forked from Github/frigate
Compare commits
191 Commits
model-fixe
...
dev
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3947e79086 | ||
|
|
91ab1071d2 | ||
|
|
409e911752 | ||
|
|
9983bd8d92 | ||
|
|
32c71c4108 | ||
|
|
ef6952e3ea | ||
|
|
173b7aa308 | ||
|
|
c4727f19e1 | ||
|
|
b8a74793ca | ||
|
|
c1dede9369 | ||
|
|
0c4ea504d8 | ||
|
|
b265b6b190 | ||
|
|
d57a61b50f | ||
|
|
4fc9106c17 | ||
|
|
38e098ca31 | ||
|
|
e7ad38d827 | ||
|
|
a1ce9aacf2 | ||
|
|
322b847356 | ||
|
|
98338e4c7f | ||
|
|
171a89f37b | ||
|
|
8114b541a8 | ||
|
|
c48396c5c6 | ||
|
|
00371546a3 | ||
|
|
87e7b62c85 | ||
|
|
15ffe5c254 | ||
|
|
a767dad3a1 | ||
|
|
9387246f83 | ||
|
|
bed20de302 | ||
|
|
70fc5393b1 | ||
|
|
9b80dbe014 | ||
|
|
78a013d63a | ||
|
|
ddfe8f3921 | ||
|
|
4af752028f | ||
|
|
b149828c9f | ||
|
|
3dc26e78ef | ||
|
|
d9ef8fa206 | ||
|
|
292499aebc | ||
|
|
717493e668 | ||
|
|
d49f958d4d | ||
|
|
33ee32865f | ||
|
|
17f8939f97 | ||
|
|
1b7fe9523d | ||
|
|
0763f56047 | ||
|
|
1ea282fba8 | ||
|
|
869fa2631e | ||
|
|
f336a91fee | ||
|
|
d302b6e198 | ||
|
|
ed2e1f3f72 | ||
|
|
b4d82084a9 | ||
|
|
53b96dfb89 | ||
|
|
0e3fb6cbdd | ||
|
|
6b12a45a95 | ||
|
|
0b9c4c18dd | ||
|
|
d0cc8cb64b | ||
|
|
bb86e71e65 | ||
|
|
8aa6297308 | ||
|
|
d3b631a952 | ||
|
|
47d495fc01 | ||
|
|
32322b23b2 | ||
|
|
c0ba98e26f | ||
|
|
a5a7cd3107 | ||
|
|
a729408599 | ||
|
|
4dddc53735 | ||
|
|
5f42caad03 | ||
|
|
5475672a9d | ||
|
|
833cdcb6d2 | ||
|
|
c95bc9fe44 | ||
|
|
a1fa9decad | ||
|
|
4a5fe4138e | ||
|
|
002fdeae67 | ||
|
|
5802a66469 | ||
|
|
71e8f75a01 | ||
|
|
ee816b2251 | ||
|
|
f094c59cd0 | ||
|
|
d25ffdb292 | ||
|
|
2207a91f7b | ||
|
|
33957e5360 | ||
|
|
ff92b13f35 | ||
|
|
e76f4e9bd9 | ||
|
|
0df091f387 | ||
|
|
66277fbb6c | ||
|
|
a67ff3843a | ||
|
|
9ae839ad72 | ||
|
|
66f71aecf7 | ||
|
|
0b203a3673 | ||
|
|
26c3f9f914 | ||
|
|
474c248c9d | ||
|
|
5b1b6b5be0 | ||
|
|
45e9030358 | ||
|
|
f9c1600f0d | ||
|
|
ad85f8882b | ||
|
|
206ed06905 | ||
|
|
e407ba47c2 | ||
|
|
7fdf42a56f | ||
|
|
4eea541352 | ||
|
|
ed9c67804a | ||
|
|
9c20cd5f7b | ||
|
|
6c86827d3a | ||
|
|
d2b2f3d54d | ||
|
|
64b3397f8e | ||
|
|
0829517b72 | ||
|
|
c1bfc1df67 | ||
|
|
96c0c43dc8 | ||
|
|
a68c7f4ef8 | ||
|
|
7c474e6827 | ||
|
|
143bab87f1 | ||
|
|
580f35112e | ||
|
|
3249ffb273 | ||
|
|
7bae9463b2 | ||
|
|
ae30ac6e3c | ||
|
|
46ed520886 | ||
|
|
ace02a6dfa | ||
|
|
0d59754be2 | ||
|
|
15bd26c9b1 | ||
|
|
bc371acb3e | ||
|
|
2eb5fbf112 | ||
|
|
fc0fb158d5 | ||
|
|
404807c697 | ||
|
|
29ea7c53f2 | ||
|
|
1fc4af9c86 | ||
|
|
ac762762c3 | ||
|
|
553676aade | ||
|
|
a13b9815f6 | ||
|
|
156e7cc628 | ||
|
|
959ca0f412 | ||
|
|
9755fa0537 | ||
|
|
77ec86d31a | ||
|
|
189d4b459f | ||
|
|
44f40966e7 | ||
|
|
7d3313e732 | ||
|
|
591b50dfa7 | ||
|
|
27ef661fec | ||
|
|
d7935abc14 | ||
|
|
11068aa9d0 | ||
|
|
1234003527 | ||
|
|
e5ebf938f6 | ||
|
|
8c2c07fd18 | ||
|
|
9e1a50c3be | ||
|
|
ac8ddada0b | ||
|
|
885485da70 | ||
|
|
bb4e863e87 | ||
|
|
c7a4220d65 | ||
|
|
03dd9b2d42 | ||
|
|
89ca085b94 | ||
|
|
fffd9defea | ||
|
|
d10fea6012 | ||
|
|
ab26aee8b2 | ||
|
|
bb80a7b2ee | ||
|
|
e4a6b29279 | ||
|
|
d12c7809dd | ||
|
|
357ce0382e | ||
|
|
73da3d9b20 | ||
|
|
e67b7a6d5e | ||
|
|
4e25bebdd0 | ||
|
|
abd22d2566 | ||
|
|
8aeb597780 | ||
|
|
33825f6d96 | ||
|
|
eca504cb07 | ||
|
|
4c75440af4 | ||
|
|
94f7528885 | ||
|
|
4dadf6d353 | ||
|
|
2d27e72ed9 | ||
|
|
4ff0c8a8d1 | ||
|
|
f9fba94863 | ||
|
|
f9b246dbd0 | ||
|
|
8fefded8dc | ||
|
|
18824830fd | ||
|
|
fa81d87dc0 | ||
|
|
8bc145472a | ||
|
|
7afc1e9762 | ||
|
|
fc59c83e16 | ||
|
|
e4048be088 | ||
|
|
d715a8c290 | ||
|
|
ad308252a1 | ||
|
|
c7d9f83638 | ||
|
|
828fdbfd2d | ||
|
|
40c6fda19d | ||
|
|
b69816c2f9 | ||
|
|
46f5234bd9 | ||
|
|
81b8d7a66b | ||
|
|
b1285a16c1 | ||
|
|
90140e7710 | ||
|
|
8364e68667 | ||
|
|
4bb420d049 | ||
|
|
560dc68120 | ||
|
|
8fcb8e54f7 | ||
|
|
af844ea9d5 | ||
|
|
51509760e3 | ||
|
|
f86957e5e1 | ||
|
|
2a15b95f18 | ||
|
|
039ab1ccd7 |
@@ -12,6 +12,7 @@ argmax
|
||||
argmin
|
||||
argpartition
|
||||
ascontiguousarray
|
||||
astype
|
||||
authelia
|
||||
authentik
|
||||
autodetected
|
||||
@@ -42,6 +43,7 @@ codeproject
|
||||
colormap
|
||||
colorspace
|
||||
comms
|
||||
coro
|
||||
ctypeslib
|
||||
CUDA
|
||||
Cuvid
|
||||
@@ -59,6 +61,7 @@ dsize
|
||||
dtype
|
||||
ECONNRESET
|
||||
edgetpu
|
||||
fastapi
|
||||
faststart
|
||||
fflags
|
||||
ffprobe
|
||||
@@ -193,6 +196,7 @@ poweroff
|
||||
preexec
|
||||
probesize
|
||||
protobuf
|
||||
pstate
|
||||
psutil
|
||||
pubkey
|
||||
putenv
|
||||
@@ -237,6 +241,7 @@ sleeptime
|
||||
SNDMORE
|
||||
socs
|
||||
sqliteq
|
||||
sqlitevecq
|
||||
ssdlite
|
||||
statm
|
||||
stimeout
|
||||
@@ -271,9 +276,11 @@ unraid
|
||||
unreviewed
|
||||
userdata
|
||||
usermod
|
||||
uvicorn
|
||||
vaapi
|
||||
vainfo
|
||||
variations
|
||||
vbios
|
||||
vconcat
|
||||
vitb
|
||||
vstream
|
||||
|
||||
@@ -3,10 +3,12 @@
|
||||
set -euxo pipefail
|
||||
|
||||
# Cleanup the old github host key
|
||||
sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts
|
||||
# Add new github host key
|
||||
curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \
|
||||
sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
|
||||
if [[ -f ~/.ssh/known_hosts ]]; then
|
||||
# Add new github host key
|
||||
sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts
|
||||
curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \
|
||||
sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
|
||||
fi
|
||||
|
||||
# Frigate normal container runs as root, so it have permission to create
|
||||
# the folders. But the devcontainer runs as the host user, so we need to
|
||||
|
||||
1
.github/pull_request_template.md
vendored
1
.github/pull_request_template.md
vendored
@@ -13,6 +13,7 @@
|
||||
- [ ] New feature
|
||||
- [ ] Breaking change (fix/feature causing existing functionality to break)
|
||||
- [ ] Code quality improvements to existing code
|
||||
- [ ] Documentation Update
|
||||
|
||||
## Additional information
|
||||
|
||||
|
||||
25
.github/workflows/ci.yml
vendored
25
.github/workflows/ci.yml
vendored
@@ -6,6 +6,8 @@ on:
|
||||
branches:
|
||||
- dev
|
||||
- master
|
||||
paths-ignore:
|
||||
- "docs/**"
|
||||
|
||||
# only run the latest commit to avoid cache overwrites
|
||||
concurrency:
|
||||
@@ -22,6 +24,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -43,6 +47,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -69,21 +75,14 @@ jobs:
|
||||
rpi.tags=${{ steps.setup.outputs.image-name }}-rpi
|
||||
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64,mode=max
|
||||
- name: Build and push Rockchip build
|
||||
uses: docker/bake-action@v3
|
||||
with:
|
||||
push: true
|
||||
targets: rk
|
||||
files: docker/rockchip/rk.hcl
|
||||
set: |
|
||||
rk.tags=${{ steps.setup.outputs.image-name }}-rk
|
||||
*.cache-from=type=gha
|
||||
jetson_jp4_build:
|
||||
runs-on: ubuntu-latest
|
||||
name: Jetson Jetpack 4
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -110,6 +109,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -138,6 +139,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -163,6 +166,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -186,6 +191,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
|
||||
24
.github/workflows/dependabot-auto-merge.yaml
vendored
24
.github/workflows/dependabot-auto-merge.yaml
vendored
@@ -1,24 +0,0 @@
|
||||
name: dependabot-auto-merge
|
||||
on: pull_request
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
dependabot-auto-merge:
|
||||
runs-on: ubuntu-latest
|
||||
if: github.actor == 'dependabot[bot]'
|
||||
steps:
|
||||
- name: Get Dependabot metadata
|
||||
id: metadata
|
||||
uses: dependabot/fetch-metadata@v2
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable auto-merge for Dependabot PRs
|
||||
if: steps.metadata.outputs.dependency-type == 'direct:development' && (steps.metadata.outputs.update-type == 'version-update:semver-minor' || steps.metadata.outputs.update-type == 'version-update:semver-patch')
|
||||
run: |
|
||||
gh pr review --approve "$PR_URL"
|
||||
gh pr merge --auto --squash "$PR_URL"
|
||||
env:
|
||||
PR_URL: ${{ github.event.pull_request.html_url }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
17
.github/workflows/pull_request.yml
vendored
17
.github/workflows/pull_request.yml
vendored
@@ -1,6 +1,9 @@
|
||||
name: On pull request
|
||||
|
||||
on: pull_request
|
||||
on:
|
||||
pull_request:
|
||||
paths-ignore:
|
||||
- "docs/**"
|
||||
|
||||
env:
|
||||
DEFAULT_PYTHON: 3.9
|
||||
@@ -16,6 +19,8 @@ jobs:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
@@ -35,6 +40,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
@@ -49,6 +56,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 20.x
|
||||
@@ -64,8 +73,10 @@ jobs:
|
||||
steps:
|
||||
- name: Check out the repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up Python ${{ env.DEFAULT_PYTHON }}
|
||||
uses: actions/setup-python@v5.1.0
|
||||
uses: actions/setup-python@v5.3.0
|
||||
with:
|
||||
python-version: ${{ env.DEFAULT_PYTHON }}
|
||||
- name: Install requirements
|
||||
@@ -85,6 +96,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
|
||||
13
.github/workflows/release.yml
vendored
13
.github/workflows/release.yml
vendored
@@ -11,6 +11,8 @@ jobs:
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- id: lowercaseRepo
|
||||
uses: ASzc/change-string-case-action@v6
|
||||
with:
|
||||
@@ -22,10 +24,13 @@ jobs:
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Create tag variables
|
||||
env:
|
||||
TAG: ${{ github.ref_name }}
|
||||
LOWERCASE_REPO: ${{ steps.lowercaseRepo.outputs.lowercase }}
|
||||
run: |
|
||||
BUILD_TYPE=$([[ "${{ github.ref_name }}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
|
||||
BUILD_TYPE=$([[ "${TAG}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
|
||||
echo "BUILD_TYPE=${BUILD_TYPE}" >> $GITHUB_ENV
|
||||
echo "BASE=ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}" >> $GITHUB_ENV
|
||||
echo "BASE=ghcr.io/${LOWERCASE_REPO}" >> $GITHUB_ENV
|
||||
echo "BUILD_TAG=${GITHUB_SHA::7}" >> $GITHUB_ENV
|
||||
echo "CLEAN_VERSION=$(echo ${GITHUB_REF##*/} | tr '[:upper:]' '[:lower:]' | sed 's/^[v]//')" >> $GITHUB_ENV
|
||||
- name: Tag and push the main image
|
||||
@@ -34,14 +39,14 @@ jobs:
|
||||
STABLE_TAG=${BASE}:stable
|
||||
PULL_TAG=${BASE}:${BUILD_TAG}
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${VERSION_TAG}
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${VERSION_TAG}-${variant}
|
||||
done
|
||||
|
||||
# stable tag
|
||||
if [[ "${BUILD_TYPE}" == "stable" ]]; then
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${STABLE_TAG}
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${STABLE_TAG}-${variant}
|
||||
done
|
||||
fi
|
||||
|
||||
5
.github/workflows/stale.yml
vendored
5
.github/workflows/stale.yml
vendored
@@ -23,7 +23,9 @@ jobs:
|
||||
exempt-pr-labels: "pinned,security,dependencies"
|
||||
operations-per-run: 120
|
||||
- name: Print outputs
|
||||
run: echo ${{ join(steps.stale.outputs.*, ',') }}
|
||||
env:
|
||||
STALE_OUTPUT: ${{ join(steps.stale.outputs.*, ',') }}
|
||||
run: echo "$STALE_OUTPUT"
|
||||
|
||||
# clean_ghcr:
|
||||
# name: Delete outdated dev container images
|
||||
@@ -38,4 +40,3 @@ jobs:
|
||||
# account-type: personal
|
||||
# token: ${{ secrets.GITHUB_TOKEN }}
|
||||
# token-type: github-token
|
||||
|
||||
|
||||
@@ -61,7 +61,7 @@ def start(id, num_detections, detection_queue, event):
|
||||
object_detector.cleanup()
|
||||
print(f"{id} - Processed for {duration:.2f} seconds.")
|
||||
print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
|
||||
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||
print(f"{id} - Average frame processing time: {mean(frame_times) * 1000:.2f}ms")
|
||||
|
||||
|
||||
######
|
||||
|
||||
@@ -23,7 +23,7 @@ services:
|
||||
# count: 1
|
||||
# capabilities: [gpu]
|
||||
environment:
|
||||
YOLO_MODELS: yolov7-320
|
||||
YOLO_MODELS: ""
|
||||
devices:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
# - /dev/dri:/dev/dri # for intel hwaccel, needs to be updated for your hardware
|
||||
|
||||
@@ -16,89 +16,25 @@ RUN mkdir /h8l-wheels
|
||||
# Build the wheels
|
||||
RUN pip3 wheel --wheel-dir=/h8l-wheels -c /requirements-wheels.txt -r /requirements-wheels-h8l.txt
|
||||
|
||||
# Build HailoRT and create wheel
|
||||
FROM wheels AS build-hailort
|
||||
FROM wget AS hailort
|
||||
ARG TARGETARCH
|
||||
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
# Install necessary APT packages
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
apt-transport-https \
|
||||
gnupg \
|
||||
wget \
|
||||
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
|
||||
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
|
||||
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
|
||||
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
|
||||
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
|
||||
&& apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
python3.9 \
|
||||
python3.9-dev \
|
||||
build-essential cmake git \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Extract Python version and set environment variables
|
||||
RUN PYTHON_VERSION=$(python3 --version 2>&1 | awk '{print $2}' | cut -d. -f1,2) && \
|
||||
PYTHON_VERSION_NO_DOT=$(echo $PYTHON_VERSION | sed 's/\.//') && \
|
||||
echo "PYTHON_VERSION=$PYTHON_VERSION" > /etc/environment && \
|
||||
echo "PYTHON_VERSION_NO_DOT=$PYTHON_VERSION_NO_DOT" >> /etc/environment
|
||||
|
||||
# Clone and build HailoRT
|
||||
RUN . /etc/environment && \
|
||||
git clone https://github.com/hailo-ai/hailort.git /opt/hailort && \
|
||||
cd /opt/hailort && \
|
||||
git checkout v4.18.0 && \
|
||||
cmake -H. -Bbuild -DCMAKE_BUILD_TYPE=Release -DHAILO_BUILD_PYBIND=1 -DPYBIND11_PYTHON_VERSION=${PYTHON_VERSION} && \
|
||||
cmake --build build --config release --target libhailort && \
|
||||
cmake --build build --config release --target _pyhailort && \
|
||||
cp build/hailort/libhailort/bindings/python/src/_pyhailort.cpython-${PYTHON_VERSION_NO_DOT}-$(if [ $TARGETARCH == "amd64" ]; then echo 'x86_64'; else echo 'aarch64'; fi )-linux-gnu.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/ && \
|
||||
cp build/hailort/libhailort/src/libhailort.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
|
||||
|
||||
RUN ls -ahl /opt/hailort/build/hailort/libhailort/src/
|
||||
RUN ls -ahl /opt/hailort/hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
|
||||
|
||||
# Remove the existing setup.py if it exists in the target directory
|
||||
RUN rm -f /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
|
||||
|
||||
# Copy generate_wheel_conf.py and setup.py
|
||||
COPY docker/hailo8l/pyhailort_build_scripts/generate_wheel_conf.py /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
|
||||
COPY docker/hailo8l/pyhailort_build_scripts/setup.py /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
|
||||
|
||||
# Run the generate_wheel_conf.py script
|
||||
RUN python3 /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
|
||||
|
||||
# Create a wheel file using pip3 wheel
|
||||
RUN cd /opt/hailort/hailort/libhailort/bindings/python/platform && \
|
||||
python3 setup.py bdist_wheel --dist-dir /hailo-wheels
|
||||
RUN --mount=type=bind,source=docker/hailo8l/install_hailort.sh,target=/deps/install_hailort.sh \
|
||||
/deps/install_hailort.sh
|
||||
|
||||
# Use deps as the base image
|
||||
FROM deps AS h8l-frigate
|
||||
|
||||
# Copy the wheels from the wheels stage
|
||||
COPY --from=h8l-wheels /h8l-wheels /deps/h8l-wheels
|
||||
COPY --from=build-hailort /hailo-wheels /deps/hailo-wheels
|
||||
COPY --from=build-hailort /etc/environment /etc/environment
|
||||
RUN CC=$(python3 -c "import sysconfig; import shlex; cc = sysconfig.get_config_var('CC'); cc_cmd = shlex.split(cc)[0]; print(cc_cmd[:-4] if cc_cmd.endswith('-gcc') else cc_cmd)") && \
|
||||
echo "CC=$CC" >> /etc/environment
|
||||
COPY --from=hailort /hailo-wheels /deps/hailo-wheels
|
||||
COPY --from=hailort /rootfs/ /
|
||||
|
||||
# Install the wheels
|
||||
RUN pip3 install -U /deps/h8l-wheels/*.whl
|
||||
RUN pip3 install -U /deps/hailo-wheels/*.whl
|
||||
|
||||
RUN . /etc/environment && \
|
||||
mv /usr/local/lib/python${PYTHON_VERSION}/dist-packages/hailo_platform/pyhailort/libhailort.so /usr/lib/${CC} && \
|
||||
cd /usr/lib/${CC}/ && \
|
||||
ln -s libhailort.so libhailort.so.4.18.0
|
||||
|
||||
# Copy base files from the rootfs stage
|
||||
COPY --from=rootfs / /
|
||||
|
||||
# Set environment variables for Hailo SDK
|
||||
ENV PATH="/opt/hailort/bin:${PATH}"
|
||||
ENV LD_LIBRARY_PATH="/usr/lib/$(if [ $TARGETARCH == "amd64" ]; then echo 'x86_64'; else echo 'aarch64'; fi )-linux-gnu:${LD_LIBRARY_PATH}"
|
||||
|
||||
# Set workdir
|
||||
WORKDIR /opt/frigate/
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
target wget {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/arm64","linux/amd64"]
|
||||
target = "wget"
|
||||
}
|
||||
|
||||
target wheels {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/arm64","linux/amd64"]
|
||||
@@ -19,6 +25,7 @@ target rootfs {
|
||||
target h8l {
|
||||
dockerfile = "docker/hailo8l/Dockerfile"
|
||||
contexts = {
|
||||
wget = "target:wget"
|
||||
wheels = "target:wheels"
|
||||
deps = "target:deps"
|
||||
rootfs = "target:rootfs"
|
||||
|
||||
19
docker/hailo8l/install_hailort.sh
Executable file
19
docker/hailo8l/install_hailort.sh
Executable file
@@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euxo pipefail
|
||||
|
||||
hailo_version="4.19.0"
|
||||
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
arch="x86_64"
|
||||
elif [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
arch="aarch64"
|
||||
fi
|
||||
|
||||
wget -qO- "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${TARGETARCH}.tar.gz" |
|
||||
tar -C / -xzf -
|
||||
|
||||
mkdir -p /hailo-wheels
|
||||
|
||||
wget -P /hailo-wheels/ "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${hailo_version}-cp39-cp39-linux_${arch}.whl"
|
||||
|
||||
@@ -1,67 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
import sysconfig
|
||||
|
||||
|
||||
def extract_toolchain_info(compiler):
|
||||
# Remove the "-gcc" or "-g++" suffix if present
|
||||
if compiler.endswith("-gcc") or compiler.endswith("-g++"):
|
||||
compiler = compiler.rsplit("-", 1)[0]
|
||||
|
||||
# Extract the toolchain and ABI part (e.g., "gnu")
|
||||
toolchain_parts = compiler.split("-")
|
||||
abi_conventions = next(
|
||||
(part for part in toolchain_parts if part in ["gnu", "musl", "eabi", "uclibc"]),
|
||||
"",
|
||||
)
|
||||
|
||||
return abi_conventions
|
||||
|
||||
|
||||
def generate_wheel_conf():
|
||||
conf_file_path = os.path.join(
|
||||
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
|
||||
)
|
||||
|
||||
# Extract current system and Python version information
|
||||
py_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
|
||||
arch = platform.machine()
|
||||
system = platform.system().lower()
|
||||
libc_version = platform.libc_ver()[1]
|
||||
|
||||
# Get the compiler information
|
||||
compiler = sysconfig.get_config_var("CC")
|
||||
abi_conventions = extract_toolchain_info(compiler)
|
||||
|
||||
# Create the new configuration data
|
||||
new_conf_data = {
|
||||
"py_version": py_version,
|
||||
"arch": arch,
|
||||
"system": system,
|
||||
"libc_version": libc_version,
|
||||
"abi": abi_conventions,
|
||||
"extension": {
|
||||
"posix": "so",
|
||||
"nt": "pyd", # Windows
|
||||
}[os.name],
|
||||
}
|
||||
|
||||
# If the file exists, load the existing data
|
||||
if os.path.isfile(conf_file_path):
|
||||
with open(conf_file_path, "r") as conf_file:
|
||||
conf_data = json.load(conf_file)
|
||||
# Update the existing data with the new data
|
||||
conf_data.update(new_conf_data)
|
||||
else:
|
||||
# If the file does not exist, use the new data
|
||||
conf_data = new_conf_data
|
||||
|
||||
# Write the updated data to the file
|
||||
with open(conf_file_path, "w") as conf_file:
|
||||
json.dump(conf_data, conf_file, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
generate_wheel_conf()
|
||||
@@ -1,111 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
from setuptools import find_packages, setup
|
||||
from wheel.bdist_wheel import bdist_wheel as orig_bdist_wheel
|
||||
|
||||
|
||||
class NonPurePythonBDistWheel(orig_bdist_wheel):
|
||||
"""Makes the wheel platform-dependent so it can be based on the _pyhailort architecture"""
|
||||
|
||||
def finalize_options(self):
|
||||
orig_bdist_wheel.finalize_options(self)
|
||||
self.root_is_pure = False
|
||||
|
||||
|
||||
def _get_hailort_lib_path():
|
||||
lib_filename = "libhailort.so"
|
||||
lib_path = os.path.join(
|
||||
os.path.abspath(os.path.dirname(__file__)),
|
||||
f"hailo_platform/pyhailort/{lib_filename}",
|
||||
)
|
||||
if os.path.exists(lib_path):
|
||||
print(f"Found libhailort shared library at: {lib_path}")
|
||||
else:
|
||||
print(f"Error: libhailort shared library not found at: {lib_path}")
|
||||
raise FileNotFoundError(f"libhailort shared library not found at: {lib_path}")
|
||||
return lib_path
|
||||
|
||||
|
||||
def _get_pyhailort_lib_path():
|
||||
conf_file_path = os.path.join(
|
||||
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
|
||||
)
|
||||
if not os.path.isfile(conf_file_path):
|
||||
raise FileNotFoundError(f"Configuration file not found: {conf_file_path}")
|
||||
|
||||
with open(conf_file_path, "r") as conf_file:
|
||||
content = json.load(conf_file)
|
||||
py_version = content["py_version"]
|
||||
arch = content["arch"]
|
||||
system = content["system"]
|
||||
extension = content["extension"]
|
||||
abi = content["abi"]
|
||||
|
||||
# Construct the filename directly
|
||||
lib_filename = f"_pyhailort.cpython-{py_version.split('cp')[1]}-{arch}-{system}-{abi}.{extension}"
|
||||
lib_path = os.path.join(
|
||||
os.path.abspath(os.path.dirname(__file__)),
|
||||
f"hailo_platform/pyhailort/{lib_filename}",
|
||||
)
|
||||
|
||||
if os.path.exists(lib_path):
|
||||
print(f"Found _pyhailort shared library at: {lib_path}")
|
||||
else:
|
||||
print(f"Error: _pyhailort shared library not found at: {lib_path}")
|
||||
raise FileNotFoundError(
|
||||
f"_pyhailort shared library not found at: {lib_path}"
|
||||
)
|
||||
|
||||
return lib_path
|
||||
|
||||
|
||||
def _get_package_paths():
|
||||
packages = []
|
||||
pyhailort_lib = _get_pyhailort_lib_path()
|
||||
hailort_lib = _get_hailort_lib_path()
|
||||
if pyhailort_lib:
|
||||
packages.append(pyhailort_lib)
|
||||
if hailort_lib:
|
||||
packages.append(hailort_lib)
|
||||
packages.append(os.path.abspath("hailo_tutorials/notebooks/*"))
|
||||
packages.append(os.path.abspath("hailo_tutorials/hefs/*"))
|
||||
return packages
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
setup(
|
||||
author="Hailo team",
|
||||
author_email="contact@hailo.ai",
|
||||
cmdclass={
|
||||
"bdist_wheel": NonPurePythonBDistWheel,
|
||||
},
|
||||
description="HailoRT",
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
"hailo=hailo_platform.tools.hailocli.main:main",
|
||||
]
|
||||
},
|
||||
install_requires=[
|
||||
"argcomplete",
|
||||
"contextlib2",
|
||||
"future",
|
||||
"netaddr",
|
||||
"netifaces",
|
||||
"verboselogs",
|
||||
"numpy==1.23.3",
|
||||
],
|
||||
name="hailort",
|
||||
package_data={
|
||||
"hailo_platform": _get_package_paths(),
|
||||
},
|
||||
packages=find_packages(),
|
||||
platforms=[
|
||||
"linux_x86_64",
|
||||
"linux_aarch64",
|
||||
"win_amd64",
|
||||
],
|
||||
url="https://hailo.ai/",
|
||||
version="4.17.0",
|
||||
zip_safe=False,
|
||||
)
|
||||
@@ -1,12 +1,12 @@
|
||||
appdirs==1.4.4
|
||||
argcomplete==2.0.0
|
||||
contextlib2==0.6.0.post1
|
||||
distlib==0.3.6
|
||||
filelock==3.8.0
|
||||
future==0.18.2
|
||||
importlib-metadata==5.1.0
|
||||
importlib-resources==5.1.2
|
||||
netaddr==0.8.0
|
||||
netifaces==0.10.9
|
||||
verboselogs==1.7
|
||||
virtualenv==20.17.0
|
||||
appdirs==1.4.*
|
||||
argcomplete==2.0.*
|
||||
contextlib2==0.6.*
|
||||
distlib==0.3.*
|
||||
filelock==3.8.*
|
||||
future==0.18.*
|
||||
importlib-metadata==5.1.*
|
||||
importlib-resources==5.1.*
|
||||
netaddr==0.8.*
|
||||
netifaces==0.10.*
|
||||
verboselogs==1.7.*
|
||||
virtualenv==20.17.*
|
||||
|
||||
@@ -13,7 +13,7 @@ else
|
||||
fi
|
||||
|
||||
# Clone the HailoRT driver repository
|
||||
git clone --depth 1 --branch v4.18.0 https://github.com/hailo-ai/hailort-drivers.git
|
||||
git clone --depth 1 --branch v4.19.0 https://github.com/hailo-ai/hailort-drivers.git
|
||||
|
||||
# Build and install the HailoRT driver
|
||||
cd hailort-drivers/linux/pcie
|
||||
@@ -38,7 +38,7 @@ cd ../../
|
||||
if [ ! -d /lib/firmware/hailo ]; then
|
||||
sudo mkdir /lib/firmware/hailo
|
||||
fi
|
||||
sudo mv hailo8_fw.4.17.0.bin /lib/firmware/hailo/hailo8_fw.bin
|
||||
sudo mv hailo8_fw.*.bin /lib/firmware/hailo/hailo8_fw.bin
|
||||
|
||||
# Install udev rules
|
||||
sudo cp ./linux/pcie/51-hailo-udev.rules /etc/udev/rules.d/
|
||||
|
||||
@@ -211,6 +211,9 @@ ENV TOKENIZERS_PARALLELISM=true
|
||||
# https://github.com/huggingface/transformers/issues/27214
|
||||
ENV TRANSFORMERS_NO_ADVISORY_WARNINGS=1
|
||||
|
||||
# Set OpenCV ffmpeg loglevel to fatal: https://ffmpeg.org/doxygen/trunk/log_8h.html
|
||||
ENV OPENCV_FFMPEG_LOGLEVEL=8
|
||||
|
||||
ENV PATH="/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}"
|
||||
ENV LIBAVFORMAT_VERSION_MAJOR=60
|
||||
|
||||
|
||||
@@ -87,8 +87,8 @@ if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list
|
||||
apt-get -qq update
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
intel-opencl-icd intel-level-zero-gpu intel-media-va-driver-non-free \
|
||||
libmfx1 libmfxgen1 libvpl2
|
||||
intel-opencl-icd=24.35.30872.31-996~22.04 intel-level-zero-gpu=1.3.29735.27-914~22.04 intel-media-va-driver-non-free=24.3.3-996~22.04 \
|
||||
libmfx1=23.2.2-880~22.04 libmfxgen1=24.2.4-914~22.04 libvpl2=1:2.13.0.0-996~22.04
|
||||
|
||||
rm -f /usr/share/keyrings/intel-graphics.gpg
|
||||
rm -f /etc/apt/sources.list.d/intel-gpu-jammy.list
|
||||
|
||||
@@ -1,9 +1,11 @@
|
||||
click == 8.1.*
|
||||
# FastAPI
|
||||
aiohttp == 3.11.2
|
||||
starlette == 0.41.2
|
||||
starlette-context == 0.3.6
|
||||
fastapi == 0.115.0
|
||||
fastapi == 0.115.*
|
||||
uvicorn == 0.30.*
|
||||
slowapi == 0.1.9
|
||||
slowapi == 0.1.*
|
||||
imutils == 0.5.*
|
||||
joserfc == 1.0.*
|
||||
pathvalidate == 3.2.*
|
||||
@@ -16,10 +18,10 @@ paho-mqtt == 2.1.*
|
||||
pandas == 2.2.*
|
||||
peewee == 3.17.*
|
||||
peewee_migrate == 1.13.*
|
||||
psutil == 5.9.*
|
||||
psutil == 6.1.*
|
||||
pydantic == 2.8.*
|
||||
git+https://github.com/fbcotter/py3nvml#egg=py3nvml
|
||||
pytz == 2024.1
|
||||
pytz == 2024.*
|
||||
pyzmq == 26.2.*
|
||||
ruamel.yaml == 0.18.*
|
||||
tzlocal == 5.2
|
||||
|
||||
@@ -165,7 +165,7 @@ if config.get("birdseye", {}).get("restream", False):
|
||||
birdseye: dict[str, any] = config.get("birdseye")
|
||||
|
||||
input = f"-f rawvideo -pix_fmt yuv420p -video_size {birdseye.get('width', 1280)}x{birdseye.get('height', 720)} -r 10 -i {BIRDSEYE_PIPE}"
|
||||
ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(ffmpeg_path, config.get('ffmpeg', {}).get('hwaccel_args'), input, '-rtsp_transport tcp -f rtsp {output}')}"
|
||||
ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(ffmpeg_path, config.get('ffmpeg', {}).get('hwaccel_args', ''), input, '-rtsp_transport tcp -f rtsp {output}')}"
|
||||
|
||||
if go2rtc_config.get("streams"):
|
||||
go2rtc_config["streams"]["birdseye"] = ffmpeg_cmd
|
||||
|
||||
@@ -22,6 +22,6 @@ ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.0.0/librknnrt
|
||||
|
||||
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffmpeg
|
||||
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffprobe
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-5/ffmpeg /usr/lib/ffmpeg/6.0/bin/
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-5/ffprobe /usr/lib/ffmpeg/6.0/bin/
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-7/ffmpeg /usr/lib/ffmpeg/6.0/bin/
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-7/ffprobe /usr/lib/ffmpeg/6.0/bin/
|
||||
ENV PATH="/usr/lib/ffmpeg/6.0/bin/:${PATH}"
|
||||
|
||||
@@ -12,26 +12,11 @@ ARG TARGETARCH
|
||||
COPY docker/tensorrt/requirements-amd64.txt /requirements-tensorrt.txt
|
||||
RUN mkdir -p /trt-wheels && pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
|
||||
|
||||
# Build CuDNN
|
||||
FROM wget AS cudnn-deps
|
||||
|
||||
ARG COMPUTE_LEVEL
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y git build-essential
|
||||
|
||||
RUN wget https://developer.download.nvidia.com/compute/cuda/repos/debian11/x86_64/cuda-keyring_1.1-1_all.deb \
|
||||
&& dpkg -i cuda-keyring_1.1-1_all.deb \
|
||||
&& apt-get update \
|
||||
&& apt-get -y install cuda-toolkit \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
FROM tensorrt-base AS frigate-tensorrt
|
||||
ENV TRT_VER=8.5.3
|
||||
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
|
||||
pip3 install -U /deps/trt-wheels/*.whl && \
|
||||
ldconfig
|
||||
COPY --from=cudnn-deps /usr/local/cuda-12.6 /usr/local/cuda
|
||||
|
||||
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.9/dist-packages/tensorrt:/usr/local/cuda/lib64:/usr/local/lib/python3.9/dist-packages/nvidia/cufft/lib
|
||||
WORKDIR /opt/frigate/
|
||||
@@ -42,7 +27,7 @@ FROM devcontainer AS devcontainer-trt
|
||||
|
||||
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
|
||||
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
|
||||
COPY --from=cudnn-deps /usr/local/cuda-12.6 /usr/local/cuda
|
||||
COPY --from=trt-deps /usr/local/cuda-12.1 /usr/local/cuda
|
||||
COPY docker/tensorrt/detector/rootfs/ /
|
||||
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
|
||||
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
|
||||
|
||||
@@ -10,8 +10,8 @@ ARG DEBIAN_FRONTEND
|
||||
# Use a separate container to build wheels to prevent build dependencies in final image
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y --no-install-recommends \
|
||||
python3.9 python3.9-dev \
|
||||
wget build-essential cmake git \
|
||||
python3.9 python3.9-dev \
|
||||
wget build-essential cmake git \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Ensure python3 defaults to python3.9
|
||||
@@ -41,7 +41,11 @@ RUN --mount=type=bind,source=docker/tensorrt/detector/build_python_tensorrt.sh,t
|
||||
&& TENSORRT_VER=$(cat /etc/TENSORRT_VER) /deps/build_python_tensorrt.sh
|
||||
|
||||
COPY docker/tensorrt/requirements-arm64.txt /requirements-tensorrt.txt
|
||||
RUN pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
|
||||
ADD https://nvidia.box.com/shared/static/9aemm4grzbbkfaesg5l7fplgjtmswhj8.whl /tmp/onnxruntime_gpu-1.15.1-cp39-cp39-linux_aarch64.whl
|
||||
|
||||
RUN pip3 uninstall -y onnxruntime-openvino \
|
||||
&& pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt \
|
||||
&& pip3 install --no-deps /tmp/onnxruntime_gpu-1.15.1-cp39-cp39-linux_aarch64.whl
|
||||
|
||||
FROM build-wheels AS trt-model-wheels
|
||||
ARG DEBIAN_FRONTEND
|
||||
|
||||
@@ -24,8 +24,9 @@ ENV S6_CMD_WAIT_FOR_SERVICES_MAXTIME=0
|
||||
|
||||
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
|
||||
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
|
||||
COPY --from=trt-deps /usr/local/cuda-12.* /usr/local/cuda
|
||||
COPY docker/tensorrt/detector/rootfs/ /
|
||||
ENV YOLO_MODELS="yolov7-320"
|
||||
ENV YOLO_MODELS=""
|
||||
|
||||
HEALTHCHECK --start-period=600s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
|
||||
CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1
|
||||
|
||||
@@ -11,6 +11,7 @@ set -o errexit -o nounset -o pipefail
|
||||
MODEL_CACHE_DIR=${MODEL_CACHE_DIR:-"/config/model_cache/tensorrt"}
|
||||
TRT_VER=${TRT_VER:-$(cat /etc/TENSORRT_VER)}
|
||||
OUTPUT_FOLDER="${MODEL_CACHE_DIR}/${TRT_VER}"
|
||||
YOLO_MODELS=${YOLO_MODELS:-""}
|
||||
|
||||
# Create output folder
|
||||
mkdir -p ${OUTPUT_FOLDER}
|
||||
@@ -19,6 +20,11 @@ FIRST_MODEL=true
|
||||
MODEL_DOWNLOAD=""
|
||||
MODEL_CONVERT=""
|
||||
|
||||
if [ -z "$YOLO_MODELS"]; then
|
||||
echo "tensorrt model preparation disabled"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
for model in ${YOLO_MODELS//,/ }
|
||||
do
|
||||
# Remove old link in case path/version changed
|
||||
|
||||
@@ -9,6 +9,6 @@ nvidia-cuda-runtime-cu11 == 11.8.*; platform_machine == 'x86_64'
|
||||
nvidia-cublas-cu11 == 11.11.3.6; platform_machine == 'x86_64'
|
||||
nvidia-cudnn-cu11 == 8.6.0.*; platform_machine == 'x86_64'
|
||||
nvidia-cufft-cu11==10.*; platform_machine == 'x86_64'
|
||||
onnx==1.14.0; platform_machine == 'x86_64'
|
||||
onnxruntime-gpu==1.17.*; platform_machine == 'x86_64'
|
||||
onnx==1.16.*; platform_machine == 'x86_64'
|
||||
onnxruntime-gpu==1.18.*; platform_machine == 'x86_64'
|
||||
protobuf==3.20.3; platform_machine == 'x86_64'
|
||||
|
||||
@@ -1 +1 @@
|
||||
cuda-python == 11.7; platform_machine == 'aarch64'
|
||||
cuda-python == 11.7; platform_machine == 'aarch64'
|
||||
@@ -174,7 +174,7 @@ NOTE: The folder that is set for the config needs to be the folder that contains
|
||||
|
||||
### Custom go2rtc version
|
||||
|
||||
Frigate currently includes go2rtc v1.9.4, there may be certain cases where you want to run a different version of go2rtc.
|
||||
Frigate currently includes go2rtc v1.9.2, there may be certain cases where you want to run a different version of go2rtc.
|
||||
|
||||
To do this:
|
||||
|
||||
|
||||
@@ -41,6 +41,7 @@ cameras:
|
||||
...
|
||||
onvif:
|
||||
# Required: host of the camera being connected to.
|
||||
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
|
||||
host: 0.0.0.0
|
||||
# Optional: ONVIF port for device (default: shown below).
|
||||
port: 8000
|
||||
@@ -49,6 +50,8 @@ cameras:
|
||||
user: admin
|
||||
# Optional: password for login.
|
||||
password: admin
|
||||
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
|
||||
tls_insecure: False
|
||||
# Optional: PTZ camera object autotracking. Keeps a moving object in
|
||||
# the center of the frame by automatically moving the PTZ camera.
|
||||
autotracking:
|
||||
|
||||
@@ -156,7 +156,9 @@ cameras:
|
||||
|
||||
#### Reolink Doorbell
|
||||
|
||||
The reolink doorbell supports 2-way audio via go2rtc and other applications. It is important that the http-flv stream is still used for stability, a secondary rtsp stream can be added that will be using for the two way audio only.
|
||||
The reolink doorbell supports two way audio via go2rtc and other applications. It is important that the http-flv stream is still used for stability, a secondary rtsp stream can be added that will be using for the two way audio only.
|
||||
|
||||
Ensure HTTP is enabled in the camera's advanced network settings. To use two way talk with Frigate, see the [Live view documentation](/configuration/live#two-way-talk).
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
@@ -181,7 +183,7 @@ go2rtc:
|
||||
- rtspx://192.168.1.1:7441/abcdefghijk
|
||||
```
|
||||
|
||||
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-rtsp)
|
||||
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-rtsp)
|
||||
|
||||
In the Unifi 2.0 update Unifi Protect Cameras had a change in audio sample rate which causes issues for ffmpeg. The input rate needs to be set for record if used directly with unifi protect.
|
||||
|
||||
|
||||
@@ -109,7 +109,7 @@ This list of working and non-working PTZ cameras is based on user feedback.
|
||||
| Reolink E1 Zoom | ✅ | ❌ | |
|
||||
| Reolink RLC-823A 16x | ✅ | ❌ | |
|
||||
| Speco O8P32X | ✅ | ❌ | |
|
||||
| Sunba 405-D20X | ✅ | ❌ | |
|
||||
| Sunba 405-D20X | ✅ | ❌ | Incomplete ONVIF support reported on original, and 4k models. All models are suspected incompatable. |
|
||||
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |
|
||||
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
|
||||
| Uniview IPC6612SR-X33-VG | ✅ | ✅ | Leave `calibrate_on_startup` as `False`. A user has reported that zooming with `absolute` is working. |
|
||||
|
||||
@@ -3,9 +3,15 @@ id: genai
|
||||
title: Generative AI
|
||||
---
|
||||
|
||||
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects.
|
||||
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
|
||||
|
||||
Semantic Search must be enabled to use Generative AI. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
|
||||
Requests for a description are sent off automatically to your AI provider at the end of the tracked object's lifecycle. Descriptions can also be regenerated manually via the Frigate UI.
|
||||
|
||||
:::info
|
||||
|
||||
Semantic Search must be enabled to use Generative AI.
|
||||
|
||||
:::
|
||||
|
||||
## Configuration
|
||||
|
||||
@@ -29,15 +35,21 @@ cameras:
|
||||
|
||||
## Ollama
|
||||
|
||||
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance. CPU inference is not recommended.
|
||||
:::warning
|
||||
|
||||
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [docker container](https://hub.docker.com/r/ollama/ollama) available.
|
||||
Using Ollama on CPU is not recommended, high inference times make using Generative AI impractical.
|
||||
|
||||
Parallel requests also come with some caveats. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
|
||||
:::
|
||||
|
||||
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
|
||||
|
||||
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
|
||||
|
||||
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`. Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first.
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`. Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull llava:7b` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
|
||||
|
||||
:::note
|
||||
|
||||
@@ -52,7 +64,7 @@ genai:
|
||||
enabled: True
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: llava
|
||||
model: llava:7b
|
||||
```
|
||||
|
||||
## Google Gemini
|
||||
@@ -132,6 +144,10 @@ Frigate's thumbnail search excels at identifying specific details about tracked
|
||||
|
||||
While generating simple descriptions of detected objects is useful, understanding intent provides a deeper layer of insight. Instead of just recognizing "what" is in a scene, Frigate’s default prompts aim to infer "why" it might be there or "what" it could do next. Descriptions tell you what’s happening, but intent gives context. For instance, a person walking toward a door might seem like a visitor, but if they’re moving quickly after hours, you can infer a potential break-in attempt. Detecting a person loitering near a door at night can trigger an alert sooner than simply noting "a person standing by the door," helping you respond based on the situation’s context.
|
||||
|
||||
### Using GenAI for notifications
|
||||
|
||||
Frigate provides an [MQTT topic](/integrations/mqtt), `frigate/tracked_object_update`, that is updated with a JSON payload containing `event_id` and `description` when your AI provider returns a description for a tracked object. This description could be used directly in notifications, such as sending alerts to your phone or making audio announcements. If additional details from the tracked object are needed, you can query the [HTTP API](/integrations/api/event-events-event-id-get) using the `event_id`, eg: `http://frigate_ip:5000/api/events/<event_id>`.
|
||||
|
||||
## Custom Prompts
|
||||
|
||||
Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows:
|
||||
@@ -162,7 +178,7 @@ genai:
|
||||
|
||||
Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire. By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones.
|
||||
|
||||
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the thumbnails collected over the object's lifetime to the model. Using a snapshot provides the AI with a higher-resolution image (typically downscaled by the AI itself), but the trade-off is that only a single image is used, which might limit the model's ability to determine object movement or direction.
|
||||
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
|
||||
@@ -231,28 +231,11 @@ docker run -d \
|
||||
|
||||
### Setup Decoder
|
||||
|
||||
The decoder you need to pass in the `hwaccel_args` will depend on the input video.
|
||||
|
||||
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get the ones your card supports)
|
||||
|
||||
```
|
||||
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
|
||||
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
|
||||
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
|
||||
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
|
||||
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
|
||||
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
|
||||
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
|
||||
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
|
||||
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
|
||||
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
|
||||
```
|
||||
|
||||
For example, for H264 video, you'll select `preset-nvidia-h264`.
|
||||
Using `preset-nvidia` ffmpeg will automatically select the necessary profile for the incoming video, and will log an error if the profile is not supported by your GPU.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args: preset-nvidia-h264
|
||||
hwaccel_args: preset-nvidia
|
||||
```
|
||||
|
||||
If everything is working correctly, you should see a significant improvement in performance.
|
||||
|
||||
@@ -203,14 +203,13 @@ detectors:
|
||||
ov:
|
||||
type: openvino
|
||||
device: AUTO
|
||||
model:
|
||||
path: /openvino-model/ssdlite_mobilenet_v2.xml
|
||||
|
||||
model:
|
||||
width: 300
|
||||
height: 300
|
||||
input_tensor: nhwc
|
||||
input_pixel_format: bgr
|
||||
path: /openvino-model/ssdlite_mobilenet_v2.xml
|
||||
labelmap_path: /openvino-model/coco_91cl_bkgr.txt
|
||||
|
||||
record:
|
||||
|
||||
@@ -23,13 +23,13 @@ If you are using go2rtc, you should adjust the following settings in your camera
|
||||
|
||||
- Video codec: **H.264** - provides the most compatible video codec with all Live view technologies and browsers. Avoid any kind of "smart codec" or "+" codec like _H.264+_ or _H.265+_. as these non-standard codecs remove keyframes (see below).
|
||||
- Audio codec: **AAC** - provides the most compatible audio codec with all Live view technologies and browsers that support audio.
|
||||
- I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes.
|
||||
- I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes. For many users this may not be an issue, but it should be noted that that a 1x i-frame interval will cause more storage utilization if you are using the stream for the `record` role as well.
|
||||
|
||||
The default video and audio codec on your camera may not always be compatible with your browser, which is why setting them to H.264 and AAC is recommended. See the [go2rtc docs](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#codecs-madness) for codec support information.
|
||||
|
||||
### Audio Support
|
||||
|
||||
MSE Requires AAC audio, WebRTC requires PCMU/PCMA, or opus audio. If you want to support both MSE and WebRTC then your restream config needs to make sure both are enabled.
|
||||
MSE Requires PCMA/PCMU or AAC audio, WebRTC requires PCMA/PCMU or opus audio. If you want to support both MSE and WebRTC then your restream config needs to make sure both are enabled.
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
@@ -138,3 +138,13 @@ services:
|
||||
:::
|
||||
|
||||
See [go2rtc WebRTC docs](https://github.com/AlexxIT/go2rtc/tree/v1.8.3#module-webrtc) for more information about this.
|
||||
|
||||
### Two way talk
|
||||
|
||||
For devices that support two way talk, Frigate can be configured to use the feature from the camera's Live view in the Web UI. You should:
|
||||
|
||||
- Set up go2rtc with [WebRTC](#webrtc-extra-configuration).
|
||||
- Ensure you access Frigate via https (may require [opening port 8971](/frigate/installation/#ports)).
|
||||
- For the Home Assistant Frigate card, [follow the docs](https://github.com/dermotduffy/frigate-hass-card?tab=readme-ov-file#using-2-way-audio) for the correct source.
|
||||
|
||||
To use the Reolink Doorbell with two way talk, you should use the [recommended Reolink configuration](/configuration/camera_specific#reolink-doorbell)
|
||||
|
||||
@@ -92,10 +92,16 @@ motion:
|
||||
lightning_threshold: 0.8
|
||||
```
|
||||
|
||||
:::tip
|
||||
:::warning
|
||||
|
||||
Some cameras like doorbell cameras may have missed detections when someone walks directly in front of the camera and the lightning_threshold causes motion detection to be re-calibrated. In this case, it may be desirable to increase the `lightning_threshold` to ensure these objects are not missed.
|
||||
|
||||
:::
|
||||
|
||||
:::note
|
||||
|
||||
Lightning threshold does not stop motion based recordings from being saved.
|
||||
|
||||
:::
|
||||
|
||||
Large changes in motion like PTZ moves and camera switches between Color and IR mode should result in no motion detection. This is done via the `lightning_threshold` configuration. It is defined as the percentage of the image used to detect lightning or other substantial changes where motion detection needs to recalibrate. Increasing this value will make motion detection more likely to consider lightning or IR mode changes as valid motion. Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching a doorbell camera.
|
||||
|
||||
@@ -22,14 +22,14 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
- [ONNX](#onnx): OpenVINO will automatically be detected and used as a detector in the default Frigate image when a supported ONNX model is configured.
|
||||
|
||||
**Nvidia**
|
||||
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs, using one of many default models.
|
||||
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` Frigate image when a supported ONNX model is configured.
|
||||
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs and Jetson devices, using one of many default models.
|
||||
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` or `-tensorrt-jp(4/5)` Frigate images when a supported ONNX model is configured.
|
||||
|
||||
**Rockchip**
|
||||
- [RKNN](#rockchip-platform): RKNN models can run on Rockchip devices with included NPUs.
|
||||
|
||||
**For Testing**
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
|
||||
:::
|
||||
|
||||
@@ -144,7 +144,9 @@ detectors:
|
||||
|
||||
#### SSDLite MobileNet v2
|
||||
|
||||
An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model. Use the model configuration shown below when using the OpenVINO detector with the default model.
|
||||
An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model.
|
||||
|
||||
Use the model configuration shown below when using the OpenVINO detector with the default OpenVINO model:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
@@ -223,7 +225,7 @@ The model used for TensorRT must be preprocessed on the same hardware platform t
|
||||
|
||||
The Frigate image will generate model files during startup if the specified model is not found. Processed models are stored in the `/config/model_cache` folder. Typically the `/config` path is mapped to a directory on the host already and the `model_cache` does not need to be mapped separately unless the user wants to store it in a different location on the host.
|
||||
|
||||
By default, the `yolov7-320` model will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. To select no model generation, set the variable to an empty string, `YOLO_MODELS=""`. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder.
|
||||
By default, no models will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder.
|
||||
|
||||
If you have a Jetson device with DLAs (Xavier or Orin), you can generate a model that will run on the DLA by appending `-dla` to your model name, e.g. specify `YOLO_MODELS=yolov7-320-dla`. The model will run on DLA0 (Frigate does not currently support DLA1). DLA-incompatible layers will fall back to running on the GPU.
|
||||
|
||||
@@ -254,6 +256,7 @@ yolov4x-mish-640
|
||||
yolov7-tiny-288
|
||||
yolov7-tiny-416
|
||||
yolov7-640
|
||||
yolov7-416
|
||||
yolov7-320
|
||||
yolov7x-640
|
||||
yolov7x-320
|
||||
@@ -264,7 +267,7 @@ An example `docker-compose.yml` fragment that converts the `yolov4-608` and `yol
|
||||
```yml
|
||||
frigate:
|
||||
environment:
|
||||
- YOLO_MODELS=yolov4-608,yolov7x-640
|
||||
- YOLO_MODELS=yolov7-320,yolov7x-640
|
||||
- USE_FP16=false
|
||||
```
|
||||
|
||||
@@ -282,6 +285,8 @@ The TensorRT detector can be selected by specifying `tensorrt` as the model type
|
||||
|
||||
The TensorRT detector uses `.trt` model files that are located in `/config/model_cache/tensorrt` by default. These model path and dimensions used will depend on which model you have generated.
|
||||
|
||||
Use the config below to work with generated TRT models:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
tensorrt:
|
||||
@@ -415,6 +420,24 @@ Note that the labelmap uses a subset of the complete COCO label set that has onl
|
||||
|
||||
ONNX is an open format for building machine learning models, Frigate supports running ONNX models on CPU, OpenVINO, and TensorRT. On startup Frigate will automatically try to use a GPU if one is available.
|
||||
|
||||
:::info
|
||||
|
||||
If the correct build is used for your GPU then the GPU will be detected and used automatically.
|
||||
|
||||
- **AMD**
|
||||
|
||||
- ROCm will automatically be detected and used with the ONNX detector in the `-rocm` Frigate image.
|
||||
|
||||
- **Intel**
|
||||
|
||||
- OpenVINO will automatically be detected and used with the ONNX detector in the default Frigate image.
|
||||
|
||||
- **Nvidia**
|
||||
- Nvidia GPUs will automatically be detected and used with the ONNX detector in the `-tensorrt` Frigate image.
|
||||
- Jetson devices will automatically be detected and used with the ONNX detector in the `-tensorrt-jp(4/5)` Frigate image.
|
||||
|
||||
:::
|
||||
|
||||
:::tip
|
||||
|
||||
When using many cameras one detector may not be enough to keep up. Multiple detectors can be defined assuming GPU resources are available. An example configuration would be:
|
||||
@@ -457,6 +480,7 @@ model:
|
||||
width: 320 # <--- should match whatever was set in notebook
|
||||
height: 320 # <--- should match whatever was set in notebook
|
||||
input_pixel_format: bgr
|
||||
input_tensor: nchw
|
||||
path: /config/yolo_nas_s.onnx
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
@@ -482,11 +506,12 @@ detectors:
|
||||
cpu1:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
model:
|
||||
path: "/custom_model.tflite"
|
||||
cpu2:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
|
||||
model:
|
||||
path: "/custom_model.tflite"
|
||||
```
|
||||
|
||||
When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.
|
||||
@@ -613,8 +638,6 @@ detectors:
|
||||
hailo8l:
|
||||
type: hailo8l
|
||||
device: PCIe
|
||||
model:
|
||||
path: /config/model_cache/h8l_cache/ssd_mobilenet_v1.hef
|
||||
|
||||
model:
|
||||
width: 300
|
||||
@@ -622,4 +645,5 @@ model:
|
||||
input_tensor: nhwc
|
||||
input_pixel_format: bgr
|
||||
model_type: ssd
|
||||
path: /config/model_cache/h8l_cache/ssd_mobilenet_v1.hef
|
||||
```
|
||||
|
||||
@@ -5,7 +5,7 @@ title: Available Objects
|
||||
|
||||
import labels from "../../../labelmap.txt";
|
||||
|
||||
Frigate includes the object models listed below from the Google Coral test data.
|
||||
Frigate includes the object labels listed below from the Google Coral test data.
|
||||
|
||||
Please note:
|
||||
|
||||
|
||||
@@ -52,7 +52,7 @@ detectors:
|
||||
# Required: name of the detector
|
||||
detector_name:
|
||||
# Required: type of the detector
|
||||
# Frigate provided types include 'cpu', 'edgetpu', 'openvino' and 'tensorrt' (default: shown below)
|
||||
# Frigate provides many types, see https://docs.frigate.video/configuration/object_detectors for more details (default: shown below)
|
||||
# Additional detector types can also be plugged in.
|
||||
# Detectors may require additional configuration.
|
||||
# Refer to the Detectors configuration page for more information.
|
||||
@@ -117,25 +117,27 @@ auth:
|
||||
hash_iterations: 600000
|
||||
|
||||
# Optional: model modifications
|
||||
# NOTE: The default values are for the EdgeTPU detector.
|
||||
# Other detectors will require the model config to be set.
|
||||
model:
|
||||
# Optional: path to the model (default: automatic based on detector)
|
||||
# Required: path to the model (default: automatic based on detector)
|
||||
path: /edgetpu_model.tflite
|
||||
# Optional: path to the labelmap (default: shown below)
|
||||
# Required: path to the labelmap (default: shown below)
|
||||
labelmap_path: /labelmap.txt
|
||||
# Required: Object detection model input width (default: shown below)
|
||||
width: 320
|
||||
# Required: Object detection model input height (default: shown below)
|
||||
height: 320
|
||||
# Optional: Object detection model input colorspace
|
||||
# Required: Object detection model input colorspace
|
||||
# Valid values are rgb, bgr, or yuv. (default: shown below)
|
||||
input_pixel_format: rgb
|
||||
# Optional: Object detection model input tensor format
|
||||
# Required: Object detection model input tensor format
|
||||
# Valid values are nhwc or nchw (default: shown below)
|
||||
input_tensor: nhwc
|
||||
# Optional: Object detection model type, currently only used with the OpenVINO detector
|
||||
# Required: Object detection model type, currently only used with the OpenVINO detector
|
||||
# Valid values are ssd, yolox, yolonas (default: shown below)
|
||||
model_type: ssd
|
||||
# Optional: Label name modifications. These are merged into the standard labelmap.
|
||||
# Required: Label name modifications. These are merged into the standard labelmap.
|
||||
labelmap:
|
||||
2: vehicle
|
||||
# Optional: Map of object labels to their attribute labels (default: depends on model)
|
||||
@@ -546,12 +548,16 @@ genai:
|
||||
|
||||
# Optional: Restream configuration
|
||||
# Uses https://github.com/AlexxIT/go2rtc (v1.9.2)
|
||||
# NOTE: The default go2rtc API port (1984) must be used,
|
||||
# changing this port for the integrated go2rtc instance is not supported.
|
||||
go2rtc:
|
||||
|
||||
# Optional: jsmpeg stream configuration for WebUI
|
||||
# Optional: Live stream configuration for WebUI.
|
||||
# NOTE: Can be overridden at the camera level
|
||||
live:
|
||||
# Optional: Set the name of the stream that should be used for live view
|
||||
# in frigate WebUI. (default: name of camera)
|
||||
# Optional: Set the name of the stream configured in go2rtc
|
||||
# that should be used for live view in frigate WebUI. (default: name of camera)
|
||||
# NOTE: In most cases this should be set at the camera level only.
|
||||
stream_name: camera_name
|
||||
# Optional: Set the height of the jsmpeg stream. (default: 720)
|
||||
# This must be less than or equal to the height of the detect stream. Lower resolutions
|
||||
@@ -684,6 +690,7 @@ cameras:
|
||||
# to enable PTZ controls.
|
||||
onvif:
|
||||
# Required: host of the camera being connected to.
|
||||
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
|
||||
host: 0.0.0.0
|
||||
# Optional: ONVIF port for device (default: shown below).
|
||||
port: 8000
|
||||
@@ -692,6 +699,8 @@ cameras:
|
||||
user: admin
|
||||
# Optional: password for login.
|
||||
password: admin
|
||||
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
|
||||
tls_insecure: False
|
||||
# Optional: Ignores time synchronization mismatches between the camera and the server during authentication.
|
||||
# Using NTP on both ends is recommended and this should only be set to True in a "safe" environment due to the security risk it represents.
|
||||
ignore_time_mismatch: False
|
||||
@@ -755,6 +764,8 @@ cameras:
|
||||
- cat
|
||||
# Optional: Restrict generation to objects that entered any of the listed zones (default: none, all zones qualify)
|
||||
required_zones: []
|
||||
# Optional: Save thumbnails sent to generative AI for review/debugging purposes (default: shown below)
|
||||
debug_save_thumbnails: False
|
||||
|
||||
# Optional
|
||||
ui:
|
||||
|
||||
@@ -7,7 +7,7 @@ title: Restream
|
||||
|
||||
Frigate can restream your video feed as an RTSP feed for other applications such as Home Assistant to utilize it at `rtsp://<frigate_host>:8554/<camera_name>`. Port 8554 must be open. [This allows you to use a video feed for detection in Frigate and Home Assistant live view at the same time without having to make two separate connections to the camera](#reduce-connections-to-camera). The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
|
||||
|
||||
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.4) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#configuration) for more advanced configurations and features.
|
||||
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.2) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#configuration) for more advanced configurations and features.
|
||||
|
||||
:::note
|
||||
|
||||
@@ -132,9 +132,31 @@ cameras:
|
||||
- detect
|
||||
```
|
||||
|
||||
## Handling Complex Passwords
|
||||
|
||||
go2rtc expects URL-encoded passwords in the config, [urlencoder.org](https://urlencoder.org) can be used for this purpose.
|
||||
|
||||
For example:
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
my_camera: rtsp://username:$@foo%@192.168.1.100
|
||||
```
|
||||
|
||||
becomes
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
my_camera: rtsp://username:$%40foo%25@192.168.1.100
|
||||
```
|
||||
|
||||
See [this comment(https://github.com/AlexxIT/go2rtc/issues/1217#issuecomment-2242296489) for more information.
|
||||
|
||||
## Advanced Restream Configurations
|
||||
|
||||
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
|
||||
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
|
||||
|
||||
NOTE: The output will need to be passed with two curly braces `{{output}}`
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ title: Using Semantic Search
|
||||
|
||||
Semantic Search in Frigate allows you to find tracked objects within your review items using either the image itself, a user-defined text description, or an automatically generated one. This feature works by creating _embeddings_ — numerical vector representations — for both the images and text descriptions of your tracked objects. By comparing these embeddings, Frigate assesses their similarities to deliver relevant search results.
|
||||
|
||||
Frigate has support for [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create embeddings, which runs locally. Embeddings are then saved to Frigate's database.
|
||||
Frigate uses [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create and save embeddings to Frigate's database. All of this runs locally.
|
||||
|
||||
Semantic Search is accessed via the _Explore_ view in the Frigate UI.
|
||||
|
||||
@@ -19,7 +19,7 @@ For best performance, 16GB or more of RAM and a dedicated GPU are recommended.
|
||||
|
||||
## Configuration
|
||||
|
||||
Semantic search is disabled by default, and must be enabled in your config file before it can be used. Semantic Search is a global configuration setting.
|
||||
Semantic Search is disabled by default, and must be enabled in your config file or in the UI's Settings page before it can be used. Semantic Search is a global configuration setting.
|
||||
|
||||
```yaml
|
||||
semantic_search:
|
||||
@@ -29,9 +29,9 @@ semantic_search:
|
||||
|
||||
:::tip
|
||||
|
||||
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to set the config back to `False` before restarting Frigate again.
|
||||
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration or by toggling the switch on the Search Settings page in the UI and restarting Frigate. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to turn the UI's switch off or set the config back to `False` before restarting Frigate again.
|
||||
|
||||
If you are enabling the Search feature for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
|
||||
If you are enabling Semantic Search for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
|
||||
|
||||
:::
|
||||
|
||||
@@ -39,15 +39,9 @@ If you are enabling the Search feature for the first time, be advised that Friga
|
||||
|
||||
The vision model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails.
|
||||
|
||||
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Search page when clicking on the gray tracked object chip at the top left of each review item. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
|
||||
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Explore page when clicking on thumbnail of a tracked object. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
|
||||
|
||||
Differently weighted CLIP models are available and can be selected by setting the `model_size` config option:
|
||||
|
||||
:::tip
|
||||
|
||||
The CLIP models are downloaded in ONNX format, which means they will be accelerated using GPU hardware when available. This depends on the Docker build that is used. See [the object detector docs](../configuration/object_detectors.md) for more information.
|
||||
|
||||
:::
|
||||
Differently weighted versions of the Jina model are available and can be selected by setting the `model_size` config option as `small` or `large`:
|
||||
|
||||
```yaml
|
||||
semantic_search:
|
||||
@@ -56,11 +50,41 @@ semantic_search:
|
||||
```
|
||||
|
||||
- Configuring the `large` model employs the full Jina model and will automatically run on the GPU if applicable.
|
||||
- Configuring the `small` model employs a quantized version of the model that uses much less RAM and runs faster on CPU with a very negligible difference in embedding quality.
|
||||
- Configuring the `small` model employs a quantized version of the Jina model that uses less RAM and runs on CPU with a very negligible difference in embedding quality.
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
The CLIP models are downloaded in ONNX format, and the `large` model can be accelerated using GPU hardware, when available. This depends on the Docker build that is used.
|
||||
|
||||
```yaml
|
||||
semantic_search:
|
||||
enabled: True
|
||||
model_size: large
|
||||
```
|
||||
|
||||
:::info
|
||||
|
||||
If the correct build is used for your GPU and the `large` model is configured, then the GPU will be detected and used automatically.
|
||||
|
||||
**NOTE:** Object detection and Semantic Search are independent features. If you want to use your GPU with Semantic Search, you must choose the appropriate Frigate Docker image for your GPU.
|
||||
|
||||
- **AMD**
|
||||
|
||||
- ROCm will automatically be detected and used for Semantic Search in the `-rocm` Frigate image.
|
||||
|
||||
- **Intel**
|
||||
|
||||
- OpenVINO will automatically be detected and used for Semantic Search in the default Frigate image.
|
||||
|
||||
- **Nvidia**
|
||||
- Nvidia GPUs will automatically be detected and used for Semantic Search in the `-tensorrt` Frigate image.
|
||||
- Jetson devices will automatically be detected and used for Semantic Search in the `-tensorrt-jp(4/5)` Frigate image.
|
||||
|
||||
:::
|
||||
|
||||
## Usage and Best Practices
|
||||
|
||||
1. Semantic search is used in conjunction with the other filters available on the Search page. Use a combination of traditional filtering and semantic search for the best results.
|
||||
1. Semantic Search is used in conjunction with the other filters available on the Explore page. Use a combination of traditional filtering and Semantic Search for the best results.
|
||||
2. Use the thumbnail search type when searching for particular objects in the scene. Use the description search type when attempting to discern the intent of your object.
|
||||
3. Because of how the AI models Frigate uses have been trained, the comparison between text and image embedding distances generally means that with multi-modal (`thumbnail` and `description`) searches, results matching `description` will appear first, even if a `thumbnail` embedding may be a better match. Play with the "Search Type" setting to help find what you are looking for. Note that if you are generating descriptions for specific objects or zones only, this may cause search results to prioritize the objects with descriptions even if the the ones without them are more relevant.
|
||||
4. Make your search language and tone closely match exactly what you're looking for. If you are using thumbnail search, **phrase your query as an image caption**. Searching for "red car" may not work as well as "red sedan driving down a residential street on a sunny day".
|
||||
|
||||
@@ -28,7 +28,7 @@ For the Dahua/Loryta 5442 camera, I use the following settings:
|
||||
- Encode Mode: H.264
|
||||
- Resolution: 2688\*1520
|
||||
- Frame Rate(FPS): 15
|
||||
- I Frame Interval: 30
|
||||
- I Frame Interval: 30 (15 can also be used to prioritize streaming performance - see the [camera settings recommendations](../configuration/live) for more info)
|
||||
|
||||
**Sub Stream (Detection)**
|
||||
|
||||
|
||||
@@ -81,15 +81,15 @@ You can calculate the **minimum** shm size for each camera with the following fo
|
||||
|
||||
```console
|
||||
# Replace <width> and <height>
|
||||
$ python -c 'print("{:.2f}MB".format((<width> * <height> * 1.5 * 10 + 270480) / 1048576))'
|
||||
$ python -c 'print("{:.2f}MB".format((<width> * <height> * 1.5 * 20 + 270480) / 1048576))'
|
||||
|
||||
# Example for 1280x720
|
||||
$ python -c 'print("{:.2f}MB".format((1280 * 720 * 1.5 * 10 + 270480) / 1048576))'
|
||||
13.44MB
|
||||
# Example for 1280x720, including logs
|
||||
$ python -c 'print("{:.2f}MB".format((1280 * 720 * 1.5 * 20 + 270480) / 1048576)) + 40'
|
||||
46.63MB
|
||||
|
||||
# Example for eight cameras detecting at 1280x720, including logs
|
||||
$ python -c 'print("{:.2f}MB".format(((1280 * 720 * 1.5 * 10 + 270480) / 1048576) * 8 + 40))'
|
||||
136.99MB
|
||||
$ python -c 'print("{:.2f}MB".format(((1280 * 720 * 1.5 * 20 + 270480) / 1048576) * 8 + 40))'
|
||||
253MB
|
||||
```
|
||||
|
||||
The shm size cannot be set per container for Home Assistant add-ons. However, this is probably not required since by default Home Assistant Supervisor allocates `/dev/shm` with half the size of your total memory. If your machine has 8GB of memory, chances are that Frigate will have access to up to 4GB without any additional configuration.
|
||||
@@ -193,8 +193,9 @@ services:
|
||||
container_name: frigate
|
||||
privileged: true # this may not be necessary for all setups
|
||||
restart: unless-stopped
|
||||
stop_grace_period: 30s # allow enough time to shut down the various services
|
||||
image: ghcr.io/blakeblackshear/frigate:stable
|
||||
shm_size: "64mb" # update for your cameras based on calculation above
|
||||
shm_size: "512mb" # update for your cameras based on calculation above
|
||||
devices:
|
||||
- /dev/bus/usb:/dev/bus/usb # Passes the USB Coral, needs to be modified for other versions
|
||||
- /dev/apex_0:/dev/apex_0 # Passes a PCIe Coral, follow driver instructions here https://coral.ai/docs/m2/get-started/#2a-on-linux
|
||||
@@ -224,6 +225,7 @@ If you can't use docker compose, you can run the container with something simila
|
||||
docker run -d \
|
||||
--name frigate \
|
||||
--restart=unless-stopped \
|
||||
--stop-timeout 30 \
|
||||
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
|
||||
--device /dev/bus/usb:/dev/bus/usb \
|
||||
--device /dev/dri/renderD128 \
|
||||
@@ -303,8 +305,15 @@ To install make sure you have the [community app plugin here](https://forums.unr
|
||||
|
||||
## Proxmox
|
||||
|
||||
It is recommended to run Frigate in LXC, rather than in a VM, for maximum performance. The setup can be complex so be prepared to read the Proxmox and LXC documentation. Suggestions include:
|
||||
[According to Proxmox documentation](https://pve.proxmox.com/pve-docs/pve-admin-guide.html#chapter_pct) it is recommended that you run application containers like Frigate inside a Proxmox QEMU VM. This will give you all the advantages of application containerization, while also providing the benefits that VMs offer, such as strong isolation from the host and the ability to live-migrate, which otherwise isn’t possible with containers.
|
||||
|
||||
:::warning
|
||||
|
||||
If you choose to run Frigate via LXC in Proxmox the setup can be complex so be prepared to read the Proxmox and LXC documentation, Frigate does not officially support running inside of an LXC.
|
||||
|
||||
:::
|
||||
|
||||
Suggestions include:
|
||||
- For Intel-based hardware acceleration, to allow access to the `/dev/dri/renderD128` device with major number 226 and minor number 128, add the following lines to the `/etc/pve/lxc/<id>.conf` LXC configuration:
|
||||
- `lxc.cgroup2.devices.allow: c 226:128 rwm`
|
||||
- `lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file`
|
||||
|
||||
@@ -13,7 +13,15 @@ Use of the bundled go2rtc is optional. You can still configure FFmpeg to connect
|
||||
|
||||
# Setup a go2rtc stream
|
||||
|
||||
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. For the best experience, you should set the stream name under go2rtc to match the name of your camera so that Frigate will automatically map it and be able to use better live view options for the camera. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#module-streams), not just rtsp.
|
||||
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#module-streams), not just rtsp.
|
||||
|
||||
:::tip
|
||||
|
||||
For the best experience, you should set the stream name under `go2rtc` to match the name of your camera so that Frigate will automatically map it and be able to use better live view options for the camera.
|
||||
|
||||
See [the live view docs](../configuration/live.md#setting-stream-for-live-ui) for more information.
|
||||
|
||||
:::
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
@@ -39,8 +47,8 @@ After adding this to the config, restart Frigate and try to watch the live strea
|
||||
|
||||
- Check Video Codec:
|
||||
- If the camera stream works in go2rtc but not in your browser, the video codec might be unsupported.
|
||||
- If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#codecs-madness) in go2rtc documentation.
|
||||
- If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view.
|
||||
- If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#codecs-madness) in go2rtc documentation.
|
||||
- If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view.
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
|
||||
@@ -115,6 +115,7 @@ services:
|
||||
frigate:
|
||||
container_name: frigate
|
||||
restart: unless-stopped
|
||||
stop_grace_period: 30s
|
||||
image: ghcr.io/blakeblackshear/frigate:stable
|
||||
volumes:
|
||||
- ./config:/config
|
||||
@@ -306,7 +307,9 @@ By default, Frigate will retain video of all tracked objects for 10 days. The fu
|
||||
|
||||
### Step 7: Complete config
|
||||
|
||||
At this point you have a complete config with basic functionality. You can see the [full config reference](../configuration/reference.md) for a complete list of configuration options.
|
||||
At this point you have a complete config with basic functionality.
|
||||
- View [common configuration examples](../configuration/index.md#common-configuration-examples) for a list of common configuration examples.
|
||||
- View [full config reference](../configuration/reference.md) for a complete list of configuration options.
|
||||
|
||||
### Follow up
|
||||
|
||||
|
||||
@@ -47,7 +47,7 @@ that card.
|
||||
|
||||
## Configuration
|
||||
|
||||
When configuring the integration, you will be asked for the `URL` of your Frigate instance which needs to be pointed at the internal unauthenticated port (`5000`) for your instance. This may look like `http://<host>:5000/`.
|
||||
When configuring the integration, you will be asked for the `URL` of your Frigate instance which can be pointed at the internal unauthenticated port (`5000`) or the authenticated port (`8971`) for your instance. This may look like `http://<host>:5000/`.
|
||||
|
||||
### Docker Compose Examples
|
||||
|
||||
@@ -55,7 +55,7 @@ If you are running Home Assistant Core and Frigate with Docker Compose on the sa
|
||||
|
||||
#### Home Assistant running with host networking
|
||||
|
||||
It is not recommended to run Frigate in host networking mode. In this example, you would use `http://172.17.0.1:5000` when configuring the integration.
|
||||
It is not recommended to run Frigate in host networking mode. In this example, you would use `http://172.17.0.1:5000` or `http://172.17.0.1:8971` when configuring the integration.
|
||||
|
||||
```yaml
|
||||
services:
|
||||
@@ -75,7 +75,7 @@ services:
|
||||
|
||||
#### Home Assistant _not_ running with host networking or in a separate compose file
|
||||
|
||||
In this example, you would use `http://frigate:5000` when configuring the integration. There is no need to map the port for the Frigate container.
|
||||
In this example, it is recommended to connect to the authenticated port, for example, `http://frigate:8971` when configuring the integration. There is no need to map the port for the Frigate container.
|
||||
|
||||
```yaml
|
||||
services:
|
||||
@@ -103,14 +103,15 @@ If you are using HassOS with the addon, the URL should be one of the following d
|
||||
| Frigate NVR (Full Access) | `http://ccab4aaf-frigate-fa:5000` |
|
||||
| Frigate NVR Beta | `http://ccab4aaf-frigate-beta:5000` |
|
||||
| Frigate NVR Beta (Full Access) | `http://ccab4aaf-frigate-fa-beta:5000` |
|
||||
| Frigate NVR HailoRT Beta | `http://ccab4aaf-frigate-hailo-beta:5000` |
|
||||
|
||||
### Frigate running on a separate machine
|
||||
|
||||
If you run Frigate on a separate device within your local network, Home Assistant will need access to port 5000.
|
||||
If you run Frigate on a separate device within your local network, Home Assistant will need access to port 8971.
|
||||
|
||||
#### Local network
|
||||
|
||||
Use `http://<frigate_device_ip>:5000` as the URL for the integration. If you want to protect access to port 5000, you can use firewall rules to limit access to the device running Home Assistant.
|
||||
Use `http://<frigate_device_ip>:8971` as the URL for the integration so that authentication is required.
|
||||
|
||||
```yaml
|
||||
services:
|
||||
@@ -118,7 +119,7 @@ services:
|
||||
image: ghcr.io/blakeblackshear/frigate:stable
|
||||
...
|
||||
ports:
|
||||
- "5000:5000"
|
||||
- "8971:8971"
|
||||
...
|
||||
```
|
||||
|
||||
@@ -195,12 +196,30 @@ To load a snapshot for a tracked object:
|
||||
https://HA_URL/api/frigate/notifications/<event-id>/snapshot.jpg
|
||||
```
|
||||
|
||||
To load a video clip of a tracked object:
|
||||
To load a video clip of a tracked object using an Android device:
|
||||
|
||||
```
|
||||
https://HA_URL/api/frigate/notifications/<event-id>/clip.mp4
|
||||
```
|
||||
|
||||
To load a video clip of a tracked object using an iOS device:
|
||||
|
||||
```
|
||||
https://HA_URL/api/frigate/notifications/<event-id>/master.m3u8
|
||||
```
|
||||
|
||||
To load a preview gif of a tracked object:
|
||||
|
||||
```
|
||||
https://HA_URL/api/frigate/notifications/<event-id>/event_preview.gif
|
||||
```
|
||||
|
||||
To load a preview gif of a review item:
|
||||
|
||||
```
|
||||
https://HA_URL/api/frigate/notifications/<review-id>/review_preview.gif
|
||||
```
|
||||
|
||||
<a name="streams"></a>
|
||||
|
||||
## RTSP stream
|
||||
|
||||
@@ -94,6 +94,18 @@ Message published for each changed tracked object. The first message is publishe
|
||||
}
|
||||
```
|
||||
|
||||
### `frigate/tracked_object_update`
|
||||
|
||||
Message published for updates to tracked object metadata, for example when GenAI runs and returns a tracked object description.
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "description",
|
||||
"id": "1607123955.475377-mxklsc",
|
||||
"description": "The car is a red sedan moving away from the camera."
|
||||
}
|
||||
```
|
||||
|
||||
### `frigate/reviews`
|
||||
|
||||
Message published for each changed review item. The first message is published when the `detection` or `alert` is initiated. When additional objects are detected or when a zone change occurs, it will publish a, `update` message with the same id. When the review activity has ended a final `end` message is published.
|
||||
|
||||
@@ -5,7 +5,7 @@ title: Requesting your first model
|
||||
|
||||
## Step 1: Upload and annotate your images
|
||||
|
||||
Before requesting your first model, you will need to upload at least 10 images to Frigate+. But for the best results, you should provide at least 100 verified images per camera. Keep in mind that varying conditions should be included. You will want images from cloudy days, sunny days, dawn, dusk, and night. Refer to the [integration docs](../integrations/plus.md#generate-an-api-key) for instructions on how to easily submit images to Frigate+ directly from Frigate.
|
||||
Before requesting your first model, you will need to upload and verify at least 1 image to Frigate+. The more images you upload, annotate, and verify the better your results will be. Most users start to see very good results once they have at least 100 verified images per camera. Keep in mind that varying conditions should be included. You will want images from cloudy days, sunny days, dawn, dusk, and night. Refer to the [integration docs](../integrations/plus.md#generate-an-api-key) for instructions on how to easily submit images to Frigate+ directly from Frigate.
|
||||
|
||||
It is recommended to submit **both** true positives and false positives. This will help the model differentiate between what is and isn't correct. You should aim for a target of 80% true positive submissions and 20% false positives across all of your images. If you are experiencing false positives in a specific area, submitting true positives for any object type near that area in similar lighting conditions will help teach the model what that area looks like when no objects are present.
|
||||
|
||||
@@ -13,7 +13,7 @@ For more detailed recommendations, you can refer to the docs on [improving your
|
||||
|
||||
## Step 2: Submit a model request
|
||||
|
||||
Once you have an initial set of verified images, you can request a model on the Models page. Each model request requires 1 of the 12 trainings that you receive with your annual subscription. This model will support all [label types available](./index.md#available-label-types) even if you do not submit any examples for those labels. Model creation can take up to 36 hours.
|
||||
Once you have an initial set of verified images, you can request a model on the Models page. For guidance on choosing a model type, refer to [this part of the documentation](./index.md#available-model-types). Each model request requires 1 of the 12 trainings that you receive with your annual subscription. This model will support all [label types available](./index.md#available-label-types) even if you do not submit any examples for those labels. Model creation can take up to 36 hours.
|
||||

|
||||
|
||||
## Step 3: Set your model id in the config
|
||||
|
||||
@@ -3,7 +3,7 @@ id: improving_model
|
||||
title: Improving your model
|
||||
---
|
||||
|
||||
You may find that Frigate+ models result in more false positives initially, but by submitting true and false positives, the model will improve. Because a limited number of users submitted images to Frigate+ prior to this launch, you may need to submit several hundred images per camera to see good results. With all the new images now being submitted, future base models will improve as more and more users (including you) submit examples to Frigate+. Note that only verified images will be used when training your model. Submitting an image from Frigate as a true or false positive will not verify the image. You still must verify the image in Frigate+ in order for it to be used in training.
|
||||
You may find that Frigate+ models result in more false positives initially, but by submitting true and false positives, the model will improve. With all the new images now being submitted by subscribers, future base models will improve as more and more examples are incorporated. Note that only images with at least one verified label will be used when training your model. Submitting an image from Frigate as a true or false positive will not verify the image. You still must verify the image in Frigate+ in order for it to be used in training.
|
||||
|
||||
- **Submit both true positives and false positives**. This will help the model differentiate between what is and isn't correct. You should aim for a target of 80% true positive submissions and 20% false positives across all of your images. If you are experiencing false positives in a specific area, submitting true positives for any object type near that area in similar lighting conditions will help teach the model what that area looks like when no objects are present.
|
||||
- **Lower your thresholds a little in order to generate more false/true positives near the threshold value**. For example, if you have some false positives that are scoring at 68% and some true positives scoring at 72%, you can try lowering your threshold to 65% and submitting both true and false positives within that range. This will help the model learn and widen the gap between true and false positive scores.
|
||||
@@ -36,18 +36,17 @@ Misidentified objects should have a correct label added. For example, if a perso
|
||||
|
||||
## Shortcuts for a faster workflow
|
||||
|
||||
|Shortcut Key|Description|
|
||||
|-----|--------|
|
||||
|`?`|Show all keyboard shortcuts|
|
||||
|`w`|Add box|
|
||||
|`d`|Toggle difficult|
|
||||
|`s`|Switch to the next label|
|
||||
|`tab`|Select next largest box|
|
||||
|`del`|Delete current box|
|
||||
|`esc`|Deselect/Cancel|
|
||||
|`← ↑ → ↓`|Move box|
|
||||
|`Shift + ← ↑ → ↓`|Resize box|
|
||||
|`-`|Zoom out|
|
||||
|`=`|Zoom in|
|
||||
|`f`|Hide/show all but current box|
|
||||
|`spacebar`|Verify and save|
|
||||
| Shortcut Key | Description |
|
||||
| ----------------- | ----------------------------- |
|
||||
| `?` | Show all keyboard shortcuts |
|
||||
| `w` | Add box |
|
||||
| `d` | Toggle difficult |
|
||||
| `s` | Switch to the next label |
|
||||
| `tab` | Select next largest box |
|
||||
| `del` | Delete current box |
|
||||
| `esc` | Deselect/Cancel |
|
||||
| `← ↑ → ↓` | Move box |
|
||||
| `Shift + ← ↑ → ↓` | Resize box |
|
||||
| `scrollwheel` | Zoom in/out |
|
||||
| `f` | Hide/show all but current box |
|
||||
| `spacebar` | Verify and save |
|
||||
|
||||
@@ -15,17 +15,36 @@ With a subscription, 12 model trainings per year are included. If you cancel you
|
||||
|
||||
Information on how to integrate Frigate+ with Frigate can be found in the [integration docs](../integrations/plus.md).
|
||||
|
||||
## Available model types
|
||||
|
||||
There are two model types offered in Frigate+: `mobiledet` and `yolonas`. Both of these models are object detection models and are trained to detect the same set of labels [listed below](#available-label-types).
|
||||
|
||||
Not all model types are supported by all detectors, so it's important to choose a model type to match your detector as shown in the table under [supported detector types](#supported-detector-types).
|
||||
|
||||
| Model Type | Description |
|
||||
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `mobiledet` | Based on the same architecture as the default model included with Frigate. Runs on Google Coral devices and CPUs. |
|
||||
| `yolonas` | A newer architecture that offers slightly higher accuracy and improved detection of small objects. Runs on Intel, NVidia GPUs, and AMD GPUs. |
|
||||
|
||||
## Supported detector types
|
||||
|
||||
Currently, Frigate+ models support CPU (`cpu`), Google Coral (`edgetpu`), OpenVino (`openvino`), ONNX (`onnx`), and ROCm (`rocm`) detectors.
|
||||
|
||||
:::warning
|
||||
|
||||
Frigate+ models are not supported for TensorRT or OpenVino yet.
|
||||
Using Frigate+ models with `onnx` and `rocm` is only available with Frigate 0.15, which is still under development.
|
||||
|
||||
:::
|
||||
|
||||
Currently, Frigate+ models only support CPU (`cpu`) and Coral (`edgetpu`) models. OpenVino is next in line to gain support.
|
||||
| Hardware | Recommended Detector Type | Recommended Model Type |
|
||||
| ---------------------------------------------------------------------------------------------------------------------------- | ------------------------- | ---------------------- |
|
||||
| [CPU](/configuration/object_detectors.md#cpu-detector-not-recommended) | `cpu` | `mobiledet` |
|
||||
| [Coral (all form factors)](/configuration/object_detectors.md#edge-tpu-detector) | `edgetpu` | `mobiledet` |
|
||||
| [Intel](/configuration/object_detectors.md#openvino-detector) | `openvino` | `yolonas` |
|
||||
| [NVidia GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#onnx)\* | `onnx` | `yolonas` |
|
||||
| [AMD ROCm GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#amdrocm-gpu-detector)\* | `rocm` | `yolonas` |
|
||||
|
||||
The models are created using the same MobileDet architecture as the default model. Additional architectures will be added in future releases as needed.
|
||||
_\* Requires Frigate 0.15_
|
||||
|
||||
## Available label types
|
||||
|
||||
|
||||
@@ -49,7 +49,10 @@ The USB Coral can become stuck and need to be restarted, this can happen for a n
|
||||
|
||||
## PCIe Coral Not Detected
|
||||
|
||||
The most common reason for the PCIe coral not being detected is that the driver has not been installed. See [the coral docs](https://coral.ai/docs/m2/get-started/#2-install-the-pcie-driver-and-edge-tpu-runtime) for how to install the driver for the PCIe based coral.
|
||||
The most common reason for the PCIe Coral not being detected is that the driver has not been installed. This process varies based on what OS and kernel that is being run.
|
||||
|
||||
- In most cases [the Coral docs](https://coral.ai/docs/m2/get-started/#2-install-the-pcie-driver-and-edge-tpu-runtime) show how to install the driver for the PCIe based Coral.
|
||||
- For Ubuntu 22.04+ https://github.com/jnicolson/gasket-builder can be used to build and install the latest version of the driver.
|
||||
|
||||
## Only One PCIe Coral Is Detected With Coral Dual EdgeTPU
|
||||
|
||||
|
||||
@@ -98,3 +98,11 @@ docker run -d \
|
||||
-p 8555:8555/udp \
|
||||
ghcr.io/blakeblackshear/frigate:stable
|
||||
```
|
||||
|
||||
### My RTSP stream works fine in VLC, but it does not work when I put the same URL in my Frigate config. Is this a bug?
|
||||
|
||||
No. Frigate uses the TCP protocol to connect to your camera's RTSP URL. VLC automatically switches between UDP and TCP depending on network conditions and stream availability. So a stream that works in VLC but not in Frigate is likely due to VLC selecting UDP as the transfer protocol.
|
||||
|
||||
TCP ensures that all data packets arrive in the correct order. This is crucial for video recording, decoding, and stream processing, which is why Frigate enforces a TCP connection. UDP is faster but less reliable, as it does not guarantee packet delivery or order, and VLC does not have the same requirements as Frigate.
|
||||
|
||||
You can still configure Frigate to use UDP by using ffmpeg input args or the preset `preset-rtsp-udp`. See the [ffmpeg presets](/configuration/ffmpeg_presets) documentation.
|
||||
|
||||
@@ -3,7 +3,15 @@ id: recordings
|
||||
title: Troubleshooting Recordings
|
||||
---
|
||||
|
||||
### WARNING : Unable to keep up with recording segments in cache for camera. Keeping the 5 most recent segments out of 6 and discarding the rest...
|
||||
## I have Frigate configured for motion recording only, but it still seems to be recording even with no motion. Why?
|
||||
|
||||
You'll want to:
|
||||
|
||||
- Make sure your camera's timestamp is masked out with a motion mask. Even if there is no motion occurring in your scene, your motion settings may be sensitive enough to count your timestamp as motion.
|
||||
- If you have audio detection enabled, keep in mind that audio that is heard above `min_volume` is considered motion.
|
||||
- [Tune your motion detection settings](/configuration/motion_detection) either by editing your config file or by using the UI's Motion Tuner.
|
||||
|
||||
## I see the message: WARNING : Unable to keep up with recording segments in cache for camera. Keeping the 5 most recent segments out of 6 and discarding the rest...
|
||||
|
||||
This error can be caused by a number of different issues. The first step in troubleshooting is to enable debug logging for recording. This will enable logging showing how long it takes for recordings to be moved from RAM cache to the disk.
|
||||
|
||||
@@ -40,6 +48,7 @@ On linux, some helpful tools/commands in diagnosing would be:
|
||||
On modern linux kernels, the system will utilize some swap if enabled. Setting vm.swappiness=1 no longer means that the kernel will only swap in order to avoid OOM. To prevent any swapping inside a container, set allocations memory and memory+swap to be the same and disable swapping by setting the following docker/podman run parameters:
|
||||
|
||||
**Compose example**
|
||||
|
||||
```yaml
|
||||
version: "3.9"
|
||||
services:
|
||||
@@ -54,6 +63,7 @@ services:
|
||||
```
|
||||
|
||||
**Run command example**
|
||||
|
||||
```
|
||||
--memory=<MAXRAM> --memory-swap=<MAXSWAP> --memory-swappiness=0
|
||||
```
|
||||
|
||||
7069
docs/package-lock.json
generated
7069
docs/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -17,15 +17,15 @@
|
||||
"write-heading-ids": "docusaurus write-heading-ids"
|
||||
},
|
||||
"dependencies": {
|
||||
"@docusaurus/core": "^3.5.2",
|
||||
"@docusaurus/preset-classic": "^3.5.2",
|
||||
"@docusaurus/theme-mermaid": "^3.5.2",
|
||||
"@docusaurus/plugin-content-docs": "^3.5.2",
|
||||
"@mdx-js/react": "^3.0.1",
|
||||
"@docusaurus/core": "^3.6.3",
|
||||
"@docusaurus/preset-classic": "^3.6.3",
|
||||
"@docusaurus/theme-mermaid": "^3.6.3",
|
||||
"@docusaurus/plugin-content-docs": "^3.6.3",
|
||||
"@mdx-js/react": "^3.1.0",
|
||||
"clsx": "^2.1.1",
|
||||
"docusaurus-plugin-openapi-docs": "^4.1.0",
|
||||
"docusaurus-theme-openapi-docs": "^4.1.0",
|
||||
"prism-react-renderer": "^2.4.0",
|
||||
"docusaurus-plugin-openapi-docs": "^4.3.1",
|
||||
"docusaurus-theme-openapi-docs": "^4.3.1",
|
||||
"prism-react-renderer": "^2.4.1",
|
||||
"raw-loader": "^4.0.2",
|
||||
"react": "^18.3.1",
|
||||
"react-dom": "^18.3.1"
|
||||
|
||||
@@ -26,7 +26,7 @@ const sidebars: SidebarsConfig = {
|
||||
{
|
||||
type: 'link',
|
||||
label: 'Go2RTC Configuration Reference',
|
||||
href: 'https://github.com/AlexxIT/go2rtc/tree/v1.9.4#configuration',
|
||||
href: 'https://github.com/AlexxIT/go2rtc/tree/v1.9.2#configuration',
|
||||
} as PropSidebarItemLink,
|
||||
],
|
||||
Detectors: [
|
||||
|
||||
1621
docs/static/frigate-api.yaml
vendored
1621
docs/static/frigate-api.yaml
vendored
File diff suppressed because it is too large
Load Diff
@@ -17,17 +17,17 @@ from fastapi.responses import JSONResponse, PlainTextResponse
|
||||
from markupsafe import escape
|
||||
from peewee import operator
|
||||
|
||||
from frigate.api.defs.app_body import AppConfigSetBody
|
||||
from frigate.api.defs.app_query_parameters import AppTimelineHourlyQueryParameters
|
||||
from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryParameters
|
||||
from frigate.api.defs.request.app_body import AppConfigSetBody
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import CONFIG_DIR
|
||||
from frigate.models import Event, Timeline
|
||||
from frigate.util.builtin import (
|
||||
clean_camera_user_pass,
|
||||
get_tz_modifiers,
|
||||
update_yaml_from_url,
|
||||
)
|
||||
from frigate.util.config import find_config_file
|
||||
from frigate.util.services import (
|
||||
ffprobe_stream,
|
||||
get_nvidia_driver_info,
|
||||
@@ -134,9 +134,27 @@ def config(request: Request):
|
||||
for zone_name, zone in config_obj.cameras[camera_name].zones.items():
|
||||
camera_dict["zones"][zone_name]["color"] = zone.color
|
||||
|
||||
# remove go2rtc stream passwords
|
||||
go2rtc: dict[str, any] = config_obj.go2rtc.model_dump(
|
||||
mode="json", warnings="none", exclude_none=True
|
||||
)
|
||||
for stream_name, stream in go2rtc.get("streams", {}).items():
|
||||
if stream is None:
|
||||
continue
|
||||
if isinstance(stream, str):
|
||||
cleaned = clean_camera_user_pass(stream)
|
||||
else:
|
||||
cleaned = []
|
||||
|
||||
for item in stream:
|
||||
cleaned.append(clean_camera_user_pass(item))
|
||||
|
||||
config["go2rtc"]["streams"][stream_name] = cleaned
|
||||
|
||||
config["plus"] = {"enabled": request.app.frigate_config.plus_api.is_active()}
|
||||
config["model"]["colormap"] = config_obj.model.colormap
|
||||
|
||||
# use merged labelamp
|
||||
for detector_config in config["detectors"].values():
|
||||
detector_config["model"]["labelmap"] = (
|
||||
request.app.frigate_config.model.merged_labelmap
|
||||
@@ -147,13 +165,7 @@ def config(request: Request):
|
||||
|
||||
@router.get("/config/raw")
|
||||
def config_raw():
|
||||
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
|
||||
|
||||
# Check if we can use .yaml instead of .yml
|
||||
config_file_yaml = config_file.replace(".yml", ".yaml")
|
||||
|
||||
if os.path.isfile(config_file_yaml):
|
||||
config_file = config_file_yaml
|
||||
config_file = find_config_file()
|
||||
|
||||
if not os.path.isfile(config_file):
|
||||
return JSONResponse(
|
||||
@@ -198,13 +210,7 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
|
||||
|
||||
# Save the config to file
|
||||
try:
|
||||
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
|
||||
|
||||
# Check if we can use .yaml instead of .yml
|
||||
config_file_yaml = config_file.replace(".yml", ".yaml")
|
||||
|
||||
if os.path.isfile(config_file_yaml):
|
||||
config_file = config_file_yaml
|
||||
config_file = find_config_file()
|
||||
|
||||
with open(config_file, "w") as f:
|
||||
f.write(new_config)
|
||||
@@ -253,13 +259,7 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
|
||||
|
||||
@router.put("/config/set")
|
||||
def config_set(request: Request, body: AppConfigSetBody):
|
||||
config_file = os.environ.get("CONFIG_FILE", f"{CONFIG_DIR}/config.yml")
|
||||
|
||||
# Check if we can use .yaml instead of .yml
|
||||
config_file_yaml = config_file.replace(".yml", ".yaml")
|
||||
|
||||
if os.path.isfile(config_file_yaml):
|
||||
config_file = config_file_yaml
|
||||
config_file = find_config_file()
|
||||
|
||||
with open(config_file, "r") as f:
|
||||
old_raw_config = f.read()
|
||||
|
||||
@@ -18,7 +18,7 @@ from joserfc import jwt
|
||||
from peewee import DoesNotExist
|
||||
from slowapi import Limiter
|
||||
|
||||
from frigate.api.defs.app_body import (
|
||||
from frigate.api.defs.request.app_body import (
|
||||
AppPostLoginBody,
|
||||
AppPostUsersBody,
|
||||
AppPutPasswordBody,
|
||||
@@ -85,7 +85,12 @@ def get_remote_addr(request: Request):
|
||||
return str(ip)
|
||||
|
||||
# if there wasn't anything in the route, just return the default
|
||||
return request.remote_addr or "127.0.0.1"
|
||||
remote_addr = None
|
||||
|
||||
if hasattr(request, "remote_addr"):
|
||||
remote_addr = request.remote_addr
|
||||
|
||||
return remote_addr or "127.0.0.1"
|
||||
|
||||
|
||||
def get_jwt_secret() -> str:
|
||||
@@ -324,7 +329,7 @@ def login(request: Request, body: AppPostLoginBody):
|
||||
try:
|
||||
db_user: User = User.get_by_id(user)
|
||||
except DoesNotExist:
|
||||
return JSONResponse(content={"message": "Login failed"}, status_code=400)
|
||||
return JSONResponse(content={"message": "Login failed"}, status_code=401)
|
||||
|
||||
password_hash = db_user.password_hash
|
||||
if verify_password(password, password_hash):
|
||||
@@ -335,7 +340,7 @@ def login(request: Request, body: AppPostLoginBody):
|
||||
response, JWT_COOKIE_NAME, encoded_jwt, expiration, JWT_COOKIE_SECURE
|
||||
)
|
||||
return response
|
||||
return JSONResponse(content={"message": "Login failed"}, status_code=400)
|
||||
return JSONResponse(content={"message": "Login failed"}, status_code=401)
|
||||
|
||||
|
||||
@router.get("/users")
|
||||
|
||||
0
frigate/api/defs/__init__.py
Normal file
0
frigate/api/defs/__init__.py
Normal file
@@ -28,6 +28,7 @@ class EventsQueryParams(BaseModel):
|
||||
is_submitted: Optional[int] = None
|
||||
min_length: Optional[float] = None
|
||||
max_length: Optional[float] = None
|
||||
event_id: Optional[str] = None
|
||||
sort: Optional[str] = None
|
||||
timezone: Optional[str] = "utc"
|
||||
|
||||
@@ -46,6 +47,7 @@ class EventsSearchQueryParams(BaseModel):
|
||||
time_range: Optional[str] = DEFAULT_TIME_RANGE
|
||||
has_clip: Optional[bool] = None
|
||||
has_snapshot: Optional[bool] = None
|
||||
is_submitted: Optional[bool] = None
|
||||
timezone: Optional[str] = "utc"
|
||||
min_score: Optional[float] = None
|
||||
max_score: Optional[float] = None
|
||||
31
frigate/api/defs/query/review_query_parameters.py
Normal file
31
frigate/api/defs/query/review_query_parameters.py
Normal file
@@ -0,0 +1,31 @@
|
||||
from typing import Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic.json_schema import SkipJsonSchema
|
||||
|
||||
from frigate.review.types import SeverityEnum
|
||||
|
||||
|
||||
class ReviewQueryParams(BaseModel):
|
||||
cameras: str = "all"
|
||||
labels: str = "all"
|
||||
zones: str = "all"
|
||||
reviewed: int = 0
|
||||
limit: Union[int, SkipJsonSchema[None]] = None
|
||||
severity: Union[SeverityEnum, SkipJsonSchema[None]] = None
|
||||
before: Union[float, SkipJsonSchema[None]] = None
|
||||
after: Union[float, SkipJsonSchema[None]] = None
|
||||
|
||||
|
||||
class ReviewSummaryQueryParams(BaseModel):
|
||||
cameras: str = "all"
|
||||
labels: str = "all"
|
||||
zones: str = "all"
|
||||
timezone: str = "utc"
|
||||
|
||||
|
||||
class ReviewActivityMotionQueryParams(BaseModel):
|
||||
cameras: str = "all"
|
||||
before: Union[float, SkipJsonSchema[None]] = None
|
||||
after: Union[float, SkipJsonSchema[None]] = None
|
||||
scale: int = 30
|
||||
0
frigate/api/defs/request/__init__.py
Normal file
0
frigate/api/defs/request/__init__.py
Normal file
@@ -1,4 +1,4 @@
|
||||
from typing import Optional, Union
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
@@ -17,14 +17,18 @@ class EventsDescriptionBody(BaseModel):
|
||||
class EventsCreateBody(BaseModel):
|
||||
source_type: Optional[str] = "api"
|
||||
sub_label: Optional[str] = None
|
||||
score: Optional[int] = 0
|
||||
score: Optional[float] = 0
|
||||
duration: Optional[int] = 30
|
||||
include_recording: Optional[bool] = True
|
||||
draw: Optional[dict] = {}
|
||||
|
||||
|
||||
class EventsEndBody(BaseModel):
|
||||
end_time: Optional[int] = None
|
||||
end_time: Optional[float] = None
|
||||
|
||||
|
||||
class EventsDeleteBody(BaseModel):
|
||||
event_ids: List[str] = Field(title="The event IDs to delete")
|
||||
|
||||
|
||||
class SubmitPlusBody(BaseModel):
|
||||
20
frigate/api/defs/request/export_recordings_body.py
Normal file
20
frigate/api/defs/request/export_recordings_body.py
Normal file
@@ -0,0 +1,20 @@
|
||||
from typing import Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic.json_schema import SkipJsonSchema
|
||||
|
||||
from frigate.record.export import (
|
||||
PlaybackFactorEnum,
|
||||
PlaybackSourceEnum,
|
||||
)
|
||||
|
||||
|
||||
class ExportRecordingsBody(BaseModel):
|
||||
playback: PlaybackFactorEnum = Field(
|
||||
default=PlaybackFactorEnum.realtime, title="Playback factor"
|
||||
)
|
||||
source: PlaybackSourceEnum = Field(
|
||||
default=PlaybackSourceEnum.recordings, title="Playback source"
|
||||
)
|
||||
name: str = Field(title="Friendly name", default=None, max_length=256)
|
||||
image_path: Union[str, SkipJsonSchema[None]] = None
|
||||
6
frigate/api/defs/request/review_body.py
Normal file
6
frigate/api/defs/request/review_body.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from pydantic import BaseModel, conlist, constr
|
||||
|
||||
|
||||
class ReviewModifyMultipleBody(BaseModel):
|
||||
# List of string with at least one element and each element with at least one char
|
||||
ids: conlist(constr(min_length=1), min_length=1)
|
||||
42
frigate/api/defs/response/event_response.py
Normal file
42
frigate/api/defs/response/event_response.py
Normal file
@@ -0,0 +1,42 @@
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
|
||||
class EventResponse(BaseModel):
|
||||
id: str
|
||||
label: str
|
||||
sub_label: Optional[str]
|
||||
camera: str
|
||||
start_time: float
|
||||
end_time: Optional[float]
|
||||
false_positive: Optional[bool]
|
||||
zones: list[str]
|
||||
thumbnail: str
|
||||
has_clip: bool
|
||||
has_snapshot: bool
|
||||
retain_indefinitely: bool
|
||||
plus_id: Optional[str]
|
||||
model_hash: Optional[str]
|
||||
detector_type: Optional[str]
|
||||
model_type: Optional[str]
|
||||
data: dict[str, Any]
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class EventCreateResponse(BaseModel):
|
||||
success: bool
|
||||
message: str
|
||||
event_id: str
|
||||
|
||||
|
||||
class EventMultiDeleteResponse(BaseModel):
|
||||
success: bool
|
||||
deleted_events: list[str]
|
||||
not_found_events: list[str]
|
||||
|
||||
|
||||
class EventUploadPlusResponse(BaseModel):
|
||||
success: bool
|
||||
plus_id: str
|
||||
6
frigate/api/defs/response/generic_response.py
Normal file
6
frigate/api/defs/response/generic_response.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class GenericResponse(BaseModel):
|
||||
success: bool
|
||||
message: str
|
||||
43
frigate/api/defs/response/review_response.py
Normal file
43
frigate/api/defs/response/review_response.py
Normal file
@@ -0,0 +1,43 @@
|
||||
from datetime import datetime
|
||||
from typing import Dict
|
||||
|
||||
from pydantic import BaseModel, Json
|
||||
|
||||
from frigate.review.types import SeverityEnum
|
||||
|
||||
|
||||
class ReviewSegmentResponse(BaseModel):
|
||||
id: str
|
||||
camera: str
|
||||
start_time: datetime
|
||||
end_time: datetime
|
||||
has_been_reviewed: bool
|
||||
severity: SeverityEnum
|
||||
thumb_path: str
|
||||
data: Json
|
||||
|
||||
|
||||
class Last24HoursReview(BaseModel):
|
||||
reviewed_alert: int
|
||||
reviewed_detection: int
|
||||
total_alert: int
|
||||
total_detection: int
|
||||
|
||||
|
||||
class DayReview(BaseModel):
|
||||
day: datetime
|
||||
reviewed_alert: int
|
||||
reviewed_detection: int
|
||||
total_alert: int
|
||||
total_detection: int
|
||||
|
||||
|
||||
class ReviewSummaryResponse(BaseModel):
|
||||
last24Hours: Last24HoursReview
|
||||
root: Dict[str, DayReview]
|
||||
|
||||
|
||||
class ReviewActivityMotionResponse(BaseModel):
|
||||
start_time: int
|
||||
motion: float
|
||||
camera: str
|
||||
@@ -1,28 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ReviewQueryParams(BaseModel):
|
||||
cameras: Optional[str] = "all"
|
||||
labels: Optional[str] = "all"
|
||||
zones: Optional[str] = "all"
|
||||
reviewed: Optional[int] = 0
|
||||
limit: Optional[int] = None
|
||||
severity: Optional[str] = None
|
||||
before: Optional[float] = None
|
||||
after: Optional[float] = None
|
||||
|
||||
|
||||
class ReviewSummaryQueryParams(BaseModel):
|
||||
cameras: Optional[str] = "all"
|
||||
labels: Optional[str] = "all"
|
||||
zones: Optional[str] = "all"
|
||||
timezone: Optional[str] = "utc"
|
||||
|
||||
|
||||
class ReviewActivityMotionQueryParams(BaseModel):
|
||||
cameras: Optional[str] = "all"
|
||||
before: Optional[float] = None
|
||||
after: Optional[float] = None
|
||||
scale: Optional[int] = 30
|
||||
@@ -14,29 +14,36 @@ from fastapi.responses import JSONResponse
|
||||
from peewee import JOIN, DoesNotExist, fn, operator
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.api.defs.events_body import (
|
||||
EventsCreateBody,
|
||||
EventsDescriptionBody,
|
||||
EventsEndBody,
|
||||
EventsSubLabelBody,
|
||||
SubmitPlusBody,
|
||||
)
|
||||
from frigate.api.defs.events_query_parameters import (
|
||||
from frigate.api.defs.query.events_query_parameters import (
|
||||
DEFAULT_TIME_RANGE,
|
||||
EventsQueryParams,
|
||||
EventsSearchQueryParams,
|
||||
EventsSummaryQueryParams,
|
||||
)
|
||||
from frigate.api.defs.regenerate_query_parameters import (
|
||||
from frigate.api.defs.query.regenerate_query_parameters import (
|
||||
RegenerateQueryParameters,
|
||||
)
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.const import (
|
||||
CLIPS_DIR,
|
||||
from frigate.api.defs.request.events_body import (
|
||||
EventsCreateBody,
|
||||
EventsDeleteBody,
|
||||
EventsDescriptionBody,
|
||||
EventsEndBody,
|
||||
EventsSubLabelBody,
|
||||
SubmitPlusBody,
|
||||
)
|
||||
from frigate.api.defs.response.event_response import (
|
||||
EventCreateResponse,
|
||||
EventMultiDeleteResponse,
|
||||
EventResponse,
|
||||
EventUploadPlusResponse,
|
||||
)
|
||||
from frigate.api.defs.response.generic_response import GenericResponse
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.const import CLIPS_DIR
|
||||
from frigate.embeddings import EmbeddingsContext
|
||||
from frigate.events.external import ExternalEventProcessor
|
||||
from frigate.models import Event, ReviewSegment, Timeline
|
||||
from frigate.object_processing import TrackedObject
|
||||
from frigate.object_processing import TrackedObject, TrackedObjectProcessor
|
||||
from frigate.util.builtin import get_tz_modifiers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -44,7 +51,7 @@ logger = logging.getLogger(__name__)
|
||||
router = APIRouter(tags=[Tags.events])
|
||||
|
||||
|
||||
@router.get("/events")
|
||||
@router.get("/events", response_model=list[EventResponse])
|
||||
def events(params: EventsQueryParams = Depends()):
|
||||
camera = params.camera
|
||||
cameras = params.cameras
|
||||
@@ -88,6 +95,7 @@ def events(params: EventsQueryParams = Depends()):
|
||||
is_submitted = params.is_submitted
|
||||
min_length = params.min_length
|
||||
max_length = params.max_length
|
||||
event_id = params.event_id
|
||||
|
||||
sort = params.sort
|
||||
|
||||
@@ -230,6 +238,9 @@ def events(params: EventsQueryParams = Depends()):
|
||||
elif is_submitted > 0:
|
||||
clauses.append((Event.plus_id != ""))
|
||||
|
||||
if event_id is not None:
|
||||
clauses.append((Event.id == event_id))
|
||||
|
||||
if len(clauses) == 0:
|
||||
clauses.append((True))
|
||||
|
||||
@@ -242,6 +253,8 @@ def events(params: EventsQueryParams = Depends()):
|
||||
order_by = Event.start_time.asc()
|
||||
elif sort == "date_desc":
|
||||
order_by = Event.start_time.desc()
|
||||
else:
|
||||
order_by = Event.start_time.desc()
|
||||
else:
|
||||
order_by = Event.start_time.desc()
|
||||
|
||||
@@ -257,7 +270,7 @@ def events(params: EventsQueryParams = Depends()):
|
||||
return JSONResponse(content=list(events))
|
||||
|
||||
|
||||
@router.get("/events/explore")
|
||||
@router.get("/events/explore", response_model=list[EventResponse])
|
||||
def events_explore(limit: int = 10):
|
||||
# get distinct labels for all events
|
||||
distinct_labels = Event.select(Event.label).distinct().order_by(Event.label)
|
||||
@@ -302,7 +315,8 @@ def events_explore(limit: int = 10):
|
||||
"data": {
|
||||
k: v
|
||||
for k, v in event.data.items()
|
||||
if k in ["type", "score", "top_score", "description"]
|
||||
if k
|
||||
in ["type", "score", "top_score", "description", "sub_label_score"]
|
||||
},
|
||||
"event_count": label_counts[event.label],
|
||||
}
|
||||
@@ -318,7 +332,7 @@ def events_explore(limit: int = 10):
|
||||
return JSONResponse(content=processed_events)
|
||||
|
||||
|
||||
@router.get("/event_ids")
|
||||
@router.get("/event_ids", response_model=list[EventResponse])
|
||||
def event_ids(ids: str):
|
||||
ids = ids.split(",")
|
||||
|
||||
@@ -356,6 +370,7 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends())
|
||||
time_range = params.time_range
|
||||
has_clip = params.has_clip
|
||||
has_snapshot = params.has_snapshot
|
||||
is_submitted = params.is_submitted
|
||||
|
||||
# for similarity search
|
||||
event_id = params.event_id
|
||||
@@ -394,6 +409,7 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends())
|
||||
Event.end_time,
|
||||
Event.has_clip,
|
||||
Event.has_snapshot,
|
||||
Event.top_score,
|
||||
Event.data,
|
||||
Event.plus_id,
|
||||
ReviewSegment.thumb_path,
|
||||
@@ -436,6 +452,12 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends())
|
||||
if has_snapshot is not None:
|
||||
event_filters.append((Event.has_snapshot == has_snapshot))
|
||||
|
||||
if is_submitted is not None:
|
||||
if is_submitted == 0:
|
||||
event_filters.append((Event.plus_id.is_null()))
|
||||
elif is_submitted > 0:
|
||||
event_filters.append((Event.plus_id != ""))
|
||||
|
||||
if min_score is not None and max_score is not None:
|
||||
event_filters.append((Event.data["score"].between(min_score, max_score)))
|
||||
else:
|
||||
@@ -568,19 +590,17 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends())
|
||||
|
||||
processed_events.append(processed_event)
|
||||
|
||||
# Sort by search distance if search_results are available, otherwise by start_time as default
|
||||
if search_results:
|
||||
if (sort is None or sort == "relevance") and search_results:
|
||||
processed_events.sort(key=lambda x: x.get("search_distance", float("inf")))
|
||||
elif min_score is not None and max_score is not None and sort == "score_asc":
|
||||
processed_events.sort(key=lambda x: x["score"])
|
||||
elif min_score is not None and max_score is not None and sort == "score_desc":
|
||||
processed_events.sort(key=lambda x: x["score"], reverse=True)
|
||||
elif sort == "date_asc":
|
||||
processed_events.sort(key=lambda x: x["start_time"])
|
||||
else:
|
||||
if sort == "score_asc":
|
||||
processed_events.sort(key=lambda x: x["score"])
|
||||
elif sort == "score_desc":
|
||||
processed_events.sort(key=lambda x: x["score"], reverse=True)
|
||||
elif sort == "date_asc":
|
||||
processed_events.sort(key=lambda x: x["start_time"])
|
||||
else:
|
||||
# "date_desc" default
|
||||
processed_events.sort(key=lambda x: x["start_time"], reverse=True)
|
||||
# "date_desc" default
|
||||
processed_events.sort(key=lambda x: x["start_time"], reverse=True)
|
||||
|
||||
# Limit the number of events returned
|
||||
processed_events = processed_events[:limit]
|
||||
@@ -633,7 +653,7 @@ def events_summary(params: EventsSummaryQueryParams = Depends()):
|
||||
return JSONResponse(content=[e for e in groups.dicts()])
|
||||
|
||||
|
||||
@router.get("/events/{event_id}")
|
||||
@router.get("/events/{event_id}", response_model=EventResponse)
|
||||
def event(event_id: str):
|
||||
try:
|
||||
return model_to_dict(Event.get(Event.id == event_id))
|
||||
@@ -641,7 +661,7 @@ def event(event_id: str):
|
||||
return JSONResponse(content="Event not found", status_code=404)
|
||||
|
||||
|
||||
@router.post("/events/{event_id}/retain")
|
||||
@router.post("/events/{event_id}/retain", response_model=GenericResponse)
|
||||
def set_retain(event_id: str):
|
||||
try:
|
||||
event = Event.get(Event.id == event_id)
|
||||
@@ -660,7 +680,7 @@ def set_retain(event_id: str):
|
||||
)
|
||||
|
||||
|
||||
@router.post("/events/{event_id}/plus")
|
||||
@router.post("/events/{event_id}/plus", response_model=EventUploadPlusResponse)
|
||||
def send_to_plus(request: Request, event_id: str, body: SubmitPlusBody = None):
|
||||
if not request.app.frigate_config.plus_api.is_active():
|
||||
message = "PLUS_API_KEY environment variable is not set"
|
||||
@@ -772,7 +792,7 @@ def send_to_plus(request: Request, event_id: str, body: SubmitPlusBody = None):
|
||||
)
|
||||
|
||||
|
||||
@router.put("/events/{event_id}/false_positive")
|
||||
@router.put("/events/{event_id}/false_positive", response_model=EventUploadPlusResponse)
|
||||
def false_positive(request: Request, event_id: str):
|
||||
if not request.app.frigate_config.plus_api.is_active():
|
||||
message = "PLUS_API_KEY environment variable is not set"
|
||||
@@ -861,7 +881,7 @@ def false_positive(request: Request, event_id: str):
|
||||
)
|
||||
|
||||
|
||||
@router.delete("/events/{event_id}/retain")
|
||||
@router.delete("/events/{event_id}/retain", response_model=GenericResponse)
|
||||
def delete_retain(event_id: str):
|
||||
try:
|
||||
event = Event.get(Event.id == event_id)
|
||||
@@ -880,7 +900,7 @@ def delete_retain(event_id: str):
|
||||
)
|
||||
|
||||
|
||||
@router.post("/events/{event_id}/sub_label")
|
||||
@router.post("/events/{event_id}/sub_label", response_model=GenericResponse)
|
||||
def set_sub_label(
|
||||
request: Request,
|
||||
event_id: str,
|
||||
@@ -932,7 +952,7 @@ def set_sub_label(
|
||||
)
|
||||
|
||||
|
||||
@router.post("/events/{event_id}/description")
|
||||
@router.post("/events/{event_id}/description", response_model=GenericResponse)
|
||||
def set_description(
|
||||
request: Request,
|
||||
event_id: str,
|
||||
@@ -979,7 +999,7 @@ def set_description(
|
||||
)
|
||||
|
||||
|
||||
@router.put("/events/{event_id}/description/regenerate")
|
||||
@router.put("/events/{event_id}/description/regenerate", response_model=GenericResponse)
|
||||
def regenerate_description(
|
||||
request: Request, event_id: str, params: RegenerateQueryParameters = Depends()
|
||||
):
|
||||
@@ -991,9 +1011,11 @@ def regenerate_description(
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
camera_config = request.app.frigate_config.cameras[event.camera]
|
||||
|
||||
if (
|
||||
request.app.frigate_config.semantic_search.enabled
|
||||
and request.app.frigate_config.genai.enabled
|
||||
and camera_config.genai.enabled
|
||||
):
|
||||
request.app.event_metadata_updater.publish((event.id, params.source))
|
||||
|
||||
@@ -1014,47 +1036,74 @@ def regenerate_description(
|
||||
content=(
|
||||
{
|
||||
"success": False,
|
||||
"message": "Semantic search and generative AI are not enabled",
|
||||
"message": "Semantic Search and Generative AI must be enabled to regenerate a description",
|
||||
}
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
|
||||
@router.delete("/events/{event_id}")
|
||||
def delete_event(request: Request, event_id: str):
|
||||
def delete_single_event(event_id: str, request: Request) -> dict:
|
||||
try:
|
||||
event = Event.get(Event.id == event_id)
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "Event " + event_id + " not found"}),
|
||||
status_code=404,
|
||||
)
|
||||
return {"success": False, "message": f"Event {event_id} not found"}
|
||||
|
||||
media_name = f"{event.camera}-{event.id}"
|
||||
if event.has_snapshot:
|
||||
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg")
|
||||
media.unlink(missing_ok=True)
|
||||
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}-clean.png")
|
||||
media.unlink(missing_ok=True)
|
||||
if event.has_clip:
|
||||
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.mp4")
|
||||
media.unlink(missing_ok=True)
|
||||
snapshot_paths = [
|
||||
Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg"),
|
||||
Path(f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"),
|
||||
]
|
||||
for media in snapshot_paths:
|
||||
media.unlink(missing_ok=True)
|
||||
|
||||
event.delete_instance()
|
||||
Timeline.delete().where(Timeline.source_id == event_id).execute()
|
||||
|
||||
# If semantic search is enabled, update the index
|
||||
if request.app.frigate_config.semantic_search.enabled:
|
||||
context: EmbeddingsContext = request.app.embeddings
|
||||
context.db.delete_embeddings_thumbnail(event_ids=[event_id])
|
||||
context.db.delete_embeddings_description(event_ids=[event_id])
|
||||
return JSONResponse(
|
||||
content=({"success": True, "message": "Event " + event_id + " deleted"}),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
return {"success": True, "message": f"Event {event_id} deleted"}
|
||||
|
||||
|
||||
@router.post("/events/{camera_name}/{label}/create")
|
||||
@router.delete("/events/{event_id}", response_model=GenericResponse)
|
||||
def delete_event(request: Request, event_id: str):
|
||||
result = delete_single_event(event_id, request)
|
||||
status_code = 200 if result["success"] else 404
|
||||
return JSONResponse(content=result, status_code=status_code)
|
||||
|
||||
|
||||
@router.delete("/events/", response_model=EventMultiDeleteResponse)
|
||||
def delete_events(request: Request, body: EventsDeleteBody):
|
||||
if not body.event_ids:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "No event IDs provided."}),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
deleted_events = []
|
||||
not_found_events = []
|
||||
|
||||
for event_id in body.event_ids:
|
||||
result = delete_single_event(event_id, request)
|
||||
if result["success"]:
|
||||
deleted_events.append(event_id)
|
||||
else:
|
||||
not_found_events.append(event_id)
|
||||
|
||||
response = {
|
||||
"success": True,
|
||||
"deleted_events": deleted_events,
|
||||
"not_found_events": not_found_events,
|
||||
}
|
||||
return JSONResponse(content=response, status_code=200)
|
||||
|
||||
|
||||
@router.post("/events/{camera_name}/{label}/create", response_model=EventCreateResponse)
|
||||
def create_event(
|
||||
request: Request,
|
||||
camera_name: str,
|
||||
@@ -1076,9 +1125,11 @@ def create_event(
|
||||
)
|
||||
|
||||
try:
|
||||
frame = request.app.detected_frames_processor.get_current_frame(camera_name)
|
||||
frame_processor: TrackedObjectProcessor = request.app.detected_frames_processor
|
||||
external_processor: ExternalEventProcessor = request.app.external_processor
|
||||
|
||||
event_id = request.app.external_processor.create_manual_event(
|
||||
frame = frame_processor.get_current_frame(camera_name)
|
||||
event_id = external_processor.create_manual_event(
|
||||
camera_name,
|
||||
label,
|
||||
body.source_type,
|
||||
@@ -1108,7 +1159,7 @@ def create_event(
|
||||
)
|
||||
|
||||
|
||||
@router.put("/events/{event_id}/end")
|
||||
@router.put("/events/{event_id}/end", response_model=GenericResponse)
|
||||
def end_event(request: Request, event_id: str, body: EventsEndBody):
|
||||
try:
|
||||
end_time = body.end_time or datetime.datetime.now().timestamp()
|
||||
|
||||
@@ -4,17 +4,23 @@ import logging
|
||||
import random
|
||||
import string
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import psutil
|
||||
from fastapi import APIRouter, Request
|
||||
from fastapi.responses import JSONResponse
|
||||
from peewee import DoesNotExist
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.api.defs.request.export_recordings_body import ExportRecordingsBody
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.const import EXPORT_DIR
|
||||
from frigate.models import Export, Recordings
|
||||
from frigate.record.export import PlaybackFactorEnum, RecordingExporter
|
||||
from frigate.models import Export, Previews, Recordings
|
||||
from frigate.record.export import (
|
||||
PlaybackFactorEnum,
|
||||
PlaybackSourceEnum,
|
||||
RecordingExporter,
|
||||
)
|
||||
from frigate.util.builtin import is_current_hour
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -33,7 +39,7 @@ def export_recording(
|
||||
camera_name: str,
|
||||
start_time: float,
|
||||
end_time: float,
|
||||
body: dict = None,
|
||||
body: ExportRecordingsBody,
|
||||
):
|
||||
if not camera_name or not request.app.frigate_config.cameras.get(camera_name):
|
||||
return JSONResponse(
|
||||
@@ -43,36 +49,52 @@ def export_recording(
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
json: dict[str, any] = body or {}
|
||||
playback_factor = json.get("playback", "realtime")
|
||||
friendly_name: Optional[str] = json.get("name")
|
||||
playback_factor = body.playback
|
||||
playback_source = body.source
|
||||
friendly_name = body.name
|
||||
existing_image = body.image_path
|
||||
|
||||
if len(friendly_name or "") > 256:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "File name is too long."}),
|
||||
status_code=401,
|
||||
if playback_source == "recordings":
|
||||
recordings_count = (
|
||||
Recordings.select()
|
||||
.where(
|
||||
Recordings.start_time.between(start_time, end_time)
|
||||
| Recordings.end_time.between(start_time, end_time)
|
||||
| (
|
||||
(start_time > Recordings.start_time)
|
||||
& (end_time < Recordings.end_time)
|
||||
)
|
||||
)
|
||||
.where(Recordings.camera == camera_name)
|
||||
.count()
|
||||
)
|
||||
|
||||
existing_image = json.get("image_path")
|
||||
|
||||
recordings_count = (
|
||||
Recordings.select()
|
||||
.where(
|
||||
Recordings.start_time.between(start_time, end_time)
|
||||
| Recordings.end_time.between(start_time, end_time)
|
||||
| ((start_time > Recordings.start_time) & (end_time < Recordings.end_time))
|
||||
if recordings_count <= 0:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": "No recordings found for time range"}
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
else:
|
||||
previews_count = (
|
||||
Previews.select()
|
||||
.where(
|
||||
Previews.start_time.between(start_time, end_time)
|
||||
| Previews.end_time.between(start_time, end_time)
|
||||
| ((start_time > Previews.start_time) & (end_time < Previews.end_time))
|
||||
)
|
||||
.where(Previews.camera == camera_name)
|
||||
.count()
|
||||
)
|
||||
.where(Recordings.camera == camera_name)
|
||||
.count()
|
||||
)
|
||||
|
||||
if recordings_count <= 0:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": "No recordings found for time range"}
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
if not is_current_hour(start_time) and previews_count <= 0:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": "No previews found for time range"}
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
export_id = f"{camera_name}_{''.join(random.choices(string.ascii_lowercase + string.digits, k=6))}"
|
||||
exporter = RecordingExporter(
|
||||
@@ -88,6 +110,11 @@ def export_recording(
|
||||
if playback_factor in PlaybackFactorEnum.__members__.values()
|
||||
else PlaybackFactorEnum.realtime
|
||||
),
|
||||
(
|
||||
PlaybackSourceEnum[playback_source]
|
||||
if playback_source in PlaybackSourceEnum.__members__.values()
|
||||
else PlaybackSourceEnum.recordings
|
||||
),
|
||||
)
|
||||
exporter.start()
|
||||
return JSONResponse(
|
||||
@@ -181,3 +208,14 @@ def export_delete(event_id: str):
|
||||
),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/exports/{export_id}")
|
||||
def get_export(export_id: str):
|
||||
try:
|
||||
return JSONResponse(content=model_to_dict(Export.get(Export.id == export_id)))
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Export not found"},
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
@@ -82,8 +82,16 @@ def create_fastapi_app(
|
||||
database.close()
|
||||
return response
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup():
|
||||
logger.info("FastAPI started")
|
||||
|
||||
# Rate limiter (used for login endpoint)
|
||||
auth.rateLimiter.set_limit(frigate_config.auth.failed_login_rate_limit or "")
|
||||
if frigate_config.auth.failed_login_rate_limit is None:
|
||||
limiter.enabled = False
|
||||
else:
|
||||
auth.rateLimiter.set_limit(frigate_config.auth.failed_login_rate_limit)
|
||||
|
||||
app.state.limiter = limiter
|
||||
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)
|
||||
app.add_middleware(SlowAPIMiddleware)
|
||||
|
||||
@@ -20,7 +20,7 @@ from pathvalidate import sanitize_filename
|
||||
from peewee import DoesNotExist, fn
|
||||
from tzlocal import get_localzone_name
|
||||
|
||||
from frigate.api.defs.media_query_parameters import (
|
||||
from frigate.api.defs.query.media_query_parameters import (
|
||||
Extension,
|
||||
MediaEventsSnapshotQueryParams,
|
||||
MediaLatestFrameQueryParams,
|
||||
@@ -36,6 +36,7 @@ from frigate.const import (
|
||||
RECORD_DIR,
|
||||
)
|
||||
from frigate.models import Event, Previews, Recordings, Regions, ReviewSegment
|
||||
from frigate.object_processing import TrackedObjectProcessor
|
||||
from frigate.util.builtin import get_tz_modifiers
|
||||
from frigate.util.image import get_image_from_recording
|
||||
|
||||
@@ -79,7 +80,11 @@ def mjpeg_feed(
|
||||
|
||||
|
||||
def imagestream(
|
||||
detected_frames_processor, camera_name: str, fps: int, height: int, draw_options
|
||||
detected_frames_processor: TrackedObjectProcessor,
|
||||
camera_name: str,
|
||||
fps: int,
|
||||
height: int,
|
||||
draw_options: dict[str, any],
|
||||
):
|
||||
while True:
|
||||
# max out at specified FPS
|
||||
@@ -118,6 +123,7 @@ def latest_frame(
|
||||
extension: Extension,
|
||||
params: MediaLatestFrameQueryParams = Depends(),
|
||||
):
|
||||
frame_processor: TrackedObjectProcessor = request.app.detected_frames_processor
|
||||
draw_options = {
|
||||
"bounding_boxes": params.bbox,
|
||||
"timestamp": params.timestamp,
|
||||
@@ -127,19 +133,25 @@ def latest_frame(
|
||||
"regions": params.regions,
|
||||
}
|
||||
quality = params.quality
|
||||
mime_type = extension
|
||||
|
||||
if extension == "png":
|
||||
quality_params = None
|
||||
elif extension == "webp":
|
||||
quality_params = [int(cv2.IMWRITE_WEBP_QUALITY), quality]
|
||||
else:
|
||||
quality_params = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
||||
mime_type = "jpeg"
|
||||
|
||||
if camera_name in request.app.frigate_config.cameras:
|
||||
frame = request.app.detected_frames_processor.get_current_frame(
|
||||
camera_name, draw_options
|
||||
)
|
||||
frame = frame_processor.get_current_frame(camera_name, draw_options)
|
||||
retry_interval = float(
|
||||
request.app.frigate_config.cameras.get(camera_name).ffmpeg.retry_interval
|
||||
or 10
|
||||
)
|
||||
|
||||
if frame is None or datetime.now().timestamp() > (
|
||||
request.app.detected_frames_processor.get_current_frame_time(camera_name)
|
||||
+ retry_interval
|
||||
frame_processor.get_current_frame_time(camera_name) + retry_interval
|
||||
):
|
||||
if request.app.camera_error_image is None:
|
||||
error_image = glob.glob("/opt/frigate/frigate/images/camera-error.jpg")
|
||||
@@ -170,17 +182,15 @@ def latest_frame(
|
||||
|
||||
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
ret, img = cv2.imencode(
|
||||
f".{extension}", frame, [int(cv2.IMWRITE_WEBP_QUALITY), quality]
|
||||
)
|
||||
ret, img = cv2.imencode(f".{extension}", frame, quality_params)
|
||||
return Response(
|
||||
content=img.tobytes(),
|
||||
media_type=f"image/{extension}",
|
||||
headers={"Content-Type": f"image/{extension}", "Cache-Control": "no-store"},
|
||||
media_type=f"image/{mime_type}",
|
||||
headers={"Content-Type": f"image/{mime_type}", "Cache-Control": "no-store"},
|
||||
)
|
||||
elif camera_name == "birdseye" and request.app.frigate_config.birdseye.restream:
|
||||
frame = cv2.cvtColor(
|
||||
request.app.detected_frames_processor.get_current_frame(camera_name),
|
||||
frame_processor.get_current_frame(camera_name),
|
||||
cv2.COLOR_YUV2BGR_I420,
|
||||
)
|
||||
|
||||
@@ -189,13 +199,11 @@ def latest_frame(
|
||||
|
||||
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
ret, img = cv2.imencode(
|
||||
f".{extension}", frame, [int(cv2.IMWRITE_WEBP_QUALITY), quality]
|
||||
)
|
||||
ret, img = cv2.imencode(f".{extension}", frame, quality_params)
|
||||
return Response(
|
||||
content=img.tobytes(),
|
||||
media_type=f"image/{extension}",
|
||||
headers={"Content-Type": f"image/{extension}", "Cache-Control": "no-store"},
|
||||
media_type=f"image/{mime_type}",
|
||||
headers={"Content-Type": f"image/{mime_type}", "Cache-Control": "no-store"},
|
||||
)
|
||||
else:
|
||||
return JSONResponse(
|
||||
@@ -238,6 +246,7 @@ def get_snapshot_from_recording(
|
||||
recording: Recordings = recording_query.get()
|
||||
time_in_segment = frame_time - recording.start_time
|
||||
codec = "png" if format == "png" else "mjpeg"
|
||||
mime_type = "png" if format == "png" else "jpeg"
|
||||
config: FrigateConfig = request.app.frigate_config
|
||||
|
||||
image_data = get_image_from_recording(
|
||||
@@ -254,7 +263,7 @@ def get_snapshot_from_recording(
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
return Response(image_data, headers={"Content-Type": f"image/{format}"})
|
||||
return Response(image_data, headers={"Content-Type": f"image/{mime_type}"})
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content={
|
||||
@@ -460,8 +469,8 @@ def recording_clip(
|
||||
text=False,
|
||||
) as ffmpeg:
|
||||
while True:
|
||||
data = ffmpeg.stdout.read(1024)
|
||||
if data is not None:
|
||||
data = ffmpeg.stdout.read(8192)
|
||||
if data is not None and len(data) > 0:
|
||||
yield data
|
||||
else:
|
||||
if ffmpeg.returncode and ffmpeg.returncode != 0:
|
||||
@@ -813,15 +822,15 @@ def grid_snapshot(
|
||||
):
|
||||
if camera_name in request.app.frigate_config.cameras:
|
||||
detect = request.app.frigate_config.cameras[camera_name].detect
|
||||
frame = request.app.detected_frames_processor.get_current_frame(camera_name, {})
|
||||
frame_processor: TrackedObjectProcessor = request.app.detected_frames_processor
|
||||
frame = frame_processor.get_current_frame(camera_name, {})
|
||||
retry_interval = float(
|
||||
request.app.frigate_config.cameras.get(camera_name).ffmpeg.retry_interval
|
||||
or 10
|
||||
)
|
||||
|
||||
if frame is None or datetime.now().timestamp() > (
|
||||
request.app.detected_frames_processor.get_current_frame_time(camera_name)
|
||||
+ retry_interval
|
||||
frame_processor.get_current_frame_time(camera_name) + retry_interval
|
||||
):
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Unable to get valid frame"},
|
||||
@@ -917,7 +926,7 @@ def grid_snapshot(
|
||||
ret, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
|
||||
|
||||
return Response(
|
||||
jpg.tobytes,
|
||||
jpg.tobytes(),
|
||||
media_type="image/jpeg",
|
||||
headers={"Cache-Control": "no-store"},
|
||||
)
|
||||
@@ -1453,7 +1462,6 @@ def preview_thumbnail(file_name: str):
|
||||
|
||||
return Response(
|
||||
jpg_bytes,
|
||||
# FIXME: Shouldn't it be either jpg or webp depending on the endpoint?
|
||||
media_type="image/webp",
|
||||
headers={
|
||||
"Content-Type": "image/webp",
|
||||
@@ -1482,7 +1490,7 @@ def label_thumbnail(request: Request, camera_name: str, label: str):
|
||||
ret, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
|
||||
|
||||
return Response(
|
||||
jpg.tobytes,
|
||||
jpg.tobytes(),
|
||||
media_type="image/jpeg",
|
||||
headers={"Cache-Control": "no-store"},
|
||||
)
|
||||
@@ -1535,6 +1543,6 @@ def label_snapshot(request: Request, camera_name: str, label: str):
|
||||
_, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
|
||||
|
||||
return Response(
|
||||
jpg.tobytes,
|
||||
jpg.tobytes(),
|
||||
media_type="image/jpeg",
|
||||
)
|
||||
|
||||
@@ -12,13 +12,21 @@ from fastapi.responses import JSONResponse
|
||||
from peewee import Case, DoesNotExist, fn, operator
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.api.defs.review_query_parameters import (
|
||||
from frigate.api.defs.query.review_query_parameters import (
|
||||
ReviewActivityMotionQueryParams,
|
||||
ReviewQueryParams,
|
||||
ReviewSummaryQueryParams,
|
||||
)
|
||||
from frigate.api.defs.request.review_body import ReviewModifyMultipleBody
|
||||
from frigate.api.defs.response.generic_response import GenericResponse
|
||||
from frigate.api.defs.response.review_response import (
|
||||
ReviewActivityMotionResponse,
|
||||
ReviewSegmentResponse,
|
||||
ReviewSummaryResponse,
|
||||
)
|
||||
from frigate.api.defs.tags import Tags
|
||||
from frigate.models import Recordings, ReviewSegment
|
||||
from frigate.review.types import SeverityEnum
|
||||
from frigate.util.builtin import get_tz_modifiers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -26,7 +34,7 @@ logger = logging.getLogger(__name__)
|
||||
router = APIRouter(tags=[Tags.review])
|
||||
|
||||
|
||||
@router.get("/review")
|
||||
@router.get("/review", response_model=list[ReviewSegmentResponse])
|
||||
def review(params: ReviewQueryParams = Depends()):
|
||||
cameras = params.cameras
|
||||
labels = params.labels
|
||||
@@ -102,7 +110,7 @@ def review(params: ReviewQueryParams = Depends()):
|
||||
return JSONResponse(content=[r for r in review])
|
||||
|
||||
|
||||
@router.get("/review/summary")
|
||||
@router.get("/review/summary", response_model=ReviewSummaryResponse)
|
||||
def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(params.timezone)
|
||||
day_ago = (datetime.datetime.now() - datetime.timedelta(hours=24)).timestamp()
|
||||
@@ -154,7 +162,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "alert"),
|
||||
(ReviewSegment.severity == SeverityEnum.alert),
|
||||
ReviewSegment.has_been_reviewed,
|
||||
)
|
||||
],
|
||||
@@ -166,7 +174,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "detection"),
|
||||
(ReviewSegment.severity == SeverityEnum.detection),
|
||||
ReviewSegment.has_been_reviewed,
|
||||
)
|
||||
],
|
||||
@@ -178,19 +186,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "significant_motion"),
|
||||
ReviewSegment.has_been_reviewed,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("reviewed_motion"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "alert"),
|
||||
(ReviewSegment.severity == SeverityEnum.alert),
|
||||
1,
|
||||
)
|
||||
],
|
||||
@@ -202,25 +198,13 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "detection"),
|
||||
(ReviewSegment.severity == SeverityEnum.detection),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("total_detection"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "significant_motion"),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("total_motion"),
|
||||
)
|
||||
.where(reduce(operator.and_, clauses))
|
||||
.dicts()
|
||||
@@ -247,6 +231,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
label_clause = reduce(operator.or_, label_clauses)
|
||||
clauses.append((label_clause))
|
||||
|
||||
day_in_seconds = 60 * 60 * 24
|
||||
last_month = (
|
||||
ReviewSegment.select(
|
||||
fn.strftime(
|
||||
@@ -263,7 +248,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "alert"),
|
||||
(ReviewSegment.severity == SeverityEnum.alert),
|
||||
ReviewSegment.has_been_reviewed,
|
||||
)
|
||||
],
|
||||
@@ -275,7 +260,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "detection"),
|
||||
(ReviewSegment.severity == SeverityEnum.detection),
|
||||
ReviewSegment.has_been_reviewed,
|
||||
)
|
||||
],
|
||||
@@ -287,19 +272,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "significant_motion"),
|
||||
ReviewSegment.has_been_reviewed,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("reviewed_motion"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "alert"),
|
||||
(ReviewSegment.severity == SeverityEnum.alert),
|
||||
1,
|
||||
)
|
||||
],
|
||||
@@ -311,29 +284,17 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "detection"),
|
||||
(ReviewSegment.severity == SeverityEnum.detection),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("total_detection"),
|
||||
fn.SUM(
|
||||
Case(
|
||||
None,
|
||||
[
|
||||
(
|
||||
(ReviewSegment.severity == "significant_motion"),
|
||||
1,
|
||||
)
|
||||
],
|
||||
0,
|
||||
)
|
||||
).alias("total_motion"),
|
||||
)
|
||||
.where(reduce(operator.and_, clauses))
|
||||
.group_by(
|
||||
(ReviewSegment.start_time + seconds_offset).cast("int") / (3600 * 24),
|
||||
(ReviewSegment.start_time + seconds_offset).cast("int") / day_in_seconds,
|
||||
)
|
||||
.order_by(ReviewSegment.start_time.desc())
|
||||
)
|
||||
@@ -348,19 +309,10 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
||||
return JSONResponse(content=data)
|
||||
|
||||
|
||||
@router.post("/reviews/viewed")
|
||||
def set_multiple_reviewed(body: dict = None):
|
||||
json: dict[str, any] = body or {}
|
||||
list_of_ids = json.get("ids", "")
|
||||
|
||||
if not list_of_ids or len(list_of_ids) == 0:
|
||||
return JSONResponse(
|
||||
context=({"success": False, "message": "Not a valid list of ids"}),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
@router.post("/reviews/viewed", response_model=GenericResponse)
|
||||
def set_multiple_reviewed(body: ReviewModifyMultipleBody):
|
||||
ReviewSegment.update(has_been_reviewed=True).where(
|
||||
ReviewSegment.id << list_of_ids
|
||||
ReviewSegment.id << body.ids
|
||||
).execute()
|
||||
|
||||
return JSONResponse(
|
||||
@@ -369,17 +321,9 @@ def set_multiple_reviewed(body: dict = None):
|
||||
)
|
||||
|
||||
|
||||
@router.post("/reviews/delete")
|
||||
def delete_reviews(body: dict = None):
|
||||
json: dict[str, any] = body or {}
|
||||
list_of_ids = json.get("ids", "")
|
||||
|
||||
if not list_of_ids or len(list_of_ids) == 0:
|
||||
return JSONResponse(
|
||||
content=({"success": False, "message": "Not a valid list of ids"}),
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
@router.post("/reviews/delete", response_model=GenericResponse)
|
||||
def delete_reviews(body: ReviewModifyMultipleBody):
|
||||
list_of_ids = body.ids
|
||||
reviews = (
|
||||
ReviewSegment.select(
|
||||
ReviewSegment.camera,
|
||||
@@ -420,11 +364,13 @@ def delete_reviews(body: dict = None):
|
||||
ReviewSegment.delete().where(ReviewSegment.id << list_of_ids).execute()
|
||||
|
||||
return JSONResponse(
|
||||
content=({"success": True, "message": "Delete reviews"}), status_code=200
|
||||
content=({"success": True, "message": "Deleted review items."}), status_code=200
|
||||
)
|
||||
|
||||
|
||||
@router.get("/review/activity/motion")
|
||||
@router.get(
|
||||
"/review/activity/motion", response_model=list[ReviewActivityMotionResponse]
|
||||
)
|
||||
def motion_activity(params: ReviewActivityMotionQueryParams = Depends()):
|
||||
"""Get motion and audio activity."""
|
||||
cameras = params.cameras
|
||||
@@ -498,98 +444,44 @@ def motion_activity(params: ReviewActivityMotionQueryParams = Depends()):
|
||||
return JSONResponse(content=normalized)
|
||||
|
||||
|
||||
@router.get("/review/activity/audio")
|
||||
def audio_activity(params: ReviewActivityMotionQueryParams = Depends()):
|
||||
"""Get motion and audio activity."""
|
||||
cameras = params.cameras
|
||||
before = params.before or datetime.datetime.now().timestamp()
|
||||
after = (
|
||||
params.after
|
||||
or (datetime.datetime.now() - datetime.timedelta(hours=1)).timestamp()
|
||||
)
|
||||
# get scale in seconds
|
||||
scale = params.scale
|
||||
|
||||
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
|
||||
|
||||
if cameras != "all":
|
||||
camera_list = cameras.split(",")
|
||||
clauses.append((Recordings.camera << camera_list))
|
||||
|
||||
all_recordings: list[Recordings] = (
|
||||
Recordings.select(
|
||||
Recordings.start_time,
|
||||
Recordings.duration,
|
||||
Recordings.objects,
|
||||
Recordings.dBFS,
|
||||
)
|
||||
.where(reduce(operator.and_, clauses))
|
||||
.order_by(Recordings.start_time.asc())
|
||||
.iterator()
|
||||
)
|
||||
|
||||
# format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] }
|
||||
# periods where active objects / audio was detected will cause audio to be scaled down
|
||||
data: list[dict[str, float]] = []
|
||||
|
||||
for rec in all_recordings:
|
||||
data.append(
|
||||
{
|
||||
"start_time": rec.start_time,
|
||||
"audio": rec.dBFS if rec.objects == 0 else 0,
|
||||
}
|
||||
)
|
||||
|
||||
# resample data using pandas to get activity on scaled basis
|
||||
df = pd.DataFrame(data, columns=["start_time", "audio"])
|
||||
df = df.astype(dtype={"audio": "float16"})
|
||||
|
||||
# set date as datetime index
|
||||
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
|
||||
df.set_index(["start_time"], inplace=True)
|
||||
|
||||
# normalize data
|
||||
df = df.resample(f"{scale}S").mean().fillna(0.0)
|
||||
df["audio"] = (
|
||||
(df["audio"] - df["audio"].max())
|
||||
/ (df["audio"].min() - df["audio"].max())
|
||||
* -100
|
||||
)
|
||||
|
||||
# change types for output
|
||||
df.index = df.index.astype(int) // (10**9)
|
||||
normalized = df.reset_index().to_dict("records")
|
||||
return JSONResponse(content=normalized)
|
||||
|
||||
|
||||
@router.get("/review/event/{event_id}")
|
||||
@router.get("/review/event/{event_id}", response_model=ReviewSegmentResponse)
|
||||
def get_review_from_event(event_id: str):
|
||||
try:
|
||||
return model_to_dict(
|
||||
ReviewSegment.get(
|
||||
ReviewSegment.data["detections"].cast("text") % f'*"{event_id}"*'
|
||||
return JSONResponse(
|
||||
model_to_dict(
|
||||
ReviewSegment.get(
|
||||
ReviewSegment.data["detections"].cast("text") % f'*"{event_id}"*'
|
||||
)
|
||||
)
|
||||
)
|
||||
except DoesNotExist:
|
||||
return "Review item not found", 404
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Review item not found"},
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/review/{event_id}")
|
||||
def get_review(event_id: str):
|
||||
@router.get("/review/{review_id}", response_model=ReviewSegmentResponse)
|
||||
def get_review(review_id: str):
|
||||
try:
|
||||
return model_to_dict(ReviewSegment.get(ReviewSegment.id == event_id))
|
||||
return JSONResponse(
|
||||
content=model_to_dict(ReviewSegment.get(ReviewSegment.id == review_id))
|
||||
)
|
||||
except DoesNotExist:
|
||||
return "Review item not found", 404
|
||||
return JSONResponse(
|
||||
content={"success": False, "message": "Review item not found"},
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
|
||||
@router.delete("/review/{event_id}/viewed")
|
||||
def set_not_reviewed(event_id: str):
|
||||
@router.delete("/review/{review_id}/viewed", response_model=GenericResponse)
|
||||
def set_not_reviewed(review_id: str):
|
||||
try:
|
||||
review: ReviewSegment = ReviewSegment.get(ReviewSegment.id == event_id)
|
||||
review: ReviewSegment = ReviewSegment.get(ReviewSegment.id == review_id)
|
||||
except DoesNotExist:
|
||||
return JSONResponse(
|
||||
content=(
|
||||
{"success": False, "message": "Review " + event_id + " not found"}
|
||||
{"success": False, "message": "Review " + review_id + " not found"}
|
||||
),
|
||||
status_code=404,
|
||||
)
|
||||
@@ -598,6 +490,8 @@ def set_not_reviewed(event_id: str):
|
||||
review.save()
|
||||
|
||||
return JSONResponse(
|
||||
content=({"success": True, "message": "Reviewed " + event_id + " not viewed"}),
|
||||
content=(
|
||||
{"success": True, "message": "Set Review " + review_id + " as not viewed"}
|
||||
),
|
||||
status_code=200,
|
||||
)
|
||||
|
||||
@@ -36,6 +36,7 @@ from frigate.const import (
|
||||
EXPORT_DIR,
|
||||
MODEL_CACHE_DIR,
|
||||
RECORD_DIR,
|
||||
SHM_FRAMES_VAR,
|
||||
)
|
||||
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
|
||||
from frigate.embeddings import EmbeddingsContext, manage_embeddings
|
||||
@@ -68,6 +69,7 @@ from frigate.stats.util import stats_init
|
||||
from frigate.storage import StorageMaintainer
|
||||
from frigate.timeline import TimelineProcessor
|
||||
from frigate.util.builtin import empty_and_close_queue
|
||||
from frigate.util.image import SharedMemoryFrameManager, UntrackedSharedMemory
|
||||
from frigate.util.object import get_camera_regions_grid
|
||||
from frigate.version import VERSION
|
||||
from frigate.video import capture_camera, track_camera
|
||||
@@ -90,6 +92,7 @@ class FrigateApp:
|
||||
self.processes: dict[str, int] = {}
|
||||
self.embeddings: Optional[EmbeddingsContext] = None
|
||||
self.region_grids: dict[str, list[list[dict[str, int]]]] = {}
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
self.config = config
|
||||
|
||||
def ensure_dirs(self) -> None:
|
||||
@@ -325,20 +328,20 @@ class FrigateApp:
|
||||
for det in self.config.detectors.values()
|
||||
]
|
||||
)
|
||||
shm_in = mp.shared_memory.SharedMemory(
|
||||
shm_in = UntrackedSharedMemory(
|
||||
name=name,
|
||||
create=True,
|
||||
size=largest_frame,
|
||||
)
|
||||
except FileExistsError:
|
||||
shm_in = mp.shared_memory.SharedMemory(name=name)
|
||||
shm_in = UntrackedSharedMemory(name=name)
|
||||
|
||||
try:
|
||||
shm_out = mp.shared_memory.SharedMemory(
|
||||
shm_out = UntrackedSharedMemory(
|
||||
name=f"out-{name}", create=True, size=20 * 6 * 4
|
||||
)
|
||||
except FileExistsError:
|
||||
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}")
|
||||
shm_out = UntrackedSharedMemory(name=f"out-{name}")
|
||||
|
||||
self.detection_shms.append(shm_in)
|
||||
self.detection_shms.append(shm_out)
|
||||
@@ -431,6 +434,11 @@ class FrigateApp:
|
||||
logger.info(f"Capture process not started for disabled camera {name}")
|
||||
continue
|
||||
|
||||
# pre-create shms
|
||||
for i in range(shm_frame_count):
|
||||
frame_size = config.frame_shape_yuv[0] * config.frame_shape_yuv[1]
|
||||
self.frame_manager.create(f"{config.name}_frame{i}", frame_size)
|
||||
|
||||
capture_process = util.Process(
|
||||
target=capture_camera,
|
||||
name=f"camera_capture:{name}",
|
||||
@@ -513,15 +521,21 @@ class FrigateApp:
|
||||
1,
|
||||
)
|
||||
|
||||
shm_frame_count = min(50, int(available_shm / (cam_total_frame_size)))
|
||||
if cam_total_frame_size == 0.0:
|
||||
return 0
|
||||
|
||||
shm_frame_count = min(
|
||||
int(os.environ.get(SHM_FRAMES_VAR, "50")),
|
||||
int(available_shm / (cam_total_frame_size)),
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Calculated total camera size {available_shm} / {cam_total_frame_size} :: {shm_frame_count} frames for each camera in SHM"
|
||||
)
|
||||
|
||||
if shm_frame_count < 10:
|
||||
if shm_frame_count < 20:
|
||||
logger.warning(
|
||||
f"The current SHM size of {total_shm}MB is too small, recommend increasing it to at least {round(min_req_shm + cam_total_frame_size * 10)}MB."
|
||||
f"The current SHM size of {total_shm}MB is too small, recommend increasing it to at least {round(min_req_shm + cam_total_frame_size * 20)}MB."
|
||||
)
|
||||
|
||||
return shm_frame_count
|
||||
@@ -707,6 +721,7 @@ class FrigateApp:
|
||||
self.event_metadata_updater.stop()
|
||||
self.inter_zmq_proxy.stop()
|
||||
|
||||
self.frame_manager.cleanup()
|
||||
while len(self.detection_shms) > 0:
|
||||
shm = self.detection_shms.pop()
|
||||
shm.close()
|
||||
|
||||
@@ -22,7 +22,7 @@ from frigate.const import (
|
||||
)
|
||||
from frigate.models import Event, Previews, Recordings, ReviewSegment
|
||||
from frigate.ptz.onvif import OnvifCommandEnum, OnvifController
|
||||
from frigate.types import ModelStatusTypesEnum
|
||||
from frigate.types import ModelStatusTypesEnum, TrackedObjectUpdateTypesEnum
|
||||
from frigate.util.object import get_camera_regions_grid
|
||||
from frigate.util.services import restart_frigate
|
||||
|
||||
@@ -137,8 +137,14 @@ class Dispatcher:
|
||||
event.data["description"] = payload["description"]
|
||||
event.save()
|
||||
self.publish(
|
||||
"event_update",
|
||||
json.dumps({"id": event.id, "description": event.data["description"]}),
|
||||
"tracked_object_update",
|
||||
json.dumps(
|
||||
{
|
||||
"type": TrackedObjectUpdateTypesEnum.description,
|
||||
"id": event.id,
|
||||
"description": event.data["description"],
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
def handle_update_model_state():
|
||||
|
||||
@@ -14,7 +14,7 @@ class EventUpdatePublisher(Publisher):
|
||||
super().__init__("update")
|
||||
|
||||
def publish(
|
||||
self, payload: tuple[EventTypeEnum, EventStateEnum, str, dict[str, any]]
|
||||
self, payload: tuple[EventTypeEnum, EventStateEnum, str, str, dict[str, any]]
|
||||
) -> None:
|
||||
super().publish(payload)
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
def __init__(self, config: FrigateConfig) -> None:
|
||||
self.config = config
|
||||
self.mqtt_config = config.mqtt
|
||||
self.connected: bool = False
|
||||
self.connected = False
|
||||
|
||||
def subscribe(self, receiver: Callable) -> None:
|
||||
"""Wrapper for allowing dispatcher to subscribe."""
|
||||
@@ -27,7 +27,7 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
def publish(self, topic: str, payload: Any, retain: bool = False) -> None:
|
||||
"""Wrapper for publishing when client is in valid state."""
|
||||
if not self.connected:
|
||||
logger.error(f"Unable to publish to {topic}: client is not connected")
|
||||
logger.debug(f"Unable to publish to {topic}: client is not connected")
|
||||
return
|
||||
|
||||
self.client.publish(
|
||||
@@ -133,7 +133,7 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
"""Mqtt connection callback."""
|
||||
threading.current_thread().name = "mqtt"
|
||||
if reason_code != 0:
|
||||
if reason_code == "Server Unavailable":
|
||||
if reason_code == "Server unavailable":
|
||||
logger.error(
|
||||
"Unable to connect to MQTT server: MQTT Server unavailable"
|
||||
)
|
||||
@@ -173,6 +173,7 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
client_id=self.mqtt_config.client_id,
|
||||
)
|
||||
self.client.on_connect = self._on_connect
|
||||
self.client.on_disconnect = self._on_disconnect
|
||||
self.client.will_set(
|
||||
self.mqtt_config.topic_prefix + "/available",
|
||||
payload="offline",
|
||||
@@ -197,14 +198,6 @@ class MqttClient(Communicator): # type: ignore[misc]
|
||||
|
||||
for name in self.config.cameras.keys():
|
||||
for callback in callback_types:
|
||||
# We need to pre-clear existing set topics because in previous
|
||||
# versions the webUI retained on the /set topic but this is
|
||||
# no longer the case.
|
||||
self.client.publish(
|
||||
f"{self.mqtt_config.topic_prefix}/{name}/{callback}/set",
|
||||
None,
|
||||
retain=True,
|
||||
)
|
||||
self.client.message_callback_add(
|
||||
f"{self.mqtt_config.topic_prefix}/{name}/{callback}/set",
|
||||
self.on_mqtt_command,
|
||||
|
||||
@@ -151,7 +151,7 @@ class WebPushClient(Communicator): # type: ignore[misc]
|
||||
camera: str = payload["after"]["camera"]
|
||||
title = f"{', '.join(sorted_objects).replace('_', ' ').title()}{' was' if state == 'end' else ''} detected in {', '.join(payload['after']['data']['zones']).replace('_', ' ').title()}"
|
||||
message = f"Detected on {camera.replace('_', ' ').title()}"
|
||||
image = f'{payload["after"]["thumb_path"].replace("/media/frigate", "")}'
|
||||
image = f"{payload['after']['thumb_path'].replace('/media/frigate', '')}"
|
||||
|
||||
# if event is ongoing open to live view otherwise open to recordings view
|
||||
direct_url = f"/review?id={reviewId}" if state == "end" else f"/#{camera}"
|
||||
|
||||
@@ -13,7 +13,7 @@ class AuthConfig(FrigateBaseModel):
|
||||
default=False, title="Reset the admin password on startup"
|
||||
)
|
||||
cookie_name: str = Field(
|
||||
default="frigate_token", title="Name for jwt token cookie", pattern=r"^[a-z]_*$"
|
||||
default="frigate_token", title="Name for jwt token cookie", pattern=r"^[a-z_]+$"
|
||||
)
|
||||
cookie_secure: bool = Field(default=False, title="Set secure flag on cookie")
|
||||
session_length: int = Field(
|
||||
|
||||
@@ -38,6 +38,10 @@ class GenAICameraConfig(BaseModel):
|
||||
default_factory=list,
|
||||
title="List of required zones to be entered in order to run generative AI.",
|
||||
)
|
||||
debug_save_thumbnails: bool = Field(
|
||||
default=False,
|
||||
title="Save thumbnails sent to generative AI for debugging purposes.",
|
||||
)
|
||||
|
||||
@field_validator("required_zones", mode="before")
|
||||
@classmethod
|
||||
|
||||
@@ -74,6 +74,7 @@ class OnvifConfig(FrigateBaseModel):
|
||||
port: int = Field(default=8000, title="Onvif Port")
|
||||
user: Optional[EnvString] = Field(default=None, title="Onvif Username")
|
||||
password: Optional[EnvString] = Field(default=None, title="Onvif Password")
|
||||
tls_insecure: bool = Field(default=False, title="Onvif Disable TLS verification")
|
||||
autotracking: PtzAutotrackConfig = Field(
|
||||
default_factory=PtzAutotrackConfig,
|
||||
title="PTZ auto tracking config.",
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import Optional
|
||||
from pydantic import Field
|
||||
|
||||
from frigate.const import MAX_PRE_CAPTURE
|
||||
from frigate.review.types import SeverityEnum
|
||||
|
||||
from ..base import FrigateBaseModel
|
||||
|
||||
@@ -94,3 +95,22 @@ class RecordConfig(FrigateBaseModel):
|
||||
enabled_in_config: Optional[bool] = Field(
|
||||
default=None, title="Keep track of original state of recording."
|
||||
)
|
||||
|
||||
@property
|
||||
def event_pre_capture(self) -> int:
|
||||
return max(
|
||||
self.alerts.pre_capture,
|
||||
self.detections.pre_capture,
|
||||
)
|
||||
|
||||
def get_review_pre_capture(self, severity: SeverityEnum) -> int:
|
||||
if severity == SeverityEnum.alert:
|
||||
return self.alerts.pre_capture
|
||||
else:
|
||||
return self.detections.pre_capture
|
||||
|
||||
def get_review_post_capture(self, severity: SeverityEnum) -> int:
|
||||
if severity == SeverityEnum.alert:
|
||||
return self.alerts.post_capture
|
||||
else:
|
||||
return self.detections.post_capture
|
||||
|
||||
@@ -85,7 +85,7 @@ class ZoneConfig(BaseModel):
|
||||
if explicit:
|
||||
self.coordinates = ",".join(
|
||||
[
|
||||
f'{round(int(p.split(",")[0]) / frame_shape[1], 3)},{round(int(p.split(",")[1]) / frame_shape[0], 3)}'
|
||||
f"{round(int(p.split(',')[0]) / frame_shape[1], 3)},{round(int(p.split(',')[1]) / frame_shape[0], 3)}"
|
||||
for p in coordinates
|
||||
]
|
||||
)
|
||||
|
||||
@@ -29,6 +29,7 @@ from frigate.util.builtin import (
|
||||
)
|
||||
from frigate.util.config import (
|
||||
StreamInfoRetriever,
|
||||
find_config_file,
|
||||
get_relative_coordinates,
|
||||
migrate_frigate_config,
|
||||
)
|
||||
@@ -67,7 +68,6 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
yaml = YAML()
|
||||
|
||||
DEFAULT_CONFIG_FILES = ["/config/config.yaml", "/config/config.yml"]
|
||||
DEFAULT_CONFIG = """
|
||||
mqtt:
|
||||
enabled: False
|
||||
@@ -230,12 +230,16 @@ def verify_recording_segments_setup_with_reasonable_time(
|
||||
try:
|
||||
seg_arg_index = record_args.index("-segment_time")
|
||||
except ValueError:
|
||||
raise ValueError(f"Camera {camera_config.name} has no segment_time in \
|
||||
recording output args, segment args are required for record.")
|
||||
raise ValueError(
|
||||
f"Camera {camera_config.name} has no segment_time in \
|
||||
recording output args, segment args are required for record."
|
||||
)
|
||||
|
||||
if int(record_args[seg_arg_index + 1]) > 60:
|
||||
raise ValueError(f"Camera {camera_config.name} has invalid segment_time output arg, \
|
||||
segment_time must be 60 or less.")
|
||||
raise ValueError(
|
||||
f"Camera {camera_config.name} has invalid segment_time output arg, \
|
||||
segment_time must be 60 or less."
|
||||
)
|
||||
|
||||
|
||||
def verify_zone_objects_are_tracked(camera_config: CameraConfig) -> None:
|
||||
@@ -590,35 +594,27 @@ class FrigateConfig(FrigateBaseModel):
|
||||
if isinstance(detector, dict)
|
||||
else detector.model_dump(warnings="none")
|
||||
)
|
||||
detector_config: DetectorConfig = adapter.validate_python(model_dict)
|
||||
if detector_config.model is None:
|
||||
detector_config.model = self.model.model_copy()
|
||||
else:
|
||||
path = detector_config.model.path
|
||||
detector_config.model = self.model.model_copy()
|
||||
detector_config.model.path = path
|
||||
detector_config: BaseDetectorConfig = adapter.validate_python(model_dict)
|
||||
|
||||
if "path" not in model_dict or len(model_dict.keys()) > 1:
|
||||
logger.warning(
|
||||
"Customizing more than a detector model path is unsupported."
|
||||
)
|
||||
# users should not set model themselves
|
||||
if detector_config.model:
|
||||
detector_config.model = None
|
||||
|
||||
merged_model = deep_merge(
|
||||
detector_config.model.model_dump(exclude_unset=True, warnings="none"),
|
||||
self.model.model_dump(exclude_unset=True, warnings="none"),
|
||||
)
|
||||
model_config = self.model.model_dump(exclude_unset=True, warnings="none")
|
||||
|
||||
if "path" not in merged_model:
|
||||
if detector_config.model_path:
|
||||
model_config["path"] = detector_config.model_path
|
||||
|
||||
if "path" not in model_config:
|
||||
if detector_config.type == "cpu":
|
||||
merged_model["path"] = "/cpu_model.tflite"
|
||||
model_config["path"] = "/cpu_model.tflite"
|
||||
elif detector_config.type == "edgetpu":
|
||||
merged_model["path"] = "/edgetpu_model.tflite"
|
||||
model_config["path"] = "/edgetpu_model.tflite"
|
||||
|
||||
detector_config.model = ModelConfig.model_validate(merged_model)
|
||||
detector_config.model.check_and_load_plus_model(
|
||||
self.plus_api, detector_config.type
|
||||
)
|
||||
detector_config.model.compute_model_hash()
|
||||
model = ModelConfig.model_validate(model_config)
|
||||
model.check_and_load_plus_model(self.plus_api, detector_config.type)
|
||||
model.compute_model_hash()
|
||||
detector_config.model = model
|
||||
self.detectors[key] = detector_config
|
||||
|
||||
return self
|
||||
@@ -634,27 +630,20 @@ class FrigateConfig(FrigateBaseModel):
|
||||
|
||||
@classmethod
|
||||
def load(cls, **kwargs):
|
||||
config_path = os.environ.get("CONFIG_FILE")
|
||||
|
||||
# No explicit configuration file, try to find one in the default paths.
|
||||
if config_path is None:
|
||||
for path in DEFAULT_CONFIG_FILES:
|
||||
if os.path.isfile(path):
|
||||
config_path = path
|
||||
break
|
||||
config_path = find_config_file()
|
||||
|
||||
# No configuration file found, create one.
|
||||
new_config = False
|
||||
if config_path is None:
|
||||
if not os.path.isfile(config_path):
|
||||
logger.info("No config file found, saving default config")
|
||||
config_path = DEFAULT_CONFIG_FILES[-1]
|
||||
config_path = config_path
|
||||
new_config = True
|
||||
else:
|
||||
# Check if the config file needs to be migrated.
|
||||
migrate_frigate_config(config_path)
|
||||
|
||||
# Finally, load the resulting configuration file.
|
||||
with open(config_path, "a+") as f:
|
||||
with open(config_path, "a+" if new_config else "r") as f:
|
||||
# Only write the default config if the opened file is non-empty. This can happen as
|
||||
# a race condition. It's extremely unlikely, but eh. Might as well check it.
|
||||
if new_config and f.tell() == 0:
|
||||
|
||||
@@ -23,7 +23,7 @@ EnvString = Annotated[str, AfterValidator(validate_env_string)]
|
||||
|
||||
def validate_env_vars(v: dict[str, str], info: ValidationInfo) -> dict[str, str]:
|
||||
if isinstance(info.context, dict) and info.context.get("install", False):
|
||||
for k, v in v:
|
||||
for k, v in v.items():
|
||||
os.environ[k] = v
|
||||
|
||||
return v
|
||||
|
||||
@@ -13,6 +13,8 @@ FRIGATE_LOCALHOST = "http://127.0.0.1:5000"
|
||||
PLUS_ENV_VAR = "PLUS_API_KEY"
|
||||
PLUS_API_HOST = "https://api.frigate.video"
|
||||
|
||||
SHM_FRAMES_VAR = "SHM_MAX_FRAMES"
|
||||
|
||||
# Attribute & Object constants
|
||||
|
||||
DEFAULT_ATTRIBUTE_LABEL_MAP = {
|
||||
|
||||
@@ -27,6 +27,11 @@ class InputTensorEnum(str, Enum):
|
||||
nhwc = "nhwc"
|
||||
|
||||
|
||||
class InputDTypeEnum(str, Enum):
|
||||
float = "float"
|
||||
int = "int"
|
||||
|
||||
|
||||
class ModelTypeEnum(str, Enum):
|
||||
ssd = "ssd"
|
||||
yolox = "yolox"
|
||||
@@ -53,6 +58,9 @@ class ModelConfig(BaseModel):
|
||||
input_pixel_format: PixelFormatEnum = Field(
|
||||
default=PixelFormatEnum.rgb, title="Model Input Pixel Color Format"
|
||||
)
|
||||
input_dtype: InputDTypeEnum = Field(
|
||||
default=InputDTypeEnum.int, title="Model Input D Type"
|
||||
)
|
||||
model_type: ModelTypeEnum = Field(
|
||||
default=ModelTypeEnum.ssd, title="Object Detection Model Type"
|
||||
)
|
||||
@@ -186,6 +194,9 @@ class BaseDetectorConfig(BaseModel):
|
||||
model: Optional[ModelConfig] = Field(
|
||||
default=None, title="Detector specific model configuration."
|
||||
)
|
||||
model_path: Optional[str] = Field(
|
||||
default=None, title="Detector specific model path."
|
||||
)
|
||||
model_config = ConfigDict(
|
||||
extra="allow", arbitrary_types_allowed=True, protected_namespaces=()
|
||||
)
|
||||
|
||||
@@ -32,6 +32,7 @@ class DeepStack(DetectionApi):
|
||||
self.api_timeout = detector_config.api_timeout
|
||||
self.api_key = detector_config.api_key
|
||||
self.labels = detector_config.model.merged_labelmap
|
||||
self.session = requests.Session()
|
||||
|
||||
def get_label_index(self, label_value):
|
||||
if label_value.lower() == "truck":
|
||||
@@ -51,7 +52,7 @@ class DeepStack(DetectionApi):
|
||||
data = {"api_key": self.api_key}
|
||||
|
||||
try:
|
||||
response = requests.post(
|
||||
response = self.session.post(
|
||||
self.api_url,
|
||||
data=data,
|
||||
files={"image": image_bytes},
|
||||
|
||||
@@ -54,7 +54,7 @@ class ONNXDetector(DetectionApi):
|
||||
|
||||
logger.info(f"ONNX: {path} loaded")
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
def detect_raw(self, tensor_input: np.ndarray):
|
||||
model_input_name = self.model.get_inputs()[0].name
|
||||
tensor_output = self.model.run(None, {model_input_name: tensor_input})
|
||||
|
||||
|
||||
@@ -136,17 +136,17 @@ class Rknn(DetectionApi):
|
||||
def check_config(self, config):
|
||||
if (config.model.width != 320) or (config.model.height != 320):
|
||||
raise Exception(
|
||||
"Make sure to set the model width and height to 320 in your config.yml."
|
||||
"Make sure to set the model width and height to 320 in your config."
|
||||
)
|
||||
|
||||
if config.model.input_pixel_format != "bgr":
|
||||
raise Exception(
|
||||
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
|
||||
'Make sure to set the model input_pixel_format to "bgr" in your config.'
|
||||
)
|
||||
|
||||
if config.model.input_tensor != "nhwc":
|
||||
raise Exception(
|
||||
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
|
||||
'Make sure to set the model input_tensor to "nhwc" in your config.'
|
||||
)
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
|
||||
@@ -98,9 +98,7 @@ class ROCmDetector(DetectionApi):
|
||||
else:
|
||||
logger.info(f"AMD/ROCm: loading model from {path}")
|
||||
|
||||
if path.endswith(".onnx"):
|
||||
self.model = migraphx.parse_onnx(path)
|
||||
elif (
|
||||
if (
|
||||
path.endswith(".tf")
|
||||
or path.endswith(".tf2")
|
||||
or path.endswith(".tflite")
|
||||
@@ -108,7 +106,7 @@ class ROCmDetector(DetectionApi):
|
||||
# untested
|
||||
self.model = migraphx.parse_tf(path)
|
||||
else:
|
||||
raise Exception(f"AMD/ROCm: unknown model format {path}")
|
||||
self.model = migraphx.parse_onnx(path)
|
||||
|
||||
logger.info("AMD/ROCm: compiling the model")
|
||||
|
||||
|
||||
@@ -219,19 +219,19 @@ class TensorRtDetector(DetectionApi):
|
||||
]
|
||||
|
||||
def __init__(self, detector_config: TensorRTDetectorConfig):
|
||||
assert (
|
||||
TRT_SUPPORT
|
||||
), f"TensorRT libraries not found, {DETECTOR_KEY} detector not present"
|
||||
assert TRT_SUPPORT, (
|
||||
f"TensorRT libraries not found, {DETECTOR_KEY} detector not present"
|
||||
)
|
||||
|
||||
(cuda_err,) = cuda.cuInit(0)
|
||||
assert (
|
||||
cuda_err == cuda.CUresult.CUDA_SUCCESS
|
||||
), f"Failed to initialize cuda {cuda_err}"
|
||||
assert cuda_err == cuda.CUresult.CUDA_SUCCESS, (
|
||||
f"Failed to initialize cuda {cuda_err}"
|
||||
)
|
||||
err, dev_count = cuda.cuDeviceGetCount()
|
||||
logger.debug(f"Num Available Devices: {dev_count}")
|
||||
assert (
|
||||
detector_config.device < dev_count
|
||||
), f"Invalid TensorRT Device Config. Device {detector_config.device} Invalid."
|
||||
assert detector_config.device < dev_count, (
|
||||
f"Invalid TensorRT Device Config. Device {detector_config.device} Invalid."
|
||||
)
|
||||
err, self.cu_ctx = cuda.cuCtxCreate(
|
||||
cuda.CUctx_flags.CU_CTX_MAP_HOST, detector_config.device
|
||||
)
|
||||
|
||||
@@ -1,13 +1,11 @@
|
||||
"""SQLite-vec embeddings database."""
|
||||
|
||||
import base64
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
|
||||
from numpy import ndarray
|
||||
from PIL import Image
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.comms.inter_process import InterProcessRequestor
|
||||
@@ -22,7 +20,7 @@ from frigate.models import Event
|
||||
from frigate.types import ModelStatusTypesEnum
|
||||
from frigate.util.builtin import serialize
|
||||
|
||||
from .functions.onnx import GenericONNXEmbedding
|
||||
from .functions.onnx import GenericONNXEmbedding, ModelTypeEnum
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -97,7 +95,7 @@ class Embeddings:
|
||||
"text_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/text_model_fp16.onnx",
|
||||
},
|
||||
model_size=config.model_size,
|
||||
model_type="text",
|
||||
model_type=ModelTypeEnum.text,
|
||||
requestor=self.requestor,
|
||||
device="CPU",
|
||||
)
|
||||
@@ -118,83 +116,102 @@ class Embeddings:
|
||||
model_file=model_file,
|
||||
download_urls=download_urls,
|
||||
model_size=config.model_size,
|
||||
model_type="vision",
|
||||
model_type=ModelTypeEnum.vision,
|
||||
requestor=self.requestor,
|
||||
device="GPU" if config.model_size == "large" else "CPU",
|
||||
)
|
||||
|
||||
def upsert_thumbnail(self, event_id: str, thumbnail: bytes) -> ndarray:
|
||||
# Convert thumbnail bytes to PIL Image
|
||||
image = Image.open(io.BytesIO(thumbnail)).convert("RGB")
|
||||
embedding = self.vision_embedding([image])[0]
|
||||
def embed_thumbnail(
|
||||
self, event_id: str, thumbnail: bytes, upsert: bool = True
|
||||
) -> ndarray:
|
||||
"""Embed thumbnail and optionally insert into DB.
|
||||
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
|
||||
VALUES(?, ?)
|
||||
""",
|
||||
(event_id, serialize(embedding)),
|
||||
)
|
||||
@param: event_id in Events DB
|
||||
@param: thumbnail bytes in jpg format
|
||||
@param: upsert If embedding should be upserted into vec DB
|
||||
"""
|
||||
# Convert thumbnail bytes to PIL Image
|
||||
embedding = self.vision_embedding([thumbnail])[0]
|
||||
|
||||
if upsert:
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
|
||||
VALUES(?, ?)
|
||||
""",
|
||||
(event_id, serialize(embedding)),
|
||||
)
|
||||
|
||||
return embedding
|
||||
|
||||
def batch_upsert_thumbnail(self, event_thumbs: dict[str, bytes]) -> list[ndarray]:
|
||||
images = [
|
||||
Image.open(io.BytesIO(thumb)).convert("RGB")
|
||||
for thumb in event_thumbs.values()
|
||||
]
|
||||
def batch_embed_thumbnail(
|
||||
self, event_thumbs: dict[str, bytes], upsert: bool = True
|
||||
) -> list[ndarray]:
|
||||
"""Embed thumbnails and optionally insert into DB.
|
||||
|
||||
@param: event_thumbs Map of Event IDs in DB to thumbnail bytes in jpg format
|
||||
@param: upsert If embedding should be upserted into vec DB
|
||||
"""
|
||||
ids = list(event_thumbs.keys())
|
||||
embeddings = self.vision_embedding(images)
|
||||
embeddings = self.vision_embedding(list(event_thumbs.values()))
|
||||
|
||||
items = []
|
||||
if upsert:
|
||||
items = []
|
||||
|
||||
for i in range(len(ids)):
|
||||
items.append(ids[i])
|
||||
items.append(serialize(embeddings[i]))
|
||||
for i in range(len(ids)):
|
||||
items.append(ids[i])
|
||||
items.append(serialize(embeddings[i]))
|
||||
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
|
||||
VALUES {}
|
||||
""".format(", ".join(["(?, ?)"] * len(ids))),
|
||||
items,
|
||||
)
|
||||
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
|
||||
VALUES {}
|
||||
""".format(", ".join(["(?, ?)"] * len(ids))),
|
||||
items,
|
||||
)
|
||||
return embeddings
|
||||
|
||||
def upsert_description(self, event_id: str, description: str) -> ndarray:
|
||||
def embed_description(
|
||||
self, event_id: str, description: str, upsert: bool = True
|
||||
) -> ndarray:
|
||||
embedding = self.text_embedding([description])[0]
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
|
||||
VALUES(?, ?)
|
||||
""",
|
||||
(event_id, serialize(embedding)),
|
||||
)
|
||||
|
||||
if upsert:
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
|
||||
VALUES(?, ?)
|
||||
""",
|
||||
(event_id, serialize(embedding)),
|
||||
)
|
||||
|
||||
return embedding
|
||||
|
||||
def batch_upsert_description(self, event_descriptions: dict[str, str]) -> ndarray:
|
||||
def batch_embed_description(
|
||||
self, event_descriptions: dict[str, str], upsert: bool = True
|
||||
) -> ndarray:
|
||||
# upsert embeddings one by one to avoid token limit
|
||||
embeddings = []
|
||||
|
||||
for desc in event_descriptions.values():
|
||||
embeddings.append(self.text_embedding([desc])[0])
|
||||
|
||||
ids = list(event_descriptions.keys())
|
||||
if upsert:
|
||||
ids = list(event_descriptions.keys())
|
||||
items = []
|
||||
|
||||
items = []
|
||||
for i in range(len(ids)):
|
||||
items.append(ids[i])
|
||||
items.append(serialize(embeddings[i]))
|
||||
|
||||
for i in range(len(ids)):
|
||||
items.append(ids[i])
|
||||
items.append(serialize(embeddings[i]))
|
||||
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
|
||||
VALUES {}
|
||||
""".format(", ".join(["(?, ?)"] * len(ids))),
|
||||
items,
|
||||
)
|
||||
self.db.execute_sql(
|
||||
"""
|
||||
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
|
||||
VALUES {}
|
||||
""".format(", ".join(["(?, ?)"] * len(ids))),
|
||||
items,
|
||||
)
|
||||
|
||||
return embeddings
|
||||
|
||||
@@ -261,10 +278,10 @@ class Embeddings:
|
||||
totals["processed_objects"] += 1
|
||||
|
||||
# run batch embedding
|
||||
self.batch_upsert_thumbnail(batch_thumbs)
|
||||
self.batch_embed_thumbnail(batch_thumbs)
|
||||
|
||||
if batch_descs:
|
||||
self.batch_upsert_description(batch_descs)
|
||||
self.batch_embed_description(batch_descs)
|
||||
|
||||
# report progress every batch so we don't spam the logs
|
||||
progress = (totals["processed_objects"] / total_events) * 100
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user