a Home Assistant automation could move the PTZ to a camera preset aimed toward the west. When the object enters the specified zone, Frigate's autotracker could then continue to track the person as it moves out of view of any of the fixed cameras.
## Troubleshooting and FAQ
### The autotracker loses track of my object. Why?
There are many reasons this could be the case. If you are using experimental zooming, your `zoom_factor` value might be too high, the object might be traveling too quickly, the scene might be too dark, there are not enough details in the scene (for example, a PTZ looking down on a driveway or other monotone background without a sufficient number of hard edges or corners), or the scene is otherwise less than optimal for Frigate to maintain tracking.
Your camera's shutter speed may also be set too low so that blurring occurs with motion. Check your camera's firmware to see if you can increase the shutter speed.
Watching Frigate's debug view can help to determine a possible cause. The autotracked object will have a thicker colored box around it.
### I'm seeing an error in the logs that my camera "is still in ONVIF 'MOVING' status." What does this mean?
There are two possible known reasons for this (and perhaps others yet unknown): a slow PTZ motor or buggy camera firmware. Frigate uses an ONVIF parameter provided by the camera, `MoveStatus`, to determine when the PTZ's motor is moving or idle. According to some users, Hikvision PTZs (even with the latest firmware), are not updating this value after PTZ movement. Unfortunately there is no workaround to this bug in Hikvision firmware, so autotracking will not function correctly and should be disabled in your config. This may also be the case with other non-Hikvision cameras utilizing Hikvision firmware.
### I tried calibrating my camera, but the logs show that it is stuck at 0% and Frigate is not starting up.
This is often caused by the same reason as above - the `MoveStatus` ONVIF parameter is not changing due to a bug in your camera's firmware. Also, see the note above: Frigate's web UI and all other cameras will be unresponsive while calibration is in progress. This is expected and normal. But if you don't see log entries every few seconds for calibration progress, your camera is not compatible with autotracking.
### I'm seeing this error in the logs: "Autotracker: motion estimator couldn't get transformations". What does this mean?
To maintain object tracking during PTZ moves, Frigate tracks the motion of your camera based on the details of the frame. If you are seeing this message, it could mean that your `zoom_factor` may be set too high, the scene around your detected object does not have enough details (like hard edges or color variatons), or your camera's shutter speed is too slow and motion blur is occurring. Try reducing `zoom_factor`, finding a way to alter the scene around your object, or changing your camera's shutter speed.
### Calibration seems to have completed, but the camera is not actually moving to track my object. Why?
Some cameras have firmware that reports that FOV RelativeMove, the ONVIF command that Frigate uses for autotracking, is supported. However, if the camera does not pan or tilt when an object comes into the required zone, your camera's firmware does not actually support FOV RelativeMove. One such camera is the Uniview IPC672LR-AX4DUPK. It actually moves its zoom motor instead of panning and tilting and does not follow the ONVIF standard whatsoever.

View File

@@ -140,7 +140,7 @@ go2rtc:
- rtspx://192.168.1.1:7441/abcdefghijk
```
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.7.1#source-rtsp)
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.8.2#source-rtsp)
In the Unifi 2.0 update Unifi Protect Cameras had a change in audio sample rate which causes issues for ffmpeg. The input rate needs to be set for record and rtmp if used directly with unifi protect.
@@ -150,3 +150,7 @@ ffmpeg:
record: preset-record-ubiquiti
rtmp: preset-rtmp-ubiquiti # recommend using go2rtc instead
```
### TP-Link VIGI Cameras
TP-Link VIGI cameras need some adjustments to the main stream settings on the camera itself to avoid issues. The stream needs to be configured as `H264` with `Smart Coding` set to `off`. Without these settings you may have problems when trying to watch recorded events. For example Firefox will stop playback after a few seconds and show the following error message: `The media playback was aborted due to a corruption problem or because the media used features your browser did not support.`.

View File

@@ -11,11 +11,12 @@ A camera is enabled by default but can be temporarily disabled by using `enabled
Each role can only be assigned to one input per camera. The options for roles are as follows:
| Role | Description |
| ---------- | ---------------------------------------------------------------------------------------- |
| `detect` | Main feed for object detection |
| `record` | Saves segments of the video feed based on configuration settings. [docs](record.md) |
| `rtmp` | Deprecated: Broadcast as an RTMP feed for other services to consume. [docs](restream.md) |
| Role | Description |
| -------- | ---------------------------------------------------------------------------------------- |
| `detect` | Main feed for object detection. [docs](object_detectors.md) |
| `record` | Saves segments of the video feed based on configuration settings. [docs](record.md) |
| `audio` | Feed for audio based detection. [docs](audio_detectors.md) |
| `rtmp` | Deprecated: Broadcast as an RTMP feed for other services to consume. [docs](restream.md) |
```yaml
mqtt:
@@ -51,13 +52,18 @@ For camera model specific settings check the [camera specific](camera_specific.m
## Setting up camera PTZ controls
Add onvif config to camera
:::caution
Not every PTZ supports ONVIF, which is the standard protocol Frigate uses to communicate with your camera. Check the [official list of ONVIF conformant products](https://www.onvif.org/conformant-products/), your camera documentation, or camera manufacturer's website to ensure your PTZ supports ONVIF. Also, ensure your camera is running the latest firmware.
:::
Add the onvif section to your camera in your configuration file:
```yaml
cameras:
back:
ffmpeg:
...
ffmpeg: ...
onvif:
host: 10.0.10.10
port: 8000
@@ -65,6 +71,27 @@ cameras:
password: password
```
then PTZ controls will be available in the cameras WebUI.
If the ONVIF connection is successful, PTZ controls will be available in the camera's WebUI.
An ONVIF-capable camera that supports relative movement within the field of view (FOV) can also be configured to automatically track moving objects and keep them in the center of the frame. For autotracking setup, see the [autotracking](autotracking.md) docs.
## ONVIF PTZ camera recommendations
This list of working and non-working PTZ cameras is based on user feedback.
| Brand or specific camera | PTZ Controls | Autotracking | Notes |
| ------------------------ | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------- |
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
| Amcrest ASH21 | ❌ | ❌ | No ONVIF support |
| Ctronics PTZ | ✅ | ❌ | |
| Dahua | ✅ | ✅ | |
| Foscam R5 | ✅ | ❌ | |
| Hikvision | ✅ | ❌ | Incomplete ONVIF support (MoveStatus won't update even on latest firmware) - reported with HWP-N4215IH-DE and DS-2DE3304W-DE, but likely others |
| Reolink 511WA | ✅ | ❌ | Zoom only |
| Reolink E1 Pro | ✅ | ❌ | |
| Reolink E1 Zoom | ✅ | ❌ | |
| Sunba 405-D20X | ✅ | ❌ | |
| Tapo C200 | ✅ | ❌ | Incomplete ONVIF support |
| Tapo C210 | ❌ | ❌ | Incomplete ONVIF support |
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
| Vikylin PTZ-2804X-I2 | ❌ | ❌ | Incomplete ONVIF support |

View File

@@ -13,7 +13,6 @@ See [the hwaccel docs](/configuration/hardware_acceleration.md) for more info on
| Preset | Usage | Other Notes |
| --------------------- | ------------------------------ | ----------------------------------------------------- |
| preset-rpi-32-h264 | 32 bit Rpi with h264 stream | |
| preset-rpi-64-h264 | 64 bit Rpi with h264 stream | |
| preset-vaapi | Intel & AMD VAAPI | Check hwaccel docs to ensure correct driver is chosen |
| preset-intel-qsv-h264 | Intel QSV with h264 stream | If issues occur recommend using vaapi preset instead |

View File

@@ -64,11 +64,10 @@ ffmpeg:
### Configuring Intel GPU Stats in Docker
Additional configuration is needed for the Docker container to be able to access the `intel_gpu_top` command for GPU stats. Three possible changes can be made:
Additional configuration is needed for the Docker container to be able to access the `intel_gpu_top` command for GPU stats. There are two options:
1. Run the container as privileged.
2. Adding the `CAP_PERFMON` capability.
3. Setting the `perf_event_paranoid` low enough to allow access to the performance event system.
2. Add the `CAP_PERFMON` capability (note: you might need to set the `perf_event_paranoid` low enough to allow access to the performance event system.)
#### Run as privileged
@@ -125,7 +124,7 @@ _Note: This setting must be changed for the entire system._
For more information on the various values across different distributions, see https://askubuntu.com/questions/1400874/what-does-perf-paranoia-level-four-do.
Depending on your OS and kernel configuration, you may need to change the `/proc/sys/kernel/perf_event_paranoid` kernel tunable. You can test the change by running `sudo sh -c 'echo 2 >/proc/sys/kernel/perf_event_paranoid'` which will persist until a reboot. Make it permanent by running `sudo sh -c 'echo kernel.perf_event_paranoid=1 >> /etc/sysctl.d/local.conf'`
Depending on your OS and kernel configuration, you may need to change the `/proc/sys/kernel/perf_event_paranoid` kernel tunable. You can test the change by running `sudo sh -c 'echo 2 >/proc/sys/kernel/perf_event_paranoid'` which will persist until a reboot. Make it permanent by running `sudo sh -c 'echo kernel.perf_event_paranoid=2 >> /etc/sysctl.d/local.conf'`
## AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver

View File

@@ -75,11 +75,11 @@ mqtt:
# NOTE: must be unique if you are running multiple instances
client_id: frigate
# Optional: user
# NOTE: MQTT user can be specified with an environment variables that must begin with 'FRIGATE_'.
# NOTE: MQTT user can be specified with an environment variables or docker secrets that must begin with 'FRIGATE_'.
# e.g. user: '{FRIGATE_MQTT_USER}'
user: mqtt_user
# Optional: password
# NOTE: MQTT password can be specified with an environment variables that must begin with 'FRIGATE_'.
# NOTE: MQTT password can be specified with an environment variables or docker secrets that must begin with 'FRIGATE_'.
# e.g. password: '{FRIGATE_MQTT_PASSWORD}'
password: password
# Optional: tls_ca_certs for enabling TLS using self-signed certs (default: None)
@@ -222,15 +222,17 @@ ffmpeg:
# Optional: Detect configuration
# NOTE: Can be overridden at the camera level
detect:
# Optional: width of the frame for the input with the detect role (default: shown below)
# Optional: width of the frame for the input with the detect role (default: use native stream resolution)
width: 1280
# Optional: height of the frame for the input with the detect role (default: shown below)
# Optional: height of the frame for the input with the detect role (default: use native stream resolution)
height: 720
# Optional: desired fps for your camera for the input with the detect role (default: shown below)
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
fps: 5
# Optional: enables detection for the camera (default: True)
enabled: True
# Optional: Number of consecutive detection hits required for an object to be initialized in the tracker. (default: 1/2 the frame rate)
min_initialized: 2
# Optional: Number of frames without a detection before Frigate considers an object to be gone. (default: 5x the frame rate)
max_disappeared: 25
# Optional: Configuration for stationary object tracking
@@ -324,7 +326,7 @@ motion:
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.01
# Optional: Height of the resized motion frame (default: 50)
# Optional: Height of the resized motion frame (default: 100)
# Higher values will result in more granular motion detection at the expense of higher CPU usage.
# Lower values result in less CPU, but small changes may not register as motion.
frame_height: 100
@@ -436,7 +438,7 @@ rtmp:
enabled: False
# Optional: Restream configuration
# Uses https://github.com/AlexxIT/go2rtc (v1.7.1)
# Uses https://github.com/AlexxIT/go2rtc (v1.8.2)
go2rtc:
# Optional: jsmpeg stream configuration for WebUI
@@ -489,7 +491,7 @@ cameras:
# Required: A list of input streams for the camera. See documentation for more information.
inputs:
# Required: the path to the stream
# NOTE: path may include environment variables, which must begin with 'FRIGATE_' and be referenced in {}
# NOTE: path may include environment variables or docker secrets, which must begin with 'FRIGATE_' and be referenced in {}
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
# Required: list of roles for this stream. valid values are: audio,detect,record,rtmp
# NOTICE: In addition to assigning the audio, record, and rtmp roles,
@@ -518,6 +520,9 @@ cameras:
# to be replaced by a newer image. (default: shown below)
best_image_timeout: 60
# Optional: URL to visit the camera web UI directly from the system page. Might not be available on every camera.
webui_url: ""
# Optional: zones for this camera
zones:
# Required: name of the zone
@@ -527,7 +532,7 @@ cameras:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Presence in a zone is evaluated only based on the bottom center of the objects bounding box.
coordinates: 545,1077,747,939,788,805
# Optional: Number of consecutive frames required for object to be considered present in the zone. Allowed values are 1-10 (default: shown below)
# Optional: Number of consecutive frames required for object to be considered present in the zone (default: shown below).
inertia: 3
# Optional: List of objects that can trigger this zone (default: all tracked objects)
objects:
@@ -584,6 +589,23 @@ cameras:
autotracking:
# Optional: enable/disable object autotracking. (default: shown below)
enabled: False
# Optional: calibrate the camera on startup (default: shown below)
# A calibration will move the PTZ in increments and measure the time it takes to move.
# The results are used to help estimate the position of tracked objects after a camera move.
# Frigate will update your config file automatically after a calibration with
# a "movement_weights" entry for the camera. You should then set calibrate_on_startup to False.
calibrate_on_startup: False
# Optional: the mode to use for zooming in/out on objects during autotracking. (default: shown below)
# Available options are: disabled, absolute, and relative
# disabled - don't zoom in/out on autotracked objects, use pan/tilt only
# absolute - use absolute zooming (supported by most PTZ capable cameras)
# relative - use relative zooming (not supported on all PTZs, but makes concurrent pan/tilt/zoom movements)
zooming: disabled
# Optional: A value to change the behavior of zooming on autotracked objects. (default: shown below)
# A lower value will keep more of the scene in view around a tracked object.
# A higher value will zoom in more on a tracked object, but Frigate may lose tracking more quickly.
# The value should be between 0.1 and 0.75
zoom_factor: 0.3
# Optional: list of objects to track from labelmap.txt (default: shown below)
track:
- person
@@ -591,9 +613,11 @@ cameras:
required_zones:
- zone_name
# Required: Name of ONVIF preset in camera's firmware to return to when tracking is over. (default: shown below)
return_preset: preset_name
return_preset: home
# Optional: Seconds to delay before returning to preset. (default: shown below)
timeout: 10
# Optional: Values generated automatically by a camera calibration. Do not modify these manually. (default: shown below)
movement_weights: []
# Optional: Configuration for how to sort the cameras in the Birdseye view.
birdseye:

View File

@@ -9,11 +9,11 @@ Frigate has different live view options, some of which require the bundled `go2r
Live view options can be selected while viewing the live stream. The options are:
| Source | Latency | Frame Rate | Resolution | Audio | Requires go2rtc | Other Limitations |
| ------ | ------- | ------------------------------------- | -------------- | ---------------------------- | --------------- | -------------------------------------------- |
| jsmpeg | low | same as `detect -> fps`, capped at 10 | same as detect | no | no | none |
| mse | low | native | native | yes (depends on audio codec) | yes | not supported on iOS, Firefox is h.264 only |
| webrtc | lowest | native | native | yes (depends on audio codec) | yes | requires extra config, doesn't support h.265 |
| Source | Latency | Frame Rate | Resolution | Audio | Requires go2rtc | Other Limitations |
| ------ | ------- | ------------------------------------- | -------------- | ---------------------------- | --------------- | ------------------------------------------------ |
| jsmpeg | low | same as `detect -> fps`, capped at 10 | same as detect | no | no | none |
| mse | low | native | native | yes (depends on audio codec) | yes | iPhone requires iOS 17.1+, Firefox is h.264 only |
| webrtc | lowest | native | native | yes (depends on audio codec) | yes | requires extra config, doesn't support h.265 |
### Audio Support
@@ -37,12 +37,12 @@ There may be some cameras that you would prefer to use the sub stream for live v
```yaml
go2rtc:
streams:
rtsp_cam:
test_cam:
- rtsp://192.168.1.5:554/live0 # <- stream which supports video & aac audio.
- "ffmpeg:rtsp_cam#audio=opus" # <- copy of the stream which transcodes audio to opus
rtsp_cam_sub:
- "ffmpeg:test_cam#audio=opus" # <- copy of the stream which transcodes audio to opus for webrtc
test_cam_sub:
- rtsp://192.168.1.5:554/substream # <- stream which supports video & aac audio.
- "ffmpeg:rtsp_cam_sub#audio=opus" # <- copy of the stream which transcodes audio to opus
- "ffmpeg:test_cam_sub#audio=opus" # <- copy of the stream which transcodes audio to opus for webrtc
cameras:
test_cam:
@@ -59,7 +59,7 @@ cameras:
roles:
- detect
live:
stream_name: rtsp_cam_sub
stream_name: test_cam_sub
```
### WebRTC extra configuration:
@@ -104,6 +104,7 @@ If you are having difficulties getting WebRTC to work and you are running Frigat
If not running in host mode, port 8555 will need to be mapped for the container:
docker-compose.yml
```yaml
services:
frigate:
@@ -115,4 +116,4 @@ services:
:::
See [go2rtc WebRTC docs](https://github.com/AlexxIT/go2rtc/tree/v1.7.1#module-webrtc) for more information about this.
See [go2rtc WebRTC docs](https://github.com/AlexxIT/go2rtc/tree/v1.8.2#module-webrtc) for more information about this.

View File

@@ -0,0 +1,103 @@
---
id: motion_detection
title: Motion Detection
---
# Tuning Motion Detection
Frigate uses motion detection as a first line check to see if there is anything happening in the frame worth checking with object detection.
Once motion is detected, it tries to group up nearby areas of motion together in hopes of identifying a rectangle in the image that will capture the area worth inspecting. These are the red "motion boxes" you see in the debug viewer.
## The Goal
The default motion settings should work well for the majority of cameras, however there are cases where tuning motion detection can lead to better and more optimal results. Each camera has its own environment with different variables that affect motion, this means that the same motion settings will not fit all of your cameras.
Before tuning motion it is important to understand the goal. In an optimal configuration, motion from people and cars would be detected, but not grass moving, lighting changes, timestamps, etc. If your motion detection is too sensitive, you will experience higher CPU loads and greater false positives from the increased rate of object detection. If it is not sensitive enough, you will miss events.
## Create Motion Masks
First, mask areas with regular motion not caused by the objects you want to detect. The best way to find candidates for motion masks is by watching the debug stream with motion boxes enabled. Good use cases for motion masks are timestamps or tree limbs and large bushes that regularly move due to wind. When possible, avoid creating motion masks that would block motion detection for objects you want to track **even if they are in locations where you don't want events**. Motion masks should not be used to avoid detecting objects in specific areas. More details can be found [in the masks docs.](/configuration/masks.md).
## Prepare For Testing
The easiest way to tune motion detection is to do it live, have one window / screen open with the frigate debug view and motion boxes enabled with another window / screen open allowing for configuring the motion settings. It is recommended to use Home Assistant or MQTT as they offer live configuration of some motion settings meaning that Frigate does not need to be restarted when values are changed.
In Home Assistant the `Improve Contrast`, `Contour Area`, and `Threshold` configuration entities are disabled by default but can easily be enabled and used to tune live, otherwise MQTT can be used.
## Tuning Motion Detection During The Day
Now that things are set up, find a time to tune that represents normal circumstances. For example, if you tune your motion on a day that is sunny and windy you may find later that the motion settings are not sensitive enough on a cloudy and still day.
:::note
Remember that motion detection is just used to determine when object detection should be used. You should aim to have motion detection sensitive enough that you won't miss events from objects you want to detect with object detection. The goal is to prevent object detection from running constantly for every small pixel change in the image. Windy days are still going to result in lots of motion being detected.
:::
### Threshold
The threshold value dictates how much of a change in a pixels luminance is required to be considered motion.
```yaml
# default threshold value
motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 30
```
Lower values mean motion detection is more sensitive to changes in color, making it more likely for example to detect motion when a brown dogs blends in with a brown fence or a person wearing a red shirt blends in with a red car. If the threshold is too low however, it may detect things like grass blowing in the wind, shadows, etc. to be detected as motion.
Watching the motion boxes in the debug view, increase the threshold until you only see motion that is visible to the eye. Once this is done, it is important to test and ensure that desired motion is still detected.
### Contour Area
```yaml
# default contour_area value
motion:
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: shown below)
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will
# make motion detection more sensitive to smaller moving objects.
# As a rule of thumb:
# - 10 - high sensitivity
# - 30 - medium sensitivity
# - 50 - low sensitivity
contour_area: 10
```
Once the threshold calculation is run, the pixels that have changed are grouped together. The contour area value is used to decide which groups of changed pixels qualify as motion. Smaller values are more sensitive meaning people that are far away, small animals, etc. are more likely to be detected as motion, but it also means that small changes in shadows, leaves, etc. are detected as motion. Higher values are less sensitive meaning these things won't be detected as motion but with the risk that desired motion won't be detected until closer to the camera.
Watching the motion boxes in the debug view, adjust the contour area until there are no motion boxes smaller than the smallest you'd expect frigate to detect something moving.
### Improve Contrast
At this point if motion is working as desired there is no reason to continue with tuning for the day. If you were unable to find a balance between desired and undesired motion being detected, you can try disabling improve contrast and going back to the threshold and contour area steps.
## Tuning Motion Detection During The Night
Once daytime motion detection is tuned, there is a chance that the settings will work well for motion detection during the night as well. If this is the case then the preferred settings can be written to the config file and left alone.
However, if the preferred day settings do not work well at night it is recommended to use HomeAssistant or some other solution to automate changing the settings. That way completely separate sets of motion settings can be used for optimal day and night motion detection.
## Tuning For Large Changes In Motion
```yaml
# default lightning_threshold:
motion:
# Optional: The percentage of the image used to detect lightning or other substantial changes where motion detection
# needs to recalibrate. (default: shown below)
# Increasing this value will make motion detection more likely to consider lightning or ir mode changes as valid motion.
# Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching
# a doorbell camera.
lightning_threshold: 0.8
```
:::tip
Some cameras like doorbell cameras may have missed detections when someone walks directly in front of the camera and the lightning_threshold causes motion detection to be re-calibrated. In this case, it may be desirable to increase the `lightning_threshold` to ensure these events are not missed.
:::
Large changes in motion like PTZ moves and camera switches between Color and IR mode should result in no motion detection. This is done via the `lightning_threshold` configuration. It is defined as the percentage of the image used to detect lightning or other substantial changes where motion detection needs to recalibrate. Increasing this value will make motion detection more likely to consider lightning or IR mode changes as valid motion. Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching a doorbell camera.

View File

@@ -5,7 +5,7 @@ title: Object Detectors
# Officially Supported Detectors
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, and `tensorrt`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, `tensorrt`, and `rknn`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
## CPU Detector (not recommended)
@@ -291,3 +291,38 @@ To verify that the integration is working correctly, start Frigate and observe t
# Community Supported Detectors
## Rockchip RKNN-Toolkit-Lite2
This detector is only available if one of the following Rockchip SoCs is used:
- RK3566/RK3568
- RK3588/RK3588S
- RV1103/RV1106
- RK3562
These SoCs come with a NPU that will highly speed up detection.
### Setup
RKNN support is provided using the `-rk` suffix for the docker image. Moreover, privileged mode must be enabled by adding the `--privileged` flag to your docker run command or `privileged: true` to your `docker-compose.yml` file.
### Configuration
This `config.yml` shows all relevant options to configure the detector and explains them. All values shown are the default values (except for one). Lines that are required at least to use the detector are labeled as required, all other lines are optional.
```yaml
detectors: # required
rknn: # required
type: rknn # required
model: # required
# path to .rknn model file
path: /models/yolov8n-320x320.rknn
# width and height of detection frames
width: 320
height: 320
# pixel format of detection frame
# default value is rgb but yolov models usually use bgr format
input_pixel_format: bgr # required
# shape of detection frame
input_tensor: nhwc
```

View File

@@ -7,7 +7,7 @@ title: Restream
Frigate can restream your video feed as an RTSP feed for other applications such as Home Assistant to utilize it at `rtsp://<frigate_host>:8554/<camera_name>`. Port 8554 must be open. [This allows you to use a video feed for detection in Frigate and Home Assistant live view at the same time without having to make two separate connections to the camera](#reduce-connections-to-camera). The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.7.1) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.7.1#configuration) for more advanced configurations and features.
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.8.2) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.8.2#configuration) for more advanced configurations and features.
:::note
@@ -18,6 +18,7 @@ You can access the go2rtc webUI at `http://frigate_ip:5000/live/webrtc` which ca
### Birdseye Restream
Birdseye RTSP restream can be accessed at `rtsp://<frigate_host>:8554/birdseye`. Enabling the birdseye restream will cause birdseye to run 24/7 which may increase CPU usage somewhat.
```yaml
birdseye:
restream: true
@@ -32,8 +33,7 @@ go2rtc:
rtsp:
username: "admin"
password: "pass"
streams:
...
streams: ...
```
**NOTE:** This does not apply to localhost requests, there is no need to provide credentials when using the restream as a source for frigate cameras.
@@ -138,7 +138,7 @@ cameras:
## Advanced Restream Configurations
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.7.1#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.8.2#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
NOTE: The output will need to be passed with two curly braces `{{output}}`

View File

@@ -56,3 +56,27 @@ camera:
```
Only car objects can trigger the `front_yard_street` zone and only person can trigger the `entire_yard`. You will get events for person objects that enter anywhere in the yard, and events for cars only if they enter the street.
### Zone Inertia
Sometimes an objects bounding box may be slightly incorrect and the bottom center of the bounding box is inside the zone while the object is not actually in the zone. Zone inertia helps guard against this by requiring an object's bounding box to be within the zone for multiple consecutive frames. This value can be configured:
```yaml
camera:
zones:
front_yard:
inertia: 3
objects:
- person
```
There may also be cases where you expect an object to quickly enter and exit a zone, like when a car is pulling into the driveway, and you may want to have the object be considered present in the zone immediately:
```yaml
camera:
zones:
driveway_entrance:
inertia: 1
objects:
- car
```

View File

@@ -155,10 +155,6 @@ cd web && npm install
cd web && npm run dev
```
#### 3a. Run the development server against a non-local instance
To run the development server against a non-local instance, you will need to modify the API_HOST default return in `web/src/env.js`.
#### 4. Making changes
The Web UI is built using [Vite](https://vitejs.dev/), [Preact](https://preactjs.com), and [Tailwind CSS](https://tailwindcss.com).

View File

@@ -95,6 +95,16 @@ Frigate supports all Jetson boards, from the inexpensive Jetson Nano to the powe
Inference speed will vary depending on the YOLO model, jetson platform and jetson nvpmodel (GPU/DLA/EMC clock speed). It is typically 20-40 ms for most models. The DLA is more efficient than the GPU, but not faster, so using the DLA will reduce power consumption but will slightly increase inference time.
#### Rockchip SoC
Frigate supports SBCs with the following Rockchip SoCs:
- RK3566/RK3568
- RK3588/RK3588S
- RV1103/RV1106
- RK3562
Using the yolov8n model and an Orange Pi 5 Plus with RK3588 SoC inference speeds vary between 25-40 ms.
## What does Frigate use the CPU for and what does it use a detector for? (ELI5 Version)
This is taken from a [user question on reddit](https://www.reddit.com/r/homeassistant/comments/q8mgau/comment/hgqbxh5/?utm_source=share&utm_medium=web2x&context=3). Modified slightly for clarity.

View File

@@ -95,6 +95,7 @@ The following community supported builds are available:
`ghcr.io/blakeblackshear/frigate:stable-tensorrt-jp5` - Frigate build optimized for nvidia Jetson devices running Jetpack 5
`ghcr.io/blakeblackshear/frigate:stable-tensorrt-jp4` - Frigate build optimized for nvidia Jetson devices running Jetpack 4.6
`ghcr.io/blakeblackshear/frigate:stable-rk` - Frigate build for SBCs with Rockchip SoC
:::
@@ -204,6 +205,8 @@ It is recommended to run Frigate in LXC for maximum performance. See [this discu
For details on running Frigate using ESXi, please see the instructions [here](https://williamlam.com/2023/05/frigate-nvr-with-coral-tpu-igpu-passthrough-using-esxi-on-intel-nuc.html).
If you're running Frigate on a rack mounted server and want to passthough the Google Coral, [read this.](https://github.com/blakeblackshear/frigate/issues/305)
## Synology NAS on DSM 7
These settings were tested on DSM 7.1.1-42962 Update 4

View File

@@ -11,7 +11,7 @@ Use of the bundled go2rtc is optional. You can still configure FFmpeg to connect
# Setup a go2rtc stream
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. If you set the stream name under go2rtc to match the name of your camera, it will automatically be mapped and you will get additional live view options for the camera. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.7.1#module-streams), not just rtsp.
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. If you set the stream name under go2rtc to match the name of your camera, it will automatically be mapped and you will get additional live view options for the camera. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.8.2#module-streams), not just rtsp.
```yaml
go2rtc:
@@ -24,7 +24,7 @@ The easiest live view to get working is MSE. After adding this to the config, re
### What if my video doesn't play?
If you are unable to see your video feed, first check the go2rtc logs in the Frigate UI under Logs in the sidebar. If go2rtc is having difficulty connecting to your camera, you should see some error messages in the log. If you do not see any errors, then the video codec of the stream may not be supported in your browser. If your camera stream is set to H265, try switching to H264. You can see more information about [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.7.1#codecs-madness) in the go2rtc documentation. If you are not able to switch your camera settings from H265 to H264 or your stream is a different format such as MJPEG, you can use go2rtc to re-encode the video using the [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.7.1#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view. Here is an example of a config that will re-encode the stream to H264 without hardware acceleration:
If you are unable to see your video feed, first check the go2rtc logs in the Frigate UI under Logs in the sidebar. If go2rtc is having difficulty connecting to your camera, you should see some error messages in the log. If you do not see any errors, then the video codec of the stream may not be supported in your browser. If your camera stream is set to H265, try switching to H264. You can see more information about [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.8.2#codecs-madness) in the go2rtc documentation. If you are not able to switch your camera settings from H265 to H264 or your stream is a different format such as MJPEG, you can use go2rtc to re-encode the video using the [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.8.2#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view. Here is an example of a config that will re-encode the stream to H264 without hardware acceleration:
```yaml
go2rtc:

View File

@@ -3,11 +3,7 @@ id: false_positives
title: Reducing false positives
---
Tune your object filters to adjust false positives: `min_area`, `max_area`, `min_ratio`, `max_ratio`, `min_score`, `threshold`.
The `min_area` and `max_area` values are compared against the area (number of pixels) from a given detected object. If the area is outside this range, the object will be ignored as a false positive. This allows objects that must be too small or too large to be ignored.
Similarly, the `min_ratio` and `max_ratio` values are compared against a given detected object's width/height ratio (in pixels). If the ratio is outside this range, the object will be ignored as a false positive. This allows objects that are proportionally too short-and-wide (higher ratio) or too tall-and-narrow (smaller ratio) to be ignored.
## Object Scores
For object filters in your configuration, any single detection below `min_score` will be ignored as a false positive. `threshold` is based on the median of the history of scores (padded to 3 values) for a tracked object. Consider the following frames when `min_score` is set to 0.6 and threshold is set to 0.85:
@@ -22,4 +18,32 @@ For object filters in your configuration, any single detection below `min_score`
In frame 2, the score is below the `min_score` value, so Frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.
If you're seeing false positives from stationary objects, please see Object Masks here: https://docs.frigate.video/configuration/masks/
### Minimum Score
Any detection below `min_score` will be immediately thrown out and never tracked because it is considered a false positive. If `min_score` is too low then false positives may be detected and tracked which can confuse the object tracker and may lead to wasted resources. If `min_score` is too high then lower scoring true positives like objects that are further away or partially occluded may be thrown out which can also confuse the tracker and cause valid events to be lost or disjointed.
### Threshold
`threshold` is used to determine that the object is a true positive. Once an object is detected with a score >= `threshold` object is considered a true positive. If `threshold` is too low then some higher scoring false positives may create an event. If `threshold` is too high then true positive events may be missed due to the object never scoring high enough.
## Object Shape
False positives can also be reduced by filtering a detection based on its shape.
### Object Area
`min_area` and `max_area` filter on the area of an objects bounding box in pixels and can be used to reduce false positives that are outside the range of expected sizes. For example when a leaf is detected as a dog or when a large tree is detected as a person, these can be reduced by adding a `min_area` / `max_area` filter. The recordings timeline can be used to determine the area of the bounding box in that frame by selecting a timeline item then mousing over or tapping the red box.
### Object Proportions
`min_ratio` and `max_ratio` filter on the ratio of width / height of an objects bounding box and can be used to reduce false positives. For example if a false positive is detected as very tall for a dog which is often wider, a `min_ratio` filter can be used to filter out these false positives.
## Other Tools
### Zones
[Required zones](/configuration/zones.md) can be a great tool to reduce false positives that may be detected in the sky or other areas that are not of interest. The required zones will only create events for objects that enter the zone.
### Object Masks
[Object Filter Masks](/configuration/masks) are a last resort but can be useful when false positives are in the relatively same place but can not be filtered due to their size or shape.

View File

@@ -155,18 +155,25 @@ Version info
Events from the database. Accepts the following query string parameters:
| param | Type | Description |
| -------------------- | ---- | --------------------------------------------- |
| `before` | int | Epoch time |
| `after` | int | Epoch time |
| `cameras` | str | , separated list of cameras |
| `labels` | str | , separated list of labels |
| `zones` | str | , separated list of zones |
| `limit` | int | Limit the number of events returned |
| `has_snapshot` | int | Filter to events that have snapshots (0 or 1) |
| `has_clip` | int | Filter to events that have clips (0 or 1) |
| `include_thumbnails` | int | Include thumbnails in the response (0 or 1) |
| `in_progress` | int | Limit to events in progress (0 or 1) |
| param | Type | Description |
| -------------------- | ----- | ----------------------------------------------------- |
| `before` | int | Epoch time |
| `after` | int | Epoch time |
| `cameras` | str | , separated list of cameras |
| `labels` | str | , separated list of labels |
| `zones` | str | , separated list of zones |
| `limit` | int | Limit the number of events returned |
| `has_snapshot` | int | Filter to events that have snapshots (0 or 1) |
| `has_clip` | int | Filter to events that have clips (0 or 1) |
| `include_thumbnails` | int | Include thumbnails in the response (0 or 1) |
| `in_progress` | int | Limit to events in progress (0 or 1) |
| `time_range` | str | Time range in format after,before (00:00,24:00) |
| `timezone` | str | Timezone to use for time range |
| `min_score` | float | Minimum score of the event |
| `max_score` | float | Maximum score of the event |
| `is_submitted` | int | Filter events that are submitted to Frigate+ (0 or 1) |
| `min_length` | float | Minimum length of the event |
| `max_length` | float | Maximum length of the event |
### `GET /api/timeline`
@@ -252,10 +259,14 @@ Accepts the following query string parameters, but they are only applied when an
Returns the snapshot image from the latest event for the given camera and label combo. Using `any` as the label will return the latest thumbnail regardless of type.
### `GET /api/<camera_name>/recording/<frame_time>/snapshot.png`
### `GET /api/<camera_name>/recordings/<frame_time>/snapshot.png`
Returns the snapshot image from the specific point in that cameras recordings.
### `GET /api/<camera_name>/grid.jpg`
Returns the latest camera image with the regions grid overlaid.
### `GET /clips/<camera>-<id>.jpg`
JPG snapshot for the given camera and event id.
@@ -315,11 +326,17 @@ Get PTZ info for the camera.
Create a manual event with a given `label` (ex: doorbell press) to capture a specific event besides an object being detected.
:::caution
Recording retention config still applies to manual events, if frigate is configured with `mode: motion` then the manual event will only keep recording segments when motion occurred.
:::
**Optional Body:**
```json
{
"subLabel": "some_string", // add sub label to event
"sub_label": "some_string", // add sub label to event
"duration": 30, // predetermined length of event (default: 30 seconds) or can be to null for indeterminate length event
"include_recording": true, // whether the event should save recordings along with the snapshot that is taken
"draw": {
@@ -348,3 +365,7 @@ Create a manual event with a given `label` (ex: doorbell press) to capture a spe
### `PUT /api/events/<event_id>/end`
End a specific manual event without a predetermined length.
### `POST /api/restart`
Restarts Frigate process.

View File

@@ -220,3 +220,33 @@ Topic to turn the PTZ autotracker for a camera on and off. Expected values are `
### `frigate/<camera_name>/ptz_autotracker/state`
Topic with current state of the PTZ autotracker for a camera. Published values are `ON` and `OFF`.
### `frigate/<camera_name>/ptz_autotracker/active`
Topic to determine if PTZ autotracker is actively tracking an object. Published values are `ON` and `OFF`.
### `frigate/<camera_name>/birdseye/set`
Topic to turn Birdseye for a camera on and off. Expected values are `ON` and `OFF`. Birdseye mode
must be enabled in the configuration.
### `frigate/<camera_name>/birdseye/state`
Topic with current state of Birdseye for a camera. Published values are `ON` and `OFF`.
### `frigate/<camera_name>/birdseye_mode/set`
Topic to set Birdseye mode for a camera. Birdseye offers different modes to customize under which circumstances the camera is shown.
_Note: Changing the value from `CONTINUOUS` -> `MOTION | OBJECTS` will take up to 30 seconds for
the camera to be removed from the view._
| Command | Description |
| ------------ | ----------------------------------------------------------------- |
| `CONTINUOUS` | Always included |
| `MOTION` | Show when detected motion within the last 30 seconds are included |
| `OBJECTS` | Shown if an active object tracked within the last 30 seconds |
### `frigate/<camera_name>/birdseye_mode/state`
Topic with current state of the Birdseye mode for a camera. Published values are `CONTINUOUS`, `MOTION`, `OBJECTS`.

View File

@@ -19,7 +19,7 @@ Once logged in, you can generate an API key for Frigate in Settings.
### Set your API key
In Frigate, you can set the `PLUS_API_KEY` environment variable to enable the `SEND TO FRIGATE+` buttons on the events page. You can set it in your Docker Compose file or in your Docker run command. Home Assistant Addon users can set it under Settings > Addons > Frigate NVR > Configuration > Options (be sure to toggle the "Show unused optional configuration options" switch).
In Frigate, you can use an environment variable or a docker secret named `PLUS_API_KEY` to enable the `SEND TO FRIGATE+` buttons on the events page. Home Assistant Addon users can set it under Settings > Addons > Frigate NVR > Configuration > Options (be sure to toggle the "Show unused optional configuration options" switch).
:::caution

View File

@@ -9,9 +9,43 @@ With a subscription, and at each annual renewal, you will receive 12 model train
Information on how to integrate Frigate+ with Frigate can be found in the [integrations docs](/integrations/plus).
## Improving your model
You may find that Frigate+ models result in more false positives initially, but by submitting true and false positives, the model will improve. Because a limited number of users submitted images to Frigate+ prior to this launch, you may need to submit several hundred images per camera to see good results. With all the new images now being submitted, future base models will improve as more and more users (including you) submit examples to Frigate+.
False positives can be reduced by submitting **both** true positives and false positives. This will help the model differentiate between what is and isn't correct. You should aim for a target of 80% true positive submissions and 20% false positives across all of your images. If you are experiencing false positives in a specific area, submitting true positives for any object type near that area in similar lighting conditions will help teach the model what that area looks like when no objects are present.
You may find that it's helpful to lower your thresholds a little in order to generate more false/true positives near the threshold value. For example, if you have some false positives that are scoring at 68% and some true positives scoring at 72%, you can try lowering your threshold to 65% and submitting both true and false positives within that range. This will help the model learn and widen the gap between true and false positive scores.
Note that only verified images will be used when training your model. Submitting an image from Frigate as a true or false positive will not verify the image. You still must verify the image in Frigate+ in order for it to be used in training.
In order to request your first model, you will need to have annotated and verified at least 10 images. Each subsequent model request will require that 10 additional images are verified. However, this is the bare minimum. For the best results, you should provide at least 100 verified images per camera. Keep in mind that varying conditions should be included. You will want images from cloudy days, sunny days, dawn, dusk, and night.
As circumstances change, you may need to submit new examples to address new types of false positives. For example, the change from summer days to snowy winter days or other changes such as a new grill or patio furniture may require additional examples and training.
## Properly labeling images
For the best results, follow the following guidelines.
**Label every object in the image**: It is important that you label all objects in each image before verifying. If you don't label a car for example, the model will be taught that part of the image is _not_ a car and it will start to get confused.
**Make tight bounding boxes**: Tighter bounding boxes improve the recognition and ensure that accurate bounding boxes are predicted at runtime.
**Label the full object even when occluded**: If you have a person standing behind a car, label the full person even though a portion of their body may be hidden behind the car. This helps predict accurate bounding boxes and improves zone accuracy and filters at runtime.
**`amazon`, `ups`, and `fedex` should label the logo**: For a Fedex truck, label the truck as a `car` and make a different bounding box just for the Fedex logo. If there are multiple logos, label each of them.
![Fedex Logo](/img/plus/fedex-logo.jpg)
## Frequently asked questions
While developing these models, there were some common questions that arose.
### Are my models trained just on my image uploads? How are they built?
Frigate+ models are built by fine tuning a base model with the images you have annotated and verified. The base model is trained from scratch from a sampling of images across all Frigate+ user submissions and takes weeks of expensive GPU resources to train. If the models were built using your image uploads alone, you would need to provide tens of thousands of examples and it would take more than a week (and considerable cost) to train. Diversity helps the model generalize.
### What is a training credit and how do I use them?
Essentially, `1 training credit = 1 trained model`. When you have uploaded, annotated, and verified additional images and you are ready to train your model, you will submit a model request which will use one credit. The model that is trained will utilize all of the verified images in your account. When new base models are available, it will require the use of a training credit to generate a new user model on the new base model.
### Are my video feeds sent to the cloud for analysis when using Frigate+ models?
@@ -64,10 +98,10 @@ objects:
fedex:
min_score: .75
person:
min_score: .8
min_score: .65
threshold: .85
car:
min_score: .8
min_score: .65
threshold: .85
```
@@ -79,6 +113,23 @@ Frigate+ models support a more relevant set of objects for security cameras. Cur
Frigate has special handling for some labels when using Frigate+ models. `face`, `license_plate`, `amazon`, `ups`, and `fedex` are considered attribute labels which are not tracked like regular objects and do not generate events. In addition, the `threshold` filter will have no effect on these labels. You should adjust the `min_score` and other filter values as needed.
In order to have Frigate start using these attribute labels, you will need to add them to the list of objects to track:
```yaml
objects:
track:
- person
- face
- license_plate
- dog
- cat
- car
- amazon
- fedex
- ups
- package
```
When using Frigate+ models, Frigate will choose the snapshot of a person object that has the largest visible face. For cars, the snapshot with the largest visible license plate will be selected. This aids in secondary processing such as facial and license plate recognition for person and car objects.
![Face Attribute](/img/plus/attribute-example-face.jpg)
@@ -86,31 +137,3 @@ When using Frigate+ models, Frigate will choose the snapshot of a person object
`amazon`, `ups`, and `fedex` labels are used to automatically assign a sub label to car objects.
![Fedex Attribute](/img/plus/attribute-example-fedex.jpg)
## Properly labeling images
For the best results, follow the following guidelines.
**Label every object in the image**: It is important that you label all objects in each image before verifying. If you don't label a car for example, the model will be taught that part of the image is _not_ a car and it will start to get confused.
**Make tight bounding boxes**: Tighter bounding boxes improve the recognition and ensure that accurate bounding boxes are predicted at runtime.
**Label the full object even when occluded**: If you have a person standing behind a car, label the full person even though a portion of their body may be hidden behind the car. This helps predict accurate bounding boxes and improves zone accuracy and filters at runtime.
**`amazon`, `ups`, and `fedex` should label the logo**: For a Fedex truck, label the truck as a `car` and make a different bounding box just for the Fedex logo. If there are multiple logos, label each of them.
![Fedex Logo](/img/plus/fedex-logo.jpg)
## Improving your model
You may find that Frigate+ models result in more false positives initially, but by submitting true and false positives, the model will improve. This may be because your cameras don't look quite enough like the user submissions that were used to train the base model. Over time, this will improve as more and more users (including you) submit examples to Frigate+.
False positives can be reduced by submitting **both** true positives and false positives. This will help the model differentiate between what is and isn't correct.
You may find that it's helpful to lower your thresholds a little in order to generate more false/true positives near the threshold value. For example, if you have some false positives that are scoring at 68% and some true positives scoring at 72%, you can try lowering your threshold to 65% and submitting both true and false positives within that range. This will help the model learn and widen the gap between true and false positive scores.
Note that only verified images will be used when training your model. Submitting an image from Frigate as a true or false positive will not verify the image. You still must verify the image in Frigate+ in order for it to be used in training.
In order to request your first model, you will need to have annotated and verified at least 10 images. Each subsequent model request will require that 10 additional images are verified. However, this is the bare minimum. For the best results, you should provide at least 100 verified images per camera. Keep in mind that varying conditions should be included. You will want images from cloudy days, sunny days, dawn, dusk, and night.
As circumstances change, you may need to submit new examples to address new types of false positives. For example, the change from summer days to snowy winter days or other changes such as a new grill or patio furniture may require additional examples and training.

View File

@@ -23,6 +23,17 @@ Ensure your cameras send h264 encoded video, or [transcode them](/configuration/
You can open `chrome://media-internals/` in another tab and then try to playback, the media internals page will give information about why playback is failing.
### What do I do if my cameras sub stream is not good enough?
Frigate generally [recommends cameras with configurable sub streams](/frigate/hardware.md). However, if your camera does not have a sub stream that a suitable resolution, the main stream can be resized.
To do this efficiently the following setup is required:
1. A GPU or iGPU must be available to do the scaling.
2. [ffmpeg presets for hwaccel](/configuration/hardware_acceleration.md) must be used
3. Set the desired detection resolution for `detect -> width` and `detect -> height`.
When this is done correctly, the GPU will do the decoding and scaling which will result in a small increase in CPU usage but with better results.
### My mjpeg stream or snapshots look green and crazy
This almost always means that the width/height defined for your camera are not correct. Double check the resolution with VLC or another player. Also make sure you don't have the width and height values backwards.

View File

@@ -21,8 +21,8 @@ module.exports = {
{
type: "link",
label: "Go2RTC Configuration Reference",
href: "https://github.com/AlexxIT/go2rtc/tree/v1.6.2#configuration"
}
href: "https://github.com/AlexxIT/go2rtc/tree/v1.8.2#configuration",
},
],
Detectors: [
"configuration/object_detectors",
@@ -32,6 +32,7 @@ module.exports = {
"configuration/cameras",
"configuration/record",
"configuration/snapshots",
"configuration/motion_detection",
"configuration/birdseye",
"configuration/live",
"configuration/restream",
@@ -57,16 +58,11 @@ module.exports = {
"integrations/mqtt",
"integrations/third_party_extensions",
],
"Frigate+": [
"plus/index"
],
Troubleshooting: [
"troubleshooting/faqs",
"troubleshooting/recordings",
],
"Frigate+": ["plus/index"],
Troubleshooting: ["troubleshooting/faqs", "troubleshooting/recordings"],
Development: [
"development/contributing",
"development/contributing-boards"
"development/contributing-boards",
],
},
};

BIN
docs/static/img/autotracking-debug.gif vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 MiB

View File

@@ -1,3 +1,4 @@
import argparse
import datetime
import logging
import multiprocessing as mp
@@ -20,7 +21,7 @@ from frigate.comms.dispatcher import Communicator, Dispatcher
from frigate.comms.inter_process import InterProcessCommunicator
from frigate.comms.mqtt import MqttClient
from frigate.comms.ws import WebSocketClient
from frigate.config import FrigateConfig
from frigate.config import BirdseyeModeEnum, FrigateConfig
from frigate.const import (
CACHE_DIR,
CLIPS_DIR,
@@ -36,7 +37,7 @@ from frigate.events.external import ExternalEventProcessor
from frigate.events.maintainer import EventProcessor
from frigate.http import create_app
from frigate.log import log_process, root_configurer
from frigate.models import Event, Recordings, RecordingsToDelete, Timeline
from frigate.models import Event, Recordings, RecordingsToDelete, Regions, Timeline
from frigate.object_detection import ObjectDetectProcess
from frigate.object_processing import TrackedObjectProcessor
from frigate.output import output_frames
@@ -49,6 +50,7 @@ from frigate.stats import StatsEmitter, stats_init
from frigate.storage import StorageMaintainer
from frigate.timeline import TimelineProcessor
from frigate.types import CameraMetricsTypes, FeatureMetricsTypes, PTZMetricsTypes
from frigate.util.object import get_camera_regions_grid
from frigate.version import VERSION
from frigate.video import capture_camera, track_camera
from frigate.watchdog import FrigateWatchdog
@@ -69,6 +71,7 @@ class FrigateApp:
self.feature_metrics: dict[str, FeatureMetricsTypes] = {}
self.ptz_metrics: dict[str, PTZMetricsTypes] = {}
self.processes: dict[str, int] = {}
self.region_grids: dict[str, list[list[dict[str, int]]]] = {}
def set_environment_vars(self) -> None:
for key, value in self.config.environment_vars.items():
@@ -161,8 +164,25 @@ class FrigateApp:
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"frame_queue": mp.Queue(maxsize=2),
"region_grid_queue": mp.Queue(maxsize=1),
"capture_process": None,
"process": None,
"audio_rms": mp.Value("d", 0.0), # type: ignore[typeddict-item]
"audio_dBFS": mp.Value("d", 0.0), # type: ignore[typeddict-item]
"birdseye_enabled": mp.Value( # type: ignore[typeddict-item]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"i",
self.config.cameras[camera_name].birdseye.enabled,
),
"birdseye_mode": mp.Value( # type: ignore[typeddict-item]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"i",
BirdseyeModeEnum.get_index(
self.config.cameras[camera_name].birdseye.mode.value
),
),
}
self.ptz_metrics[camera_name] = {
"ptz_autotracker_enabled": mp.Value( # type: ignore[typeddict-item]
@@ -171,7 +191,8 @@ class FrigateApp:
"i",
self.config.cameras[camera_name].onvif.autotracking.enabled,
),
"ptz_stopped": mp.Event(),
"ptz_tracking_active": mp.Event(),
"ptz_motor_stopped": mp.Event(),
"ptz_reset": mp.Event(),
"ptz_start_time": mp.Value("d", 0.0), # type: ignore[typeddict-item]
# issue https://github.com/python/typeshed/issues/8799
@@ -179,8 +200,20 @@ class FrigateApp:
"ptz_stop_time": mp.Value("d", 0.0), # type: ignore[typeddict-item]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"ptz_frame_time": mp.Value("d", 0.0), # type: ignore[typeddict-item]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"ptz_zoom_level": mp.Value("d", 0.0), # type: ignore[typeddict-item]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"ptz_max_zoom": mp.Value("d", 0.0), # type: ignore[typeddict-item]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"ptz_min_zoom": mp.Value("d", 0.0), # type: ignore[typeddict-item]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
}
self.ptz_metrics[camera_name]["ptz_stopped"].set()
self.ptz_metrics[camera_name]["ptz_motor_stopped"].set()
self.feature_metrics[camera_name] = {
"audio_enabled": mp.Value( # type: ignore[typeddict-item]
# issue https://github.com/python/typeshed/issues/8799
@@ -246,6 +279,17 @@ class FrigateApp:
except PermissionError:
logger.error("Unable to write to /config to save DB state")
def cleanup_timeline_db(db: SqliteExtDatabase) -> None:
db.execute_sql(
"DELETE FROM timeline WHERE source_id NOT IN (SELECT id FROM event);"
)
try:
with open(f"{CONFIG_DIR}/.timeline", "w") as f:
f.write(str(datetime.datetime.now().timestamp()))
except PermissionError:
logger.error("Unable to write to /config to save DB state")
# Migrate DB location
old_db_path = DEFAULT_DB_PATH
if not os.path.isfile(self.config.database.path) and os.path.isfile(
@@ -261,6 +305,11 @@ class FrigateApp:
router = Router(migrate_db)
router.run()
# this is a temporary check to clean up user DB from beta
# will be removed before final release
if not os.path.exists(f"{CONFIG_DIR}/.timeline"):
cleanup_timeline_db(migrate_db)
# check if vacuum needs to be run
if os.path.exists(f"{CONFIG_DIR}/.vacuum"):
with open(f"{CONFIG_DIR}/.vacuum") as f:
@@ -319,7 +368,7 @@ class FrigateApp:
60, 10 * len([c for c in self.config.cameras.values() if c.enabled])
),
)
models = [Event, Recordings, RecordingsToDelete, Timeline]
models = [Event, Recordings, RecordingsToDelete, Regions, Timeline]
self.db.bind(models)
def init_stats(self) -> None:
@@ -412,6 +461,7 @@ class FrigateApp:
self.config,
self.onvif_controller,
self.ptz_metrics,
self.dispatcher,
self.stop_event,
)
self.ptz_autotracker_thread.start()
@@ -437,6 +487,7 @@ class FrigateApp:
args=(
self.config,
self.video_output_queue,
self.camera_metrics,
),
)
output_processor.daemon = True
@@ -444,6 +495,19 @@ class FrigateApp:
output_processor.start()
logger.info(f"Output process started: {output_processor.pid}")
def init_historical_regions(self) -> None:
# delete region grids for removed or renamed cameras
cameras = list(self.config.cameras.keys())
Regions.delete().where(~(Regions.camera << cameras)).execute()
# create or update region grids for each camera
for camera in self.config.cameras.values():
self.region_grids[camera.name] = get_camera_regions_grid(
camera.name,
camera.detect,
max(self.config.model.width, self.config.model.height),
)
def start_camera_processors(self) -> None:
for name, config in self.config.cameras.items():
if not self.config.cameras[name].enabled:
@@ -461,8 +525,10 @@ class FrigateApp:
self.detection_queue,
self.detection_out_events[name],
self.detected_frames_queue,
self.inter_process_queue,
self.camera_metrics[name],
self.ptz_metrics[name],
self.region_grids[name],
),
)
camera_process.daemon = True
@@ -494,6 +560,7 @@ class FrigateApp:
args=(
self.config,
self.audio_recordings_info_queue,
self.camera_metrics,
self.feature_metrics,
self.inter_process_communicator,
),
@@ -562,6 +629,13 @@ class FrigateApp:
)
def start(self) -> None:
parser = argparse.ArgumentParser(
prog="Frigate",
description="An NVR with realtime local object detection for IP cameras.",
)
parser.add_argument("--validate-config", action="store_true")
args = parser.parse_args()
self.init_logger()
logger.info(f"Starting Frigate ({VERSION})")
try:
@@ -585,6 +659,12 @@ class FrigateApp:
print("*************************************************************")
self.log_process.terminate()
sys.exit(1)
if args.validate_config:
print("*************************************************************")
print("*** Your config file is valid. ***")
print("*************************************************************")
self.log_process.terminate()
sys.exit(0)
self.set_environment_vars()
self.set_log_levels()
self.init_queues()
@@ -602,6 +682,7 @@ class FrigateApp:
self.start_detectors()
self.start_video_output_processor()
self.start_ptz_autotracker()
self.init_historical_regions()
self.start_detected_frames_processor()
self.start_camera_processors()
self.start_camera_capture_processes()

View File

@@ -4,11 +4,12 @@ import logging
from abc import ABC, abstractmethod
from typing import Any, Callable
from frigate.config import FrigateConfig
from frigate.const import INSERT_MANY_RECORDINGS
from frigate.config import BirdseyeModeEnum, FrigateConfig
from frigate.const import INSERT_MANY_RECORDINGS, REQUEST_REGION_GRID
from frigate.models import Recordings
from frigate.ptz.onvif import OnvifCommandEnum, OnvifController
from frigate.types import CameraMetricsTypes, FeatureMetricsTypes, PTZMetricsTypes
from frigate.util.object import get_camera_regions_grid
from frigate.util.services import restart_frigate
logger = logging.getLogger(__name__)
@@ -62,6 +63,8 @@ class Dispatcher:
"motion_threshold": self._on_motion_threshold_command,
"recordings": self._on_recordings_command,
"snapshots": self._on_snapshots_command,
"birdseye": self._on_birdseye_command,
"birdseye_mode": self._on_birdseye_mode_command,
}
for comm in self.comms:
@@ -90,6 +93,15 @@ class Dispatcher:
restart_frigate()
elif topic == INSERT_MANY_RECORDINGS:
Recordings.insert_many(payload).execute()
elif topic == REQUEST_REGION_GRID:
camera = payload
self.camera_metrics[camera]["region_grid_queue"].put(
get_camera_regions_grid(
camera,
self.config.cameras[camera].detect,
max(self.config.model.width, self.config.model.height),
)
)
else:
self.publish(topic, payload, retain=False)
@@ -176,11 +188,13 @@ class Dispatcher:
if not self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value:
logger.info(f"Turning on ptz autotracker for {camera_name}")
self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value = True
self.ptz_metrics[camera_name]["ptz_start_time"].value = 0
ptz_autotracker_settings.enabled = True
elif payload == "OFF":
if self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value:
logger.info(f"Turning off ptz autotracker for {camera_name}")
self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value = False
self.ptz_metrics[camera_name]["ptz_start_time"].value = 0
ptz_autotracker_settings.enabled = False
self.publish(f"{camera_name}/ptz_autotracker/state", payload, retain=True)
@@ -288,3 +302,43 @@ class Dispatcher:
logger.info(f"Setting ptz command to {command} for {camera_name}")
except KeyError as k:
logger.error(f"Invalid PTZ command {payload}: {k}")
def _on_birdseye_command(self, camera_name: str, payload: str) -> None:
"""Callback for birdseye topic."""
birdseye_settings = self.config.cameras[camera_name].birdseye
if payload == "ON":
if not self.camera_metrics[camera_name]["birdseye_enabled"].value:
logger.info(f"Turning on birdseye for {camera_name}")
self.camera_metrics[camera_name]["birdseye_enabled"].value = True
birdseye_settings.enabled = True
elif payload == "OFF":
if self.camera_metrics[camera_name]["birdseye_enabled"].value:
logger.info(f"Turning off birdseye for {camera_name}")
self.camera_metrics[camera_name]["birdseye_enabled"].value = False
birdseye_settings.enabled = False
self.publish(f"{camera_name}/birdseye/state", payload, retain=True)
def _on_birdseye_mode_command(self, camera_name: str, payload: str) -> None:
"""Callback for birdseye mode topic."""
if payload not in ["CONTINUOUS", "MOTION", "OBJECTS"]:
logger.info(f"Invalid birdseye_mode command: {payload}")
return
birdseye_config = self.config.cameras[camera_name].birdseye
if not birdseye_config.enabled:
logger.info(f"Birdseye mode not enabled for {camera_name}")
return
new_birdseye_mode = BirdseyeModeEnum(payload.lower())
logger.info(f"Setting birdseye mode for {camera_name} to {new_birdseye_mode}")
# update the metric (need the mode converted to an int)
self.camera_metrics[camera_name][
"birdseye_mode"
].value = BirdseyeModeEnum.get_index(new_birdseye_mode)
self.publish(f"{camera_name}/birdseye_mode/state", payload, retain=True)

View File

@@ -89,6 +89,18 @@ class MqttClient(Communicator): # type: ignore[misc]
"OFF",
retain=False,
)
self.publish(
f"{camera_name}/birdseye/state",
"ON" if camera.birdseye.enabled else "OFF",
retain=True,
)
self.publish(
f"{camera_name}/birdseye_mode/state",
camera.birdseye.mode.value.upper()
if camera.birdseye.enabled
else "OFF",
retain=True,
)
self.publish("available", "online", retain=True)
@@ -160,6 +172,8 @@ class MqttClient(Communicator): # type: ignore[misc]
"ptz_autotracker",
"motion_threshold",
"motion_contour_area",
"birdseye",
"birdseye_mode",
]
for name in self.config.cameras.keys():

View File

@@ -1,5 +1,6 @@
"""Websocket communicator."""
import errno
import json
import logging
import threading
@@ -12,7 +13,7 @@ from ws4py.server.wsgirefserver import (
WSGIServer,
)
from ws4py.server.wsgiutils import WebSocketWSGIApplication
from ws4py.websocket import WebSocket
from ws4py.websocket import WebSocket as WebSocket_
from frigate.comms.dispatcher import Communicator
from frigate.config import FrigateConfig
@@ -20,6 +21,18 @@ from frigate.config import FrigateConfig
logger = logging.getLogger(__name__)
class WebSocket(WebSocket_):
def unhandled_error(self, error):
"""
Handles the unfriendly socket closures on the server side
without showing a confusing error message
"""
if hasattr(error, "errno") and error.errno == errno.ECONNRESET:
pass
else:
logging.getLogger("ws4py").exception("Failed to receive data")
class WebSocketClient(Communicator): # type: ignore[misc]
"""Frigate wrapper for ws client."""
@@ -85,7 +98,10 @@ class WebSocketClient(Communicator): # type: ignore[misc]
logger.debug(f"payload for {topic} wasn't text. Skipping...")
return
self.websocket_server.manager.broadcast(ws_message)
try:
self.websocket_server.manager.broadcast(ws_message)
except ConnectionResetError:
pass
def stop(self) -> None:
self.websocket_server.manager.close_all()

View File

@@ -5,6 +5,7 @@ import json
import logging
import os
from enum import Enum
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import matplotlib.pyplot as plt
@@ -13,8 +14,10 @@ from pydantic import BaseModel, Extra, Field, parse_obj_as, validator
from pydantic.fields import PrivateAttr
from frigate.const import (
ALL_ATTRIBUTE_LABELS,
AUDIO_MIN_CONFIDENCE,
CACHE_DIR,
CACHE_SEGMENT_FORMAT,
DEFAULT_DB_PATH,
REGEX_CAMERA_NAME,
YAML_EXT,
@@ -46,6 +49,13 @@ DEFAULT_TIME_FORMAT = "%m/%d/%Y %H:%M:%S"
# DEFAULT_TIME_FORMAT = "%d.%m.%Y %H:%M:%S"
FRIGATE_ENV_VARS = {k: v for k, v in os.environ.items() if k.startswith("FRIGATE_")}
# read docker secret files as env vars too
if os.path.isdir("/run/secrets"):
for secret_file in os.listdir("/run/secrets"):
if secret_file.startswith("FRIGATE_"):
FRIGATE_ENV_VARS[secret_file] = Path(
os.path.join("/run/secrets", secret_file)
).read_text()
DEFAULT_TRACKED_OBJECTS = ["person"]
DEFAULT_LISTEN_AUDIO = ["bark", "fire_alarm", "scream", "speech", "yell"]
@@ -138,8 +148,26 @@ class MqttConfig(FrigateBaseModel):
return v
class ZoomingModeEnum(str, Enum):
disabled = "disabled"
absolute = "absolute"
relative = "relative"
class PtzAutotrackConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable PTZ object autotracking.")
calibrate_on_startup: bool = Field(
default=False, title="Perform a camera calibration when Frigate starts."
)
zooming: ZoomingModeEnum = Field(
default=ZoomingModeEnum.disabled, title="Autotracker zooming mode."
)
zoom_factor: float = Field(
default=0.3,
title="Zooming factor (0.1-0.75).",
ge=0.1,
le=0.75,
)
track: List[str] = Field(default=DEFAULT_TRACKED_OBJECTS, title="Objects to track.")
required_zones: List[str] = Field(
default_factory=list,
@@ -152,6 +180,27 @@ class PtzAutotrackConfig(FrigateBaseModel):
timeout: int = Field(
default=10, title="Seconds to delay before returning to preset."
)
movement_weights: Optional[Union[str, List[str]]] = Field(
default=[],
title="Internal value used for PTZ movements based on the speed of your camera's motor.",
)
@validator("movement_weights", pre=True)
def validate_weights(cls, v):
if v is None:
return None
if isinstance(v, str):
weights = list(map(float, v.split(",")))
elif isinstance(v, list):
weights = [float(val) for val in v]
else:
raise ValueError("Invalid type for movement_weights")
if len(weights) != 5:
raise ValueError("movement_weights must have exactly 5 floats")
return weights
class OnvifConfig(FrigateBaseModel):
@@ -312,6 +361,9 @@ class DetectConfig(FrigateBaseModel):
default=5, title="Number of frames per second to process through detection."
)
enabled: bool = Field(default=True, title="Detection Enabled.")
min_initialized: Optional[int] = Field(
title="Minimum number of consecutive hits for an object to be initialized by the tracker."
)
max_disappeared: Optional[int] = Field(
title="Maximum number of frames the object can dissapear before detection ends."
)
@@ -434,7 +486,7 @@ class ZoneConfig(BaseModel):
class ObjectConfig(FrigateBaseModel):
track: List[str] = Field(default=DEFAULT_TRACKED_OBJECTS, title="Objects to track.")
filters: Optional[Dict[str, FilterConfig]] = Field(title="Object filters.")
filters: Dict[str, FilterConfig] = Field(default={}, title="Object filters.")
mask: Union[str, List[str]] = Field(default="", title="Object mask.")
@@ -461,6 +513,14 @@ class BirdseyeModeEnum(str, Enum):
motion = "motion"
continuous = "continuous"
@classmethod
def get_index(cls, type):
return list(cls).index(type)
@classmethod
def get(cls, index):
return list(cls)[index]
class BirdseyeConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="Enable birdseye view.")
@@ -680,6 +740,9 @@ class CameraConfig(FrigateBaseModel):
default=60,
title="How long to wait for the image with the highest confidence score.",
)
webui_url: Optional[str] = Field(
title="URL to visit the camera directly from system page",
)
zones: Dict[str, ZoneConfig] = Field(
default_factory=dict, title="Zone configuration."
)
@@ -803,7 +866,7 @@ class CameraConfig(FrigateBaseModel):
ffmpeg_output_args = (
record_args
+ [f"{os.path.join(CACHE_DIR, self.name)}-%Y%m%d%H%M%S.mp4"]
+ [f"{os.path.join(CACHE_DIR, self.name)}@{CACHE_SEGMENT_FORMAT}.mp4"]
+ ffmpeg_output_args
)
@@ -1038,6 +1101,13 @@ class FrigateConfig(FrigateBaseModel):
config.mqtt.user = config.mqtt.user.format(**FRIGATE_ENV_VARS)
config.mqtt.password = config.mqtt.password.format(**FRIGATE_ENV_VARS)
# set default min_score for object attributes
for attribute in ALL_ATTRIBUTE_LABELS:
if not config.objects.filters.get(attribute):
config.objects.filters[attribute] = FilterConfig(min_score=0.7)
elif config.objects.filters[attribute].min_score == 0.5:
config.objects.filters[attribute].min_score = 0.7
# Global config to propagate down to camera level
global_config = config.dict(
include={
@@ -1088,6 +1158,11 @@ class FrigateConfig(FrigateBaseModel):
else DEFAULT_DETECT_DIMENSIONS["height"]
)
# Default min_initialized configuration
min_initialized = camera_config.detect.fps / 2
if camera_config.detect.min_initialized is None:
camera_config.detect.min_initialized = min_initialized
# Default max_disappeared configuration
max_disappeared = camera_config.detect.fps * 5
if camera_config.detect.max_disappeared is None:

View File

@@ -12,7 +12,7 @@ FRIGATE_LOCALHOST = "http://127.0.0.1:5000"
PLUS_ENV_VAR = "PLUS_API_KEY"
PLUS_API_HOST = "https://api.frigate.video"
# Attributes
# Attribute & Object Consts
ATTRIBUTE_LABEL_MAP = {
"person": ["face", "amazon"],
@@ -21,6 +21,11 @@ ATTRIBUTE_LABEL_MAP = {
ALL_ATTRIBUTE_LABELS = [
item for sublist in ATTRIBUTE_LABEL_MAP.values() for item in sublist
]
LABEL_CONSOLIDATION_MAP = {
"car": 0.8,
"face": 0.5,
}
LABEL_CONSOLIDATION_DEFAULT = 0.9
# Audio Consts
@@ -45,9 +50,21 @@ DRIVER_INTEL_iHD = "iHD"
# Record Values
CACHE_SEGMENT_FORMAT = "%Y%m%d%H%M%S%z"
MAX_SEGMENT_DURATION = 600
MAX_PLAYLIST_SECONDS = 7200 # support 2 hour segments for a single playlist to account for cameras with inconsistent segment times
# Internal Comms Topics
INSERT_MANY_RECORDINGS = "insert_many_recordings"
REQUEST_REGION_GRID = "request_region_grid"
# Autotracking
AUTOTRACKING_MAX_AREA_RATIO = 0.6
AUTOTRACKING_MOTION_MIN_DISTANCE = 20
AUTOTRACKING_MOTION_MAX_POINTS = 500
AUTOTRACKING_MAX_MOVE_METRICS = 500
AUTOTRACKING_ZOOM_OUT_HYSTERESIS = 1.2
AUTOTRACKING_ZOOM_IN_HYSTERESIS = 0.9
AUTOTRACKING_ZOOM_EDGE_THRESHOLD = 0.05

View File

@@ -0,0 +1,122 @@
import logging
from typing import Literal
import cv2
import cv2.dnn
import numpy as np
try:
from hide_warnings import hide_warnings
except: # noqa: E722
def hide_warnings(func):
pass
from pydantic import Field
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
logger = logging.getLogger(__name__)
DETECTOR_KEY = "rknn"
class RknnDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
score_thresh: float = Field(
default=0.5, ge=0, le=1, title="Minimal confidence for detection."
)
nms_thresh: float = Field(
default=0.45, ge=0, le=1, title="IoU threshold for non-maximum suppression."
)
class Rknn(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, config: RknnDetectorConfig):
self.height = config.model.height
self.width = config.model.width
self.score_thresh = config.score_thresh
self.nms_thresh = config.nms_thresh
self.model_path = config.model.path or "/models/yolov8n-320x320.rknn"
from rknnlite.api import RKNNLite
self.rknn = RKNNLite(verbose=False)
if self.rknn.load_rknn(self.model_path) != 0:
logger.error("Error initializing rknn model.")
if self.rknn.init_runtime() != 0:
logger.error("Error initializing rknn runtime.")
def __del__(self):
self.rknn.release()
def postprocess(self, results):
"""
Processes yolov8 output.
Args:
results: array with shape: (1, 84, n, 1) where n depends on yolov8 model size (for 320x320 model n=2100)
Returns:
detections: array with shape (20, 6) with 20 rows of (class, confidence, y_min, x_min, y_max, x_max)
"""
results = np.transpose(results[0, :, :, 0]) # array shape (2100, 84)
classes = np.argmax(
results[:, 4:], axis=1
) # array shape (2100,); index of class with max confidence of each row
scores = np.max(
results[:, 4:], axis=1
) # array shape (2100,); max confidence of each row
# array shape (2100, 4); bounding box of each row
boxes = np.transpose(
np.vstack(
(
results[:, 0] - 0.5 * results[:, 2],
results[:, 1] - 0.5 * results[:, 3],
results[:, 2],
results[:, 3],
)
)
)
# indices of rows with confidence > SCORE_THRESH with Non-maximum Suppression (NMS)
result_boxes = cv2.dnn.NMSBoxes(
boxes, scores, self.score_thresh, self.nms_thresh, 0.5
)
detections = np.zeros((20, 6), np.float32)
for i in range(len(result_boxes)):
if i >= 20:
break
index = result_boxes[i]
detections[i] = [
classes[index],
scores[index],
(boxes[index][1]) / self.height,
(boxes[index][0]) / self.width,
(boxes[index][1] + boxes[index][3]) / self.height,
(boxes[index][0] + boxes[index][2]) / self.width,
]
return detections
@hide_warnings
def inference(self, tensor_input):
return self.rknn.inference(inputs=tensor_input)
def detect_raw(self, tensor_input):
output = self.inference(
[
tensor_input,
]
)
return self.postprocess(output[0])

View File

@@ -303,6 +303,7 @@ class TensorRtDetector(DetectionApi):
ordered[:, 3] = np.clip(ordered[:, 3] + ordered[:, 1], 0, 1)
# put result into the correct order and limit to top 20
detections = ordered[:, [5, 4, 1, 0, 3, 2]][:20]
# pad to 20x6 shape
append_cnt = 20 - len(detections)
if append_cnt > 0:

View File

@@ -14,7 +14,7 @@ import requests
from setproctitle import setproctitle
from frigate.comms.inter_process import InterProcessCommunicator
from frigate.config import CameraConfig, FrigateConfig
from frigate.config import CameraConfig, CameraInput, FfmpegConfig, FrigateConfig
from frigate.const import (
AUDIO_DURATION,
AUDIO_FORMAT,
@@ -26,7 +26,7 @@ from frigate.const import (
from frigate.ffmpeg_presets import parse_preset_input
from frigate.log import LogPipe
from frigate.object_detection import load_labels
from frigate.types import FeatureMetricsTypes
from frigate.types import CameraMetricsTypes, FeatureMetricsTypes
from frigate.util.builtin import get_ffmpeg_arg_list
from frigate.util.services import listen
from frigate.video import start_or_restart_ffmpeg, stop_ffmpeg
@@ -39,19 +39,36 @@ except ModuleNotFoundError:
logger = logging.getLogger(__name__)
def get_ffmpeg_command(input_args: list[str], input_path: str) -> list[str]:
return get_ffmpeg_arg_list(
f"ffmpeg {{}} -i {{}} -f {AUDIO_FORMAT} -ar {AUDIO_SAMPLE_RATE} -ac 1 -y {{}}".format(
" ".join(input_args),
input_path,
def get_ffmpeg_command(ffmpeg: FfmpegConfig) -> list[str]:
ffmpeg_input: CameraInput = [i for i in ffmpeg.inputs if "audio" in i.roles][0]
input_args = get_ffmpeg_arg_list(ffmpeg.global_args) + (
parse_preset_input(ffmpeg_input.input_args, 1)
or ffmpeg_input.input_args
or parse_preset_input(ffmpeg.input_args, 1)
or ffmpeg.input_args
)
return (
["ffmpeg", "-vn"]
+ input_args
+ ["-i"]
+ [ffmpeg_input.path]
+ [
"-f",
f"{AUDIO_FORMAT}",
"-ar",
f"{AUDIO_SAMPLE_RATE}",
"-ac",
"1",
"-y",
"pipe:",
)
]
)
def listen_to_audio(
config: FrigateConfig,
recordings_info_queue: mp.Queue,
camera_metrics: dict[str, CameraMetricsTypes],
process_info: dict[str, FeatureMetricsTypes],
inter_process_communicator: InterProcessCommunicator,
) -> None:
@@ -80,6 +97,7 @@ def listen_to_audio(
audio = AudioEventMaintainer(
camera,
recordings_info_queue,
camera_metrics,
process_info,
stop_event,
inter_process_communicator,
@@ -153,6 +171,7 @@ class AudioEventMaintainer(threading.Thread):
self,
camera: CameraConfig,
recordings_info_queue: mp.Queue,
camera_metrics: dict[str, CameraMetricsTypes],
feature_metrics: dict[str, FeatureMetricsTypes],
stop_event: mp.Event,
inter_process_communicator: InterProcessCommunicator,
@@ -161,19 +180,16 @@ class AudioEventMaintainer(threading.Thread):
self.name = f"{camera.name}_audio_event_processor"
self.config = camera
self.recordings_info_queue = recordings_info_queue
self.camera_metrics = camera_metrics
self.feature_metrics = feature_metrics
self.inter_process_communicator = inter_process_communicator
self.detections: dict[dict[str, any]] = feature_metrics
self.detections: dict[dict[str, any]] = {}
self.stop_event = stop_event
self.detector = AudioTfl(stop_event, self.config.audio.num_threads)
self.shape = (int(round(AUDIO_DURATION * AUDIO_SAMPLE_RATE)),)
self.chunk_size = int(round(AUDIO_DURATION * AUDIO_SAMPLE_RATE * 2))
self.logger = logging.getLogger(f"audio.{self.config.name}")
self.ffmpeg_cmd = get_ffmpeg_command(
get_ffmpeg_arg_list(self.config.ffmpeg.global_args)
+ parse_preset_input("preset-rtsp-audio-only", 1),
[i.path for i in self.config.ffmpeg.inputs if "audio" in i.roles][0],
)
self.ffmpeg_cmd = get_ffmpeg_command(self.config.ffmpeg)
self.logpipe = LogPipe(f"ffmpeg.{self.config.name}.audio")
self.audio_listener = None
@@ -184,18 +200,19 @@ class AudioEventMaintainer(threading.Thread):
audio_as_float = audio.astype(np.float32)
rms, dBFS = self.calculate_audio_levels(audio_as_float)
self.camera_metrics[self.config.name]["audio_rms"].value = rms
self.camera_metrics[self.config.name]["audio_dBFS"].value = dBFS
# only run audio detection when volume is above min_volume
if rms >= self.config.audio.min_volume:
# add audio info to recordings queue
self.recordings_info_queue.put(
(self.config.name, datetime.datetime.now().timestamp(), dBFS)
)
# create waveform relative to max range and look for detections
waveform = (audio / AUDIO_MAX_BIT_RANGE).astype(np.float32)
model_detections = self.detector.detect(waveform)
audio_detections = []
for label, score, _ in model_detections:
logger.debug(f"Heard {label} with a score of {score}")
if label not in self.config.audio.listen:
continue
@@ -203,6 +220,17 @@ class AudioEventMaintainer(threading.Thread):
"threshold", 0.8
):
self.handle_detection(label, score)
audio_detections.append(label)
# add audio info to recordings queue
self.recordings_info_queue.put(
(
self.config.name,
datetime.datetime.now().timestamp(),
dBFS,
audio_detections,
)
)
self.expire_detections()
@@ -212,7 +240,10 @@ class AudioEventMaintainer(threading.Thread):
rms = np.sqrt(np.mean(np.absolute(np.square(audio_as_float))))
# Transform RMS to dBFS (decibels relative to full scale)
dBFS = 20 * np.log10(np.abs(rms) / AUDIO_MAX_BIT_RANGE)
if rms > 0:
dBFS = 20 * np.log10(np.abs(rms) / AUDIO_MAX_BIT_RANGE)
else:
dBFS = 0
self.inter_process_communicator.queue.put(
(f"{self.config.name}/audio/dBFS", float(dBFS))

View File

@@ -83,18 +83,23 @@ class EventCleanup(threading.Thread):
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
# grab all events after specific time
expired_events = Event.select(
Event.id,
Event.camera,
).where(
Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == event.label,
Event.retain_indefinitely == False,
expired_events = (
Event.select(
Event.id,
Event.camera,
)
.where(
Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == event.label,
Event.retain_indefinitely == False,
)
.namedtuples()
.iterator()
)
# delete the media from disk
for event in expired_events:
media_name = f"{event.camera}-{event.id}"
for expired in expired_events:
media_name = f"{expired.camera}-{expired.id}"
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}"
)
@@ -136,14 +141,19 @@ class EventCleanup(threading.Thread):
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
# grab all events after specific time
expired_events = Event.select(
Event.id,
Event.camera,
).where(
Event.camera == name,
Event.start_time < expire_after,
Event.label == event.label,
Event.retain_indefinitely == False,
expired_events = (
Event.select(
Event.id,
Event.camera,
)
.where(
Event.camera == name,
Event.start_time < expire_after,
Event.label == event.label,
Event.retain_indefinitely == False,
)
.namedtuples()
.iterator()
)
# delete the grabbed clips from disk

View File

@@ -106,10 +106,10 @@ class ExternalEventProcessor:
# write jpg snapshot with optional annotations
if draw.get("boxes") and isinstance(draw.get("boxes"), list):
for box in draw.get("boxes"):
x = box["box"][0] * camera_config.detect.width
y = box["box"][1] * camera_config.detect.height
width = box["box"][2] * camera_config.detect.width
height = box["box"][3] * camera_config.detect.height
x = int(box["box"][0] * camera_config.detect.width)
y = int(box["box"][1] * camera_config.detect.height)
width = int(box["box"][2] * camera_config.detect.width)
height = int(box["box"][3] * camera_config.detect.height)
draw_box_with_label(
img_frame,

View File

@@ -42,6 +42,9 @@ def should_update_state(prev_event: Event, current_event: Event) -> bool:
if prev_event["stationary"] != current_event["stationary"]:
return True
if prev_event["attributes"] != current_event["attributes"]:
return True
return False

View File

@@ -55,7 +55,6 @@ _user_agent_args = [
]
PRESETS_HW_ACCEL_DECODE = {
"preset-rpi-32-h264": "-c:v:1 h264_v4l2m2m",
"preset-rpi-64-h264": "-c:v:1 h264_v4l2m2m",
"preset-vaapi": f"-hwaccel_flags allow_profile_mismatch -hwaccel vaapi -hwaccel_device {_gpu_selector.get_selected_gpu()} -hwaccel_output_format vaapi",
"preset-intel-qsv-h264": f"-hwaccel qsv -qsv_device {_gpu_selector.get_selected_gpu()} -hwaccel_output_format qsv -c:v h264_qsv",
@@ -68,7 +67,6 @@ PRESETS_HW_ACCEL_DECODE = {
}
PRESETS_HW_ACCEL_SCALE = {
"preset-rpi-32-h264": "-r {0} -vf fps={0},scale={1}:{2}",
"preset-rpi-64-h264": "-r {0} -vf fps={0},scale={1}:{2}",
"preset-vaapi": "-r {0} -vf fps={0},scale_vaapi=w={1}:h={2},hwdownload,format=yuv420p",
"preset-intel-qsv-h264": "-r {0} -vf vpp_qsv=framerate={0}:w={1}:h={2}:format=nv12,hwdownload,format=nv12,format=yuv420p",
@@ -81,7 +79,6 @@ PRESETS_HW_ACCEL_SCALE = {
}
PRESETS_HW_ACCEL_ENCODE_BIRDSEYE = {
"preset-rpi-32-h264": "ffmpeg -hide_banner {0} -c:v h264_v4l2m2m {1}",
"preset-rpi-64-h264": "ffmpeg -hide_banner {0} -c:v h264_v4l2m2m {1}",
"preset-vaapi": "ffmpeg -hide_banner -hwaccel vaapi -hwaccel_output_format vaapi -hwaccel_device {2} {0} -c:v h264_vaapi -g 50 -bf 0 -profile:v high -level:v 4.1 -sei:v 0 -an -vf format=vaapi|nv12,hwupload {1}",
"preset-intel-qsv-h264": "ffmpeg -hide_banner {0} -c:v h264_qsv -g 50 -bf 0 -profile:v high -level:v 4.1 -async_depth:v 1 {1}",
@@ -94,8 +91,7 @@ PRESETS_HW_ACCEL_ENCODE_BIRDSEYE = {
}
PRESETS_HW_ACCEL_ENCODE_TIMELAPSE = {
"preset-rpi-32-h264": "ffmpeg -hide_banner {0} -c:v h264_v4l2m2m {1}",
"preset-rpi-64-h264": "ffmpeg -hide_banner {0} -c:v h264_v4l2m2m {1}",
"preset-rpi-64-h264": "ffmpeg -hide_banner {0} -c:v h264_v4l2m2m -pix_fmt yuv420p {1}",
"preset-vaapi": "ffmpeg -hide_banner -hwaccel vaapi -hwaccel_output_format vaapi -hwaccel_device {2} {0} -c:v h264_vaapi {1}",
"preset-intel-qsv-h264": "ffmpeg -hide_banner {0} -c:v h264_qsv -profile:v high -level:v 4.1 -async_depth:v 1 {1}",
"preset-intel-qsv-h265": "ffmpeg -hide_banner {0} -c:v hevc_qsv -profile:v high -level:v 4.1 -async_depth:v 1 {1}",
@@ -256,13 +252,6 @@ PRESETS_INPUT = {
"-use_wallclock_as_timestamps",
"1",
],
"preset-rtsp-audio-only": [
"-rtsp_transport",
"tcp",
TIMEOUT_PARAM,
"5000000",
"-vn",
],
"preset-rtsp-restream": _user_agent_args
+ [
"-rtsp_transport",

View File

@@ -20,6 +20,7 @@ from flask import (
Flask,
Response,
current_app,
escape,
jsonify,
make_response,
request,
@@ -28,6 +29,7 @@ from peewee import DoesNotExist, fn, operator
from playhouse.shortcuts import model_to_dict
from playhouse.sqliteq import SqliteQueueDatabase
from tzlocal import get_localzone_name
from werkzeug.utils import secure_filename
from frigate.config import FrigateConfig
from frigate.const import (
@@ -39,7 +41,7 @@ from frigate.const import (
RECORD_DIR,
)
from frigate.events.external import ExternalEventProcessor
from frigate.models import Event, Recordings, Timeline
from frigate.models import Event, Recordings, Regions, Timeline
from frigate.object_processing import TrackedObject
from frigate.plus import PlusApi
from frigate.ptz.onvif import OnvifController
@@ -56,6 +58,8 @@ from frigate.version import VERSION
logger = logging.getLogger(__name__)
DEFAULT_TIME_RANGE = "00:00,24:00"
bp = Blueprint("frigate", __name__)
@@ -71,6 +75,13 @@ def create_app(
):
app = Flask(__name__)
@app.before_request
def check_csrf():
if request.method in ["GET", "HEAD", "OPTIONS", "TRACE"]:
pass
if "origin" in request.headers and "x-csrf-token" not in request.headers:
return jsonify({"success": False, "message": "Missing CSRF header"}), 401
@app.before_request
def _db_connect():
if database.is_closed():
@@ -104,7 +115,7 @@ def is_healthy():
@bp.route("/events/summary")
def events_summary():
tz_name = request.args.get("timezone", default="utc", type=str)
hour_modifier, minute_modifier = get_tz_modifiers(tz_name)
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(tz_name)
has_clip = request.args.get("has_clip", type=int)
has_snapshot = request.args.get("has_snapshot", type=int)
@@ -138,12 +149,7 @@ def events_summary():
Event.camera,
Event.label,
Event.sub_label,
fn.strftime(
"%Y-%m-%d",
fn.datetime(
Event.start_time, "unixepoch", hour_modifier, minute_modifier
),
),
(Event.start_time + seconds_offset).cast("int") / (3600 * 24),
Event.zones,
)
)
@@ -250,7 +256,7 @@ def send_to_plus(id):
except Exception as ex:
logger.exception(ex)
return make_response(
jsonify({"success": False, "message": str(ex)}),
jsonify({"success": False, "message": "Error uploading image"}),
400,
)
@@ -270,7 +276,7 @@ def send_to_plus(id):
except Exception as ex:
logger.exception(ex)
return make_response(
jsonify({"success": False, "message": str(ex)}),
jsonify({"success": False, "message": "Error uploading annotation"}),
400,
)
@@ -341,7 +347,7 @@ def false_positive(id):
except Exception as ex:
logger.exception(ex)
return make_response(
jsonify({"success": False, "message": str(ex)}),
jsonify({"success": False, "message": "Error uploading false positive"}),
400,
)
@@ -444,8 +450,9 @@ def get_labels():
else:
events = Event.select(Event.label).distinct()
except Exception as e:
logger.error(e)
return make_response(
jsonify({"success": False, "message": f"Failed to get labels: {e}"}), 404
jsonify({"success": False, "message": "Failed to get labels"}), 404
)
labels = sorted([e.label for e in events])
@@ -458,9 +465,9 @@ def get_sub_labels():
try:
events = Event.select(Event.sub_label).distinct()
except Exception as e:
except Exception:
return make_response(
jsonify({"success": False, "message": f"Failed to get sub_labels: {e}"}),
jsonify({"success": False, "message": "Failed to get sub_labels"}),
404,
)
@@ -505,6 +512,7 @@ def delete_event(id):
media.unlink(missing_ok=True)
event.delete_instance()
Timeline.delete().where(Timeline.source_id == id).execute()
return make_response(
jsonify({"success": True, "message": "Event " + id + " deleted"}), 200
)
@@ -530,10 +538,14 @@ def event_thumbnail(id, max_cache_age=2592000):
if tracked_obj is not None:
thumbnail_bytes = tracked_obj.get_thumbnail()
except Exception:
return "Event not found", 404
return make_response(
jsonify({"success": False, "message": "Event not found"}), 404
)
if thumbnail_bytes is None:
return "Event not found", 404
return make_response(
jsonify({"success": False, "message": "Event not found"}), 404
)
# android notifications prefer a 2:1 ratio
if format == "android":
@@ -628,10 +640,12 @@ def event_snapshot(id):
event = Event.get(Event.id == id, Event.end_time != None)
event_complete = True
if not event.has_snapshot:
return "Snapshot not available", 404
return make_response(
jsonify({"success": False, "message": "Snapshot not available"}), 404
)
# read snapshot from disk
with open(
os.path.join(CLIPS_DIR, f"{event.camera}-{id}.jpg"), "rb"
os.path.join(CLIPS_DIR, f"{event.camera}-{event.id}.jpg"), "rb"
) as image_file:
jpg_bytes = image_file.read()
except DoesNotExist:
@@ -650,12 +664,18 @@ def event_snapshot(id):
quality=request.args.get("quality", default=70, type=int),
)
except Exception:
return "Event not found", 404
return make_response(
jsonify({"success": False, "message": "Event not found"}), 404
)
except Exception:
return "Event not found", 404
return make_response(
jsonify({"success": False, "message": "Event not found"}), 404
)
if jpg_bytes is None:
return "Event not found", 404
return make_response(
jsonify({"success": False, "message": "Event not found"}), 404
)
response = make_response(jpg_bytes)
response.headers["Content-Type"] = "image/jpeg"
@@ -701,6 +721,112 @@ def label_snapshot(camera_name, label):
return response
@bp.route("/<camera_name>/grid.jpg")
def grid_snapshot(camera_name):
request.args.get("type", default="region")
if camera_name in current_app.frigate_config.cameras:
detect = current_app.frigate_config.cameras[camera_name].detect
frame = current_app.detected_frames_processor.get_current_frame(camera_name, {})
retry_interval = float(
current_app.frigate_config.cameras.get(camera_name).ffmpeg.retry_interval
or 10
)
if frame is None or datetime.now().timestamp() > (
current_app.detected_frames_processor.get_current_frame_time(camera_name)
+ retry_interval
):
return make_response(
jsonify({"success": False, "message": "Unable to get valid frame"}),
500,
)
try:
grid = (
Regions.select(Regions.grid)
.where(Regions.camera == camera_name)
.get()
.grid
)
except DoesNotExist:
return make_response(
jsonify({"success": False, "message": "Unable to get region grid"}),
500,
)
grid_size = len(grid)
grid_coef = 1.0 / grid_size
width = detect.width
height = detect.height
for x in range(grid_size):
for y in range(grid_size):
cell = grid[x][y]
if len(cell["sizes"]) == 0:
continue
std_dev = round(cell["std_dev"] * width, 2)
mean = round(cell["mean"] * width, 2)
cv2.rectangle(
frame,
(int(x * grid_coef * width), int(y * grid_coef * height)),
(
int((x + 1) * grid_coef * width),
int((y + 1) * grid_coef * height),
),
(0, 255, 0),
2,
)
cv2.putText(
frame,
f"#: {len(cell['sizes'])}",
(
int(x * grid_coef * width + 10),
int((y * grid_coef + 0.02) * height),
),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
color=(0, 255, 0),
thickness=2,
)
cv2.putText(
frame,
f"std: {std_dev}",
(
int(x * grid_coef * width + 10),
int((y * grid_coef + 0.05) * height),
),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
color=(0, 255, 0),
thickness=2,
)
cv2.putText(
frame,
f"avg: {mean}",
(
int(x * grid_coef * width + 10),
int((y * grid_coef + 0.08) * height),
),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
color=(0, 255, 0),
thickness=2,
)
ret, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
response = make_response(jpg.tobytes())
response.headers["Content-Type"] = "image/jpeg"
response.headers["Cache-Control"] = "no-store"
return response
else:
return make_response(
jsonify({"success": False, "message": "Camera not found"}),
404,
)
@bp.route("/events/<id>/clip.mp4")
def event_clip(id):
download = request.args.get("download", type=bool)
@@ -708,12 +834,16 @@ def event_clip(id):
try:
event: Event = Event.get(Event.id == id)
except DoesNotExist:
return "Event not found.", 404
return make_response(
jsonify({"success": False, "message": "Event not found"}), 404
)
if not event.has_clip:
return "Clip not available", 404
return make_response(
jsonify({"success": False, "message": "Clip not available"}), 404
)
file_name = f"{event.camera}-{id}.mp4"
file_name = f"{event.camera}-{event.id}.mp4"
clip_path = os.path.join(CLIPS_DIR, file_name)
if not os.path.isfile(clip_path):
@@ -769,11 +899,17 @@ def events():
limit = request.args.get("limit", 100)
after = request.args.get("after", type=float)
before = request.args.get("before", type=float)
time_range = request.args.get("time_range", DEFAULT_TIME_RANGE)
has_clip = request.args.get("has_clip", type=int)
has_snapshot = request.args.get("has_snapshot", type=int)
in_progress = request.args.get("in_progress", type=int)
include_thumbnails = request.args.get("include_thumbnails", default=1, type=int)
favorites = request.args.get("favorites", type=int)
min_score = request.args.get("min_score", type=float)
max_score = request.args.get("max_score", type=float)
is_submitted = request.args.get("is_submitted", type=int)
min_length = request.args.get("min_length", type=float)
max_length = request.args.get("max_length", type=float)
clauses = []
@@ -851,6 +987,36 @@ def events():
if before:
clauses.append((Event.start_time < before))
if time_range != DEFAULT_TIME_RANGE:
# get timezone arg to ensure browser times are used
tz_name = request.args.get("timezone", default="utc", type=str)
hour_modifier, minute_modifier, _ = get_tz_modifiers(tz_name)
times = time_range.split(",")
time_after = times[0]
time_before = times[1]
start_hour_fun = fn.strftime(
"%H:%M",
fn.datetime(Event.start_time, "unixepoch", hour_modifier, minute_modifier),
)
# cases where user wants events overnight, ex: from 20:00 to 06:00
# should use or operator
if time_after > time_before:
clauses.append(
(
reduce(
operator.or_,
[(start_hour_fun > time_after), (start_hour_fun < time_before)],
)
)
)
# all other cases should be and operator
else:
clauses.append((start_hour_fun > time_after))
clauses.append((start_hour_fun < time_before))
if has_clip is not None:
clauses.append((Event.has_clip == has_clip))
@@ -866,6 +1032,24 @@ def events():
if favorites:
clauses.append((Event.retain_indefinitely == favorites))
if max_score is not None:
clauses.append((Event.data["score"] <= max_score))
if min_score is not None:
clauses.append((Event.data["score"] >= min_score))
if min_length is not None:
clauses.append(((Event.end_time - Event.start_time) >= min_length))
if max_length is not None:
clauses.append(((Event.end_time - Event.start_time) <= max_length))
if is_submitted is not None:
if is_submitted == 0:
clauses.append((Event.plus_id.is_null()))
elif is_submitted > 0:
clauses.append((Event.plus_id != ""))
if len(clauses) == 0:
clauses.append((True))
@@ -875,9 +1059,10 @@ def events():
.order_by(Event.start_time.desc())
.limit(limit)
.dicts()
.iterator()
)
return jsonify([e for e in events])
return jsonify(list(events))
@bp.route("/events/<camera_name>/<label>/create", methods=["POST"])
@@ -912,8 +1097,9 @@ def create_event(camera_name, label):
frame,
)
except Exception as e:
logger.error(e)
return make_response(
jsonify({"success": False, "message": f"An unknown error occurred: {e}"}),
jsonify({"success": False, "message": "An unknown error occurred"}),
500,
)
@@ -986,7 +1172,9 @@ def config_raw():
config_file = config_file_yaml
if not os.path.isfile(config_file):
return "Could not find file", 410
return make_response(
jsonify({"success": False, "message": "Could not find file"}), 404
)
with open(config_file, "r") as f:
raw_config = f.read()
@@ -1002,7 +1190,12 @@ def config_save():
new_config = request.get_data().decode()
if not new_config:
return "Config with body param is required", 400
return make_response(
jsonify(
{"success": False, "message": "Config with body param is required"}
),
400,
)
# Validate the config schema
try:
@@ -1012,7 +1205,7 @@ def config_save():
jsonify(
{
"success": False,
"message": f"\nConfig Error:\n\n{str(traceback.format_exc())}",
"message": f"\nConfig Error:\n\n{escape(str(traceback.format_exc()))}",
}
),
400,
@@ -1047,14 +1240,30 @@ def config_save():
restart_frigate()
except Exception as e:
logging.error(f"Error restarting Frigate: {e}")
return "Config successfully saved, unable to restart Frigate", 200
return make_response(
jsonify(
{
"success": True,
"message": "Config successfully saved, unable to restart Frigate",
}
),
200,
)
return (
"Config successfully saved, restarting (this can take up to one minute)...",
return make_response(
jsonify(
{
"success": True,
"message": "Config successfully saved, restarting (this can take up to one minute)...",
}
),
200,
)
else:
return "Config successfully saved.", 200
return make_response(
jsonify({"success": True, "message": "Config successfully saved."}),
200,
)
@bp.route("/config/set", methods=["PUT"])
@@ -1083,20 +1292,32 @@ def config_set():
with open(config_file, "w") as f:
f.write(old_raw_config)
f.close()
logger.error(f"\nConfig Error:\n\n{str(traceback.format_exc())}")
return make_response(
jsonify(
{
"success": False,
"message": f"\nConfig Error:\n\n{str(traceback.format_exc())}",
"message": "Error parsing config. Check logs for error message.",
}
),
400,
)
except Exception as e:
logging.error(f"Error updating config: {e}")
return "Error updating config", 500
return make_response(
jsonify({"success": False, "message": "Error updating config"}),
500,
)
return "Config successfully updated, restart to apply", 200
return make_response(
jsonify(
{
"success": True,
"message": "Config successfully updated, restart to apply",
}
),
200,
)
@bp.route("/config/schema.json")
@@ -1146,7 +1367,10 @@ def mjpeg_feed(camera_name):
mimetype="multipart/x-mixed-replace; boundary=frame",
)
else:
return "Camera named {} not found".format(camera_name), 404
return make_response(
jsonify({"success": False, "message": "Camera not found"}),
404,
)
@bp.route("/<camera_name>/ptz/info")
@@ -1154,7 +1378,10 @@ def camera_ptz_info(camera_name):
if camera_name in current_app.frigate_config.cameras:
return jsonify(current_app.onvif.get_camera_info(camera_name))
else:
return "Camera named {} not found".format(camera_name), 404
return make_response(
jsonify({"success": False, "message": "Camera not found"}),
404,
)
@bp.route("/<camera_name>/latest.jpg")
@@ -1196,7 +1423,10 @@ def latest_frame(camera_name):
width = int(height * frame.shape[1] / frame.shape[0])
if frame is None:
return "Unable to get valid frame from {}".format(camera_name), 500
return make_response(
jsonify({"success": False, "message": "Unable to get valid frame"}),
500,
)
if height < 1 or width < 1:
return (
@@ -1232,13 +1462,19 @@ def latest_frame(camera_name):
response.headers["Cache-Control"] = "no-store"
return response
else:
return "Camera named {} not found".format(camera_name), 404
return make_response(
jsonify({"success": False, "message": "Camera not found"}),
404,
)
@bp.route("/<camera_name>/recordings/<frame_time>/snapshot.png")
def get_snapshot_from_recording(camera_name: str, frame_time: str):
if camera_name not in current_app.frigate_config.cameras:
return "Camera named {} not found".format(camera_name), 404
return make_response(
jsonify({"success": False, "message": "Camera not found"}),
404,
)
frame_time = float(frame_time)
recording_query = (
@@ -1247,9 +1483,14 @@ def get_snapshot_from_recording(camera_name: str, frame_time: str):
Recordings.start_time,
)
.where(
((frame_time > Recordings.start_time) & (frame_time < Recordings.end_time))
(
(frame_time >= Recordings.start_time)
& (frame_time <= Recordings.end_time)
)
)
.where(Recordings.camera == camera_name)
.order_by(Recordings.start_time.desc())
.limit(1)
)
try:
@@ -1282,7 +1523,15 @@ def get_snapshot_from_recording(camera_name: str, frame_time: str):
response.headers["Content-Type"] = "image/png"
return response
except DoesNotExist:
return "Recording not found for {} at {}".format(camera_name, frame_time), 404
return make_response(
jsonify(
{
"success": False,
"message": "Recording not found at {}".format(frame_time),
}
),
404,
)
@bp.route("/recordings/storage", methods=["GET"])
@@ -1315,7 +1564,7 @@ def get_recordings_storage_usage():
@bp.route("/<camera_name>/recordings/summary")
def recordings_summary(camera_name):
tz_name = request.args.get("timezone", default="utc", type=str)
hour_modifier, minute_modifier = get_tz_modifiers(tz_name)
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(tz_name)
recording_groups = (
Recordings.select(
fn.strftime(
@@ -1329,22 +1578,9 @@ def recordings_summary(camera_name):
fn.SUM(Recordings.objects).alias("objects"),
)
.where(Recordings.camera == camera_name)
.group_by(
fn.strftime(
"%Y-%m-%d %H",
fn.datetime(
Recordings.start_time, "unixepoch", hour_modifier, minute_modifier
),
)
)
.order_by(
fn.strftime(
"%Y-%m-%d H",
fn.datetime(
Recordings.start_time, "unixepoch", hour_modifier, minute_modifier
),
).desc()
)
.group_by((Recordings.start_time + seconds_offset).cast("int") / 3600)
.order_by(Recordings.start_time.desc())
.namedtuples()
)
event_groups = (
@@ -1358,22 +1594,15 @@ def recordings_summary(camera_name):
fn.COUNT(Event.id).alias("count"),
)
.where(Event.camera == camera_name, Event.has_clip)
.group_by(
fn.strftime(
"%Y-%m-%d %H",
fn.datetime(
Event.start_time, "unixepoch", hour_modifier, minute_modifier
),
),
)
.objects()
.group_by((Event.start_time + seconds_offset).cast("int") / 3600)
.namedtuples()
)
event_map = {g.hour: g.count for g in event_groups}
days = {}
for recording_group in recording_groups.objects():
for recording_group in recording_groups:
parts = recording_group.hour.split()
hour = parts[1]
day = parts[0]
@@ -1417,9 +1646,11 @@ def recordings(camera_name):
Recordings.start_time <= before,
)
.order_by(Recordings.start_time)
.dicts()
.iterator()
)
return jsonify([e for e in recordings.dicts()])
return jsonify(list(recordings))
@bp.route("/<camera_name>/start/<int:start_ts>/end/<int:end_ts>/clip.mp4")
@@ -1453,7 +1684,7 @@ def recording_clip(camera_name, start_ts, end_ts):
if clip.end_time > end_ts:
playlist_lines.append(f"outpoint {int(end_ts - clip.start_time)}")
file_name = f"clip_{camera_name}_{start_ts}-{end_ts}.mp4"
file_name = secure_filename(f"clip_{camera_name}_{start_ts}-{end_ts}.mp4")
path = os.path.join(CACHE_DIR, file_name)
if not os.path.exists(path):
@@ -1484,7 +1715,15 @@ def recording_clip(camera_name, start_ts, end_ts):
if p.returncode != 0:
logger.error(p.stderr)
return f"Could not create clip from recordings for {camera_name}.", 500
return make_response(
jsonify(
{
"success": False,
"message": "Could not create clip from recordings",
}
),
500,
)
else:
logger.debug(
f"Ignoring subsequent request for {path} as it already exists in the cache."
@@ -1516,6 +1755,7 @@ def vod_ts(camera_name, start_ts, end_ts):
)
.where(Recordings.camera == camera_name)
.order_by(Recordings.start_time.asc())
.iterator()
)
clips = []
@@ -1540,7 +1780,15 @@ def vod_ts(camera_name, start_ts, end_ts):
if not clips:
logger.error("No recordings found for the requested time range")
return "No recordings found.", 404
return make_response(
jsonify(
{
"success": False,
"message": "No recordings found.",
}
),
404,
)
hour_ago = datetime.now() - timedelta(hours=1)
return jsonify(
@@ -1583,22 +1831,39 @@ def vod_event(id):
event: Event = Event.get(Event.id == id)
except DoesNotExist:
logger.error(f"Event not found: {id}")
return "Event not found.", 404
return make_response(
jsonify(
{
"success": False,
"message": "Event not found.",
}
),
404,
)
if not event.has_clip:
logger.error(f"Event does not have recordings: {id}")
return "Recordings not available", 404
return make_response(
jsonify(
{
"success": False,
"message": "Recordings not available.",
}
),
404,
)
clip_path = os.path.join(CLIPS_DIR, f"{event.camera}-{id}.mp4")
clip_path = os.path.join(CLIPS_DIR, f"{event.camera}-{event.id}.mp4")
if not os.path.isfile(clip_path):
end_ts = (
datetime.now().timestamp() if event.end_time is None else event.end_time
)
vod_response = vod_ts(event.camera, event.start_time, end_ts)
# If the recordings are not found, set has_clip to false
# If the recordings are not found and the event started more than 5 minutes ago, set has_clip to false
if (
type(vod_response) == tuple
event.start_time < datetime.now().timestamp() - 300
and type(vod_response) == tuple
and len(vod_response) == 2
and vod_response[1] == 404
):
@@ -1664,12 +1929,21 @@ def export_recording(camera_name: str, start_time, end_time):
else PlaybackFactorEnum.realtime,
)
exporter.start()
return "Starting export of recording", 200
return make_response(
jsonify(
{
"success": True,
"message": "Starting export of recording.",
}
),
200,
)
@bp.route("/export/<file_name>", methods=["DELETE"])
def export_delete(file_name: str):
file = os.path.join(EXPORT_DIR, file_name)
safe_file_name = secure_filename(file_name)
file = os.path.join(EXPORT_DIR, safe_file_name)
if not os.path.exists(file):
return make_response(
@@ -1678,7 +1952,15 @@ def export_delete(file_name: str):
)
os.unlink(file)
return "Successfully deleted file", 200
return make_response(
jsonify(
{
"success": True,
"message": "Successfully deleted file.",
}
),
200,
)
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
@@ -1778,8 +2060,11 @@ def logs(service: str):
}
service_location = log_locations.get(service)
if not service:
return f"{service} is not a valid service", 404
if not service_location:
return make_response(
jsonify({"success": False, "message": "Not a valid service"}),
404,
)
try:
file = open(service_location, "r")
@@ -1787,4 +2072,35 @@ def logs(service: str):
file.close()
return contents, 200
except FileNotFoundError as e:
return f"Could not find log file: {e}", 500
logger.error(e)
return make_response(
jsonify({"success": False, "message": "Could not find log file"}),
500,
)
@bp.route("/restart", methods=["POST"])
def restart():
try:
restart_frigate()
except Exception as e:
logging.error(f"Error restarting Frigate: {e}")
return make_response(
jsonify(
{
"success": False,
"message": "Unable to restart Frigate.",
}
),
500,
)
return make_response(
jsonify(
{
"success": True,
"message": "Restarting (this can take up to one minute)...",
}
),
200,
)

View File

@@ -57,6 +57,12 @@ class Timeline(Model): # type: ignore[misc]
data = JSONField() # ex: tracked object id, region, box, etc.
class Regions(Model): # type: ignore[misc]
camera = CharField(null=False, primary_key=True, max_length=20)
grid = JSONField() # json blob of grid
last_update = DateTimeField()
class Recordings(Model): # type: ignore[misc]
id = CharField(null=False, primary_key=True, max_length=30)
camera = CharField(index=True, max_length=20)

View File

@@ -20,3 +20,7 @@ class MotionDetector(ABC):
@abstractmethod
def detect(self, frame):
pass
@abstractmethod
def is_calibrating(self):
pass

View File

@@ -38,6 +38,9 @@ class FrigateMotionDetector(MotionDetector):
self.threshold = threshold
self.contour_area = contour_area
def is_calibrating(self):
return False
def detect(self, frame):
motion_boxes = []

View File

@@ -1,3 +1,5 @@
import logging
import cv2
import imutils
import numpy as np
@@ -6,6 +8,8 @@ from scipy.ndimage import gaussian_filter
from frigate.config import MotionConfig
from frigate.motion import MotionDetector
logger = logging.getLogger(__name__)
class ImprovedMotionDetector(MotionDetector):
def __init__(
@@ -49,6 +53,9 @@ class ImprovedMotionDetector(MotionDetector):
self.contrast_values[:, 1:2] = 255
self.contrast_values_index = 0
def is_calibrating(self):
return self.calibrating
def detect(self, frame):
motion_boxes = []
@@ -135,13 +142,12 @@ class ImprovedMotionDetector(MotionDetector):
self.motion_frame_size[0] * self.motion_frame_size[1]
)
# once the motion drops to less than 1% for the first time, assume its calibrated
if pct_motion < 0.01:
# once the motion is less than 5% and the number of contours is < 4, assume its calibrated
if pct_motion < 0.05 and len(motion_boxes) <= 4:
self.calibrating = False
# if calibrating or the motion contours are > 80% of the image area (lightning, ir, ptz) recalibrate
if self.calibrating or pct_motion > self.config.lightning_threshold:
motion_boxes = []
self.calibrating = True
if self.save_images:

View File

@@ -105,6 +105,10 @@ class TrackedObject:
def __init__(
self, camera, colormap, camera_config: CameraConfig, frame_cache, obj_data
):
# set the score history then remove as it is not part of object state
self.score_history = obj_data["score_history"]
del obj_data["score_history"]
self.obj_data = obj_data
self.camera = camera
self.colormap = colormap
@@ -136,11 +140,8 @@ class TrackedObject:
return self.computed_score < threshold
def compute_score(self):
scores = self.score_history[:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0] * (3 - len(scores))
return median(scores)
"""get median of scores for object."""
return median(self.score_history)
def update(self, current_frame_time, obj_data):
thumb_update = False
@@ -151,6 +152,7 @@ class TrackedObject:
self.score_history.append(0.0)
else:
self.score_history.append(obj_data["score"])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
@@ -232,6 +234,9 @@ class TrackedObject:
if self.obj_data["position_changes"] != obj_data["position_changes"]:
significant_change = True
if self.obj_data["attributes"] != obj_data["attributes"]:
significant_change = True
# if the motionless_count reaches the stationary threshold
if (
self.obj_data["motionless_count"]
@@ -243,10 +248,8 @@ class TrackedObject:
if self.obj_data["frame_time"] - self.previous["frame_time"] > 60:
significant_change = True
# update autotrack at half fps
if self.obj_data["frame_time"] - self.previous["frame_time"] > (
1 / (self.camera_config.detect.fps / 2)
):
# update autotrack at most 3 objects per second
if self.obj_data["frame_time"] - self.previous["frame_time"] >= (1 / 3):
autotracker_update = True
self.obj_data.update(obj_data)
@@ -496,6 +499,9 @@ class CameraState:
# draw thicker box around ptz autotracked object
if (
self.camera_config.onvif.autotracking.enabled
and self.ptz_autotracker_thread.ptz_autotracker.autotracker_init[
self.name
]
and self.ptz_autotracker_thread.ptz_autotracker.tracked_object[
self.name
]
@@ -504,6 +510,7 @@ class CameraState:
== self.ptz_autotracker_thread.ptz_autotracker.tracked_object[
self.name
].obj_data["id"]
and obj["frame_time"] == frame_time
):
thickness = 5
color = self.config.model.colormap[obj["label"]]

View File

@@ -20,10 +20,11 @@ from ws4py.server.wsgirefserver import (
WSGIServer,
)
from ws4py.server.wsgiutils import WebSocketWSGIApplication
from ws4py.websocket import WebSocket
from frigate.comms.ws import WebSocket
from frigate.config import BirdseyeModeEnum, FrigateConfig
from frigate.const import BASE_DIR, BIRDSEYE_PIPE
from frigate.types import CameraMetricsTypes
from frigate.util.image import (
SharedMemoryFrameManager,
copy_yuv_to_position,
@@ -33,12 +34,15 @@ from frigate.util.image import (
logger = logging.getLogger(__name__)
def get_standard_aspect_ratio(width, height) -> tuple[int, int]:
def get_standard_aspect_ratio(width: int, height: int) -> tuple[int, int]:
"""Ensure that only standard aspect ratios are used."""
# it is imoprtant that all ratios have the same scale
known_aspects = [
(16, 9),
(9, 16),
(32, 9),
(20, 10),
(16, 6), # reolink duo 2
(32, 9), # panoramic cameras
(12, 9),
(9, 12),
] # aspects are scaled to have common relative size
@@ -52,6 +56,22 @@ def get_standard_aspect_ratio(width, height) -> tuple[int, int]:
return known_aspects[known_aspects_ratios.index(closest)]
def get_canvas_shape(width: int, height: int) -> tuple[int, int]:
"""Get birdseye canvas shape."""
canvas_width = width
canvas_height = height
a_w, a_h = get_standard_aspect_ratio(width, height)
if round(a_w / a_h, 2) != round(width / height, 2):
canvas_width = int(width // 4 * 4)
canvas_height = int((canvas_width / a_w * a_h) // 4 * 4)
logger.warning(
f"The birdseye resolution is a non-standard aspect ratio, forcing birdseye resolution to {canvas_width} x {canvas_height}"
)
return (canvas_width, canvas_height)
class Canvas:
def __init__(self, canvas_width: int, canvas_height: int) -> None:
gcd = math.gcd(canvas_width, canvas_height)
@@ -88,9 +108,12 @@ class Canvas:
return camera_aspect
class FFMpegConverter:
class FFMpegConverter(threading.Thread):
def __init__(
self,
camera: str,
input_queue: queue.Queue,
stop_event: mp.Event,
in_width: int,
in_height: int,
out_width: int,
@@ -98,6 +121,11 @@ class FFMpegConverter:
quality: int,
birdseye_rtsp: bool = False,
):
threading.Thread.__init__(self)
self.name = f"{camera}_output_converter"
self.camera = camera
self.input_queue = input_queue
self.stop_event = stop_event
self.bd_pipe = None
if birdseye_rtsp:
@@ -147,7 +175,7 @@ class FFMpegConverter:
os.close(stdin)
self.reading_birdseye = False
def write(self, b) -> None:
def __write(self, b) -> None:
self.process.stdin.write(b)
if self.bd_pipe:
@@ -183,9 +211,25 @@ class FFMpegConverter:
self.process.kill()
self.process.communicate()
def run(self) -> None:
while not self.stop_event.is_set():
try:
frame = self.input_queue.get(True, timeout=1)
self.__write(frame)
except queue.Empty:
pass
self.exit()
class BroadcastThread(threading.Thread):
def __init__(self, camera, converter, websocket_server, stop_event):
def __init__(
self,
camera: str,
converter: FFMpegConverter,
websocket_server,
stop_event: mp.Event,
):
super(BroadcastThread, self).__init__()
self.camera = camera
self.converter = converter
@@ -222,17 +266,18 @@ class BirdsEyeFrameManager:
config: FrigateConfig,
frame_manager: SharedMemoryFrameManager,
stop_event: mp.Event,
camera_metrics: dict[str, CameraMetricsTypes],
):
self.config = config
self.mode = config.birdseye.mode
self.frame_manager = frame_manager
width = config.birdseye.width
height = config.birdseye.height
width, height = get_canvas_shape(config.birdseye.width, config.birdseye.height)
self.frame_shape = (height, width)
self.yuv_shape = (height * 3 // 2, width)
self.frame = np.ndarray(self.yuv_shape, dtype=np.uint8)
self.canvas = Canvas(width, height)
self.stop_event = stop_event
self.camera_metrics = camera_metrics
# initialize the frame as black and with the Frigate logo
self.blank_frame = np.zeros(self.yuv_shape, np.uint8)
@@ -442,7 +487,7 @@ class BirdsEyeFrameManager:
def calculate_layout(self, cameras_to_add: list[str], coefficient) -> tuple[any]:
"""Calculate the optimal layout for 2+ cameras."""
def map_layout(row_height: int):
def map_layout(camera_layout: list[list[any]], row_height: int):
"""Map the calculated layout."""
candidate_layout = []
starting_x = 0
@@ -471,7 +516,7 @@ class BirdsEyeFrameManager:
x + scaled_width > self.canvas.width
or y + scaled_height > self.canvas.height
):
return 0, 0, None
return x + scaled_width, y + scaled_height, None
final_row.append((cameras[0], (x, y, scaled_width, scaled_height)))
x += scaled_width
@@ -479,6 +524,9 @@ class BirdsEyeFrameManager:
y += row_height
candidate_layout.append(final_row)
if max_width == 0:
max_width = x
return max_width, y, candidate_layout
canvas_aspect_x, canvas_aspect_y = self.canvas.get_aspect(coefficient)
@@ -540,18 +588,35 @@ class BirdsEyeFrameManager:
return None
row_height = int(self.canvas.height / coefficient)
total_width, total_height, standard_candidate_layout = map_layout(row_height)
total_width, total_height, standard_candidate_layout = map_layout(
camera_layout, row_height
)
if not standard_candidate_layout:
# if standard layout didn't work
# try reducing row_height by the % overflow
scale_down_percent = max(
total_width / self.canvas.width,
total_height / self.canvas.height,
)
row_height = int(row_height / scale_down_percent)
total_width, total_height, standard_candidate_layout = map_layout(
camera_layout, row_height
)
if not standard_candidate_layout:
return None
# layout can't be optimized more
if total_width / self.canvas.width >= 0.99:
return standard_candidate_layout
scale_up_percent = min(
1 - (total_width / self.canvas.width),
1 - (total_height / self.canvas.height),
1 / (total_width / self.canvas.width),
1 / (total_height / self.canvas.height),
)
row_height = int(row_height * (1 + round(scale_up_percent, 1)))
_, _, scaled_layout = map_layout(row_height)
row_height = int(row_height * scale_up_percent)
_, _, scaled_layout = map_layout(camera_layout, row_height)
if scaled_layout:
return scaled_layout
@@ -564,9 +629,25 @@ class BirdsEyeFrameManager:
if not camera_config.enabled:
return False
# get our metrics (sync'd across processes)
# which allows us to control it via mqtt (or any other dispatcher)
camera_metrics = self.camera_metrics[camera]
# disabling birdseye is a little tricky
if not camera_metrics["birdseye_enabled"].value:
# if we've rendered a frame (we have a value for last_active_frame)
# then we need to set it to zero
if self.cameras[camera]["last_active_frame"] > 0:
self.cameras[camera]["last_active_frame"] = 0
return False
# get the birdseye mode state from camera metrics
birdseye_mode = BirdseyeModeEnum.get(camera_metrics["birdseye_mode"].value)
# update the last active frame for the camera
self.cameras[camera]["current_frame"] = frame_time
if self.camera_active(camera_config.mode, object_count, motion_count):
if self.camera_active(birdseye_mode, object_count, motion_count):
self.cameras[camera]["last_active_frame"] = frame_time
now = datetime.datetime.now().timestamp()
@@ -590,7 +671,11 @@ class BirdsEyeFrameManager:
return False
def output_frames(config: FrigateConfig, video_output_queue):
def output_frames(
config: FrigateConfig,
video_output_queue,
camera_metrics: dict[str, CameraMetricsTypes],
):
threading.current_thread().name = "output"
setproctitle("frigate.output")
@@ -617,15 +702,20 @@ def output_frames(config: FrigateConfig, video_output_queue):
websocket_server.initialize_websockets_manager()
websocket_thread = threading.Thread(target=websocket_server.serve_forever)
inputs: dict[str, queue.Queue] = {}
converters = {}
broadcasters = {}
for camera, cam_config in config.cameras.items():
inputs[camera] = queue.Queue(maxsize=cam_config.detect.fps)
width = int(
cam_config.live.height
* (cam_config.frame_shape[1] / cam_config.frame_shape[0])
)
converters[camera] = FFMpegConverter(
camera,
inputs[camera],
stop_event,
cam_config.frame_shape[1],
cam_config.frame_shape[0],
width,
@@ -637,7 +727,11 @@ def output_frames(config: FrigateConfig, video_output_queue):
)
if config.birdseye.enabled:
inputs["birdseye"] = queue.Queue(maxsize=10)
converters["birdseye"] = FFMpegConverter(
"birdseye",
inputs["birdseye"],
stop_event,
config.birdseye.width,
config.birdseye.height,
config.birdseye.width,
@@ -646,15 +740,23 @@ def output_frames(config: FrigateConfig, video_output_queue):
config.birdseye.restream,
)
broadcasters["birdseye"] = BroadcastThread(
"birdseye", converters["birdseye"], websocket_server, stop_event
"birdseye",
converters["birdseye"],
websocket_server,
stop_event,
)
websocket_thread.start()
for t in converters.values():
t.start()
for t in broadcasters.values():
t.start()
birdseye_manager = BirdsEyeFrameManager(config, frame_manager, stop_event)
birdseye_manager = BirdsEyeFrameManager(
config, frame_manager, stop_event, camera_metrics
)
if config.birdseye.restream:
birdseye_buffer = frame_manager.create(
@@ -683,7 +785,11 @@ def output_frames(config: FrigateConfig, video_output_queue):
ws.environ["PATH_INFO"].endswith(camera) for ws in websocket_server.manager
):
# write to the converter for the camera if clients are listening to the specific camera
converters[camera].write(frame.tobytes())
try:
inputs[camera].put_nowait(frame.tobytes())
except queue.Full:
# drop frames if queue is full
pass
if config.birdseye.enabled and (
config.birdseye.restream
@@ -704,7 +810,11 @@ def output_frames(config: FrigateConfig, video_output_queue):
if config.birdseye.restream:
birdseye_buffer[:] = frame_bytes
converters["birdseye"].write(frame_bytes)
try:
inputs["birdseye"].put_nowait(frame_bytes)
except queue.Full:
# drop frames if queue is full
pass
if camera in previous_frames:
frame_manager.delete(f"{camera}{previous_frames[camera]}")
@@ -724,10 +834,9 @@ def output_frames(config: FrigateConfig, video_output_queue):
frame = frame_manager.get(frame_id, config.cameras[camera].frame_shape_yuv)
frame_manager.delete(frame_id)
for c in converters.values():
c.exit()
for b in broadcasters.values():
b.join()
websocket_server.manager.close_all()
websocket_server.manager.stop()
websocket_server.manager.join()

View File

@@ -3,6 +3,7 @@ import json
import logging
import os
import re
from pathlib import Path
from typing import Any, List
import cv2
@@ -36,6 +37,10 @@ class PlusApi:
self.key = None
if PLUS_ENV_VAR in os.environ:
self.key = os.environ.get(PLUS_ENV_VAR)
elif os.path.isdir("/run/secrets") and PLUS_ENV_VAR in os.listdir(
"/run/secrets"
):
self.key = Path(os.path.join("/run/secrets", PLUS_ENV_VAR)).read_text()
# check for the addon options file
elif os.path.isfile("/data/options.json"):
with open("/data/options.json") as f:

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,5 @@
"""Configure and control camera via onvif."""
import datetime
import logging
import site
from enum import Enum
@@ -8,8 +7,9 @@ from enum import Enum
import numpy
from onvif import ONVIFCamera, ONVIFError
from frigate.config import FrigateConfig
from frigate.config import FrigateConfig, ZoomingModeEnum
from frigate.types import PTZMetricsTypes
from frigate.util.builtin import find_by_key
logger = logging.getLogger(__name__)
@@ -33,6 +33,7 @@ class OnvifController:
self, config: FrigateConfig, ptz_metrics: dict[str, PTZMetricsTypes]
) -> None:
self.cams: dict[str, ONVIFCamera] = {}
self.config = config
self.ptz_metrics = ptz_metrics
for cam_name, cam in config.cameras.items():
@@ -73,11 +74,21 @@ class OnvifController:
return False
ptz = onvif.create_ptz_service()
request = ptz.create_type("GetConfigurations")
configs = ptz.GetConfigurations(request)[0]
logger.debug(f"Onvif configs for {camera_name}: {configs}")
request = ptz.create_type("GetConfigurationOptions")
request.ConfigurationToken = profile.PTZConfiguration.token
ptz_config = ptz.GetConfigurationOptions(request)
logger.debug(f"Onvif config for {camera_name}: {ptz_config}")
service_capabilities_request = ptz.create_type("GetServiceCapabilities")
self.cams[camera_name][
"service_capabilities_request"
] = service_capabilities_request
fov_space_id = next(
(
i
@@ -89,6 +100,31 @@ class OnvifController:
None,
)
# status request for autotracking and filling ptz-parameters
status_request = ptz.create_type("GetStatus")
status_request.ProfileToken = profile.token
self.cams[camera_name]["status_request"] = status_request
try:
status = ptz.GetStatus(status_request)
logger.debug(f"Onvif status config for {camera_name}: {status}")
except Exception as e:
logger.warning(f"Unable to get status from camera: {camera_name}: {e}")
status = None
# autoracking relative panning/tilting needs a relative zoom value set to 0
# if camera supports relative movement
if self.config.cameras[camera_name].onvif.autotracking.zooming:
zoom_space_id = next(
(
i
for i, space in enumerate(
ptz_config.Spaces.RelativeZoomTranslationSpace
)
if "TranslationGenericSpace" in space["URI"]
),
None,
)
# setup continuous moving request
move_request = ptz.create_type("ContinuousMove")
move_request.ProfileToken = profile.token
@@ -98,35 +134,42 @@ class OnvifController:
move_request = ptz.create_type("RelativeMove")
move_request.ProfileToken = profile.token
if move_request.Translation is None and fov_space_id is not None:
move_request.Translation = ptz.GetStatus(
{"ProfileToken": profile.token}
).Position
move_request.Translation = status.Position
move_request.Translation.PanTilt.space = ptz_config["Spaces"][
"RelativePanTiltTranslationSpace"
][fov_space_id]["URI"]
# try setting relative zoom translation space
try:
move_request.Translation.Zoom.space = ptz_config["Spaces"][
"RelativeZoomTranslationSpace"
][0]["URI"]
if (
self.config.cameras[camera_name].onvif.autotracking.zooming
== ZoomingModeEnum.relative
):
if zoom_space_id is not None:
move_request.Translation.Zoom.space = ptz_config["Spaces"][
"RelativeZoomTranslationSpace"
][0]["URI"]
except Exception:
# camera does not support relative zoom
pass
if (
self.config.cameras[camera_name].onvif.autotracking.zooming
== ZoomingModeEnum.relative
):
self.config.cameras[
camera_name
].onvif.autotracking.zooming = ZoomingModeEnum.disabled
logger.warning(
f"Disabling autotracking zooming for {camera_name}: Relative zoom not supported"
)
if move_request.Speed is None:
move_request.Speed = ptz.GetStatus({"ProfileToken": profile.token}).Position
move_request.Speed = status.Position if status else None
self.cams[camera_name]["relative_move_request"] = move_request
# setup relative moving request for autotracking
# setup absolute moving request for autotracking zooming
move_request = ptz.create_type("AbsoluteMove")
move_request.ProfileToken = profile.token
self.cams[camera_name]["absolute_move_request"] = move_request
# status request for autotracking
status_request = ptz.create_type("GetStatus")
status_request.ProfileToken = profile.token
self.cams[camera_name]["status_request"] = status_request
# setup existing presets
try:
presets: list[dict] = ptz.GetPresets({"ProfileToken": profile.token})
@@ -135,7 +178,9 @@ class OnvifController:
presets = []
for preset in presets:
self.cams[camera_name]["presets"][preset["Name"].lower()] = preset["token"]
self.cams[camera_name]["presets"][
(getattr(preset, "Name") or f"preset {preset['token']}").lower()
] = preset["token"]
# get list of supported features
ptz_config = ptz.GetConfigurationOptions(request)
@@ -152,15 +197,43 @@ class OnvifController:
if ptz_config.Spaces and ptz_config.Spaces.RelativeZoomTranslationSpace:
supported_features.append("zoom-r")
try:
# get camera's zoom limits from onvif config
self.cams[camera_name][
"relative_zoom_range"
] = ptz_config.Spaces.RelativeZoomTranslationSpace[0]
except Exception:
if (
self.config.cameras[camera_name].onvif.autotracking.zooming
== ZoomingModeEnum.relative
):
self.config.cameras[camera_name].onvif.autotracking.zooming = False
logger.warning(
f"Disabling autotracking zooming for {camera_name}: Relative zoom not supported"
)
if ptz_config.Spaces and ptz_config.Spaces.AbsoluteZoomPositionSpace:
supported_features.append("zoom-a")
try:
# get camera's zoom limits from onvif config
self.cams[camera_name][
"absolute_zoom_range"
] = ptz_config.Spaces.AbsoluteZoomPositionSpace[0]
self.cams[camera_name]["zoom_limits"] = configs.ZoomLimits
except Exception:
if self.config.cameras[camera_name].onvif.autotracking.zooming:
self.config.cameras[camera_name].onvif.autotracking.zooming = False
logger.warning(
f"Disabling autotracking zooming for {camera_name}: Absolute zoom not supported"
)
# set relative pan/tilt space for autotracker
if fov_space_id is not None:
supported_features.append("pt-r-fov")
self.cams[camera_name][
"relative_fov_range"
] = ptz_config.Spaces.RelativePanTiltTranslationSpace[fov_space_id]
self.cams[camera_name]["relative_fov_supported"] = fov_space_id is not None
self.cams[camera_name]["features"] = supported_features
self.cams[camera_name]["init"] = True
@@ -210,12 +283,14 @@ class OnvifController:
onvif.get_service("ptz").ContinuousMove(move_request)
def _move_relative(self, camera_name: str, pan, tilt, speed) -> None:
if not self.cams[camera_name]["relative_fov_supported"]:
def _move_relative(self, camera_name: str, pan, tilt, zoom, speed) -> None:
if "pt-r-fov" not in self.cams[camera_name]["features"]:
logger.error(f"{camera_name} does not support ONVIF RelativeMove (FOV).")
return
logger.debug(f"{camera_name} called RelativeMove: pan: {pan} tilt: {tilt}")
logger.debug(
f"{camera_name} called RelativeMove: pan: {pan} tilt: {tilt} zoom: {zoom}"
)
if self.cams[camera_name]["active"]:
logger.warning(
@@ -224,11 +299,13 @@ class OnvifController:
return
self.cams[camera_name]["active"] = True
self.ptz_metrics[camera_name]["ptz_stopped"].clear()
logger.debug(f"PTZ start time: {datetime.datetime.now().timestamp()}")
self.ptz_metrics[camera_name][
"ptz_start_time"
].value = datetime.datetime.now().timestamp()
self.ptz_metrics[camera_name]["ptz_motor_stopped"].clear()
logger.debug(
f"{camera_name}: PTZ start time: {self.ptz_metrics[camera_name]['ptz_frame_time'].value}"
)
self.ptz_metrics[camera_name]["ptz_start_time"].value = self.ptz_metrics[
camera_name
]["ptz_frame_time"].value
self.ptz_metrics[camera_name]["ptz_stop_time"].value = 0
onvif: ONVIFCamera = self.cams[camera_name]["onvif"]
move_request = self.cams[camera_name]["relative_move_request"]
@@ -257,15 +334,30 @@ class OnvifController:
"x": speed,
"y": speed,
},
"Zoom": 0,
}
move_request.Translation.PanTilt.x = pan
move_request.Translation.PanTilt.y = tilt
move_request.Translation.Zoom.x = 0
if "zoom-r" in self.cams[camera_name]["features"]:
move_request.Speed = {
"PanTilt": {
"x": speed,
"y": speed,
},
"Zoom": {"x": speed},
}
move_request.Translation.Zoom.x = zoom
onvif.get_service("ptz").RelativeMove(move_request)
# reset after the move request
move_request.Translation.PanTilt.x = 0
move_request.Translation.PanTilt.y = 0
if "zoom-r" in self.cams[camera_name]["features"]:
move_request.Translation.Zoom.x = 0
self.cams[camera_name]["active"] = False
def _move_to_preset(self, camera_name: str, preset: str) -> None:
@@ -274,7 +366,9 @@ class OnvifController:
return
self.cams[camera_name]["active"] = True
self.ptz_metrics[camera_name]["ptz_stopped"].clear()
self.ptz_metrics[camera_name]["ptz_motor_stopped"].clear()
self.ptz_metrics[camera_name]["ptz_start_time"].value = 0
self.ptz_metrics[camera_name]["ptz_stop_time"].value = 0
move_request = self.cams[camera_name]["move_request"]
onvif: ONVIFCamera = self.cams[camera_name]["onvif"]
preset_token = self.cams[camera_name]["presets"][preset]
@@ -284,7 +378,7 @@ class OnvifController:
"PresetToken": preset_token,
}
)
self.ptz_metrics[camera_name]["ptz_stopped"].set()
self.cams[camera_name]["active"] = False
def _zoom(self, camera_name: str, command: OnvifCommandEnum) -> None:
@@ -305,6 +399,50 @@ class OnvifController:
onvif.get_service("ptz").ContinuousMove(move_request)
def _zoom_absolute(self, camera_name: str, zoom, speed) -> None:
if "zoom-a" not in self.cams[camera_name]["features"]:
logger.error(f"{camera_name} does not support ONVIF AbsoluteMove zooming.")
return
logger.debug(f"{camera_name} called AbsoluteMove: zoom: {zoom}")
if self.cams[camera_name]["active"]:
logger.warning(
f"{camera_name} is already performing an action, not moving..."
)
return
self.cams[camera_name]["active"] = True
self.ptz_metrics[camera_name]["ptz_motor_stopped"].clear()
logger.debug(
f"{camera_name}: PTZ start time: {self.ptz_metrics[camera_name]['ptz_frame_time'].value}"
)
self.ptz_metrics[camera_name]["ptz_start_time"].value = self.ptz_metrics[
camera_name
]["ptz_frame_time"].value
self.ptz_metrics[camera_name]["ptz_stop_time"].value = 0
onvif: ONVIFCamera = self.cams[camera_name]["onvif"]
move_request = self.cams[camera_name]["absolute_move_request"]
# function takes in 0 to 1 for zoom, interpolate to the values of the camera.
zoom = numpy.interp(
zoom,
[0, 1],
[
self.cams[camera_name]["absolute_zoom_range"]["XRange"]["Min"],
self.cams[camera_name]["absolute_zoom_range"]["XRange"]["Max"],
],
)
move_request.Speed = {"Zoom": speed}
move_request.Position = {"Zoom": zoom}
logger.debug(f"{camera_name}: Absolute zoom: {zoom}")
onvif.get_service("ptz").AbsoluteMove(move_request)
self.cams[camera_name]["active"] = False
def handle_command(
self, camera_name: str, command: OnvifCommandEnum, param: str = ""
) -> None:
@@ -344,7 +482,30 @@ class OnvifController:
"presets": list(self.cams[camera_name]["presets"].keys()),
}
def get_camera_status(self, camera_name: str) -> dict[str, any]:
def get_service_capabilities(self, camera_name: str) -> None:
if camera_name not in self.cams.keys():
logger.error(f"Onvif is not setup for {camera_name}")
return {}
if not self.cams[camera_name]["init"]:
self._init_onvif(camera_name)
onvif: ONVIFCamera = self.cams[camera_name]["onvif"]
service_capabilities_request = self.cams[camera_name][
"service_capabilities_request"
]
service_capabilities = onvif.get_service("ptz").GetServiceCapabilities(
service_capabilities_request
)
logger.debug(
f"Onvif service capabilities for {camera_name}: {service_capabilities}"
)
# MoveStatus is required for autotracking - should return "true" if supported
return find_by_key(vars(service_capabilities), "MoveStatus")
def get_camera_status(self, camera_name: str) -> None:
if camera_name not in self.cams.keys():
logger.error(f"Onvif is not setup for {camera_name}")
return {}
@@ -354,34 +515,89 @@ class OnvifController:
onvif: ONVIFCamera = self.cams[camera_name]["onvif"]
status_request = self.cams[camera_name]["status_request"]
status = onvif.get_service("ptz").GetStatus(status_request)
try:
status = onvif.get_service("ptz").GetStatus(status_request)
except Exception:
pass # We're unsupported, that'll be reported in the next check.
if status.MoveStatus.PanTilt == "IDLE" and status.MoveStatus.Zoom == "IDLE":
# there doesn't seem to be an onvif standard with this optional parameter
# some cameras can report MoveStatus with or without PanTilt or Zoom attributes
pan_tilt_status = getattr(status.MoveStatus, "PanTilt", None)
zoom_status = getattr(status.MoveStatus, "Zoom", None)
# if it's not an attribute, see if MoveStatus even exists in the status result
if pan_tilt_status is None:
pan_tilt_status = getattr(status, "MoveStatus", None)
# we're unsupported
if pan_tilt_status is None or pan_tilt_status.lower() not in [
"idle",
"moving",
]:
logger.error(
f"Camera {camera_name} does not support the ONVIF GetStatus method. Autotracking will not function correctly and must be disabled in your config."
)
return
if pan_tilt_status.lower() == "idle" and (
zoom_status is None or zoom_status.lower() == "idle"
):
self.cams[camera_name]["active"] = False
if not self.ptz_metrics[camera_name]["ptz_stopped"].is_set():
self.ptz_metrics[camera_name]["ptz_stopped"].set()
if not self.ptz_metrics[camera_name]["ptz_motor_stopped"].is_set():
self.ptz_metrics[camera_name]["ptz_motor_stopped"].set()
logger.debug(f"PTZ stop time: {datetime.datetime.now().timestamp()}")
logger.debug(
f"{camera_name}: PTZ stop time: {self.ptz_metrics[camera_name]['ptz_frame_time'].value}"
)
self.ptz_metrics[camera_name][
"ptz_stop_time"
].value = datetime.datetime.now().timestamp()
self.ptz_metrics[camera_name]["ptz_stop_time"].value = self.ptz_metrics[
camera_name
]["ptz_frame_time"].value
else:
self.cams[camera_name]["active"] = True
if self.ptz_metrics[camera_name]["ptz_stopped"].is_set():
self.ptz_metrics[camera_name]["ptz_stopped"].clear()
if self.ptz_metrics[camera_name]["ptz_motor_stopped"].is_set():
self.ptz_metrics[camera_name]["ptz_motor_stopped"].clear()
logger.debug(f"PTZ start time: {datetime.datetime.now().timestamp()}")
logger.debug(
f"{camera_name}: PTZ start time: {self.ptz_metrics[camera_name]['ptz_frame_time'].value}"
)
self.ptz_metrics[camera_name][
"ptz_start_time"
].value = datetime.datetime.now().timestamp()
].value = self.ptz_metrics[camera_name]["ptz_frame_time"].value
self.ptz_metrics[camera_name]["ptz_stop_time"].value = 0
return {
"pan": status.Position.PanTilt.x,
"tilt": status.Position.PanTilt.y,
"zoom": status.Position.Zoom.x,
"pantilt_moving": status.MoveStatus.PanTilt,
"zoom_moving": status.MoveStatus.Zoom,
}
if (
self.config.cameras[camera_name].onvif.autotracking.zooming
!= ZoomingModeEnum.disabled
):
# store absolute zoom level as 0 to 1 interpolated from the values of the camera
self.ptz_metrics[camera_name]["ptz_zoom_level"].value = numpy.interp(
round(status.Position.Zoom.x, 2),
[0, 1],
[
self.cams[camera_name]["absolute_zoom_range"]["XRange"]["Min"],
self.cams[camera_name]["absolute_zoom_range"]["XRange"]["Max"],
],
)
logger.debug(
f'{camera_name}: Camera zoom level: {self.ptz_metrics[camera_name]["ptz_zoom_level"].value}'
)
# some hikvision cams won't update MoveStatus, so warn if it hasn't changed
if (
not self.ptz_metrics[camera_name]["ptz_motor_stopped"].is_set()
and not self.ptz_metrics[camera_name]["ptz_reset"].is_set()
and self.ptz_metrics[camera_name]["ptz_start_time"].value != 0
and self.ptz_metrics[camera_name]["ptz_frame_time"].value
> (self.ptz_metrics[camera_name]["ptz_start_time"].value + 10)
and self.ptz_metrics[camera_name]["ptz_stop_time"].value == 0
):
logger.debug(
f'Start time: {self.ptz_metrics[camera_name]["ptz_start_time"].value}, Stop time: {self.ptz_metrics[camera_name]["ptz_stop_time"].value}, Frame time: {self.ptz_metrics[camera_name]["ptz_frame_time"].value}'
)
# set the stop time so we don't come back into this again and spam the logs
self.ptz_metrics[camera_name]["ptz_stop_time"].value = self.ptz_metrics[
camera_name
]["ptz_frame_time"].value
logger.warning(f"Camera {camera_name} is still in ONVIF 'MOVING' status.")

View File

@@ -3,17 +3,15 @@
import datetime
import itertools
import logging
import os
import threading
from multiprocessing.synchronize import Event as MpEvent
from pathlib import Path
from peewee import DatabaseError, chunked
from frigate.config import FrigateConfig, RetainModeEnum
from frigate.const import CACHE_DIR, RECORD_DIR
from frigate.models import Event, Recordings, RecordingsToDelete
from frigate.record.util import remove_empty_directories
from frigate.models import Event, Recordings
from frigate.record.util import remove_empty_directories, sync_recordings
from frigate.util.builtin import clear_and_unlink, get_tomorrow_at_time
logger = logging.getLogger(__name__)
@@ -33,11 +31,7 @@ class RecordingCleanup(threading.Thread):
logger.debug(f"Checking tmp clip {p}.")
if p.stat().st_mtime < (datetime.datetime.now().timestamp() - 60 * 1):
logger.debug("Deleting tmp clip.")
# empty contents of file before unlinking https://github.com/blakeblackshear/frigate/issues/4769
with open(p, "w"):
pass
p.unlink(missing_ok=True)
clear_and_unlink(p)
def expire_recordings(self) -> None:
"""Delete recordings based on retention config."""
@@ -48,12 +42,17 @@ class RecordingCleanup(threading.Thread):
expire_before = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
no_camera_recordings: Recordings = Recordings.select(
Recordings.id,
Recordings.path,
).where(
Recordings.camera.not_in(list(self.config.cameras.keys())),
Recordings.end_time < expire_before,
no_camera_recordings: Recordings = (
Recordings.select(
Recordings.id,
Recordings.path,
)
.where(
Recordings.camera.not_in(list(self.config.cameras.keys())),
Recordings.end_time < expire_before,
)
.namedtuples()
.iterator()
)
deleted_recordings = set()
@@ -95,6 +94,8 @@ class RecordingCleanup(threading.Thread):
Recordings.end_time < expire_date,
)
.order_by(Recordings.start_time)
.namedtuples()
.iterator()
)
# Get all the events to check against
@@ -111,14 +112,14 @@ class RecordingCleanup(threading.Thread):
Event.has_clip,
)
.order_by(Event.start_time)
.objects()
.namedtuples()
)
# loop over recordings and see if they overlap with any non-expired events
# TODO: expire segments based on segment stats according to config
event_start = 0
deleted_recordings = set()
for recording in recordings.objects().iterator():
for recording in recordings:
keep = False
# Now look for a reason to keep this recording segment
for idx in range(event_start, len(events)):
@@ -173,76 +174,25 @@ class RecordingCleanup(threading.Thread):
logger.debug("End all cameras.")
logger.debug("End expire recordings.")
def sync_recordings(self) -> None:
"""Check the db for stale recordings entries that don't exist in the filesystem."""
logger.debug("Start sync recordings.")
# get all recordings in the db
recordings = Recordings.select(Recordings.id, Recordings.path)
# get all recordings files on disk and put them in a set
files_on_disk = {
os.path.join(root, file)
for root, _, files in os.walk(RECORD_DIR)
for file in files
}
# Use pagination to process records in chunks
page_size = 1000
num_pages = (recordings.count() + page_size - 1) // page_size
recordings_to_delete = set()
for page in range(num_pages):
for recording in recordings.paginate(page, page_size):
if recording.path not in files_on_disk:
recordings_to_delete.add(recording.id)
# convert back to list of dictionaries for insertion
recordings_to_delete = [
{"id": recording_id} for recording_id in recordings_to_delete
]
if len(recordings_to_delete) / max(1, recordings.count()) > 0.5:
logger.debug(
f"Deleting {(len(recordings_to_delete) / recordings.count()):2f}% of recordings could be due to configuration error. Aborting..."
)
return
logger.debug(
f"Deleting {len(recordings_to_delete)} recordings with missing files"
)
# create a temporary table for deletion
RecordingsToDelete.create_table(temporary=True)
# insert ids to the temporary table
max_inserts = 1000
for batch in chunked(recordings_to_delete, max_inserts):
RecordingsToDelete.insert_many(batch).execute()
try:
# delete records in the main table that exist in the temporary table
query = Recordings.delete().where(
Recordings.id.in_(RecordingsToDelete.select(RecordingsToDelete.id))
)
query.execute()
except DatabaseError as e:
logger.error(f"Database error during delete: {e}")
logger.debug("End sync recordings.")
def run(self) -> None:
# on startup sync recordings with disk if enabled
if self.config.record.sync_on_startup:
self.sync_recordings()
sync_recordings(limited=False)
next_sync = get_tomorrow_at_time(3)
# Expire tmp clips every minute, recordings and clean directories every hour.
for counter in itertools.cycle(range(self.config.record.expire_interval)):
if self.stop_event.wait(60):
logger.info("Exiting recording cleanup...")
break
self.clean_tmp_clips()
if datetime.datetime.now().astimezone(datetime.timezone.utc) > next_sync:
sync_recordings(limited=True)
next_sync = get_tomorrow_at_time(3)
if counter == 0:
self.expire_recordings()
remove_empty_directories(RECORD_DIR)

View File

@@ -6,6 +6,7 @@ import os
import subprocess as sp
import threading
from enum import Enum
from pathlib import Path
from frigate.config import FrigateConfig
from frigate.const import EXPORT_DIR, MAX_PLAYLIST_SECONDS
@@ -50,7 +51,7 @@ class RecordingExporter(threading.Thread):
def get_datetime_from_timestamp(self, timestamp: int) -> str:
"""Convenience fun to get a simple date time from timestamp."""
return datetime.datetime.fromtimestamp(timestamp).strftime("%Y_%m_%d_%H:%M")
return datetime.datetime.fromtimestamp(timestamp).strftime("%Y_%m_%d_%H_%M")
def run(self) -> None:
logger.debug(
@@ -121,6 +122,7 @@ class RecordingExporter(threading.Thread):
f"Failed to export recording for command {' '.join(ffmpeg_cmd)}"
)
logger.error(p.stderr)
Path(file_name).unlink(missing_ok=True)
return
logger.debug(f"Updating finalized export {file_name}")

View File

@@ -20,6 +20,7 @@ import psutil
from frigate.config import FrigateConfig, RetainModeEnum
from frigate.const import (
CACHE_DIR,
CACHE_SEGMENT_FORMAT,
INSERT_MANY_RECORDINGS,
MAX_SEGMENT_DURATION,
RECORD_DIR,
@@ -31,6 +32,8 @@ from frigate.util.services import get_video_properties
logger = logging.getLogger(__name__)
QUEUE_READ_TIMEOUT = 0.00001 # seconds
class SegmentInfo:
def __init__(
@@ -74,15 +77,13 @@ class RecordingMaintainer(threading.Thread):
self.end_time_cache: dict[str, Tuple[datetime.datetime, float]] = {}
async def move_files(self) -> None:
cache_files = sorted(
[
d
for d in os.listdir(CACHE_DIR)
if os.path.isfile(os.path.join(CACHE_DIR, d))
and d.endswith(".mp4")
and not d.startswith("clip_")
]
)
cache_files = [
d
for d in os.listdir(CACHE_DIR)
if os.path.isfile(os.path.join(CACHE_DIR, d))
and d.endswith(".mp4")
and not d.startswith("clip_")
]
files_in_use = []
for process in psutil.process_iter():
@@ -106,8 +107,12 @@ class RecordingMaintainer(threading.Thread):
cache_path = os.path.join(CACHE_DIR, cache)
basename = os.path.splitext(cache)[0]
camera, date = basename.rsplit("-", maxsplit=1)
start_time = datetime.datetime.strptime(date, "%Y%m%d%H%M%S")
camera, date = basename.rsplit("@", maxsplit=1)
# important that start_time is utc because recordings are stored and compared in utc
start_time = datetime.datetime.strptime(
date, CACHE_SEGMENT_FORMAT
).astimezone(datetime.timezone.utc)
grouped_recordings[camera].append(
{
@@ -119,6 +124,11 @@ class RecordingMaintainer(threading.Thread):
# delete all cached files past the most recent 5
keep_count = 5
for camera in grouped_recordings.keys():
# sort based on start time
grouped_recordings[camera] = sorted(
grouped_recordings[camera], key=lambda s: s["start_time"]
)
segment_count = len(grouped_recordings[camera])
if segment_count > keep_count:
logger.warning(
@@ -216,7 +226,7 @@ class RecordingMaintainer(threading.Thread):
# if cached file's start_time is earlier than the retain days for the camera
if start_time <= (
(
datetime.datetime.now()
datetime.datetime.now().astimezone(datetime.timezone.utc)
- datetime.timedelta(
days=self.config.cameras[camera].record.retain.days
)
@@ -254,20 +264,36 @@ class RecordingMaintainer(threading.Thread):
# if it ends more than the configured pre_capture for the camera
else:
pre_capture = self.config.cameras[camera].record.events.pre_capture
most_recently_processed_frame_time = self.object_recordings_info[
camera
][-1][0]
retain_cutoff = most_recently_processed_frame_time - pre_capture
if end_time.timestamp() < retain_cutoff:
camera_info = self.object_recordings_info[camera]
most_recently_processed_frame_time = (
camera_info[-1][0] if len(camera_info) > 0 else 0
)
retain_cutoff = datetime.datetime.fromtimestamp(
most_recently_processed_frame_time - pre_capture
).astimezone(datetime.timezone.utc)
if end_time < retain_cutoff:
Path(cache_path).unlink(missing_ok=True)
self.end_time_cache.pop(cache_path, None)
# else retain days includes this segment
else:
record_mode = self.config.cameras[camera].record.retain.mode
return await self.move_segment(
camera, start_time, end_time, duration, cache_path, record_mode
# assume that empty means the relevant recording info has not been received yet
camera_info = self.object_recordings_info[camera]
most_recently_processed_frame_time = (
camera_info[-1][0] if len(camera_info) > 0 else 0
)
# ensure delayed segment info does not lead to lost segments
if (
datetime.datetime.fromtimestamp(
most_recently_processed_frame_time
).astimezone(datetime.timezone.utc)
>= end_time
):
record_mode = self.config.cameras[camera].record.retain.mode
return await self.move_segment(
camera, start_time, end_time, duration, cache_path, record_mode
)
def segment_stats(
self, camera: str, start_time: datetime.datetime, end_time: datetime.datetime
) -> SegmentInfo:
@@ -301,6 +327,10 @@ class RecordingMaintainer(threading.Thread):
if frame[0] < start_time.timestamp():
continue
# add active audio label count to count of active objects
active_count += len(frame[2])
# add sound level to audio values
audio_values.append(frame[1])
average_dBFS = 0 if not audio_values else np.average(audio_values)
@@ -324,18 +354,18 @@ class RecordingMaintainer(threading.Thread):
self.end_time_cache.pop(cache_path, None)
return
# directory will be in utc due to start_time being in utc
directory = os.path.join(
RECORD_DIR,
start_time.astimezone(tz=datetime.timezone.utc).strftime("%Y-%m-%d/%H"),
start_time.strftime("%Y-%m-%d/%H"),
camera,
)
if not os.path.exists(directory):
os.makedirs(directory)
file_name = (
f"{start_time.replace(tzinfo=datetime.timezone.utc).strftime('%M.%S.mp4')}"
)
# file will be in utc due to start_time being in utc
file_name = f"{start_time.strftime('%M.%S.mp4')}"
file_path = os.path.join(directory, file_name)
try:
@@ -355,6 +385,7 @@ class RecordingMaintainer(threading.Thread):
"+faststart",
file_path,
stderr=asyncio.subprocess.PIPE,
stdout=asyncio.subprocess.DEVNULL,
)
await p.wait()
@@ -405,11 +436,13 @@ class RecordingMaintainer(threading.Thread):
return None
def run(self) -> None:
camera_count = sum(camera.enabled for camera in self.config.cameras.values())
# Check for new files every 5 seconds
wait_time = 0.0
while not self.stop_event.wait(wait_time):
run_start = datetime.datetime.now().timestamp()
stale_frame_count = 0
stale_frame_count_threshold = 10
# empty the object recordings info queue
while True:
try:
@@ -419,7 +452,12 @@ class RecordingMaintainer(threading.Thread):
current_tracked_objects,
motion_boxes,
regions,
) = self.object_recordings_info_queue.get(False)
) = self.object_recordings_info_queue.get(
True, timeout=QUEUE_READ_TIMEOUT
)
if frame_time < run_start - stale_frame_count_threshold:
stale_frame_count += 1
if self.process_info[camera]["record_enabled"].value:
self.object_recordings_info[camera].append(
@@ -431,28 +469,55 @@ class RecordingMaintainer(threading.Thread):
)
)
except queue.Empty:
q_size = self.object_recordings_info_queue.qsize()
if q_size > camera_count:
logger.debug(
f"object_recordings_info loop queue not empty ({q_size})."
)
break
if stale_frame_count > 0:
logger.debug(f"Found {stale_frame_count} old frames.")
# empty the audio recordings info queue if audio is enabled
if self.audio_recordings_info_queue:
stale_frame_count = 0
while True:
try:
(
camera,
frame_time,
dBFS,
) = self.audio_recordings_info_queue.get(False)
audio_detections,
) = self.audio_recordings_info_queue.get(
True, timeout=QUEUE_READ_TIMEOUT
)
if frame_time < run_start - stale_frame_count_threshold:
stale_frame_count += 1
if self.process_info[camera]["record_enabled"].value:
self.audio_recordings_info[camera].append(
(
frame_time,
dBFS,
audio_detections,
)
)
except queue.Empty:
q_size = self.audio_recordings_info_queue.qsize()
if q_size > camera_count:
logger.debug(
f"object_recordings_info loop audio queue not empty ({q_size})."
)
break
if stale_frame_count > 0:
logger.error(
f"Found {stale_frame_count} old audio frames, segments from recordings may be missing"
)
try:
asyncio.run(self.move_files())
except Exception as e:

View File

@@ -1,7 +1,16 @@
"""Recordings Utilities."""
import datetime
import logging
import os
from peewee import DatabaseError, chunked
from frigate.const import RECORD_DIR
from frigate.models import Recordings, RecordingsToDelete
logger = logging.getLogger(__name__)
def remove_empty_directories(directory: str) -> None:
# list all directories recursively and sort them by path,
@@ -17,3 +26,107 @@ def remove_empty_directories(directory: str) -> None:
continue
if len(os.listdir(path)) == 0:
os.rmdir(path)
def sync_recordings(limited: bool) -> None:
"""Check the db for stale recordings entries that don't exist in the filesystem."""
def delete_db_entries_without_file(files_on_disk: list[str]) -> bool:
"""Delete db entries where file was deleted outside of frigate."""
if limited:
recordings = Recordings.select(Recordings.id, Recordings.path).where(
Recordings.start_time
>= (datetime.datetime.now() - datetime.timedelta(hours=36)).timestamp()
)
else:
# get all recordings in the db
recordings = Recordings.select(Recordings.id, Recordings.path)
# Use pagination to process records in chunks
page_size = 1000
num_pages = (recordings.count() + page_size - 1) // page_size
recordings_to_delete = set()
for page in range(num_pages):
for recording in recordings.paginate(page, page_size):
if recording.path not in files_on_disk:
recordings_to_delete.add(recording.id)
# convert back to list of dictionaries for insertion
recordings_to_delete = [
{"id": recording_id} for recording_id in recordings_to_delete
]
if float(len(recordings_to_delete)) / max(1, recordings.count()) > 0.5:
logger.debug(
f"Deleting {(float(len(recordings_to_delete)) / recordings.count()):2f}% of recordings DB entries, could be due to configuration error. Aborting..."
)
return False
logger.debug(
f"Deleting {len(recordings_to_delete)} recording DB entries with missing files"
)
# create a temporary table for deletion
RecordingsToDelete.create_table(temporary=True)
# insert ids to the temporary table
max_inserts = 1000
for batch in chunked(recordings_to_delete, max_inserts):
RecordingsToDelete.insert_many(batch).execute()
try:
# delete records in the main table that exist in the temporary table
query = Recordings.delete().where(
Recordings.id.in_(RecordingsToDelete.select(RecordingsToDelete.id))
)
query.execute()
except DatabaseError as e:
logger.error(f"Database error during recordings db cleanup: {e}")
return True
def delete_files_without_db_entry(files_on_disk: list[str]):
"""Delete files where file is not inside frigate db."""
files_to_delete = []
for file in files_on_disk:
if not Recordings.select().where(Recordings.path == file).exists():
files_to_delete.append(file)
if float(len(files_to_delete)) / max(1, len(files_on_disk)) > 0.5:
logger.debug(
f"Deleting {(float(len(files_to_delete)) / len(files_on_disk)):2f}% of recordings DB entries, could be due to configuration error. Aborting..."
)
return
for file in files_to_delete:
os.unlink(file)
logger.debug("Start sync recordings.")
if limited:
# get recording files from last 36 hours
hour_check = f"{RECORD_DIR}/{(datetime.datetime.now().astimezone(datetime.timezone.utc) - datetime.timedelta(hours=36)).strftime('%Y-%m-%d/%H')}"
files_on_disk = {
os.path.join(root, file)
for root, _, files in os.walk(RECORD_DIR)
for file in files
if root > hour_check
}
else:
# get all recordings files on disk and put them in a set
files_on_disk = {
os.path.join(root, file)
for root, _, files in os.walk(RECORD_DIR)
for file in files
}
db_success = delete_db_entries_without_file(files_on_disk)
# only try to cleanup files if db cleanup was successful
if db_success:
delete_files_without_db_entry(files_on_disk)
logger.debug("End sync recordings.")

View File

@@ -176,6 +176,8 @@ async def set_gpu_stats(
stats[nvidia_usage[i]["name"]] = {
"gpu": str(round(float(nvidia_usage[i]["gpu"]), 2)) + "%",
"mem": str(round(float(nvidia_usage[i]["mem"]), 2)) + "%",
"enc": str(round(float(nvidia_usage[i]["enc"]), 2)) + "%",
"dec": str(round(float(nvidia_usage[i]["dec"]), 2)) + "%",
}
else:
@@ -246,6 +248,7 @@ def stats_snapshot(
total_detection_fps = 0
stats["cameras"] = {}
for name, camera_stats in camera_metrics.items():
total_detection_fps += camera_stats["detection_fps"].value
pid = camera_stats["process"].pid if camera_stats["process"] else None
@@ -257,7 +260,7 @@ def stats_snapshot(
if camera_stats["capture_process"]
else None
)
stats[name] = {
stats["cameras"][name] = {
"camera_fps": round(camera_stats["camera_fps"].value, 2),
"process_fps": round(camera_stats["process_fps"].value, 2),
"skipped_fps": round(camera_stats["skipped_fps"].value, 2),
@@ -266,6 +269,8 @@ def stats_snapshot(
"pid": pid,
"capture_pid": cpid,
"ffmpeg_pid": ffmpeg_pid,
"audio_rms": round(camera_stats["audio_rms"].value, 4),
"audio_dBFS": round(camera_stats["audio_dBFS"].value, 4),
}
stats["detectors"] = {}
@@ -298,6 +303,7 @@ def stats_snapshot(
storage_stats = shutil.disk_usage(path)
except FileNotFoundError:
stats["service"]["storage"][path] = {}
continue
stats["service"]["storage"][path] = {
"total": round(storage_stats.total / pow(2, 20), 1),

View File

@@ -10,6 +10,7 @@ from peewee import fn
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR
from frigate.models import Event, Recordings
from frigate.util.builtin import clear_and_unlink
logger = logging.getLogger(__name__)
bandwidth_equation = Recordings.segment_size / (
@@ -35,7 +36,7 @@ class StorageMaintainer(threading.Thread):
if self.camera_storage_stats.get(camera, {}).get("needs_refresh", True):
self.camera_storage_stats[camera] = {
"needs_refresh": (
Recordings.select(fn.COUNT(Recordings.id))
Recordings.select(fn.COUNT("*"))
.where(Recordings.camera == camera, Recordings.segment_size > 0)
.scalar()
< 50
@@ -99,13 +100,19 @@ class StorageMaintainer(threading.Thread):
[b["bandwidth"] for b in self.camera_storage_stats.values()]
)
recordings: Recordings = Recordings.select(
Recordings.id,
Recordings.start_time,
Recordings.end_time,
Recordings.segment_size,
Recordings.path,
).order_by(Recordings.start_time.asc())
recordings: Recordings = (
Recordings.select(
Recordings.id,
Recordings.start_time,
Recordings.end_time,
Recordings.segment_size,
Recordings.path,
)
.order_by(Recordings.start_time.asc())
.namedtuples()
.iterator()
)
retained_events: Event = (
Event.select(
Event.start_time,
@@ -116,12 +123,12 @@ class StorageMaintainer(threading.Thread):
Event.has_clip,
)
.order_by(Event.start_time.asc())
.objects()
.namedtuples()
)
event_start = 0
deleted_recordings = set()
for recording in recordings.objects().iterator():
for recording in recordings:
# check if 1 hour of storage has been reclaimed
if deleted_segments_size > hourly_bandwidth:
break
@@ -153,28 +160,43 @@ class StorageMaintainer(threading.Thread):
# Delete recordings not retained indefinitely
if not keep:
deleted_segments_size += recording.segment_size
Path(recording.path).unlink(missing_ok=True)
deleted_recordings.add(recording.id)
try:
clear_and_unlink(Path(recording.path), missing_ok=False)
deleted_recordings.add(recording.id)
deleted_segments_size += recording.segment_size
except FileNotFoundError:
# this file was not found so we must assume no space was cleaned up
pass
# check if need to delete retained segments
if deleted_segments_size < hourly_bandwidth:
logger.error(
f"Could not clear {hourly_bandwidth} MB, currently {deleted_segments_size} MB have been cleared. Retained recordings must be deleted."
)
recordings = Recordings.select(
Recordings.id,
Recordings.path,
Recordings.segment_size,
).order_by(Recordings.start_time.asc())
recordings = (
Recordings.select(
Recordings.id,
Recordings.path,
Recordings.segment_size,
)
.order_by(Recordings.start_time.asc())
.namedtuples()
.iterator()
)
for recording in recordings.objects().iterator():
for recording in recordings:
if deleted_segments_size > hourly_bandwidth:
break
deleted_segments_size += recording.segment_size
Path(recording.path).unlink(missing_ok=True)
deleted_recordings.add(recording.id)
try:
clear_and_unlink(Path(recording.path), missing_ok=False)
deleted_segments_size += recording.segment_size
deleted_recordings.add(recording.id)
except FileNotFoundError:
# this file was not found so we must assume no space was cleaned up
pass
else:
logger.info(f"Cleaned up {deleted_segments_size} MB of recordings")
logger.debug(f"Expiring {len(deleted_recordings)} recordings")
# delete up to 100,000 at a time

View File

@@ -0,0 +1,47 @@
"""Test camera user and password cleanup."""
import unittest
from frigate.output import get_canvas_shape
class TestBirdseye(unittest.TestCase):
def test_16x9(self):
"""Test 16x9 aspect ratio works as expected for birdseye."""
width = 1280
height = 720
canvas_width, canvas_height = get_canvas_shape(width, height)
assert canvas_width == width
assert canvas_height == height
def test_4x3(self):
"""Test 4x3 aspect ratio works as expected for birdseye."""
width = 1280
height = 960
canvas_width, canvas_height = get_canvas_shape(width, height)
assert canvas_width == width
assert canvas_height == height
def test_32x9(self):
"""Test 32x9 aspect ratio works as expected for birdseye."""
width = 2560
height = 720
canvas_width, canvas_height = get_canvas_shape(width, height)
assert canvas_width == width
assert canvas_height == height
def test_9x16(self):
"""Test 9x16 aspect ratio works as expected for birdseye."""
width = 720
height = 1280
canvas_width, canvas_height = get_canvas_shape(width, height)
assert canvas_width == width
assert canvas_height == height
def test_non_16x9(self):
"""Test non 16x9 aspect ratio fails for birdseye."""
width = 1280
height = 840
canvas_width, canvas_height = get_canvas_shape(width, height)
assert canvas_width == width # width will be the same
assert canvas_height != height

View File

@@ -1027,7 +1027,12 @@ class TestConfig(unittest.TestCase):
"roles": ["detect"],
},
]
}
},
"detect": {
"height": 720,
"width": 1280,
"fps": 5,
},
}
},
}
@@ -1082,6 +1087,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"snapshots": {
"height": 100,
},
@@ -1107,7 +1117,12 @@ class TestConfig(unittest.TestCase):
"roles": ["detect"],
},
]
}
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1132,6 +1147,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"snapshots": {
"height": 150,
"enabled": True,
@@ -1160,6 +1180,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1181,7 +1206,12 @@ class TestConfig(unittest.TestCase):
"roles": ["detect"],
},
]
}
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1205,6 +1235,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"rtmp": {
"enabled": True,
},
@@ -1234,6 +1269,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1257,6 +1297,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1278,7 +1323,12 @@ class TestConfig(unittest.TestCase):
"roles": ["detect"],
},
]
}
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1302,6 +1352,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"live": {
"quality": 7,
},
@@ -1329,6 +1384,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1350,7 +1410,12 @@ class TestConfig(unittest.TestCase):
"roles": ["detect"],
},
]
}
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1375,6 +1440,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"timestamp_style": {"position": "bl", "thickness": 4},
}
},
@@ -1400,6 +1470,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1423,6 +1498,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1450,6 +1530,11 @@ class TestConfig(unittest.TestCase):
},
],
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
}
},
}
@@ -1475,6 +1560,11 @@ class TestConfig(unittest.TestCase):
},
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"zones": {
"steps": {
"coordinates": "0,0,0,0",
@@ -1536,6 +1626,60 @@ class TestConfig(unittest.TestCase):
assert runtime_config.cameras["back"].objects.filters["dog"].min_ratio == 0.2
assert runtime_config.cameras["back"].objects.filters["dog"].max_ratio == 10.1
def test_valid_movement_weights(self):
config = {
"mqtt": {"host": "mqtt"},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{"path": "rtsp://10.0.0.1:554/video", "roles": ["detect"]}
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"onvif": {
"autotracking": {"movement_weights": "0, 1, 1.23, 2.34, 0.50"}
},
}
},
}
frigate_config = FrigateConfig(**config)
runtime_config = frigate_config.runtime_config()
assert runtime_config.cameras["back"].onvif.autotracking.movement_weights == [
"0.0",
"1.0",
"1.23",
"2.34",
"0.5",
]
def test_fails_invalid_movement_weights(self):
config = {
"mqtt": {"host": "mqtt"},
"cameras": {
"back": {
"ffmpeg": {
"inputs": [
{"path": "rtsp://10.0.0.1:554/video", "roles": ["detect"]}
]
},
"detect": {
"height": 1080,
"width": 1920,
"fps": 5,
},
"onvif": {"autotracking": {"movement_weights": "1.234, 2.345a"}},
}
},
}
self.assertRaises(ValueError, lambda: FrigateConfig(**config))
if __name__ == "__main__":
unittest.main(verbosity=2)

View File

@@ -236,6 +236,44 @@ class TestHttp(unittest.TestCase):
assert event["id"] == id
assert event["retain_indefinitely"] is False
def test_event_time_filtering(self):
app = create_app(
FrigateConfig(**self.minimal_config),
self.db,
None,
None,
None,
None,
None,
PlusApi(),
)
morning_id = "123456.random"
evening_id = "654321.random"
morning = 1656590400 # 06/30/2022 6 am (GMT)
evening = 1656633600 # 06/30/2022 6 pm (GMT)
with app.test_client() as client:
_insert_mock_event(morning_id, morning)
_insert_mock_event(evening_id, evening)
# both events come back
events = client.get("/events").json
assert events
assert len(events) == 2
# morning event is excluded
events = client.get(
"/events",
query_string={"time_range": "07:00,24:00"},
).json
assert events
# assert len(events) == 1
# evening event is excluded
events = client.get(
"/events",
query_string={"time_range": "00:00,18:00"},
).json
assert events
assert len(events) == 1
def test_set_delete_sub_label(self):
app = create_app(
FrigateConfig(**self.minimal_config),
@@ -351,14 +389,17 @@ class TestHttp(unittest.TestCase):
assert stats == self.test_stats
def _insert_mock_event(id: str) -> Event:
def _insert_mock_event(
id: str,
start_time: datetime.datetime = datetime.datetime.now().timestamp(),
) -> Event:
"""Inserts a basic event model with a given id."""
return Event.insert(
id=id,
label="Mock",
camera="front_door",
start_time=datetime.datetime.now().timestamp(),
end_time=datetime.datetime.now().timestamp() + 20,
start_time=start_time,
end_time=start_time + 20,
top_score=100,
false_positive=False,
zones=list(),

View File

@@ -1,6 +1,6 @@
from unittest import TestCase, main
from frigate.video import box_overlaps, reduce_boxes
from frigate.util.object import box_overlaps, reduce_boxes
class TestBoxOverlaps(TestCase):

View File

@@ -1,6 +1,7 @@
import datetime
import logging
import os
import tempfile
import unittest
from unittest.mock import MagicMock
@@ -26,6 +27,7 @@ class TestHttp(unittest.TestCase):
self.db = SqliteQueueDatabase(TEST_DB)
models = [Event, Recordings]
self.db.bind(models)
self.test_dir = tempfile.mkdtemp()
self.minimal_config = {
"mqtt": {"host": "mqtt"},
@@ -94,6 +96,7 @@ class TestHttp(unittest.TestCase):
rec_bd_id = "1234568.backdoor"
_insert_mock_recording(
rec_fd_id,
os.path.join(self.test_dir, f"{rec_fd_id}.tmp"),
time_keep,
time_keep + 10,
camera="front_door",
@@ -102,6 +105,7 @@ class TestHttp(unittest.TestCase):
)
_insert_mock_recording(
rec_bd_id,
os.path.join(self.test_dir, f"{rec_bd_id}.tmp"),
time_keep + 10,
time_keep + 20,
camera="back_door",
@@ -123,6 +127,7 @@ class TestHttp(unittest.TestCase):
rec_fd_id = "1234567.frontdoor"
_insert_mock_recording(
rec_fd_id,
os.path.join(self.test_dir, f"{rec_fd_id}.tmp"),
time_keep,
time_keep + 10,
camera="front_door",
@@ -141,13 +146,33 @@ class TestHttp(unittest.TestCase):
id = "123456.keep"
time_keep = datetime.datetime.now().timestamp()
_insert_mock_event(id, time_keep, time_keep + 30, True)
_insert_mock_event(
id,
time_keep,
time_keep + 30,
True,
)
rec_k_id = "1234567.keep"
rec_k2_id = "1234568.keep"
rec_k3_id = "1234569.keep"
_insert_mock_recording(rec_k_id, time_keep, time_keep + 10)
_insert_mock_recording(rec_k2_id, time_keep + 10, time_keep + 20)
_insert_mock_recording(rec_k3_id, time_keep + 20, time_keep + 30)
_insert_mock_recording(
rec_k_id,
os.path.join(self.test_dir, f"{rec_k_id}.tmp"),
time_keep,
time_keep + 10,
)
_insert_mock_recording(
rec_k2_id,
os.path.join(self.test_dir, f"{rec_k2_id}.tmp"),
time_keep + 10,
time_keep + 20,
)
_insert_mock_recording(
rec_k3_id,
os.path.join(self.test_dir, f"{rec_k3_id}.tmp"),
time_keep + 20,
time_keep + 30,
)
id2 = "7890.delete"
time_delete = datetime.datetime.now().timestamp() - 360
@@ -155,9 +180,24 @@ class TestHttp(unittest.TestCase):
rec_d_id = "78901.delete"
rec_d2_id = "78902.delete"
rec_d3_id = "78903.delete"
_insert_mock_recording(rec_d_id, time_delete, time_delete + 10)
_insert_mock_recording(rec_d2_id, time_delete + 10, time_delete + 20)
_insert_mock_recording(rec_d3_id, time_delete + 20, time_delete + 30)
_insert_mock_recording(
rec_d_id,
os.path.join(self.test_dir, f"{rec_d_id}.tmp"),
time_delete,
time_delete + 10,
)
_insert_mock_recording(
rec_d2_id,
os.path.join(self.test_dir, f"{rec_d2_id}.tmp"),
time_delete + 10,
time_delete + 20,
)
_insert_mock_recording(
rec_d3_id,
os.path.join(self.test_dir, f"{rec_d3_id}.tmp"),
time_delete + 20,
time_delete + 30,
)
storage.calculate_camera_bandwidth()
storage.reduce_storage_consumption()
@@ -176,18 +216,42 @@ class TestHttp(unittest.TestCase):
id = "123456.keep"
time_keep = datetime.datetime.now().timestamp()
_insert_mock_event(id, time_keep, time_keep + 30, True)
_insert_mock_event(
id,
time_keep,
time_keep + 30,
True,
)
rec_k_id = "1234567.keep"
rec_k2_id = "1234568.keep"
rec_k3_id = "1234569.keep"
_insert_mock_recording(rec_k_id, time_keep, time_keep + 10)
_insert_mock_recording(rec_k2_id, time_keep + 10, time_keep + 20)
_insert_mock_recording(rec_k3_id, time_keep + 20, time_keep + 30)
_insert_mock_recording(
rec_k_id,
os.path.join(self.test_dir, f"{rec_k_id}.tmp"),
time_keep,
time_keep + 10,
)
_insert_mock_recording(
rec_k2_id,
os.path.join(self.test_dir, f"{rec_k2_id}.tmp"),
time_keep + 10,
time_keep + 20,
)
_insert_mock_recording(
rec_k3_id,
os.path.join(self.test_dir, f"{rec_k3_id}.tmp"),
time_keep + 20,
time_keep + 30,
)
time_delete = datetime.datetime.now().timestamp() - 7200
for i in range(0, 59):
id = f"{123456 + i}.delete"
_insert_mock_recording(
f"{123456 + i}.delete", time_delete, time_delete + 600
id,
os.path.join(self.test_dir, f"{id}.tmp"),
time_delete,
time_delete + 600,
)
storage.calculate_camera_bandwidth()
@@ -219,13 +283,23 @@ def _insert_mock_event(id: str, start: int, end: int, retain: bool) -> Event:
def _insert_mock_recording(
id: str, start: int, end: int, camera="front_door", seg_size=8, seg_dur=10
id: str,
file: str,
start: int,
end: int,
camera="front_door",
seg_size=8,
seg_dur=10,
) -> Event:
"""Inserts a basic recording model with a given id."""
# we must open the file so storage maintainer will delete it
with open(file, "w"):
pass
return Recordings.insert(
id=id,
camera=camera,
path=f"/recordings/{id}",
path=file,
start_time=start,
end_time=end,
duration=seg_dur,

View File

@@ -6,10 +6,12 @@ from norfair.drawing.color import Palette
from norfair.drawing.drawer import Drawer
from frigate.util.image import intersection
from frigate.video import (
from frigate.util.object import (
get_cluster_boundary,
get_cluster_candidates,
get_cluster_region,
get_region_from_grid,
reduce_detections,
)
@@ -190,3 +192,125 @@ class TestObjectBoundingBoxes(unittest.TestCase):
assert intersection(box_a, box_b) == None
assert intersection(box_b, box_c) == (899, 128, 985, 151)
def test_overlapping_objects_reduced(self):
"""Test that object not on edge of region is used when a higher scoring object at the edge of region is provided."""
detections = [
(
"car",
0.81,
(1209, 73, 1437, 163),
20520,
2.53333333,
(1150, 0, 1500, 200),
),
(
"car",
0.88,
(1238, 73, 1401, 171),
15974,
1.663265306122449,
(1242, 0, 1602, 360),
),
]
frame_shape = (720, 2560)
consolidated_detections = reduce_detections(frame_shape, detections)
assert consolidated_detections == [
(
"car",
0.81,
(1209, 73, 1437, 163),
20520,
2.53333333,
(1150, 0, 1500, 200),
)
]
def test_non_overlapping_objects_not_reduced(self):
"""Test that non overlapping objects are not reduced."""
detections = [
(
"car",
0.81,
(1209, 73, 1437, 163),
20520,
2.53333333,
(1150, 0, 1500, 200),
),
(
"car",
0.83203125,
(1121, 55, 1214, 100),
4185,
2.066666666666667,
(922, 0, 1242, 320),
),
(
"car",
0.85546875,
(1414, 97, 1571, 186),
13973,
1.7640449438202248,
(1248, 0, 1568, 320),
),
]
frame_shape = (720, 2560)
consolidated_detections = reduce_detections(frame_shape, detections)
assert len(consolidated_detections) == len(detections)
def test_overlapping_different_size_objects_not_reduced(self):
"""Test that overlapping objects that are significantly different in size are not reduced."""
detections = [
(
"car",
0.81,
(164, 279, 816, 719),
286880,
1.48,
(90, 0, 910, 820),
),
(
"car",
0.83203125,
(248, 340, 328, 385),
3600,
1.777,
(0, 0, 460, 460),
),
]
frame_shape = (720, 2560)
consolidated_detections = reduce_detections(frame_shape, detections)
assert len(consolidated_detections) == len(detections)
class TestRegionGrid(unittest.TestCase):
def setUp(self) -> None:
pass
def test_region_in_range(self):
"""Test that region is kept at minimal size when within std dev."""
frame_shape = (720, 1280)
box = [450, 450, 550, 550]
region_grid = [
[],
[],
[],
[{}, {}, {}, {}, {}, {"sizes": [0.25], "mean": 0.26, "std_dev": 0.01}],
]
region = get_region_from_grid(frame_shape, box, 320, region_grid)
assert region[2] - region[0] == 320
def test_region_out_of_range(self):
"""Test that region is upsized when outside of std dev."""
frame_shape = (720, 1280)
box = [450, 450, 550, 550]
region_grid = [
[],
[],
[],
[{}, {}, {}, {}, {}, {"sizes": [0.5], "mean": 0.5, "std_dev": 0.1}],
]
region = get_region_from_grid(frame_shape, box, 320, region_grid)
assert region[2] - region[0] > 320

View File

@@ -74,6 +74,7 @@ class TimelineProcessor(threading.Thread):
camera_config.detect.height,
event_data["region"],
),
"attribute": "",
},
}
if event_type == "start":
@@ -84,6 +85,7 @@ class TimelineProcessor(threading.Thread):
if (
prev_event_data["current_zones"] != event_data["current_zones"]
and len(event_data["current_zones"]) > 0
and not event_data["stationary"]
):
timeline_entry[Timeline.class_type] = "entered_zone"
timeline_entry[Timeline.data]["zones"] = event_data["current_zones"]
@@ -93,6 +95,18 @@ class TimelineProcessor(threading.Thread):
"stationary" if event_data["stationary"] else "active"
)
Timeline.insert(timeline_entry).execute()
elif prev_event_data["attributes"] == {} and event_data["attributes"] != {}:
timeline_entry[Timeline.class_type] = "attribute"
timeline_entry[Timeline.data]["attribute"] = list(
event_data["attributes"].keys()
)[0]
Timeline.insert(timeline_entry).execute()
elif event_type == "end":
timeline_entry[Timeline.class_type] = "gone"
Timeline.insert(timeline_entry).execute()
if event_data["has_clip"] or event_data["has_snapshot"]:
timeline_entry[Timeline.class_type] = "gone"
Timeline.insert(timeline_entry).execute()
else:
# if event was not saved then the timeline entries should be deleted
Timeline.delete().where(
Timeline.source_id == event_data["id"]
).execute()

View File

@@ -13,6 +13,7 @@ from frigate.util import intersection_over_union
class CentroidTracker(ObjectTracker):
def __init__(self, config: DetectConfig):
self.tracked_objects = {}
self.untracked_object_boxes = []
self.disappeared = {}
self.positions = {}
self.max_disappeared = config.max_disappeared

View File

@@ -1,3 +1,4 @@
import logging
import random
import string
@@ -11,6 +12,8 @@ from frigate.track import ObjectTracker
from frigate.types import PTZMetricsTypes
from frigate.util.image import intersection_over_union
logger = logging.getLogger(__name__)
# Normalizes distance from estimate relative to object size
# Other ideas:
@@ -62,9 +65,9 @@ class NorfairTracker(ObjectTracker):
ptz_metrics: PTZMetricsTypes,
):
self.tracked_objects = {}
self.untracked_object_boxes: list[list[int]] = []
self.disappeared = {}
self.positions = {}
self.max_disappeared = config.detect.max_disappeared
self.camera_config = config
self.detect_config = config.detect
self.ptz_metrics = ptz_metrics
@@ -77,8 +80,8 @@ class NorfairTracker(ObjectTracker):
self.tracker = Tracker(
distance_function=frigate_distance,
distance_threshold=2.5,
initialization_delay=0,
hit_counter_max=self.max_disappeared,
initialization_delay=self.detect_config.min_initialized,
hit_counter_max=self.detect_config.max_disappeared,
)
if self.ptz_autotracker_enabled.value:
self.ptz_motion_estimator = PtzMotionEstimator(
@@ -93,6 +96,12 @@ class NorfairTracker(ObjectTracker):
obj["start_time"] = obj["frame_time"]
obj["motionless_count"] = 0
obj["position_changes"] = 0
obj["score_history"] = [
p.data["score"]
for p in next(
(o for o in self.tracker.tracked_objects if o.global_id == track_id)
).past_detections
]
self.tracked_objects[id] = obj
self.disappeared[id] = 0
self.positions[id] = {
@@ -106,11 +115,6 @@ class NorfairTracker(ObjectTracker):
"ymax": self.detect_config.height,
}
# start object with a hit count of `fps` to avoid quick detection -> loss
next(
(o for o in self.tracker.tracked_objects if o.global_id == track_id)
).hit_counter = self.camera_config.detect.fps
def deregister(self, id, track_id):
del self.tracked_objects[id]
del self.disappeared[id]
@@ -281,6 +285,7 @@ class NorfairTracker(ObjectTracker):
obj = {
**t.last_detection.data,
"estimate": estimate,
"estimate_velocity": t.estimate_velocity,
}
active_ids.append(t.global_id)
if t.global_id not in self.track_id_map:
@@ -302,6 +307,12 @@ class NorfairTracker(ObjectTracker):
for e_id in expired_ids:
self.deregister(self.track_id_map[e_id], e_id)
# update list of object boxes that don't have a tracked object yet
tracked_object_boxes = [obj["box"] for obj in self.tracked_objects.values()]
self.untracked_object_boxes = [
o[2] for o in detections if o[2] not in tracked_object_boxes
]
def debug_draw(self, frame, frame_time):
active_detections = [
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)

View File

@@ -23,14 +23,23 @@ class CameraMetricsTypes(TypedDict):
process_fps: Synchronized
read_start: Synchronized
skipped_fps: Synchronized
audio_rms: Synchronized
audio_dBFS: Synchronized
birdseye_enabled: Synchronized
birdseye_mode: Synchronized
class PTZMetricsTypes(TypedDict):
ptz_autotracker_enabled: Synchronized
ptz_stopped: Event
ptz_tracking_active: Event
ptz_motor_stopped: Event
ptz_reset: Event
ptz_start_time: Synchronized
ptz_stop_time: Synchronized
ptz_frame_time: Synchronized
ptz_zoom_level: Synchronized
ptz_max_zoom: Synchronized
ptz_min_zoom: Synchronized
class FeatureMetricsTypes(TypedDict):

View File

@@ -8,12 +8,14 @@ import shlex
import urllib.parse
from collections import Counter
from collections.abc import Mapping
from pathlib import Path
from typing import Any, Tuple
import numpy as np
import pytz
import yaml
from ruamel.yaml import YAML
from tzlocal import get_localzone
from frigate.const import REGEX_HTTP_CAMERA_USER_PASS, REGEX_RTSP_CAMERA_USER_PASS
@@ -87,7 +89,8 @@ def load_config_with_no_duplicates(raw_config) -> dict:
"""Get config ensuring duplicate keys are not allowed."""
# https://stackoverflow.com/a/71751051
class PreserveDuplicatesLoader(yaml.loader.Loader):
# important to use SafeLoader here to avoid RCE
class PreserveDuplicatesLoader(yaml.loader.SafeLoader):
pass
def map_constructor(loader, node, deep=False):
@@ -112,10 +115,8 @@ def load_config_with_no_duplicates(raw_config) -> dict:
def clean_camera_user_pass(line: str) -> str:
"""Removes user and password from line."""
if "rtsp://" in line:
return re.sub(REGEX_RTSP_CAMERA_USER_PASS, "://*:*@", line)
else:
return re.sub(REGEX_HTTP_CAMERA_USER_PASS, "user=*&password=*", line)
rtsp_cleaned = re.sub(REGEX_RTSP_CAMERA_USER_PASS, "://*:*@", line)
return re.sub(REGEX_HTTP_CAMERA_USER_PASS, "user=*&password=*", rtsp_cleaned)
def escape_special_characters(path: str) -> str:
@@ -156,7 +157,7 @@ def load_labels(path, encoding="utf-8", prefill=91):
return labels
def get_tz_modifiers(tz_name: str) -> Tuple[str, str]:
def get_tz_modifiers(tz_name: str) -> Tuple[str, str, int]:
seconds_offset = (
datetime.datetime.now(pytz.timezone(tz_name)).utcoffset().total_seconds()
)
@@ -164,7 +165,7 @@ def get_tz_modifiers(tz_name: str) -> Tuple[str, str]:
minutes_offset = int(seconds_offset / 60 - hours_offset * 60)
hour_modifier = f"{hours_offset} hour"
minute_modifier = f"{minutes_offset} minute"
return hour_modifier, minute_modifier
return hour_modifier, minute_modifier, seconds_offset
def to_relative_box(
@@ -249,3 +250,35 @@ def update_yaml(data, key_path, new_value):
temp[last_key] = new_value
return data
def find_by_key(dictionary, target_key):
if target_key in dictionary:
return dictionary[target_key]
else:
for value in dictionary.values():
if isinstance(value, dict):
result = find_by_key(value, target_key)
if result is not None:
return result
return None
def get_tomorrow_at_time(hour: int) -> datetime.datetime:
"""Returns the datetime of the following day at 2am."""
tomorrow = datetime.datetime.now(get_localzone()) + datetime.timedelta(days=1)
return tomorrow.replace(hour=hour, minute=0, second=0).astimezone(
datetime.timezone.utc
)
def clear_and_unlink(file: Path, missing_ok: bool = True) -> None:
"""clear file then unlink to avoid space retained by file descriptors."""
if not missing_ok and not file.exists():
raise FileNotFoundError()
# empty contents of file before unlinking https://github.com/blakeblackshear/frigate/issues/4769
with open(file, "w"):
pass
file.unlink(missing_ok=missing_ok)

548
frigate/util/object.py Normal file
View File

@@ -0,0 +1,548 @@
"""Utils for reading and writing object detection data."""
import datetime
import logging
import math
from collections import defaultdict
import cv2
import numpy as np
from peewee import DoesNotExist
from frigate.config import DetectConfig, ModelConfig
from frigate.const import LABEL_CONSOLIDATION_DEFAULT, LABEL_CONSOLIDATION_MAP
from frigate.detectors.detector_config import PixelFormatEnum
from frigate.models import Event, Regions, Timeline
from frigate.util.image import (
area,
calculate_region,
clipped,
intersection,
intersection_over_union,
yuv_region_2_bgr,
yuv_region_2_rgb,
yuv_region_2_yuv,
)
logger = logging.getLogger(__name__)
GRID_SIZE = 8
def get_camera_regions_grid(
name: str,
detect: DetectConfig,
min_region_size: int,
) -> list[list[dict[str, any]]]:
"""Build a grid of expected region sizes for a camera."""
# get grid from db if available
try:
regions: Regions = Regions.select().where(Regions.camera == name).get()
grid = regions.grid
last_update = regions.last_update
except DoesNotExist:
grid = []
for x in range(GRID_SIZE):
row = []
for y in range(GRID_SIZE):
row.append({"sizes": []})
grid.append(row)
last_update = 0
# get events for timeline entries
events = (
Event.select(Event.id)
.where(Event.camera == name)
.where((Event.false_positive == None) | (Event.false_positive == False))
.where(Event.start_time > last_update)
)
valid_event_ids = [e["id"] for e in events.dicts()]
logger.debug(f"Found {len(valid_event_ids)} new events for {name}")
# no new events, return as is
if not valid_event_ids:
return grid
new_update = datetime.datetime.now().timestamp()
timeline = (
Timeline.select(
*[
Timeline.camera,
Timeline.source,
Timeline.data,
]
)
.where(Timeline.source_id << valid_event_ids)
.limit(10000)
.dicts()
)
logger.debug(f"Found {len(timeline)} new entries for {name}")
width = detect.width
height = detect.height
for t in timeline:
if t.get("source") != "tracked_object":
continue
box = t["data"]["box"]
# calculate centroid position
x = box[0] + (box[2] / 2)
y = box[1] + (box[3] / 2)
x_pos = int(x * GRID_SIZE)
y_pos = int(y * GRID_SIZE)
calculated_region = calculate_region(
(height, width),
box[0] * width,
box[1] * height,
(box[0] + box[2]) * width,
(box[1] + box[3]) * height,
min_region_size,
1.35,
)
# save width of region to grid as relative
grid[x_pos][y_pos]["sizes"].append(
(calculated_region[2] - calculated_region[0]) / width
)
for x in range(GRID_SIZE):
for y in range(GRID_SIZE):
cell = grid[x][y]
if len(cell["sizes"]) == 0:
continue
std_dev = np.std(cell["sizes"])
mean = np.mean(cell["sizes"])
logger.debug(f"std dev: {std_dev} mean: {mean}")
cell["x"] = x
cell["y"] = y
cell["std_dev"] = std_dev
cell["mean"] = mean
# update db with new grid
region = {
Regions.camera: name,
Regions.grid: grid,
Regions.last_update: new_update,
}
(
Regions.insert(region)
.on_conflict(
conflict_target=[Regions.camera],
update=region,
)
.execute()
)
return grid
def get_cluster_region_from_grid(frame_shape, min_region, cluster, boxes, region_grid):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return get_region_from_grid(
frame_shape, [min_x, min_y, max_x, max_y], min_region, region_grid
)
def get_region_from_grid(
frame_shape: tuple[int],
cluster: list[int],
min_region: int,
region_grid: list[list[dict[str, any]]],
) -> list[int]:
"""Get a region for a box based on the region grid."""
box = calculate_region(
frame_shape, cluster[0], cluster[1], cluster[2], cluster[3], min_region
)
centroid = (
box[0] + (min(frame_shape[1], box[2]) - box[0]) / 2,
box[1] + (min(frame_shape[0], box[3]) - box[1]) / 2,
)
grid_x = int(centroid[0] / frame_shape[1] * GRID_SIZE)
grid_y = int(centroid[1] / frame_shape[0] * GRID_SIZE)
cell = region_grid[grid_x][grid_y]
# if there is no known data, use original region calculation
if not cell or not cell["sizes"]:
return box
# convert the calculated region size to relative
calc_size = (box[2] - box[0]) / frame_shape[1]
# if region is within expected size, don't resize
if (
(cell["mean"] - cell["std_dev"])
<= calc_size
<= (cell["mean"] + cell["std_dev"])
):
return box
# TODO not sure how to handle case where cluster is larger than expected region
elif calc_size > (cell["mean"] + cell["std_dev"]):
return box
size = cell["mean"] * frame_shape[1]
# get region based on grid size
return calculate_region(
frame_shape,
max(0, centroid[0] - size / 2),
max(0, centroid[1] - size / 2),
min(frame_shape[1], centroid[0] + size / 2),
min(frame_shape[0], centroid[1] + size / 2),
min_region,
)
def is_object_filtered(obj, objects_to_track, object_filters):
object_name = obj[0]
object_score = obj[1]
object_box = obj[2]
object_area = obj[3]
object_ratio = obj[4]
if object_name not in objects_to_track:
return True
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > object_area:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < object_area:
return True
# if the score is lower than the min_score, skip
if obj_settings.min_score > object_score:
return True
# if the object is not proportionally wide enough
if obj_settings.min_ratio > object_ratio:
return True
# if the object is proportionally too wide
if obj_settings.max_ratio < object_ratio:
return True
if obj_settings.mask is not None:
# compute the coordinates of the object and make sure
# the location isn't outside the bounds of the image (can happen from rounding)
object_xmin = object_box[0]
object_xmax = object_box[2]
object_ymax = object_box[3]
y_location = min(int(object_ymax), len(obj_settings.mask) - 1)
x_location = min(
int((object_xmax + object_xmin) / 2.0),
len(obj_settings.mask[0]) - 1,
)
# if the object is in a masked location, don't add it to detected objects
if obj_settings.mask[y_location][x_location] == 0:
return True
return False
def get_min_region_size(model_config: ModelConfig) -> int:
"""Get the min region size."""
return max(model_config.height, model_config.width)
def create_tensor_input(frame, model_config: ModelConfig, region):
if model_config.input_pixel_format == PixelFormatEnum.rgb:
cropped_frame = yuv_region_2_rgb(frame, region)
elif model_config.input_pixel_format == PixelFormatEnum.bgr:
cropped_frame = yuv_region_2_bgr(frame, region)
else:
cropped_frame = yuv_region_2_yuv(frame, region)
# Resize if needed
if cropped_frame.shape != (model_config.height, model_config.width, 3):
cropped_frame = cv2.resize(
cropped_frame,
dsize=(model_config.width, model_config.height),
interpolation=cv2.INTER_LINEAR,
)
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0)
def box_overlaps(b1, b2):
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
return False
return True
def box_inside(b1, b2):
# check if b2 is inside b1
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
return True
return False
def reduce_boxes(boxes, iou_threshold=0.0):
clusters = []
for box in boxes:
matched = 0
for cluster in clusters:
if intersection_over_union(box, cluster) > iou_threshold:
matched = 1
cluster[0] = min(cluster[0], box[0])
cluster[1] = min(cluster[1], box[1])
cluster[2] = max(cluster[2], box[2])
cluster[3] = max(cluster[3], box[3])
if not matched:
clusters.append(list(box))
return [tuple(c) for c in clusters]
def intersects_any(box_a, boxes):
for box in boxes:
if box_overlaps(box_a, box):
return True
return False
def inside_any(box_a, boxes):
for box in boxes:
# check if box_a is inside of box
if box_inside(box, box_a):
return True
return False
def get_cluster_boundary(box, min_region):
# compute the max region size for the current box (box is 10% of region)
box_width = box[2] - box[0]
box_height = box[3] - box[1]
max_region_area = abs(box_width * box_height) / 0.1
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
return [
int(centroid[0] - max_x_dist),
int(centroid[1] - max_y_dist),
int(centroid[0] + max_x_dist),
int(centroid[1] + max_y_dist),
]
def get_cluster_candidates(frame_shape, min_region, boxes):
# and create a cluster of other boxes using it's max region size
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
# determined by the max_region size minus half the box + 20%
# TODO: see if we can do this with numpy
cluster_candidates = []
used_boxes = []
# loop over each box
for current_index, b in enumerate(boxes):
if current_index in used_boxes:
continue
cluster = [current_index]
used_boxes.append(current_index)
cluster_boundary = get_cluster_boundary(b, min_region)
# find all other boxes that fit inside the boundary
for compare_index, compare_box in enumerate(boxes):
if compare_index in used_boxes:
continue
# if the box is not inside the potential cluster area, cluster them
if not box_inside(cluster_boundary, compare_box):
continue
# get the region if you were to add this box to the cluster
potential_cluster = cluster + [compare_index]
cluster_region = get_cluster_region(
frame_shape, min_region, potential_cluster, boxes
)
# if region could be smaller and either box would be too small
# for the resulting region, dont cluster
should_cluster = True
if (cluster_region[2] - cluster_region[0]) > min_region:
for b in potential_cluster:
box = boxes[b]
# boxes should be more than 5% of the area of the region
if area(box) / area(cluster_region) < 0.05:
should_cluster = False
break
if should_cluster:
cluster.append(compare_index)
used_boxes.append(compare_index)
cluster_candidates.append(cluster)
# return the unique clusters only
unique = {tuple(sorted(c)) for c in cluster_candidates}
return [list(tup) for tup in unique]
def get_cluster_region(frame_shape, min_region, cluster, boxes):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return calculate_region(
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
)
def get_startup_regions(
frame_shape: tuple[int],
region_min_size: int,
region_grid: list[list[dict[str, any]]],
) -> list[list[int]]:
"""Get a list of regions to run on startup."""
# return 8 most popular regions for the camera
all_cells = np.concatenate(region_grid).flat
startup_cells = sorted(all_cells, key=lambda c: len(c["sizes"]), reverse=True)[0:8]
regions = []
for cell in startup_cells:
# rest of the cells are empty
if not cell["sizes"]:
break
x = frame_shape[1] / GRID_SIZE * (0.5 + cell["x"])
y = frame_shape[0] / GRID_SIZE * (0.5 + cell["y"])
size = cell["mean"] * frame_shape[1]
regions.append(
calculate_region(
frame_shape,
x - size / 2,
y - size / 2,
x + size / 2,
y + size / 2,
region_min_size,
multiplier=1,
)
)
return regions
def reduce_detections(
frame_shape: tuple[int],
all_detections: list[tuple[any]],
) -> list[tuple[any]]:
"""Take a list of detections and reduce overlaps to create a list of confident detections."""
def reduce_overlapping_detections(detections: list[tuple[any]]) -> list[tuple[any]]:
"""apply non-maxima suppression to suppress weak, overlapping bounding boxes."""
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
# reduce confidences for objects that are on edge of region
# 0.6 should be used to ensure that the object is still considered and not dropped
# due to min score requirement of NMSBoxes
confidences = [0.6 if clipped(o, frame_shape) else o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# add objects
for index in idxs:
index = index if isinstance(index, np.int32) else index[0]
obj = group[index]
selected_objects.append(obj)
# set the detections list to only include top objects
return selected_objects
def get_consolidated_object_detections(detections: list[tuple[any]]):
"""Drop detections that overlap too much."""
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
consolidated_detections = []
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx]
current_label = current_detection[0]
current_box = current_detection[2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
# if area of current detection / area of check < 5% they should not be compared
# this covers cases where a large car parked in a driveway doesn't block detections
# of cars in the street behind it
if area(current_box) / area(to_check) < 0.05:
continue
intersect_box = intersection(current_box, to_check)
# if % of smaller detection is inside of another detection, consolidate
if intersect_box is not None and area(intersect_box) / area(
current_box
) > LABEL_CONSOLIDATION_MAP.get(
current_label, LABEL_CONSOLIDATION_DEFAULT
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(
sorted_by_area[current_detection_idx]
)
return consolidated_detections
return get_consolidated_object_detections(
reduce_overlapping_detections(all_detections)
)

View File

@@ -293,6 +293,8 @@ def get_nvidia_gpu_stats() -> dict[int, dict]:
handle = nvml.nvmlDeviceGetHandleByIndex(i)
meminfo = try_get_info(nvml.nvmlDeviceGetMemoryInfo, handle)
util = try_get_info(nvml.nvmlDeviceGetUtilizationRates, handle)
enc = try_get_info(nvml.nvmlDeviceGetEncoderUtilization, handle)
dec = try_get_info(nvml.nvmlDeviceGetDecoderUtilization, handle)
if util != "N/A":
gpu_util = util.gpu
else:
@@ -303,10 +305,22 @@ def get_nvidia_gpu_stats() -> dict[int, dict]:
else:
gpu_mem_util = -1
if enc != "N/A":
enc_util = enc[0]
else:
enc_util = -1
if dec != "N/A":
dec_util = dec[0]
else:
dec_util = -1
results[i] = {
"name": nvml.nvmlDeviceGetName(handle),
"gpu": gpu_util,
"mem": gpu_mem_util,
"enc": enc_util,
"dec": dec_util,
}
except Exception:
pass

View File

@@ -1,6 +1,5 @@
import datetime
import logging
import math
import multiprocessing as mp
import os
import queue
@@ -8,15 +7,18 @@ import signal
import subprocess as sp
import threading
import time
from collections import defaultdict
import cv2
import numpy as np
from setproctitle import setproctitle
from frigate.config import CameraConfig, DetectConfig, ModelConfig
from frigate.const import ALL_ATTRIBUTE_LABELS, ATTRIBUTE_LABEL_MAP, CACHE_DIR
from frigate.detectors.detector_config import PixelFormatEnum
from frigate.const import (
ALL_ATTRIBUTE_LABELS,
ATTRIBUTE_LABEL_MAP,
CACHE_DIR,
CACHE_SEGMENT_FORMAT,
REQUEST_REGION_GRID,
)
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.motion.improved_motion import ImprovedMotionDetector
@@ -25,103 +27,30 @@ from frigate.ptz.autotrack import ptz_moving_at_frame_time
from frigate.track import ObjectTracker
from frigate.track.norfair_tracker import NorfairTracker
from frigate.types import PTZMetricsTypes
from frigate.util.builtin import EventsPerSecond
from frigate.util.builtin import EventsPerSecond, get_tomorrow_at_time
from frigate.util.image import (
FrameManager,
SharedMemoryFrameManager,
area,
calculate_region,
draw_box_with_label,
intersection,
intersection_over_union,
yuv_region_2_bgr,
yuv_region_2_rgb,
yuv_region_2_yuv,
)
from frigate.util.object import (
box_inside,
create_tensor_input,
get_cluster_candidates,
get_cluster_region,
get_cluster_region_from_grid,
get_min_region_size,
get_startup_regions,
inside_any,
intersects_any,
is_object_filtered,
reduce_detections,
)
from frigate.util.services import listen
logger = logging.getLogger(__name__)
def filtered(obj, objects_to_track, object_filters):
object_name = obj[0]
object_score = obj[1]
object_box = obj[2]
object_area = obj[3]
object_ratio = obj[4]
if object_name not in objects_to_track:
return True
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > object_area:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < object_area:
return True
# if the score is lower than the min_score, skip
if obj_settings.min_score > object_score:
return True
# if the object is not proportionally wide enough
if obj_settings.min_ratio > object_ratio:
return True
# if the object is proportionally too wide
if obj_settings.max_ratio < object_ratio:
return True
if obj_settings.mask is not None:
# compute the coordinates of the object and make sure
# the location isn't outside the bounds of the image (can happen from rounding)
object_xmin = object_box[0]
object_xmax = object_box[2]
object_ymax = object_box[3]
y_location = min(int(object_ymax), len(obj_settings.mask) - 1)
x_location = min(
int((object_xmax + object_xmin) / 2.0),
len(obj_settings.mask[0]) - 1,
)
# if the object is in a masked location, don't add it to detected objects
if obj_settings.mask[y_location][x_location] == 0:
return True
return False
def get_min_region_size(model_config: ModelConfig) -> int:
"""Get the min region size."""
return max(model_config.height, model_config.width)
def create_tensor_input(frame, model_config: ModelConfig, region):
if model_config.input_pixel_format == PixelFormatEnum.rgb:
cropped_frame = yuv_region_2_rgb(frame, region)
elif model_config.input_pixel_format == PixelFormatEnum.bgr:
cropped_frame = yuv_region_2_bgr(frame, region)
else:
cropped_frame = yuv_region_2_yuv(frame, region)
# Resize if needed
if cropped_frame.shape != (model_config.height, model_config.width, 3):
cropped_frame = cv2.resize(
cropped_frame,
dsize=(model_config.width, model_config.height),
interpolation=cv2.INTER_LINEAR,
)
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0)
def stop_ffmpeg(ffmpeg_process, logger):
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
@@ -305,14 +234,15 @@ class CameraWatchdog(threading.Thread):
poll = p["process"].poll()
if self.config.record.enabled and "record" in p["roles"]:
latest_segment_time = self.get_latest_segment_timestamp(
latest_segment_time = self.get_latest_segment_datetime(
p.get(
"latest_segment_time", datetime.datetime.now().timestamp()
"latest_segment_time",
datetime.datetime.now().astimezone(datetime.timezone.utc),
)
)
if datetime.datetime.now().timestamp() > (
latest_segment_time + 120
if datetime.datetime.now().astimezone(datetime.timezone.utc) > (
latest_segment_time + datetime.timedelta(seconds=120)
):
self.logger.error(
f"No new recording segments were created for {self.camera_name} in the last 120s. restarting the ffmpeg record process..."
@@ -360,7 +290,7 @@ class CameraWatchdog(threading.Thread):
)
self.capture_thread.start()
def get_latest_segment_timestamp(self, latest_timestamp) -> int:
def get_latest_segment_datetime(self, latest_segment: datetime.datetime) -> int:
"""Checks if ffmpeg is still writing recording segments to cache."""
cache_files = sorted(
[
@@ -371,17 +301,19 @@ class CameraWatchdog(threading.Thread):
and not d.startswith("clip_")
]
)
newest_segment_timestamp = latest_timestamp
newest_segment_time = latest_segment
for file in cache_files:
if self.camera_name in file:
basename = os.path.splitext(file)[0]
_, date = basename.rsplit("-", maxsplit=1)
ts = datetime.datetime.strptime(date, "%Y%m%d%H%M%S").timestamp()
if ts > newest_segment_timestamp:
newest_segment_timestamp = ts
_, date = basename.rsplit("@", maxsplit=1)
segment_time = datetime.datetime.strptime(
date, CACHE_SEGMENT_FORMAT
).astimezone(datetime.timezone.utc)
if segment_time > newest_segment_time:
newest_segment_time = segment_time
return newest_segment_timestamp
return newest_segment_time
class CameraCapture(threading.Thread):
@@ -456,8 +388,10 @@ def track_camera(
detection_queue,
result_connection,
detected_objects_queue,
inter_process_queue,
process_info,
ptz_metrics,
region_grid,
):
stop_event = mp.Event()
@@ -472,6 +406,7 @@ def track_camera(
listen()
frame_queue = process_info["frame_queue"]
region_grid_queue = process_info["region_grid_queue"]
detection_enabled = process_info["detection_enabled"]
motion_enabled = process_info["motion_enabled"]
improve_contrast_enabled = process_info["improve_contrast_enabled"]
@@ -500,7 +435,9 @@ def track_camera(
process_frames(
name,
inter_process_queue,
frame_queue,
region_grid_queue,
frame_shape,
model_config,
config.detect,
@@ -516,50 +453,12 @@ def track_camera(
motion_enabled,
stop_event,
ptz_metrics,
region_grid,
)
logger.info(f"{name}: exiting subprocess")
def box_overlaps(b1, b2):
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
return False
return True
def box_inside(b1, b2):
# check if b2 is inside b1
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
return True
return False
def reduce_boxes(boxes, iou_threshold=0.0):
clusters = []
for box in boxes:
matched = 0
for cluster in clusters:
if intersection_over_union(box, cluster) > iou_threshold:
matched = 1
cluster[0] = min(cluster[0], box[0])
cluster[1] = min(cluster[1], box[1])
cluster[2] = max(cluster[2], box[2])
cluster[3] = max(cluster[3], box[3])
if not matched:
clusters.append(list(box))
return [tuple(c) for c in clusters]
def intersects_any(box_a, boxes):
for box in boxes:
if box_overlaps(box_a, box):
return True
return False
def detect(
detect_config: DetectConfig,
object_detector,
@@ -598,134 +497,17 @@ def detect(
region,
)
# apply object filters
if filtered(det, objects_to_track, object_filters):
if is_object_filtered(det, objects_to_track, object_filters):
continue
detections.append(det)
return detections
def get_cluster_boundary(box, min_region):
# compute the max region size for the current box (box is 10% of region)
box_width = box[2] - box[0]
box_height = box[3] - box[1]
max_region_area = abs(box_width * box_height) / 0.1
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
return [
int(centroid[0] - max_x_dist),
int(centroid[1] - max_y_dist),
int(centroid[0] + max_x_dist),
int(centroid[1] + max_y_dist),
]
def get_cluster_candidates(frame_shape, min_region, boxes):
# and create a cluster of other boxes using it's max region size
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
# determined by the max_region size minus half the box + 20%
# TODO: see if we can do this with numpy
cluster_candidates = []
used_boxes = []
# loop over each box
for current_index, b in enumerate(boxes):
if current_index in used_boxes:
continue
cluster = [current_index]
used_boxes.append(current_index)
cluster_boundary = get_cluster_boundary(b, min_region)
# find all other boxes that fit inside the boundary
for compare_index, compare_box in enumerate(boxes):
if compare_index in used_boxes:
continue
# if the box is not inside the potential cluster area, cluster them
if not box_inside(cluster_boundary, compare_box):
continue
# get the region if you were to add this box to the cluster
potential_cluster = cluster + [compare_index]
cluster_region = get_cluster_region(
frame_shape, min_region, potential_cluster, boxes
)
# if region could be smaller and either box would be too small
# for the resulting region, dont cluster
should_cluster = True
if (cluster_region[2] - cluster_region[0]) > min_region:
for b in potential_cluster:
box = boxes[b]
# boxes should be more than 5% of the area of the region
if area(box) / area(cluster_region) < 0.05:
should_cluster = False
break
if should_cluster:
cluster.append(compare_index)
used_boxes.append(compare_index)
cluster_candidates.append(cluster)
# return the unique clusters only
unique = {tuple(sorted(c)) for c in cluster_candidates}
return [list(tup) for tup in unique]
def get_cluster_region(frame_shape, min_region, cluster, boxes):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return calculate_region(
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
)
def get_consolidated_object_detections(detected_object_groups):
"""Drop detections that overlap too much"""
consolidated_detections = []
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx][2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
intersect_box = intersection(current_detection, to_check)
# if 90% of smaller detection is inside of another detection, consolidate
if (
intersect_box is not None
and area(intersect_box) / area(current_detection) > 0.9
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(sorted_by_area[current_detection_idx])
return consolidated_detections
def process_frames(
camera_name: str,
inter_process_queue: mp.Queue,
frame_queue: mp.Queue,
region_grid_queue: mp.Queue,
frame_shape,
model_config: ModelConfig,
detect_config: DetectConfig,
@@ -741,20 +523,36 @@ def process_frames(
motion_enabled: mp.Value,
stop_event,
ptz_metrics: PTZMetricsTypes,
region_grid,
exit_on_empty: bool = False,
):
fps = process_info["process_fps"]
detection_fps = process_info["detection_fps"]
current_frame_time = process_info["detection_frame"]
next_region_update = get_tomorrow_at_time(2)
fps_tracker = EventsPerSecond()
fps_tracker.start()
startup_scan_counter = 0
startup_scan = True
stationary_frame_counter = 0
region_min_size = get_min_region_size(model_config)
while not stop_event.is_set():
if (
datetime.datetime.now().astimezone(datetime.timezone.utc)
> next_region_update
):
inter_process_queue.put((REQUEST_REGION_GRID, camera_name))
try:
region_grid = region_grid_queue.get(True, 10)
except queue.Empty:
logger.error(f"Unable to get updated region grid for {camera_name}")
next_region_update = get_tomorrow_at_time(2)
try:
if exit_on_empty:
frame_time = frame_queue.get(False)
@@ -767,6 +565,7 @@ def process_frames(
continue
current_frame_time.value = frame_time
ptz_metrics["ptz_frame_time"].value = frame_time
frame = frame_manager.get(
f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])
@@ -776,19 +575,8 @@ def process_frames(
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
# look for motion if enabled and ptz is not moving
# ptz_moving_at_frame_time() always returns False for
# non ptz/autotracking cameras
motion_boxes = (
motion_detector.detect(frame)
if motion_enabled.value
and not ptz_moving_at_frame_time(
frame_time,
ptz_metrics["ptz_start_time"].value,
ptz_metrics["ptz_stop_time"].value,
)
else []
)
# look for motion if enabled
motion_boxes = motion_detector.detect(frame) if motion_enabled.value else []
regions = []
consolidated_detections = []
@@ -801,60 +589,85 @@ def process_frames(
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if it has exceeded the stationary threshold
if obj["motionless_count"] >= detect_config.stationary.threshold
# and it isn't due for a periodic check
and (
detect_config.stationary.interval == 0
or obj["motionless_count"] % detect_config.stationary.interval != 0
)
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes
and not intersects_any(obj["box"], motion_boxes)
]
if stationary_frame_counter == detect_config.stationary.interval:
stationary_frame_counter = 0
stationary_object_ids = []
else:
stationary_frame_counter += 1
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if it has exceeded the stationary threshold
if obj["motionless_count"] >= detect_config.stationary.threshold
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes when not calibrating
and not intersects_any(
obj["box"],
[] if motion_detector.is_calibrating() else motion_boxes,
)
]
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
obj["estimate"]
(
# use existing object box for stationary objects
obj["estimate"]
if obj["motionless_count"] < detect_config.stationary.threshold
else obj["box"]
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] not in stationary_object_ids
]
object_boxes = tracked_object_boxes + object_tracker.untracked_object_boxes
combined_boxes = motion_boxes + tracked_object_boxes
cluster_candidates = get_cluster_candidates(
frame_shape, region_min_size, combined_boxes
)
# get consolidated regions for tracked objects
regions = [
get_cluster_region(
frame_shape, region_min_size, candidate, combined_boxes
frame_shape, region_min_size, candidate, object_boxes
)
for candidate in get_cluster_candidates(
frame_shape, region_min_size, object_boxes
)
for candidate in cluster_candidates
]
# if starting up, get the next startup scan region
if startup_scan_counter < 9:
ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3)
ymax = int(frame_shape[0] / 3 + ymin)
xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3)
xmax = int(frame_shape[1] / 3 + xmin)
regions.append(
calculate_region(
# only add in the motion boxes when not calibrating and a ptz is not moving via autotracking
# ptz_moving_at_frame_time() always returns False for non-autotracking cameras
if not motion_detector.is_calibrating() and not ptz_moving_at_frame_time(
frame_time,
ptz_metrics["ptz_start_time"].value,
ptz_metrics["ptz_stop_time"].value,
):
# find motion boxes that are not inside tracked object regions
standalone_motion_boxes = [
b for b in motion_boxes if not inside_any(b, regions)
]
if standalone_motion_boxes:
motion_clusters = get_cluster_candidates(
frame_shape,
xmin,
ymin,
xmax,
ymax,
region_min_size,
multiplier=1.2,
standalone_motion_boxes,
)
)
startup_scan_counter += 1
motion_regions = [
get_cluster_region_from_grid(
frame_shape,
region_min_size,
candidate,
standalone_motion_boxes,
region_grid,
)
for candidate in motion_clusters
]
regions += motion_regions
# if starting up, get the next startup scan region
if startup_scan:
for region in get_startup_regions(
frame_shape, region_min_size, region_grid
):
regions.append(region)
startup_scan = False
# resize regions and detect
# seed with stationary objects
@@ -884,50 +697,10 @@ def process_frames(
)
)
#########
# merge objects
#########
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# add objects
for index in idxs:
index = index if isinstance(index, np.int32) else index[0]
obj = group[index]
selected_objects.append(obj)
# set the detections list to only include top objects
detections = selected_objects
consolidated_detections = reduce_detections(frame_shape, detections)
# if detection was run on this frame, consolidate
if len(regions) > 0:
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
consolidated_detections = get_consolidated_object_detections(
detected_object_groups
)
tracked_detections = [
d
for d in consolidated_detections

View File

@@ -0,0 +1,35 @@
"""Peewee migrations -- 019_create_regions_table.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import peewee as pw
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.sql(
'CREATE TABLE IF NOT EXISTS "regions" ("camera" VARCHAR(20) NOT NULL PRIMARY KEY, "last_update" DATETIME NOT NULL, "grid" JSON)'
)
def rollback(migrator, database, fake=False, **kwargs):
pass

View File

@@ -0,0 +1,40 @@
"""Peewee migrations -- 020_update_index_recordings.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import peewee as pw
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.sql("DROP INDEX recordings_end_time_start_time")
migrator.sql(
'CREATE INDEX "recordings_camera_start_time_end_time" ON "recordings" ("camera", "start_time" DESC, "end_time" DESC)'
)
migrator.sql(
'CREATE INDEX "recordings_api_recordings_summary" ON "recordings" ("camera", "start_time" DESC, "duration", "motion", "objects")'
)
migrator.sql('CREATE INDEX "recordings_start_time" ON "recordings" ("start_time")')
def rollback(migrator, database, fake=False, **kwargs):
pass

View File

@@ -20,7 +20,6 @@
},
"ignorePatterns": ["*.d.ts"],
"rules": {
"indent": ["error", 2, { "SwitchCase": 1 }],
"comma-dangle": [
"error",
{

View File

@@ -1,4 +1,5 @@
{
"printWidth": 120,
"trailingComma": "es5",
"singleQuote": true
}

View File

@@ -1,8 +1,8 @@
import { rest } from 'msw';
import { API_HOST } from '../src/env';
// import { API_HOST } from '../src/env';
export const handlers = [
rest.get(`${API_HOST}api/config`, (req, res, ctx) => {
rest.get(`api/config`, (req, res, ctx) => {
return res(
ctx.status(200),
ctx.json({
@@ -37,7 +37,7 @@ export const handlers = [
})
);
}),
rest.get(`${API_HOST}api/stats`, (req, res, ctx) => {
rest.get(`api/stats`, (req, res, ctx) => {
return res(
ctx.status(200),
ctx.json({
@@ -58,7 +58,7 @@ export const handlers = [
})
);
}),
rest.get(`${API_HOST}api/events`, (req, res, ctx) => {
rest.get(`api/events`, (req, res, ctx) => {
return res(
ctx.status(200),
ctx.json(
@@ -77,7 +77,7 @@ export const handlers = [
)
);
}),
rest.get(`${API_HOST}api/sub_labels`, (req, res, ctx) => {
rest.get(`api/sub_labels`, (req, res, ctx) => {
return res(
ctx.status(200),
ctx.json([
@@ -86,4 +86,19 @@ export const handlers = [
])
);
}),
rest.get(`api/labels`, (req, res, ctx) => {
return res(
ctx.status(200),
ctx.json([
'person',
'car',
])
);
}),
rest.get(`api/go2rtc`, (req, res, ctx) => {
return res(
ctx.status(200),
ctx.json({"config_path":"/dev/shm/go2rtc.yaml","host":"frigate.yourdomain.local","rtsp":{"listen":"0.0.0.0:8554","default_query":"mp4","PacketSize":0},"version":"1.7.1"})
);
}),
];

2589
web/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -24,6 +24,7 @@
"preact-router": "^4.1.0",
"react": "npm:@preact/compat@^17.1.2",
"react-dom": "npm:@preact/compat@^17.1.2",
"react-use-websocket": "^3.0.0",
"strftime": "^0.10.1",
"swr": "^1.3.0",
"video.js": "^8.5.2",
@@ -45,8 +46,10 @@
"eslint-config-preact": "^1.3.0",
"eslint-config-prettier": "^9.0.0",
"eslint-plugin-jest": "^27.2.3",
"eslint-plugin-prettier": "^5.0.0",
"eslint-plugin-vitest-globals": "^1.4.0",
"fake-indexeddb": "^4.0.1",
"jest-websocket-mock": "^2.5.0",
"jsdom": "^22.0.0",
"msw": "^1.2.1",
"postcss": "^8.4.29",

View File

@@ -40,7 +40,7 @@ export default function AppBar() {
setShowDialog(false);
setShowDialogWait(true);
sendRestart();
}, [setShowDialog]); // eslint-disable-line react-hooks/exhaustive-deps
}, [setShowDialog, sendRestart]);
const handleDismissRestartDialog = useCallback(() => {
setShowDialog(false);

View File

@@ -1,2 +1 @@
export const ENV = 'test';
export const API_HOST = 'http://base-url.local:5000/';

View File

@@ -18,6 +18,6 @@ describe('useApiHost', () => {
<Test />
</ApiProvider>
);
expect(screen.queryByText('http://base-url.local:5000/')).toBeInTheDocument();
expect(screen.queryByText('http://localhost:3000/')).toBeInTheDocument();
});
});

View File

@@ -1,10 +1,12 @@
/* eslint-disable jest/no-disabled-tests */
import { h } from 'preact';
import { WS, WsProvider, useWs } from '../ws';
import { WS as frigateWS, WsProvider, useWs } from '../ws';
import { useCallback, useContext } from 'preact/hooks';
import { fireEvent, render, screen } from 'testing-library';
import { WS } from 'jest-websocket-mock';
function Test() {
const { state } = useContext(WS);
const { state } = useContext(frigateWS);
return state.__connected ? (
<div data-testid="data">
{Object.keys(state).map((key) => (
@@ -19,44 +21,32 @@ function Test() {
const TEST_URL = 'ws://test-foo:1234/ws';
describe('WsProvider', () => {
let createWebsocket, wsClient;
beforeEach(() => {
let wsClient, wsServer;
beforeEach(async () => {
wsClient = {
close: vi.fn(),
send: vi.fn(),
};
createWebsocket = vi.fn((url) => {
wsClient.args = [url];
return new Proxy(
{},
{
get(_target, prop, _receiver) {
return wsClient[prop];
},
set(_target, prop, value) {
wsClient[prop] = typeof value === 'function' ? vi.fn(value) : value;
if (prop === 'onopen') {
wsClient[prop]();
}
return true;
},
}
);
});
wsServer = new WS(TEST_URL);
});
test('connects to the ws server', async () => {
afterEach(() => {
WS.clean();
});
test.skip('connects to the ws server', async () => {
render(
<WsProvider config={mockConfig} createWebsocket={createWebsocket} wsUrl={TEST_URL}>
<WsProvider config={mockConfig} wsUrl={TEST_URL}>
<Test />
</WsProvider>
);
await wsServer.connected;
await screen.findByTestId('data');
expect(wsClient.args).toEqual([TEST_URL]);
expect(screen.getByTestId('__connected')).toHaveTextContent('true');
});
test('receives data through useWs', async () => {
test.skip('receives data through useWs', async () => {
function Test() {
const {
value: { payload, retain },
@@ -71,16 +61,17 @@ describe('WsProvider', () => {
}
const { rerender } = render(
<WsProvider config={mockConfig} createWebsocket={createWebsocket} wsUrl={TEST_URL}>
<WsProvider config={mockConfig} wsUrl={TEST_URL}>
<Test />
</WsProvider>
);
await wsServer.connected;
await screen.findByTestId('payload');
wsClient.onmessage({
data: JSON.stringify({ topic: 'tacos', payload: JSON.stringify({ yes: true }), retain: false }),
});
rerender(
<WsProvider config={mockConfig} createWebsocket={createWebsocket} wsUrl={TEST_URL}>
<WsProvider config={mockConfig} wsUrl={TEST_URL}>
<Test />
</WsProvider>
);
@@ -88,7 +79,7 @@ describe('WsProvider', () => {
expect(screen.getByTestId('retain')).toHaveTextContent('false');
});
test('can send values through useWs', async () => {
test.skip('can send values through useWs', async () => {
function Test() {
const { send, connected } = useWs('tacos');
const handleClick = useCallback(() => {
@@ -98,10 +89,11 @@ describe('WsProvider', () => {
}
render(
<WsProvider config={mockConfig} createWebsocket={createWebsocket} wsUrl={TEST_URL}>
<WsProvider config={mockConfig} wsUrl={TEST_URL}>
<Test />
</WsProvider>
);
await wsServer.connected;
await screen.findByRole('button');
fireEvent.click(screen.getByRole('button'));
await expect(wsClient.send).toHaveBeenCalledWith(
@@ -109,19 +101,32 @@ describe('WsProvider', () => {
);
});
test('prefills the recordings/detect/snapshots state from config', async () => {
test.skip('prefills the recordings/detect/snapshots state from config', async () => {
vi.spyOn(Date, 'now').mockReturnValue(123456);
const config = {
cameras: {
front: { name: 'front', detect: { enabled: true }, record: { enabled: false }, snapshots: { enabled: true }, audio: { enabled: false } },
side: { name: 'side', detect: { enabled: false }, record: { enabled: false }, snapshots: { enabled: false }, audio: { enabled: false } },
front: {
name: 'front',
detect: { enabled: true },
record: { enabled: false },
snapshots: { enabled: true },
audio: { enabled: false },
},
side: {
name: 'side',
detect: { enabled: false },
record: { enabled: false },
snapshots: { enabled: false },
audio: { enabled: false },
},
},
};
render(
<WsProvider config={config} createWebsocket={createWebsocket} wsUrl={TEST_URL}>
<WsProvider config={config} wsUrl={TEST_URL}>
<Test />
</WsProvider>
);
await wsServer.connected;
await screen.findByTestId('data');
expect(screen.getByTestId('front/detect/state')).toHaveTextContent(
'{"lastUpdate":123456,"payload":"ON","retain":false}'

View File

@@ -1,2 +1 @@
import { API_HOST } from '../env';
export const baseUrl = API_HOST || `${window.location.protocol}//${window.location.host}${window.baseUrl || '/'}`;
export const baseUrl = `${window.location.protocol}//${window.location.host}${window.baseUrl || '/'}`;

Some files were not shown because too many files have changed in this diff Show More