Compare commits

...

155 Commits

Author SHA1 Message Date
dependabot[bot]
c71bb53e8b Update uvicorn requirement from ==0.30.* to ==0.34.* in /docker/main
Updates the requirements on [uvicorn](https://github.com/encode/uvicorn) to permit the latest version.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.30.0...0.34.0)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-12-16 12:06:49 +00:00
Josh Hawkins
717493e668 Improve handling of error conditions with ollama and snapshot regeneration (#15527) 2024-12-15 20:51:23 -06:00
Josh Hawkins
d49f958d4d Don't crop by region for genai snapshot for manual events (#15525) 2024-12-15 17:03:19 -06:00
Nicolas Mowen
33ee32865f Ensure that go2rtc streams are cleaned (#15524)
* Ensure that go2rtc streams are cleaned

* Formatting

* Handle go2rtc config correctly

* Set type
2024-12-15 16:56:24 -06:00
Josh Hawkins
17f8939f97 Add FAQ to explain why streams might work in VLC but not in Frigate (#15513)
* Add faq to explain why streams might work in VLC but not in Frigate

* fix go2rtc version number

* wording

* mention udp input args and preset
2024-12-14 13:58:39 -06:00
FL42
1b7fe9523d fix: use requests.Session() for DeepStack API (#15505) 2024-12-14 07:54:13 -07:00
Josh Hawkins
0763f56047 Update iframe interval recommendation (#15501)
* Update iframe interval recommendation

* clarify

* tweaks

* wording
2024-12-13 12:52:56 -07:00
Josh Hawkins
1ea282fba8 Improve the message for missing objects in review items (#15500) 2024-12-13 12:02:41 -07:00
Blake Blackshear
869fa2631e apply zizmor recommendations (#15490) 2024-12-13 07:34:09 -06:00
Nicolas Mowen
f336a91fee Cleanup handling of first object message (#15480) 2024-12-12 21:22:47 -06:00
Nicolas Mowen
d302b6e198 Cap storage bandwidth (#15473) 2024-12-12 14:46:00 -06:00
Nicolas Mowen
ed2e1f3f72 Remove debug cleanup change (#15468) 2024-12-12 07:46:06 -07:00
Nicolas Mowen
b4d82084a9 Fixes (#15465)
* Fix single event return

* Allow customizing if search is preserved for overlay state

* Remove timeout

* Cleanup

* Cleanup naming
2024-12-12 08:22:30 -06:00
Josh Hawkins
53b96dfb89 Improve semantic search docs (#15453) 2024-12-11 20:19:08 -06:00
Nicolas Mowen
0e3fb6cbdd Standardize handling of config files (#15451)
* Standardize handling of config files

* Formatting

* Remove unused
2024-12-11 18:46:42 -06:00
Blake Blackshear
6b12a45a95 return 401 for login failures (#15432)
* return 401 for login failures

* only setup the rate limiter when configured
2024-12-10 06:42:55 -07:00
Nicolas Mowen
0b9c4c18dd Refactor event cleanup to consider review severity (#15415)
* Keep track of objects max review severity

* Refactor cleanup to split snapshots and clips

* Cleanup events based on review severity

* Cleanup review imports

* Don't catch detections
2024-12-09 08:25:45 -07:00
Nicolas Mowen
d0cc8cb64b API response cleanup (#15389)
* API response cleanup

* Remove extra field definition
2024-12-06 20:07:43 -06:00
Nicolas Mowen
bb86e71e65 fix auth remote addr access (#15378) 2024-12-06 10:25:43 -06:00
Josh Hawkins
8aa6297308 Ensure label does not overlap with box or go out of frame (#15376) 2024-12-06 08:32:16 -07:00
Nicolas Mowen
d3b631a952 Api improvements (#15327)
* Organize api files

* Add more API definitions for events

* Add export select by ID

* Typing fixes

* Update openapi spec

* Change type

* Fix test

* Fix message

* Fix tests
2024-12-06 08:04:02 -06:00
Nicolas Mowen
47d495fc01 Make note of go2rtc encoded URLs (#15348)
* Make note of go2rtc encoded URLs

* clarify
2024-12-04 16:54:57 -06:00
Nicolas Mowen
32322b23b2 Update nvidia docs to reflect preset (#15347) 2024-12-04 15:43:10 -07:00
Josh Hawkins
c0ba98e26f Explore sorting (#15342)
* backend

* add type and params

* radio group in ui

* ensure search_type is cleared on reset
2024-12-04 08:54:10 -07:00
Rui Alves
a5a7cd3107 Added more unit tests for the review controller (#15162) 2024-12-04 06:52:08 -06:00
Josh Hawkins
a729408599 preserve search query in overlay state hook (#15334) 2024-12-04 06:14:53 -06:00
Josh Hawkins
4dddc53735 move label placement when overlapping small boxes (#15310) 2024-12-02 13:07:12 -06:00
Josh Hawkins
5f42caad03 Explore bulk actions (#15307)
* use id instead of index for object details and scrolling

* long press package and hook

* fix long press in review

* search action group

* multi select in explore

* add bulk deletion to backend api

* clean up

* mimic behavior of review

* don't open dialog on left click when mutli selecting

* context menu on container ref

* revert long press code

* clean up
2024-12-02 11:12:55 -07:00
Jan Čermák
5475672a9d Fix extraction of Hailo userspace libs (#15187)
The archive already has everything contained in a rootfs folder, extract
it as-is to the root folder. This also reverts changes from
33957e5360 which addressed the same issue
in a less optimal way.
2024-12-02 08:35:51 -06:00
James Livulpi
833cdcb6d2 fix audio event create (#15299) 2024-12-01 20:07:44 -06:00
Nicolas Mowen
c95bc9fe44 Handle case where camera name ends in number (#15296) 2024-12-01 12:33:10 -07:00
Josh Hawkins
a1fa9decad Fix event cleanup debug logging crash (#15293) 2024-12-01 12:37:45 -06:00
Josh Hawkins
4a5fe4138e Explore audio event tweaks (#15291) 2024-12-01 12:08:03 -06:00
Nicolas Mowen
002fdeae67 SHM tweaks (#15274)
* Use env var to control max number of frames

* Handle type

* Fix frame_name not being sent

* Formatting
2024-12-01 10:39:35 -06:00
tpjanssen
5802a66469 Fix audio events in explore section (#15286)
* Fix audio events in explore section

Make sure that audio events are listed in the explore section

* Update audio.py

* Hide other submit options

Only allow submits for objects only
2024-12-01 07:47:37 -07:00
Alessandro Genova
71e8f75a01 Let the docker container spend more time to clean up and shut down (docs) (#15275) 2024-11-30 18:27:21 -06:00
Nicolas Mowen
ee816b2251 Fix camera access and improve typing (#15272)
* Fix camera access and improve typing:

* Formatting
2024-11-30 18:22:36 -06:00
Nicolas Mowen
f094c59cd0 Fix formatting (#15271) 2024-11-30 18:21:50 -06:00
Josh Hawkins
d25ffdb292 Fix crash when consecutive underscores are used in camera name (#15257) 2024-11-29 19:44:42 -07:00
Nicolas Mowen
2207a91f7b Fix ruff (#15223) 2024-11-27 12:57:58 -07:00
Nicolas Mowen
33957e5360 Set hailo build library path (#15167) 2024-11-24 19:07:41 -07:00
Nicolas Mowen
ff92b13f35 Fix sending events (#15100) 2024-11-20 09:37:33 -07:00
Rui Alves
e76f4e9bd9 Started unit tests for the review controller (#15077)
* Started unit tests for the review controller

* Revert "Started unit tests for the review controller"

This reverts commit 7746eb146f.

* Started unit tests for the review controller

* FIrst test

* Added test for review endpoint (time filter - after + before)

* Assert expected event

* Added more tests for review endpoint

* Added test for review endpoint with all filters

* Added test for review endpoint with limit

* Comment

* Renamed tests to increase readability
2024-11-19 16:35:10 -07:00
Josh Hawkins
0df091f387 Fix link to api in genai docs (#15075) 2024-11-19 14:33:01 -06:00
Nicolas Mowen
66277fbb6c Fix embeddings (#15072)
* Fix embeddings reading frames

* Fix event update reading

* Formatting

* Pin AIO http to fix build failure

* Pin starlette
2024-11-19 12:20:04 -06:00
Josh Hawkins
a67ff3843a Update genai docs (#15070) 2024-11-19 08:41:16 -07:00
Josh Hawkins
9ae839ad72 Tracked object metadata changes (#15055)
* add enum and change topic name

* frontend renaming

* docs

* only display sublabel score if it it exists

* remove debug print
2024-11-18 11:26:44 -07:00
Bazyl Ichabod Horsey
66f71aecf7 fix regex for cookie_name to be general snake case (#14854)
* fix regex for cookie_name to be general snake case

* Update frigate/config/auth.py

Co-authored-by: Blake Blackshear <blake.blackshear@gmail.com>

---------

Co-authored-by: Blake Blackshear <blake.blackshear@gmail.com>
2024-11-18 11:26:36 -07:00
Nicolas Mowen
0b203a3673 fix writing to birdseye restream buffer (#15052) 2024-11-18 10:14:49 -06:00
Nicolas Mowen
26c3f9f914 Fix birdseye (#15051) 2024-11-18 09:38:58 -06:00
Nicolas Mowen
474c248c9d Cleanup correctly (#15043) 2024-11-17 16:57:58 -06:00
Nicolas Mowen
5b1b6b5be0 Fix round robin (#15035)
* Move camera SHM frame creation to main process

* Don't reset frame index

* Don't fail if shm exists

* Set more types
2024-11-17 11:25:49 -06:00
Nicolas Mowen
45e9030358 Round robin SHM management (#15027)
* Output frame name to frames processor

* Finish implementing round robin

* Formatting
2024-11-16 16:00:19 -07:00
Nicolas Mowen
f9c1600f0d Duplicate onnx build info (#15020) 2024-11-16 13:24:42 -06:00
Josh Hawkins
ad85f8882b Update ollama docs and add genai debug logging (#15012) 2024-11-15 15:24:17 -06:00
Nicolas Mowen
206ed06905 Make all SHM management untracked (#15011) 2024-11-15 14:14:37 -07:00
Nicolas Mowen
e407ba47c2 Increase max shm frames (#15009) 2024-11-15 14:25:57 -06:00
Nicolas Mowen
7fdf42a56f Various Fixes (#15004)
* Don't track shared memory in frame tracker

* Don't track any instance

* Don't assign sub label to objects when multiple cars are overlapping

* Formatting

* Fix assignment
2024-11-15 09:54:59 -07:00
Levi Tomes
4eea541352 Updated Documentation: Autotracking add support details for Sunba 405-D20X 4K camera. (#14352)
* Add support details for Sunba 405-D20X 4K camera.

* Update cameras.md

Updated changes to meet documentation goals of upstream project.
2024-11-15 05:35:43 -07:00
Josh Hawkins
ed9c67804a UI fixes (#14933)
* Fix plus dialog

* Remove activity indicator on review item download button

* fix explore view
2024-11-12 05:37:25 -07:00
Nicolas Mowen
9c20cd5f7b Handle in progress previews export and fix time check bug (#14930)
* Handle in progress previews and fix time check bug

* Formatting
2024-11-11 09:30:55 -06:00
Rui Alves
6c86827d3a Fix small typo (#14915) 2024-11-11 05:02:46 -07:00
Rui Alves
d2b2f3d54d Use custom body for the export recordings endpoint (#14908)
* Use custom body for the export recordings endpoint

* Fixed usage of ExportRecordingsBody

* Updated docs to reflect changes to export endpoint

* Fix friendly name and source

* Updated openAPI spec
2024-11-10 20:26:47 -07:00
Josh Hawkins
64b3397f8e Add tooltip and change default value for is_submitted (#14910) 2024-11-10 19:25:16 -06:00
Josh Hawkins
0829517b72 Add ability to filter Explore by Frigate+ submission status (#14909)
* backend

* add is_submitted to query params

* add submitted filter to dialog

* allow is_submitted filter selection with input
2024-11-10 16:57:11 -06:00
Austin Kirsch
c1bfc1df67 fix tensorrt model generation variable (#14902) 2024-11-10 16:23:32 -06:00
Nicolas Mowen
96c0c43dc8 Add support for specifying tensorrt device (#14898) 2024-11-10 08:43:24 -06:00
Nicolas Mowen
a68c7f4ef8 Pin all intel packages (#14887) 2024-11-09 11:08:25 -06:00
Nicolas Mowen
7c474e6827 Pin intel driver (#14884)
* Pin intel driver

* Use slightly older version
2024-11-09 08:09:36 -07:00
Josh Hawkins
143bab87f1 Genai bugfix (#14880)
* Fix genai init when disabled at global level

* use genai config for class init
2024-11-09 06:48:53 -07:00
Josh Hawkins
580f35112e revert changes to audio process to prevent shutdown hang (#14872) 2024-11-08 11:47:46 -07:00
Josh Hawkins
3249ffb273 Auto-unmute inbound audio when enabling two way audio (#14871)
* Automatically enable audio when initiating two way talk with mic

* remove check
2024-11-08 09:19:49 -06:00
Josh Hawkins
7bae9463b2 Small general filter bugfix (#14870) 2024-11-08 08:49:05 -06:00
Josh Hawkins
ae30ac6e3c Refactor general review filter to only call the update function once (#14866) 2024-11-08 07:45:00 -06:00
Nicolas Mowen
46ed520886 Don't generate tensorrt models by default (#14865) 2024-11-08 07:37:18 -06:00
Nicolas Mowen
ace02a6dfa Don't pass hwaccel args to preview (#14851) 2024-11-07 17:24:38 -06:00
Josh Hawkins
0d59754be2 Small genai fix (#14850)
* Ensure the regenerate button shows when genai is only enabled at the camera level

* update docs
2024-11-07 13:27:55 -07:00
Josh Hawkins
15bd26c9b1 Re-send camera states after websocket disconnects and reconnects (#14847) 2024-11-07 08:25:13 -06:00
Josh Hawkins
bc371acb3e Cleanup batching (#14836)
* Implement batching for event cleanup

* remove import

* add debug logging
2024-11-06 10:05:44 -07:00
Nicolas Mowen
2eb5fbf112 Add more debug logs for preview and output (#14833) 2024-11-06 07:59:33 -06:00
Josh Hawkins
fc0fb158d5 Show dialog when restarting from config editor (#14815)
* Show restart dialog when restarting from config editor

* don't save until confirmed restart
2024-11-05 09:33:41 -06:00
Nicolas Mowen
404807c697 UI tweaks (#14814)
* Tweak bird icon and fix _ in object name

* Apply to all capitalization
2024-11-05 08:29:07 -07:00
Josh Hawkins
29ea7c53f2 Bugfixes (#14813)
* fix api filter from matching event id as timestamp

* add padding on platform aware sheet for tablets

* docs tweaks

* tweaks
2024-11-05 07:22:41 -07:00
Josh Hawkins
1fc4af9c86 Optimize Explore summary database query (#14797)
* Optimize explore summary query with index

* implement rollback
2024-11-04 16:04:49 -07:00
Josh Hawkins
ac762762c3 Overwrite existing saved search (#14792)
* Overwrite existing saved search

* simplify
2024-11-04 12:50:05 -07:00
Nicolas Mowen
553676aade Fix missing tensor_input (#14790) 2024-11-04 13:04:33 -06:00
Nicolas Mowen
a13b9815f6 Various fixes (#14786)
* Catch openvino error

* Remove clip deletion

* Update deletion text

* Fix timeline not respecting timezone config

* Tweaks

* More timezone fixes

* Fix

* More timezone fixes

* Fix shm docs
2024-11-04 07:07:57 -07:00
Nicolas Mowen
156e7cc628 Clarify semantic search GPU (#14767)
* Clarify semantic search GPU

* clarity

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>

* fix wording

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-11-03 19:49:13 -06:00
Josh Hawkins
959ca0f412 Fix object processing logic for detections (#14766) 2024-11-03 17:41:31 -07:00
Felipe Santos
9755fa0537 Fix exports migration when there is none (#14761) 2024-11-03 10:00:12 -07:00
Felipe Santos
77ec86d31a Fix devcontainer when there is no ~/.ssh/know_hosts file (#14758) 2024-11-03 08:52:27 -07:00
leccelecce
189d4b459f Avoid divide by zero in shm_frame_count (#14750) 2024-11-03 08:28:19 -07:00
leccelecce
44f40966e7 Docs: correct go2rtc version used (#14753) 2024-11-03 05:16:59 -07:00
Josh Hawkins
7d3313e732 Add ability to view tracked objects in Explore from review item details pane (#14744) 2024-11-02 17:16:07 -06:00
Blake Blackshear
591b50dfa7 Merge remote-tracking branch 'origin/master' into dev 2024-11-02 08:28:34 -05:00
Blake Blackshear
27ef661fec simplify hailort (#14734) 2024-11-02 07:13:28 -05:00
joshjryan
d7935abc14 Set the loglevel for OpenCV ffmpeg messages to fatal (#14728)
* Set the loglevel for OpenCV ffmpeg messages to fatal

* Set OPENCV_FFMPEG_LOGLEVEL in Dockerfile
2024-11-01 20:01:38 -06:00
Josh Hawkins
11068aa9d0 Fix validation activity indicator (#14730)
* Don't show two spinners when loading/revalidating search results

* clarify
2024-11-01 19:52:00 -06:00
Josh Hawkins
1234003527 Fix width of object lifecycle buttons (#14729) 2024-11-01 18:30:40 -06:00
Nicolas Mowen
e5ebf938f6 Fix float input (#14720) 2024-11-01 06:55:55 -06:00
Josh Hawkins
8c2c07fd18 UI tweaks (#14719)
* Show activity indicator when search grid is revalidating

* improve frigate+ button title grammar
2024-11-01 06:37:52 -06:00
Josh Hawkins
9e1a50c3be Clean up copy output (#14705)
* Remove extra spacing for next/prev carousel buttons

* Clarify ollama genai docs

* Clean up copied gpu info output

* Clean up copied gpu info output

* Better display when manually copying/pasting log data
2024-10-31 13:48:26 -06:00
Nicolas Mowen
ac8ddada0b Various fixes (#14703)
* Fix not retaining custom events

* Fix media apis
2024-10-31 07:31:01 -05:00
Josh Hawkins
885485da70 Small tweaks (#14700)
* Remove extra spacing for next/prev carousel buttons

* Clarify ollama genai docs
2024-10-31 06:58:33 -05:00
Nicolas Mowen
bb4e863e87 Fix jetson onnxruntime (#14698)
* Fix jetson onnxruntime

* Remove comment
2024-10-30 19:16:28 -05:00
Nicolas Mowen
c7a4220d65 Jetson onnxruntime (#14688)
* Add support for using onnx runtime with jetson

* Update docs

* Clarify
2024-10-30 08:22:28 -06:00
Nicolas Mowen
03dd9b2d42 Don't open file with read permissions if there is no need to write to it (#14689) 2024-10-30 08:22:20 -06:00
Nicolas Mowen
89ca085b94 Add info about GPUs that are supported for semantic search (#14687)
* Add specific information about GPUs that are supported for semantic search

* clarity
2024-10-30 07:41:58 -05:00
Nicolas Mowen
fffd9defea Add docs update to type of change (#14686) 2024-10-30 06:30:00 -06:00
Nicolas Mowen
d10fea6012 Add specific section about GPU in semantic search (#14685) 2024-10-30 07:23:10 -05:00
Nicolas Mowen
ab26aee8b2 Fix config loading (#14684) 2024-10-30 07:16:56 -05:00
Josh Hawkins
bb80a7b2ee UI changes and bugfixes (#14669)
* Home/End buttons for search input and max 8 search columns

* Fix lifecycle label

* remove video tab if tracked object has no clip

* hide object lifecycle if there is no clip

* add test for filter value to ensure only fully numeric values are set as numbers
2024-10-30 05:54:06 -06:00
Evan Jarrett
e4a6b29279 fix string comparison on mqtt error message for Server unavailable (#14675) 2024-10-30 05:05:58 -06:00
Blake Blackshear
d12c7809dd Update Hailo Driver to 4.19 (#14674)
* update to hailo driver 4.19

* update builds for 4.19
2024-10-29 18:40:24 -05:00
Nicolas Mowen
357ce0382e Fixes (#14668)
* Fix environment vars reading

* fix yaml returning none

* Assume rocm model is onnx despite file extension
2024-10-29 15:34:07 -05:00
Josh Hawkins
73da3d9b20 Use strict equality check for annotation offset in object lifecycle settings (#14667) 2024-10-29 13:33:09 -05:00
Josh Hawkins
e67b7a6d5e Add ability to use carousel buttons to scroll through object lifecycle elements (#14662) 2024-10-29 10:28:17 -05:00
Nicolas Mowen
4e25bebdd0 Add ability to configure model input dtype (#14659)
* Add input type for dtype

* Add ability to manually enable TRT execution provider

* Formatting
2024-10-29 10:28:05 -05:00
Dan Raper
abd22d2566 Update create_config.py (#14658) 2024-10-29 08:31:03 -06:00
Josh Hawkins
8aeb597780 Fix sublabel and icon spacing (#14651) 2024-10-29 07:06:19 -06:00
Josh Hawkins
33825f6d96 Add h8l and rocm to release workflow (#14648)
* Add h8l to release workflow

* Add rocm to release workflow

* Variants
2024-10-28 20:00:14 -05:00
Nicolas Mowen
eca504cb07 More bug fixes (#14593)
* Adjust mqtt logging behavior

* Set disconnect

* Only consider intel gpu stats error if None is returned
2024-10-25 09:45:11 -05:00
Nicolas Mowen
4c75440af4 Docs updates (#14590)
* Update motion docs to make note of recordings

* Make note of genai on CPU
2024-10-25 08:09:25 -05:00
Nicolas Mowen
94f7528885 Bug fixes (#14588)
* Get intel stats manually if parsing fails

* Fix assignment

* Clean up mqtt

* Formatting

* Fix logic
2024-10-25 06:47:56 -06:00
Josh Hawkins
4dadf6d353 Bugfixes (#14587)
* Ensure review and search item mobile pages reopen correctly

* disable pan/pinch/zoom when native browser video controls are displayed

* report 0 for storage usage when api returns null
2024-10-25 06:24:04 -06:00
Corwin
2d27e72ed9 fix: hailo driver wrong version name (#14575) 2024-10-25 06:07:01 -06:00
Nicolas Mowen
4ff0c8a8d1 Better review sub-labels (#14563)
* Better review sub-labels

* Handle init
2024-10-24 17:00:39 -05:00
Nicolas Mowen
f9fba94863 Slightly downgrade onnxruntime-gpu (#14558) 2024-10-24 13:17:11 -05:00
Nicolas Mowen
f9b246dbd0 Deps updates (#14556)
* Update nvidia deps

* Update python deps

* Update web deps
2024-10-24 08:48:14 -05:00
Josh Hawkins
8fefded8dc Fix score in search details dialog for old events (#14541) 2024-10-23 10:31:20 -05:00
Nicolas Mowen
18824830fd Export preview via api (#14535)
* Break out recording to separate function

* Implement preview exporting

* Formatting
2024-10-23 08:36:52 -05:00
Rui Alves
fa81d87dc0 Updated Documentation for the Review endpoints (#14401)
* Updated documentation for the review endpoint

* Updated documentation for the review/summary endpoint

* Updated documentation for the review/summary endpoint

* Documentation for the review activity audio and motion endpoints

* Added responses for more review.py endpoints

* Added responses for more review.py endpoints

* Fixed review.py responses and proper path parameter names

* Added body model for /reviews/viewed and /reviews/delete

* Updated OpenAPI specification for the review controller endpoints

* Run ruff format frigate

* Drop significant_motion

* Updated frigate-api.yaml

* Deleted total_motion

* Combine 2 models into generic
2024-10-23 08:35:49 -05:00
Josh Hawkins
8bc145472a Error message and search reset for explore pane (#14534) 2024-10-23 07:31:48 -06:00
Josh Hawkins
7afc1e9762 Improve error message when semantic search is not enabled with genai (#14528) 2024-10-23 06:14:50 -06:00
Josh Hawkins
fc59c83e16 Add download chips to search item details video and snapshot panes (#14525) 2024-10-22 21:09:57 -06:00
Nicolas Mowen
e4048be088 Increase download output (#14523) 2024-10-22 21:33:41 -05:00
Nicolas Mowen
d715a8c290 Catch empty bytes (#14521) 2024-10-22 19:07:54 -05:00
Josh Hawkins
ad308252a1 Accessibility features (#14518)
* Add screen reader aria labels to buttons and menu items

* Fix sub_label score in search detail dialog
2024-10-22 16:07:42 -06:00
Josh Hawkins
c7d9f83638 UI changes and fixes (#14516)
* Add camera webui link to debug view

* fix optimistic description update

* simplify

* clean up

* params
2024-10-22 15:11:05 -06:00
Josh Hawkins
828fdbfd2d UI tweaks (#14505)
* Add reindex progress to mobile bottom bar status alert

* move menu to new component

* actions component in search footer thumbnail

* context menu for explore summary thumbnail images

* readd top_score to search query for old events
2024-10-22 08:01:01 -06:00
Nicolas Mowen
40c6fda19d Various fixes and improvements (#14492)
* Refactor preprocessing of images

* Cleanup preprocessing

* Improve naming and handling of embeddings

* Handle invalid intel json

* remove unused

* Use enum for model types

* Formatting
2024-10-21 16:19:34 -06:00
Josh Hawkins
b69816c2f9 reenable revalidation of first page (#14493) 2024-10-21 16:14:36 -06:00
leccelecce
46f5234bd9 Don't run pull_request builds on docs-only change (#14485) 2024-10-21 16:00:17 -06:00
leccelecce
81b8d7a66b Don't run CI builds on docs-only change (#14486) 2024-10-21 15:59:10 -06:00
Josh Hawkins
b1285a16c1 Update tracked object description optimistically (#14490) 2024-10-21 15:14:57 -06:00
leccelecce
90140e7710 Ollama: minor docs tweak to specify command (#14482) 2024-10-21 09:54:55 -06:00
Josh Hawkins
8364e68667 Model and genai fixes (#14481)
* disable mem arena in options for cpu only

* add try/except around ollama initialization

* update docs
2024-10-21 09:00:45 -06:00
gtsiam
4bb420d049 Add service manager infrastructure (#14150)
* Add service manager infrastructure

The changes are (This will be a bit long):
- A ServiceManager class that spawns a background thread and deals with
  service lifecycle management. The idea is that service lifecycle code
  will run in async functions, so a single thread is enough to manage
  any (reasonable) amount of services.

- A Service class, that offers start(), stop() and restart() methods
  that simply notify the service manager to... well. Start, stop or
  restart a service.

(!) Warning: Note that this differs from mp.Process.start/stop in that
  the service commands are sent asynchronously and will complete
  "eventually". This is good because it means that business logic is
  fast when booting up and shutting down, but we need to make sure
  that code does not rely on start() and stop() being instant
  (Mainly pid assignments).

  Subclasses of the Service class should use the on_start and on_stop
  methods to monitor for service events. These will be run by the
  service manager thread, so we need to be careful not to block
  execution here. Standard async stuff.

(!) Note on service names: Service names should be unique within a
  ServiceManager. Make sure that you pass the name you want to
  super().__init__(name="...") if you plan to spawn multiple instances
  of a service.

- A ServiceProcess class: A Service that wraps a multiprocessing.Process
  into a Service. It offers a run() method subclasses can override and
  can support in-place restarting using the service manager.

And finally, I lied a bit about this whole thing using a single thread.
I can't find any way to run python multiprocessing in async, so there is
a MultiprocessingWaiter thread that waits for multiprocessing events and
notifies any pending futures. This was uhhh... fun? No, not really.
But it works. Using this part of the code just involves calling the
provided wait method. See the implementation of ServiceProcess for more
details.

Mirror util.Process hooks onto service process

Remove Service.__name attribute

Do not serialize process object on ServiceProcess start.

asd

* Update frigate dictionary

* Convert AudioProcessor to service process
2024-10-21 10:00:38 -05:00
Nicolas Mowen
560dc68120 Fixes (#14480)
* Catch case where object does not have thumbnail data

* Catch intel stats json decoding error

* Catch division by zero
2024-10-21 09:38:48 -05:00
Josh Hawkins
8fcb8e54f7 fix websocket from spreading stale state (#14466) 2024-10-20 20:38:11 -06:00
Nicolas Mowen
af844ea9d5 Update coral troubleshooting docs (#14370)
* Update coral docs for latest ubuntu

* capitalization

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2024-10-15 10:39:31 -05:00
Nicolas Mowen
51509760e3 Update object docs (#14295) 2024-10-12 07:13:00 -05:00
JC
f86957e5e1 Improve docs on exports API endpoints (#14224)
* Add (optional) export name to the create-export API endpoint docs

* Add the exports list endpoint to the docs
2024-10-08 19:15:10 -05:00
Nicolas Mowen
2a15b95f18 Docs updates (#14202)
* Clarify live docs

* Link out to common config examples in getting started guide

* Add tip for go2rtc name configuration

* direct link
2024-10-07 15:28:24 -05:00
Blake Blackshear
039ab1ccd7 add docs for yolonas plus models (#14161)
* add docs for yolonas plus models

* typo
2024-10-05 14:51:05 -05:00
221 changed files with 7232 additions and 3299 deletions

View File

@@ -12,6 +12,7 @@ argmax
argmin
argpartition
ascontiguousarray
astype
authelia
authentik
autodetected
@@ -42,6 +43,7 @@ codeproject
colormap
colorspace
comms
coro
ctypeslib
CUDA
Cuvid
@@ -59,6 +61,7 @@ dsize
dtype
ECONNRESET
edgetpu
fastapi
faststart
fflags
ffprobe
@@ -193,6 +196,7 @@ poweroff
preexec
probesize
protobuf
pstate
psutil
pubkey
putenv
@@ -237,6 +241,7 @@ sleeptime
SNDMORE
socs
sqliteq
sqlitevecq
ssdlite
statm
stimeout
@@ -271,9 +276,11 @@ unraid
unreviewed
userdata
usermod
uvicorn
vaapi
vainfo
variations
vbios
vconcat
vitb
vstream

View File

@@ -3,10 +3,12 @@
set -euxo pipefail
# Cleanup the old github host key
sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts
# Add new github host key
curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \
sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
if [[ -f ~/.ssh/known_hosts ]]; then
# Add new github host key
sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts
curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \
sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
fi
# Frigate normal container runs as root, so it have permission to create
# the folders. But the devcontainer runs as the host user, so we need to

View File

@@ -13,6 +13,7 @@
- [ ] New feature
- [ ] Breaking change (fix/feature causing existing functionality to break)
- [ ] Code quality improvements to existing code
- [ ] Documentation Update
## Additional information

View File

@@ -6,6 +6,8 @@ on:
branches:
- dev
- master
paths-ignore:
- "docs/**"
# only run the latest commit to avoid cache overwrites
concurrency:
@@ -22,6 +24,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -43,6 +47,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -84,6 +90,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -110,6 +118,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -138,6 +148,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -163,6 +175,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -186,6 +200,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup

View File

@@ -1,24 +0,0 @@
name: dependabot-auto-merge
on: pull_request
permissions:
contents: write
jobs:
dependabot-auto-merge:
runs-on: ubuntu-latest
if: github.actor == 'dependabot[bot]'
steps:
- name: Get Dependabot metadata
id: metadata
uses: dependabot/fetch-metadata@v2
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Enable auto-merge for Dependabot PRs
if: steps.metadata.outputs.dependency-type == 'direct:development' && (steps.metadata.outputs.update-type == 'version-update:semver-minor' || steps.metadata.outputs.update-type == 'version-update:semver-patch')
run: |
gh pr review --approve "$PR_URL"
gh pr merge --auto --squash "$PR_URL"
env:
PR_URL: ${{ github.event.pull_request.html_url }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -1,6 +1,9 @@
name: On pull request
on: pull_request
on:
pull_request:
paths-ignore:
- "docs/**"
env:
DEFAULT_PYTHON: 3.9
@@ -16,6 +19,8 @@ jobs:
DOCKER_BUILDKIT: "1"
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master
with:
node-version: 16.x
@@ -35,6 +40,8 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master
with:
node-version: 16.x
@@ -49,6 +56,8 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master
with:
node-version: 20.x
@@ -64,6 +73,8 @@ jobs:
steps:
- name: Check out the repository
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up Python ${{ env.DEFAULT_PYTHON }}
uses: actions/setup-python@v5.1.0
with:
@@ -85,6 +96,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master
with:
node-version: 16.x

View File

@@ -11,6 +11,8 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- id: lowercaseRepo
uses: ASzc/change-string-case-action@v6
with:
@@ -22,10 +24,13 @@ jobs:
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Create tag variables
env:
TAG: ${{ github.ref_name }}
LOWERCASE_REPO: ${{ steps.lowercaseRepo.outputs.lowercase }}
run: |
BUILD_TYPE=$([[ "${{ github.ref_name }}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
BUILD_TYPE=$([[ "${TAG}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
echo "BUILD_TYPE=${BUILD_TYPE}" >> $GITHUB_ENV
echo "BASE=ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}" >> $GITHUB_ENV
echo "BASE=ghcr.io/${LOWERCASE_REPO}" >> $GITHUB_ENV
echo "BUILD_TAG=${GITHUB_SHA::7}" >> $GITHUB_ENV
echo "CLEAN_VERSION=$(echo ${GITHUB_REF##*/} | tr '[:upper:]' '[:lower:]' | sed 's/^[v]//')" >> $GITHUB_ENV
- name: Tag and push the main image
@@ -34,14 +39,14 @@ jobs:
STABLE_TAG=${BASE}:stable
PULL_TAG=${BASE}:${BUILD_TAG}
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${VERSION_TAG}
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${VERSION_TAG}-${variant}
done
# stable tag
if [[ "${BUILD_TYPE}" == "stable" ]]; then
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${STABLE_TAG}
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${STABLE_TAG}-${variant}
done
fi

View File

@@ -23,7 +23,9 @@ jobs:
exempt-pr-labels: "pinned,security,dependencies"
operations-per-run: 120
- name: Print outputs
run: echo ${{ join(steps.stale.outputs.*, ',') }}
env:
STALE_OUTPUT: ${{ join(steps.stale.outputs.*, ',') }}
run: echo "$STALE_OUTPUT"
# clean_ghcr:
# name: Delete outdated dev container images
@@ -38,4 +40,3 @@ jobs:
# account-type: personal
# token: ${{ secrets.GITHUB_TOKEN }}
# token-type: github-token

View File

@@ -23,7 +23,7 @@ services:
# count: 1
# capabilities: [gpu]
environment:
YOLO_MODELS: yolov7-320
YOLO_MODELS: ""
devices:
- /dev/bus/usb:/dev/bus/usb
# - /dev/dri:/dev/dri # for intel hwaccel, needs to be updated for your hardware

View File

@@ -16,89 +16,25 @@ RUN mkdir /h8l-wheels
# Build the wheels
RUN pip3 wheel --wheel-dir=/h8l-wheels -c /requirements-wheels.txt -r /requirements-wheels-h8l.txt
# Build HailoRT and create wheel
FROM wheels AS build-hailort
FROM wget AS hailort
ARG TARGETARCH
SHELL ["/bin/bash", "-c"]
# Install necessary APT packages
RUN apt-get -qq update \
&& apt-get -qq install -y \
apt-transport-https \
gnupg \
wget \
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
&& apt-get -qq update \
&& apt-get -qq install -y \
python3.9 \
python3.9-dev \
build-essential cmake git \
&& rm -rf /var/lib/apt/lists/*
# Extract Python version and set environment variables
RUN PYTHON_VERSION=$(python3 --version 2>&1 | awk '{print $2}' | cut -d. -f1,2) && \
PYTHON_VERSION_NO_DOT=$(echo $PYTHON_VERSION | sed 's/\.//') && \
echo "PYTHON_VERSION=$PYTHON_VERSION" > /etc/environment && \
echo "PYTHON_VERSION_NO_DOT=$PYTHON_VERSION_NO_DOT" >> /etc/environment
# Clone and build HailoRT
RUN . /etc/environment && \
git clone https://github.com/hailo-ai/hailort.git /opt/hailort && \
cd /opt/hailort && \
git checkout v4.18.0 && \
cmake -H. -Bbuild -DCMAKE_BUILD_TYPE=Release -DHAILO_BUILD_PYBIND=1 -DPYBIND11_PYTHON_VERSION=${PYTHON_VERSION} && \
cmake --build build --config release --target libhailort && \
cmake --build build --config release --target _pyhailort && \
cp build/hailort/libhailort/bindings/python/src/_pyhailort.cpython-${PYTHON_VERSION_NO_DOT}-$(if [ $TARGETARCH == "amd64" ]; then echo 'x86_64'; else echo 'aarch64'; fi )-linux-gnu.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/ && \
cp build/hailort/libhailort/src/libhailort.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
RUN ls -ahl /opt/hailort/build/hailort/libhailort/src/
RUN ls -ahl /opt/hailort/hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
# Remove the existing setup.py if it exists in the target directory
RUN rm -f /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
# Copy generate_wheel_conf.py and setup.py
COPY docker/hailo8l/pyhailort_build_scripts/generate_wheel_conf.py /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
COPY docker/hailo8l/pyhailort_build_scripts/setup.py /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
# Run the generate_wheel_conf.py script
RUN python3 /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
# Create a wheel file using pip3 wheel
RUN cd /opt/hailort/hailort/libhailort/bindings/python/platform && \
python3 setup.py bdist_wheel --dist-dir /hailo-wheels
RUN --mount=type=bind,source=docker/hailo8l/install_hailort.sh,target=/deps/install_hailort.sh \
/deps/install_hailort.sh
# Use deps as the base image
FROM deps AS h8l-frigate
# Copy the wheels from the wheels stage
COPY --from=h8l-wheels /h8l-wheels /deps/h8l-wheels
COPY --from=build-hailort /hailo-wheels /deps/hailo-wheels
COPY --from=build-hailort /etc/environment /etc/environment
RUN CC=$(python3 -c "import sysconfig; import shlex; cc = sysconfig.get_config_var('CC'); cc_cmd = shlex.split(cc)[0]; print(cc_cmd[:-4] if cc_cmd.endswith('-gcc') else cc_cmd)") && \
echo "CC=$CC" >> /etc/environment
COPY --from=hailort /hailo-wheels /deps/hailo-wheels
COPY --from=hailort /rootfs/ /
# Install the wheels
RUN pip3 install -U /deps/h8l-wheels/*.whl
RUN pip3 install -U /deps/hailo-wheels/*.whl
RUN . /etc/environment && \
mv /usr/local/lib/python${PYTHON_VERSION}/dist-packages/hailo_platform/pyhailort/libhailort.so /usr/lib/${CC} && \
cd /usr/lib/${CC}/ && \
ln -s libhailort.so libhailort.so.4.18.0
# Copy base files from the rootfs stage
COPY --from=rootfs / /
# Set environment variables for Hailo SDK
ENV PATH="/opt/hailort/bin:${PATH}"
ENV LD_LIBRARY_PATH="/usr/lib/$(if [ $TARGETARCH == "amd64" ]; then echo 'x86_64'; else echo 'aarch64'; fi )-linux-gnu:${LD_LIBRARY_PATH}"
# Set workdir
WORKDIR /opt/frigate/

View File

@@ -1,3 +1,9 @@
target wget {
dockerfile = "docker/main/Dockerfile"
platforms = ["linux/arm64","linux/amd64"]
target = "wget"
}
target wheels {
dockerfile = "docker/main/Dockerfile"
platforms = ["linux/arm64","linux/amd64"]
@@ -19,6 +25,7 @@ target rootfs {
target h8l {
dockerfile = "docker/hailo8l/Dockerfile"
contexts = {
wget = "target:wget"
wheels = "target:wheels"
deps = "target:deps"
rootfs = "target:rootfs"

View File

@@ -0,0 +1,19 @@
#!/bin/bash
set -euxo pipefail
hailo_version="4.19.0"
if [[ "${TARGETARCH}" == "amd64" ]]; then
arch="x86_64"
elif [[ "${TARGETARCH}" == "arm64" ]]; then
arch="aarch64"
fi
wget -qO- "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${TARGETARCH}.tar.gz" |
tar -C / -xzf -
mkdir -p /hailo-wheels
wget -P /hailo-wheels/ "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${hailo_version}-cp39-cp39-linux_${arch}.whl"

View File

@@ -1,67 +0,0 @@
import json
import os
import platform
import sys
import sysconfig
def extract_toolchain_info(compiler):
# Remove the "-gcc" or "-g++" suffix if present
if compiler.endswith("-gcc") or compiler.endswith("-g++"):
compiler = compiler.rsplit("-", 1)[0]
# Extract the toolchain and ABI part (e.g., "gnu")
toolchain_parts = compiler.split("-")
abi_conventions = next(
(part for part in toolchain_parts if part in ["gnu", "musl", "eabi", "uclibc"]),
"",
)
return abi_conventions
def generate_wheel_conf():
conf_file_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
)
# Extract current system and Python version information
py_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
arch = platform.machine()
system = platform.system().lower()
libc_version = platform.libc_ver()[1]
# Get the compiler information
compiler = sysconfig.get_config_var("CC")
abi_conventions = extract_toolchain_info(compiler)
# Create the new configuration data
new_conf_data = {
"py_version": py_version,
"arch": arch,
"system": system,
"libc_version": libc_version,
"abi": abi_conventions,
"extension": {
"posix": "so",
"nt": "pyd", # Windows
}[os.name],
}
# If the file exists, load the existing data
if os.path.isfile(conf_file_path):
with open(conf_file_path, "r") as conf_file:
conf_data = json.load(conf_file)
# Update the existing data with the new data
conf_data.update(new_conf_data)
else:
# If the file does not exist, use the new data
conf_data = new_conf_data
# Write the updated data to the file
with open(conf_file_path, "w") as conf_file:
json.dump(conf_data, conf_file, indent=4)
if __name__ == "__main__":
generate_wheel_conf()

View File

@@ -1,111 +0,0 @@
import json
import os
from setuptools import find_packages, setup
from wheel.bdist_wheel import bdist_wheel as orig_bdist_wheel
class NonPurePythonBDistWheel(orig_bdist_wheel):
"""Makes the wheel platform-dependent so it can be based on the _pyhailort architecture"""
def finalize_options(self):
orig_bdist_wheel.finalize_options(self)
self.root_is_pure = False
def _get_hailort_lib_path():
lib_filename = "libhailort.so"
lib_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
f"hailo_platform/pyhailort/{lib_filename}",
)
if os.path.exists(lib_path):
print(f"Found libhailort shared library at: {lib_path}")
else:
print(f"Error: libhailort shared library not found at: {lib_path}")
raise FileNotFoundError(f"libhailort shared library not found at: {lib_path}")
return lib_path
def _get_pyhailort_lib_path():
conf_file_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
)
if not os.path.isfile(conf_file_path):
raise FileNotFoundError(f"Configuration file not found: {conf_file_path}")
with open(conf_file_path, "r") as conf_file:
content = json.load(conf_file)
py_version = content["py_version"]
arch = content["arch"]
system = content["system"]
extension = content["extension"]
abi = content["abi"]
# Construct the filename directly
lib_filename = f"_pyhailort.cpython-{py_version.split('cp')[1]}-{arch}-{system}-{abi}.{extension}"
lib_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
f"hailo_platform/pyhailort/{lib_filename}",
)
if os.path.exists(lib_path):
print(f"Found _pyhailort shared library at: {lib_path}")
else:
print(f"Error: _pyhailort shared library not found at: {lib_path}")
raise FileNotFoundError(
f"_pyhailort shared library not found at: {lib_path}"
)
return lib_path
def _get_package_paths():
packages = []
pyhailort_lib = _get_pyhailort_lib_path()
hailort_lib = _get_hailort_lib_path()
if pyhailort_lib:
packages.append(pyhailort_lib)
if hailort_lib:
packages.append(hailort_lib)
packages.append(os.path.abspath("hailo_tutorials/notebooks/*"))
packages.append(os.path.abspath("hailo_tutorials/hefs/*"))
return packages
if __name__ == "__main__":
setup(
author="Hailo team",
author_email="contact@hailo.ai",
cmdclass={
"bdist_wheel": NonPurePythonBDistWheel,
},
description="HailoRT",
entry_points={
"console_scripts": [
"hailo=hailo_platform.tools.hailocli.main:main",
]
},
install_requires=[
"argcomplete",
"contextlib2",
"future",
"netaddr",
"netifaces",
"verboselogs",
"numpy==1.23.3",
],
name="hailort",
package_data={
"hailo_platform": _get_package_paths(),
},
packages=find_packages(),
platforms=[
"linux_x86_64",
"linux_aarch64",
"win_amd64",
],
url="https://hailo.ai/",
version="4.17.0",
zip_safe=False,
)

View File

@@ -13,7 +13,7 @@ else
fi
# Clone the HailoRT driver repository
git clone --depth 1 --branch v4.18.0 https://github.com/hailo-ai/hailort-drivers.git
git clone --depth 1 --branch v4.19.0 https://github.com/hailo-ai/hailort-drivers.git
# Build and install the HailoRT driver
cd hailort-drivers/linux/pcie
@@ -38,7 +38,7 @@ cd ../../
if [ ! -d /lib/firmware/hailo ]; then
sudo mkdir /lib/firmware/hailo
fi
sudo mv hailo8_fw.4.17.0.bin /lib/firmware/hailo/hailo8_fw.bin
sudo mv hailo8_fw.*.bin /lib/firmware/hailo/hailo8_fw.bin
# Install udev rules
sudo cp ./linux/pcie/51-hailo-udev.rules /etc/udev/rules.d/

View File

@@ -211,6 +211,9 @@ ENV TOKENIZERS_PARALLELISM=true
# https://github.com/huggingface/transformers/issues/27214
ENV TRANSFORMERS_NO_ADVISORY_WARNINGS=1
# Set OpenCV ffmpeg loglevel to fatal: https://ffmpeg.org/doxygen/trunk/log_8h.html
ENV OPENCV_FFMPEG_LOGLEVEL=8
ENV PATH="/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}"
ENV LIBAVFORMAT_VERSION_MAJOR=60

View File

@@ -87,8 +87,8 @@ if [[ "${TARGETARCH}" == "amd64" ]]; then
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list
apt-get -qq update
apt-get -qq install --no-install-recommends --no-install-suggests -y \
intel-opencl-icd intel-level-zero-gpu intel-media-va-driver-non-free \
libmfx1 libmfxgen1 libvpl2
intel-opencl-icd=24.35.30872.31-996~22.04 intel-level-zero-gpu=1.3.29735.27-914~22.04 intel-media-va-driver-non-free=24.3.3-996~22.04 \
libmfx1=23.2.2-880~22.04 libmfxgen1=24.2.4-914~22.04 libvpl2=1:2.13.0.0-996~22.04
rm -f /usr/share/keyrings/intel-graphics.gpg
rm -f /etc/apt/sources.list.d/intel-gpu-jammy.list

View File

@@ -1,9 +1,11 @@
click == 8.1.*
# FastAPI
aiohttp == 3.11.2
starlette == 0.41.2
starlette-context == 0.3.6
fastapi == 0.115.0
uvicorn == 0.30.*
slowapi == 0.1.9
fastapi == 0.115.*
uvicorn == 0.34.*
slowapi == 0.1.*
imutils == 0.5.*
joserfc == 1.0.*
pathvalidate == 3.2.*
@@ -16,10 +18,10 @@ paho-mqtt == 2.1.*
pandas == 2.2.*
peewee == 3.17.*
peewee_migrate == 1.13.*
psutil == 5.9.*
psutil == 6.1.*
pydantic == 2.8.*
git+https://github.com/fbcotter/py3nvml#egg=py3nvml
pytz == 2024.1
pytz == 2024.*
pyzmq == 26.2.*
ruamel.yaml == 0.18.*
tzlocal == 5.2

View File

@@ -165,7 +165,7 @@ if config.get("birdseye", {}).get("restream", False):
birdseye: dict[str, any] = config.get("birdseye")
input = f"-f rawvideo -pix_fmt yuv420p -video_size {birdseye.get('width', 1280)}x{birdseye.get('height', 720)} -r 10 -i {BIRDSEYE_PIPE}"
ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(ffmpeg_path, config.get('ffmpeg', {}).get('hwaccel_args'), input, '-rtsp_transport tcp -f rtsp {output}')}"
ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(ffmpeg_path, config.get('ffmpeg', {}).get('hwaccel_args', ''), input, '-rtsp_transport tcp -f rtsp {output}')}"
if go2rtc_config.get("streams"):
go2rtc_config["streams"]["birdseye"] = ffmpeg_cmd

View File

@@ -10,8 +10,8 @@ ARG DEBIAN_FRONTEND
# Use a separate container to build wheels to prevent build dependencies in final image
RUN apt-get -qq update \
&& apt-get -qq install -y --no-install-recommends \
python3.9 python3.9-dev \
wget build-essential cmake git \
python3.9 python3.9-dev \
wget build-essential cmake git \
&& rm -rf /var/lib/apt/lists/*
# Ensure python3 defaults to python3.9
@@ -41,7 +41,11 @@ RUN --mount=type=bind,source=docker/tensorrt/detector/build_python_tensorrt.sh,t
&& TENSORRT_VER=$(cat /etc/TENSORRT_VER) /deps/build_python_tensorrt.sh
COPY docker/tensorrt/requirements-arm64.txt /requirements-tensorrt.txt
RUN pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
ADD https://nvidia.box.com/shared/static/9aemm4grzbbkfaesg5l7fplgjtmswhj8.whl /tmp/onnxruntime_gpu-1.15.1-cp39-cp39-linux_aarch64.whl
RUN pip3 uninstall -y onnxruntime-openvino \
&& pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt \
&& pip3 install --no-deps /tmp/onnxruntime_gpu-1.15.1-cp39-cp39-linux_aarch64.whl
FROM build-wheels AS trt-model-wheels
ARG DEBIAN_FRONTEND

View File

@@ -25,7 +25,7 @@ ENV S6_CMD_WAIT_FOR_SERVICES_MAXTIME=0
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
COPY docker/tensorrt/detector/rootfs/ /
ENV YOLO_MODELS="yolov7-320"
ENV YOLO_MODELS=""
HEALTHCHECK --start-period=600s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1

View File

@@ -11,6 +11,7 @@ set -o errexit -o nounset -o pipefail
MODEL_CACHE_DIR=${MODEL_CACHE_DIR:-"/config/model_cache/tensorrt"}
TRT_VER=${TRT_VER:-$(cat /etc/TENSORRT_VER)}
OUTPUT_FOLDER="${MODEL_CACHE_DIR}/${TRT_VER}"
YOLO_MODELS=${YOLO_MODELS:-""}
# Create output folder
mkdir -p ${OUTPUT_FOLDER}
@@ -19,6 +20,11 @@ FIRST_MODEL=true
MODEL_DOWNLOAD=""
MODEL_CONVERT=""
if [ -z "$YOLO_MODELS"]; then
echo "tensorrt model preparation disabled"
exit 0
fi
for model in ${YOLO_MODELS//,/ }
do
# Remove old link in case path/version changed

View File

@@ -9,6 +9,6 @@ nvidia-cuda-runtime-cu11 == 11.8.*; platform_machine == 'x86_64'
nvidia-cublas-cu11 == 11.11.3.6; platform_machine == 'x86_64'
nvidia-cudnn-cu11 == 8.6.0.*; platform_machine == 'x86_64'
nvidia-cufft-cu11==10.*; platform_machine == 'x86_64'
onnx==1.14.0; platform_machine == 'x86_64'
onnxruntime-gpu==1.17.*; platform_machine == 'x86_64'
onnx==1.16.*; platform_machine == 'x86_64'
onnxruntime-gpu==1.18.*; platform_machine == 'x86_64'
protobuf==3.20.3; platform_machine == 'x86_64'

View File

@@ -1 +1 @@
cuda-python == 11.7; platform_machine == 'aarch64'
cuda-python == 11.7; platform_machine == 'aarch64'

View File

@@ -174,7 +174,7 @@ NOTE: The folder that is set for the config needs to be the folder that contains
### Custom go2rtc version
Frigate currently includes go2rtc v1.9.4, there may be certain cases where you want to run a different version of go2rtc.
Frigate currently includes go2rtc v1.9.2, there may be certain cases where you want to run a different version of go2rtc.
To do this:

View File

@@ -181,7 +181,7 @@ go2rtc:
- rtspx://192.168.1.1:7441/abcdefghijk
```
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-rtsp)
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-rtsp)
In the Unifi 2.0 update Unifi Protect Cameras had a change in audio sample rate which causes issues for ffmpeg. The input rate needs to be set for record if used directly with unifi protect.

View File

@@ -109,7 +109,7 @@ This list of working and non-working PTZ cameras is based on user feedback.
| Reolink E1 Zoom | ✅ | ❌ | |
| Reolink RLC-823A 16x | ✅ | ❌ | |
| Speco O8P32X | ✅ | ❌ | |
| Sunba 405-D20X | ✅ | ❌ | |
| Sunba 405-D20X | ✅ | ❌ | Incomplete ONVIF support reported on original, and 4k models. All models are suspected incompatable. |
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
| Uniview IPC6612SR-X33-VG | ✅ | ✅ | Leave `calibrate_on_startup` as `False`. A user has reported that zooming with `absolute` is working. |

View File

@@ -3,9 +3,13 @@ id: genai
title: Generative AI
---
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects.
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
Semantic Search must be enabled to use Generative AI. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
:::info
Semantic Search must be enabled to use Generative AI.
:::
## Configuration
@@ -29,11 +33,21 @@ cameras:
## Ollama
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance. Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [docker container](https://hub.docker.com/r/ollama/ollama) available.
:::warning
Using Ollama on CPU is not recommended, high inference times make using Generative AI impractical.
:::
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`.
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`. Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull llava:7b` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
:::note
@@ -48,7 +62,7 @@ genai:
enabled: True
provider: ollama
base_url: http://localhost:11434
model: llava
model: llava:7b
```
## Google Gemini
@@ -128,6 +142,10 @@ Frigate's thumbnail search excels at identifying specific details about tracked
While generating simple descriptions of detected objects is useful, understanding intent provides a deeper layer of insight. Instead of just recognizing "what" is in a scene, Frigates default prompts aim to infer "why" it might be there or "what" it could do next. Descriptions tell you whats happening, but intent gives context. For instance, a person walking toward a door might seem like a visitor, but if theyre moving quickly after hours, you can infer a potential break-in attempt. Detecting a person loitering near a door at night can trigger an alert sooner than simply noting "a person standing by the door," helping you respond based on the situations context.
### Using GenAI for notifications
Frigate provides an [MQTT topic](/integrations/mqtt), `frigate/tracked_object_update`, that is updated with a JSON payload containing `event_id` and `description` when your AI provider returns a description for a tracked object. This description could be used directly in notifications, such as sending alerts to your phone or making audio announcements. If additional details from the tracked object are needed, you can query the [HTTP API](/integrations/api/event-events-event-id-get) using the `event_id`, eg: `http://frigate_ip:5000/api/events/<event_id>`.
## Custom Prompts
Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows:
@@ -158,7 +176,7 @@ genai:
Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire. By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones.
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the thumbnails collected over the object's lifetime to the model. Using a snapshot provides the AI with a higher-resolution image (typically downscaled by the AI itself), but the trade-off is that only a single image is used, which might limit the model's ability to determine object movement or direction.
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction.
```yaml
cameras:

View File

@@ -231,28 +231,11 @@ docker run -d \
### Setup Decoder
The decoder you need to pass in the `hwaccel_args` will depend on the input video.
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get the ones your card supports)
```
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
```
For example, for H264 video, you'll select `preset-nvidia-h264`.
Using `preset-nvidia` ffmpeg will automatically select the necessary profile for the incoming video, and will log an error if the profile is not supported by your GPU.
```yaml
ffmpeg:
hwaccel_args: preset-nvidia-h264
hwaccel_args: preset-nvidia
```
If everything is working correctly, you should see a significant improvement in performance.

View File

@@ -23,7 +23,7 @@ If you are using go2rtc, you should adjust the following settings in your camera
- Video codec: **H.264** - provides the most compatible video codec with all Live view technologies and browsers. Avoid any kind of "smart codec" or "+" codec like _H.264+_ or _H.265+_. as these non-standard codecs remove keyframes (see below).
- Audio codec: **AAC** - provides the most compatible audio codec with all Live view technologies and browsers that support audio.
- I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes.
- I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes. For many users this may not be an issue, but it should be noted that that a 1x i-frame interval will cause more storage utilization if you are using the stream for the `record` role as well.
The default video and audio codec on your camera may not always be compatible with your browser, which is why setting them to H.264 and AAC is recommended. See the [go2rtc docs](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#codecs-madness) for codec support information.

View File

@@ -92,10 +92,16 @@ motion:
lightning_threshold: 0.8
```
:::tip
:::warning
Some cameras like doorbell cameras may have missed detections when someone walks directly in front of the camera and the lightning_threshold causes motion detection to be re-calibrated. In this case, it may be desirable to increase the `lightning_threshold` to ensure these objects are not missed.
:::
:::note
Lightning threshold does not stop motion based recordings from being saved.
:::
Large changes in motion like PTZ moves and camera switches between Color and IR mode should result in no motion detection. This is done via the `lightning_threshold` configuration. It is defined as the percentage of the image used to detect lightning or other substantial changes where motion detection needs to recalibrate. Increasing this value will make motion detection more likely to consider lightning or IR mode changes as valid motion. Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching a doorbell camera.

View File

@@ -22,14 +22,14 @@ Frigate supports multiple different detectors that work on different types of ha
- [ONNX](#onnx): OpenVINO will automatically be detected and used as a detector in the default Frigate image when a supported ONNX model is configured.
**Nvidia**
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs, using one of many default models.
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` Frigate image when a supported ONNX model is configured.
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs and Jetson devices, using one of many default models.
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` or `-tensorrt-jp(4/5)` Frigate images when a supported ONNX model is configured.
**Rockchip**
- [RKNN](#rockchip-platform): RKNN models can run on Rockchip devices with included NPUs.
**For Testing**
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
:::
@@ -223,7 +223,7 @@ The model used for TensorRT must be preprocessed on the same hardware platform t
The Frigate image will generate model files during startup if the specified model is not found. Processed models are stored in the `/config/model_cache` folder. Typically the `/config` path is mapped to a directory on the host already and the `model_cache` does not need to be mapped separately unless the user wants to store it in a different location on the host.
By default, the `yolov7-320` model will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. To select no model generation, set the variable to an empty string, `YOLO_MODELS=""`. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder.
By default, no models will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder.
If you have a Jetson device with DLAs (Xavier or Orin), you can generate a model that will run on the DLA by appending `-dla` to your model name, e.g. specify `YOLO_MODELS=yolov7-320-dla`. The model will run on DLA0 (Frigate does not currently support DLA1). DLA-incompatible layers will fall back to running on the GPU.
@@ -264,7 +264,7 @@ An example `docker-compose.yml` fragment that converts the `yolov4-608` and `yol
```yml
frigate:
environment:
- YOLO_MODELS=yolov4-608,yolov7x-640
- YOLO_MODELS=yolov7-320,yolov7x-640
- USE_FP16=false
```
@@ -415,6 +415,24 @@ Note that the labelmap uses a subset of the complete COCO label set that has onl
ONNX is an open format for building machine learning models, Frigate supports running ONNX models on CPU, OpenVINO, and TensorRT. On startup Frigate will automatically try to use a GPU if one is available.
:::info
If the correct build is used for your GPU then the GPU will be detected and used automatically.
- **AMD**
- ROCm will automatically be detected and used with the ONNX detector in the `-rocm` Frigate image.
- **Intel**
- OpenVINO will automatically be detected and used with the ONNX detector in the default Frigate image.
- **Nvidia**
- Nvidia GPUs will automatically be detected and used with the ONNX detector in the `-tensorrt` Frigate image.
- Jetson devices will automatically be detected and used with the ONNX detector in the `-tensorrt-jp(4/5)` Frigate image.
:::
:::tip
When using many cameras one detector may not be enough to keep up. Multiple detectors can be defined assuming GPU resources are available. An example configuration would be:
@@ -457,6 +475,7 @@ model:
width: 320 # <--- should match whatever was set in notebook
height: 320 # <--- should match whatever was set in notebook
input_pixel_format: bgr
input_tensor: nchw
path: /config/yolo_nas_s.onnx
labelmap_path: /labelmap/coco-80.txt
```

View File

@@ -5,7 +5,7 @@ title: Available Objects
import labels from "../../../labelmap.txt";
Frigate includes the object models listed below from the Google Coral test data.
Frigate includes the object labels listed below from the Google Coral test data.
Please note:

View File

@@ -548,10 +548,12 @@ genai:
# Uses https://github.com/AlexxIT/go2rtc (v1.9.2)
go2rtc:
# Optional: jsmpeg stream configuration for WebUI
# Optional: Live stream configuration for WebUI.
# NOTE: Can be overridden at the camera level
live:
# Optional: Set the name of the stream that should be used for live view
# in frigate WebUI. (default: name of camera)
# Optional: Set the name of the stream configured in go2rtc
# that should be used for live view in frigate WebUI. (default: name of camera)
# NOTE: In most cases this should be set at the camera level only.
stream_name: camera_name
# Optional: Set the height of the jsmpeg stream. (default: 720)
# This must be less than or equal to the height of the detect stream. Lower resolutions

View File

@@ -7,7 +7,7 @@ title: Restream
Frigate can restream your video feed as an RTSP feed for other applications such as Home Assistant to utilize it at `rtsp://<frigate_host>:8554/<camera_name>`. Port 8554 must be open. [This allows you to use a video feed for detection in Frigate and Home Assistant live view at the same time without having to make two separate connections to the camera](#reduce-connections-to-camera). The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.4) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#configuration) for more advanced configurations and features.
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.2) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#configuration) for more advanced configurations and features.
:::note
@@ -132,9 +132,31 @@ cameras:
- detect
```
## Handling Complex Passwords
go2rtc expects URL-encoded passwords in the config, [urlencoder.org](https://urlencoder.org) can be used for this purpose.
For example:
```yaml
go2rtc:
streams:
my_camera: rtsp://username:$@foo%@192.168.1.100
```
becomes
```yaml
go2rtc:
streams:
my_camera: rtsp://username:$%40foo%25@192.168.1.100
```
See [this comment(https://github.com/AlexxIT/go2rtc/issues/1217#issuecomment-2242296489) for more information.
## Advanced Restream Configurations
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
NOTE: The output will need to be passed with two curly braces `{{output}}`

View File

@@ -5,7 +5,7 @@ title: Using Semantic Search
Semantic Search in Frigate allows you to find tracked objects within your review items using either the image itself, a user-defined text description, or an automatically generated one. This feature works by creating _embeddings_ — numerical vector representations — for both the images and text descriptions of your tracked objects. By comparing these embeddings, Frigate assesses their similarities to deliver relevant search results.
Frigate has support for [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create embeddings, which runs locally. Embeddings are then saved to Frigate's database.
Frigate uses [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create and save embeddings to Frigate's database. All of this runs locally.
Semantic Search is accessed via the _Explore_ view in the Frigate UI.
@@ -19,7 +19,7 @@ For best performance, 16GB or more of RAM and a dedicated GPU are recommended.
## Configuration
Semantic search is disabled by default, and must be enabled in your config file before it can be used. Semantic Search is a global configuration setting.
Semantic Search is disabled by default, and must be enabled in your config file or in the UI's Settings page before it can be used. Semantic Search is a global configuration setting.
```yaml
semantic_search:
@@ -29,9 +29,9 @@ semantic_search:
:::tip
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to set the config back to `False` before restarting Frigate again.
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration or by toggling the switch on the Search Settings page in the UI and restarting Frigate. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to turn the UI's switch off or set the config back to `False` before restarting Frigate again.
If you are enabling the Search feature for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
If you are enabling Semantic Search for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
:::
@@ -39,15 +39,9 @@ If you are enabling the Search feature for the first time, be advised that Friga
The vision model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails.
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Search page when clicking on the gray tracked object chip at the top left of each review item. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Explore page when clicking on thumbnail of a tracked object. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
Differently weighted CLIP models are available and can be selected by setting the `model_size` config option:
:::tip
The CLIP models are downloaded in ONNX format, which means they will be accelerated using GPU hardware when available. This depends on the Docker build that is used. See [the object detector docs](../configuration/object_detectors.md) for more information.
:::
Differently weighted versions of the Jina model are available and can be selected by setting the `model_size` config option as `small` or `large`:
```yaml
semantic_search:
@@ -56,11 +50,41 @@ semantic_search:
```
- Configuring the `large` model employs the full Jina model and will automatically run on the GPU if applicable.
- Configuring the `small` model employs a quantized version of the model that uses much less RAM and runs faster on CPU with a very negligible difference in embedding quality.
- Configuring the `small` model employs a quantized version of the Jina model that uses less RAM and runs on CPU with a very negligible difference in embedding quality.
### GPU Acceleration
The CLIP models are downloaded in ONNX format, and the `large` model can be accelerated using GPU hardware, when available. This depends on the Docker build that is used.
```yaml
semantic_search:
enabled: True
model_size: large
```
:::info
If the correct build is used for your GPU and the `large` model is configured, then the GPU will be detected and used automatically.
**NOTE:** Object detection and Semantic Search are independent features. If you want to use your GPU with Semantic Search, you must choose the appropriate Frigate Docker image for your GPU.
- **AMD**
- ROCm will automatically be detected and used for Semantic Search in the `-rocm` Frigate image.
- **Intel**
- OpenVINO will automatically be detected and used for Semantic Search in the default Frigate image.
- **Nvidia**
- Nvidia GPUs will automatically be detected and used for Semantic Search in the `-tensorrt` Frigate image.
- Jetson devices will automatically be detected and used for Semantic Search in the `-tensorrt-jp(4/5)` Frigate image.
:::
## Usage and Best Practices
1. Semantic search is used in conjunction with the other filters available on the Search page. Use a combination of traditional filtering and semantic search for the best results.
1. Semantic Search is used in conjunction with the other filters available on the Explore page. Use a combination of traditional filtering and Semantic Search for the best results.
2. Use the thumbnail search type when searching for particular objects in the scene. Use the description search type when attempting to discern the intent of your object.
3. Because of how the AI models Frigate uses have been trained, the comparison between text and image embedding distances generally means that with multi-modal (`thumbnail` and `description`) searches, results matching `description` will appear first, even if a `thumbnail` embedding may be a better match. Play with the "Search Type" setting to help find what you are looking for. Note that if you are generating descriptions for specific objects or zones only, this may cause search results to prioritize the objects with descriptions even if the the ones without them are more relevant.
4. Make your search language and tone closely match exactly what you're looking for. If you are using thumbnail search, **phrase your query as an image caption**. Searching for "red car" may not work as well as "red sedan driving down a residential street on a sunny day".

View File

@@ -28,7 +28,7 @@ For the Dahua/Loryta 5442 camera, I use the following settings:
- Encode Mode: H.264
- Resolution: 2688\*1520
- Frame Rate(FPS): 15
- I Frame Interval: 30
- I Frame Interval: 30 (15 can also be used to prioritize streaming performance - see the [camera settings recommendations](../configuration/live) for more info)
**Sub Stream (Detection)**

View File

@@ -81,15 +81,15 @@ You can calculate the **minimum** shm size for each camera with the following fo
```console
# Replace <width> and <height>
$ python -c 'print("{:.2f}MB".format((<width> * <height> * 1.5 * 10 + 270480) / 1048576))'
$ python -c 'print("{:.2f}MB".format((<width> * <height> * 1.5 * 20 + 270480) / 1048576))'
# Example for 1280x720
$ python -c 'print("{:.2f}MB".format((1280 * 720 * 1.5 * 10 + 270480) / 1048576))'
13.44MB
# Example for 1280x720, including logs
$ python -c 'print("{:.2f}MB".format((1280 * 720 * 1.5 * 20 + 270480) / 1048576)) + 40'
46.63MB
# Example for eight cameras detecting at 1280x720, including logs
$ python -c 'print("{:.2f}MB".format(((1280 * 720 * 1.5 * 10 + 270480) / 1048576) * 8 + 40))'
136.99MB
$ python -c 'print("{:.2f}MB".format(((1280 * 720 * 1.5 * 20 + 270480) / 1048576) * 8 + 40))'
253MB
```
The shm size cannot be set per container for Home Assistant add-ons. However, this is probably not required since by default Home Assistant Supervisor allocates `/dev/shm` with half the size of your total memory. If your machine has 8GB of memory, chances are that Frigate will have access to up to 4GB without any additional configuration.
@@ -193,8 +193,9 @@ services:
container_name: frigate
privileged: true # this may not be necessary for all setups
restart: unless-stopped
stop_grace_period: 30s # allow enough time to shut down the various services
image: ghcr.io/blakeblackshear/frigate:stable
shm_size: "64mb" # update for your cameras based on calculation above
shm_size: "512mb" # update for your cameras based on calculation above
devices:
- /dev/bus/usb:/dev/bus/usb # Passes the USB Coral, needs to be modified for other versions
- /dev/apex_0:/dev/apex_0 # Passes a PCIe Coral, follow driver instructions here https://coral.ai/docs/m2/get-started/#2a-on-linux
@@ -224,6 +225,7 @@ If you can't use docker compose, you can run the container with something simila
docker run -d \
--name frigate \
--restart=unless-stopped \
--stop-timeout 30 \
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
--device /dev/bus/usb:/dev/bus/usb \
--device /dev/dri/renderD128 \

View File

@@ -13,7 +13,15 @@ Use of the bundled go2rtc is optional. You can still configure FFmpeg to connect
# Setup a go2rtc stream
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. For the best experience, you should set the stream name under go2rtc to match the name of your camera so that Frigate will automatically map it and be able to use better live view options for the camera. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#module-streams), not just rtsp.
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#module-streams), not just rtsp.
:::tip
For the best experience, you should set the stream name under `go2rtc` to match the name of your camera so that Frigate will automatically map it and be able to use better live view options for the camera.
See [the live view docs](../configuration/live.md#setting-stream-for-live-ui) for more information.
:::
```yaml
go2rtc:
@@ -39,8 +47,8 @@ After adding this to the config, restart Frigate and try to watch the live strea
- Check Video Codec:
- If the camera stream works in go2rtc but not in your browser, the video codec might be unsupported.
- If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#codecs-madness) in go2rtc documentation.
- If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view.
- If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#codecs-madness) in go2rtc documentation.
- If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view.
```yaml
go2rtc:
streams:

View File

@@ -115,6 +115,7 @@ services:
frigate:
container_name: frigate
restart: unless-stopped
stop_grace_period: 30s
image: ghcr.io/blakeblackshear/frigate:stable
volumes:
- ./config:/config
@@ -306,7 +307,9 @@ By default, Frigate will retain video of all tracked objects for 10 days. The fu
### Step 7: Complete config
At this point you have a complete config with basic functionality. You can see the [full config reference](../configuration/reference.md) for a complete list of configuration options.
At this point you have a complete config with basic functionality.
- View [common configuration examples](../configuration/index.md#common-configuration-examples) for a list of common configuration examples.
- View [full config reference](../configuration/reference.md) for a complete list of configuration options.
### Follow up

View File

@@ -94,6 +94,18 @@ Message published for each changed tracked object. The first message is publishe
}
```
### `frigate/tracked_object_update`
Message published for updates to tracked object metadata, for example when GenAI runs and returns a tracked object description.
```json
{
"type": "description",
"id": "1607123955.475377-mxklsc",
"description": "The car is a red sedan moving away from the camera."
}
```
### `frigate/reviews`
Message published for each changed review item. The first message is published when the `detection` or `alert` is initiated. When additional objects are detected or when a zone change occurs, it will publish a, `update` message with the same id. When the review activity has ended a final `end` message is published.

View File

@@ -5,7 +5,7 @@ title: Requesting your first model
## Step 1: Upload and annotate your images
Before requesting your first model, you will need to upload at least 10 images to Frigate+. But for the best results, you should provide at least 100 verified images per camera. Keep in mind that varying conditions should be included. You will want images from cloudy days, sunny days, dawn, dusk, and night. Refer to the [integration docs](../integrations/plus.md#generate-an-api-key) for instructions on how to easily submit images to Frigate+ directly from Frigate.
Before requesting your first model, you will need to upload and verify at least 1 image to Frigate+. The more images you upload, annotate, and verify the better your results will be. Most users start to see very good results once they have at least 100 verified images per camera. Keep in mind that varying conditions should be included. You will want images from cloudy days, sunny days, dawn, dusk, and night. Refer to the [integration docs](../integrations/plus.md#generate-an-api-key) for instructions on how to easily submit images to Frigate+ directly from Frigate.
It is recommended to submit **both** true positives and false positives. This will help the model differentiate between what is and isn't correct. You should aim for a target of 80% true positive submissions and 20% false positives across all of your images. If you are experiencing false positives in a specific area, submitting true positives for any object type near that area in similar lighting conditions will help teach the model what that area looks like when no objects are present.
@@ -13,7 +13,7 @@ For more detailed recommendations, you can refer to the docs on [improving your
## Step 2: Submit a model request
Once you have an initial set of verified images, you can request a model on the Models page. Each model request requires 1 of the 12 trainings that you receive with your annual subscription. This model will support all [label types available](./index.md#available-label-types) even if you do not submit any examples for those labels. Model creation can take up to 36 hours.
Once you have an initial set of verified images, you can request a model on the Models page. For guidance on choosing a model type, refer to [this part of the documentation](./index.md#available-model-types). Each model request requires 1 of the 12 trainings that you receive with your annual subscription. This model will support all [label types available](./index.md#available-label-types) even if you do not submit any examples for those labels. Model creation can take up to 36 hours.
![Plus Models Page](/img/plus/plus-models.jpg)
## Step 3: Set your model id in the config

View File

@@ -3,7 +3,7 @@ id: improving_model
title: Improving your model
---
You may find that Frigate+ models result in more false positives initially, but by submitting true and false positives, the model will improve. Because a limited number of users submitted images to Frigate+ prior to this launch, you may need to submit several hundred images per camera to see good results. With all the new images now being submitted, future base models will improve as more and more users (including you) submit examples to Frigate+. Note that only verified images will be used when training your model. Submitting an image from Frigate as a true or false positive will not verify the image. You still must verify the image in Frigate+ in order for it to be used in training.
You may find that Frigate+ models result in more false positives initially, but by submitting true and false positives, the model will improve. With all the new images now being submitted by subscribers, future base models will improve as more and more examples are incorporated. Note that only images with at least one verified label will be used when training your model. Submitting an image from Frigate as a true or false positive will not verify the image. You still must verify the image in Frigate+ in order for it to be used in training.
- **Submit both true positives and false positives**. This will help the model differentiate between what is and isn't correct. You should aim for a target of 80% true positive submissions and 20% false positives across all of your images. If you are experiencing false positives in a specific area, submitting true positives for any object type near that area in similar lighting conditions will help teach the model what that area looks like when no objects are present.
- **Lower your thresholds a little in order to generate more false/true positives near the threshold value**. For example, if you have some false positives that are scoring at 68% and some true positives scoring at 72%, you can try lowering your threshold to 65% and submitting both true and false positives within that range. This will help the model learn and widen the gap between true and false positive scores.
@@ -36,18 +36,17 @@ Misidentified objects should have a correct label added. For example, if a perso
## Shortcuts for a faster workflow
|Shortcut Key|Description|
|-----|--------|
|`?`|Show all keyboard shortcuts|
|`w`|Add box|
|`d`|Toggle difficult|
|`s`|Switch to the next label|
|`tab`|Select next largest box|
|`del`|Delete current box|
|`esc`|Deselect/Cancel|
|`← ↑ → ↓`|Move box|
|`Shift + ← ↑ → ↓`|Resize box|
|`-`|Zoom out|
|`=`|Zoom in|
|`f`|Hide/show all but current box|
|`spacebar`|Verify and save|
| Shortcut Key | Description |
| ----------------- | ----------------------------- |
| `?` | Show all keyboard shortcuts |
| `w` | Add box |
| `d` | Toggle difficult |
| `s` | Switch to the next label |
| `tab` | Select next largest box |
| `del` | Delete current box |
| `esc` | Deselect/Cancel |
| `← ↑ → ↓` | Move box |
| `Shift + ← ↑ → ↓` | Resize box |
| `scrollwheel` | Zoom in/out |
| `f` | Hide/show all but current box |
| `spacebar` | Verify and save |

View File

@@ -15,17 +15,36 @@ With a subscription, 12 model trainings per year are included. If you cancel you
Information on how to integrate Frigate+ with Frigate can be found in the [integration docs](../integrations/plus.md).
## Available model types
There are two model types offered in Frigate+: `mobiledet` and `yolonas`. Both of these models are object detection models and are trained to detect the same set of labels [listed below](#available-label-types).
Not all model types are supported by all detectors, so it's important to choose a model type to match your detector as shown in the table under [supported detector types](#supported-detector-types).
| Model Type | Description |
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------- |
| `mobiledet` | Based on the same architecture as the default model included with Frigate. Runs on Google Coral devices and CPUs. |
| `yolonas` | A newer architecture that offers slightly higher accuracy and improved detection of small objects. Runs on Intel, NVidia GPUs, and AMD GPUs. |
## Supported detector types
Currently, Frigate+ models support CPU (`cpu`), Google Coral (`edgetpu`), OpenVino (`openvino`), ONNX (`onnx`), and ROCm (`rocm`) detectors.
:::warning
Frigate+ models are not supported for TensorRT or OpenVino yet.
Using Frigate+ models with `onnx` and `rocm` is only available with Frigate 0.15, which is still under development.
:::
Currently, Frigate+ models only support CPU (`cpu`) and Coral (`edgetpu`) models. OpenVino is next in line to gain support.
| Hardware | Recommended Detector Type | Recommended Model Type |
| ---------------------------------------------------------------------------------------------------------------------------- | ------------------------- | ---------------------- |
| [CPU](/configuration/object_detectors.md#cpu-detector-not-recommended) | `cpu` | `mobiledet` |
| [Coral (all form factors)](/configuration/object_detectors.md#edge-tpu-detector) | `edgetpu` | `mobiledet` |
| [Intel](/configuration/object_detectors.md#openvino-detector) | `openvino` | `yolonas` |
| [NVidia GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#onnx)\* | `onnx` | `yolonas` |
| [AMD ROCm GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#amdrocm-gpu-detector)\* | `rocm` | `yolonas` |
The models are created using the same MobileDet architecture as the default model. Additional architectures will be added in future releases as needed.
_\* Requires Frigate 0.15_
## Available label types

View File

@@ -49,7 +49,10 @@ The USB Coral can become stuck and need to be restarted, this can happen for a n
## PCIe Coral Not Detected
The most common reason for the PCIe coral not being detected is that the driver has not been installed. See [the coral docs](https://coral.ai/docs/m2/get-started/#2-install-the-pcie-driver-and-edge-tpu-runtime) for how to install the driver for the PCIe based coral.
The most common reason for the PCIe Coral not being detected is that the driver has not been installed. This process varies based on what OS and kernel that is being run.
- In most cases [the Coral docs](https://coral.ai/docs/m2/get-started/#2-install-the-pcie-driver-and-edge-tpu-runtime) show how to install the driver for the PCIe based Coral.
- For Ubuntu 22.04+ https://github.com/jnicolson/gasket-builder can be used to build and install the latest version of the driver.
## Only One PCIe Coral Is Detected With Coral Dual EdgeTPU

View File

@@ -98,3 +98,11 @@ docker run -d \
-p 8555:8555/udp \
ghcr.io/blakeblackshear/frigate:stable
```
### My RTSP stream works fine in VLC, but it does not work when I put the same URL in my Frigate config. Is this a bug?
No. Frigate uses the TCP protocol to connect to your camera's RTSP URL. VLC automatically switches between UDP and TCP depending on network conditions and stream availability. So a stream that works in VLC but not in Frigate is likely due to VLC selecting UDP as the transfer protocol.
TCP ensures that all data packets arrive in the correct order. This is crucial for video recording, decoding, and stream processing, which is why Frigate enforces a TCP connection. UDP is faster but less reliable, as it does not guarantee packet delivery or order, and VLC does not have the same requirements as Frigate.
You can still configure Frigate to use UDP by using ffmpeg input args or the preset `preset-rtsp-udp`. See the [ffmpeg presets](/configuration/ffmpeg_presets) documentation.

View File

@@ -26,7 +26,7 @@ const sidebars: SidebarsConfig = {
{
type: 'link',
label: 'Go2RTC Configuration Reference',
href: 'https://github.com/AlexxIT/go2rtc/tree/v1.9.4#configuration',
href: 'https://github.com/AlexxIT/go2rtc/tree/v1.9.2#configuration',
} as PropSidebarItemLink,
],
Detectors: [

File diff suppressed because it is too large Load Diff

View File

@@ -17,17 +17,17 @@ from fastapi.responses import JSONResponse, PlainTextResponse
from markupsafe import escape
from peewee import operator
from frigate.api.defs.app_body import AppConfigSetBody
from frigate.api.defs.app_query_parameters import AppTimelineHourlyQueryParameters
from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryParameters
from frigate.api.defs.request.app_body import AppConfigSetBody
from frigate.api.defs.tags import Tags
from frigate.config import FrigateConfig
from frigate.const import CONFIG_DIR
from frigate.models import Event, Timeline
from frigate.util.builtin import (
clean_camera_user_pass,
get_tz_modifiers,
update_yaml_from_url,
)
from frigate.util.config import find_config_file
from frigate.util.services import (
ffprobe_stream,
get_nvidia_driver_info,
@@ -134,9 +134,25 @@ def config(request: Request):
for zone_name, zone in config_obj.cameras[camera_name].zones.items():
camera_dict["zones"][zone_name]["color"] = zone.color
# remove go2rtc stream passwords
go2rtc: dict[str, any] = config_obj.go2rtc.model_dump(
mode="json", warnings="none", exclude_none=True
)
for stream_name, stream in go2rtc.get("streams", {}).items():
if isinstance(stream, str):
cleaned = clean_camera_user_pass(stream)
else:
cleaned = []
for item in stream:
cleaned.append(clean_camera_user_pass(item))
config["go2rtc"]["streams"][stream_name] = cleaned
config["plus"] = {"enabled": request.app.frigate_config.plus_api.is_active()}
config["model"]["colormap"] = config_obj.model.colormap
# use merged labelamp
for detector_config in config["detectors"].values():
detector_config["model"]["labelmap"] = (
request.app.frigate_config.model.merged_labelmap
@@ -147,13 +163,7 @@ def config(request: Request):
@router.get("/config/raw")
def config_raw():
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
config_file = find_config_file()
if not os.path.isfile(config_file):
return JSONResponse(
@@ -198,13 +208,7 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
# Save the config to file
try:
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
config_file = find_config_file()
with open(config_file, "w") as f:
f.write(new_config)
@@ -253,13 +257,7 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
@router.put("/config/set")
def config_set(request: Request, body: AppConfigSetBody):
config_file = os.environ.get("CONFIG_FILE", f"{CONFIG_DIR}/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
config_file = find_config_file()
with open(config_file, "r") as f:
old_raw_config = f.read()

View File

@@ -18,7 +18,7 @@ from joserfc import jwt
from peewee import DoesNotExist
from slowapi import Limiter
from frigate.api.defs.app_body import (
from frigate.api.defs.request.app_body import (
AppPostLoginBody,
AppPostUsersBody,
AppPutPasswordBody,
@@ -85,7 +85,12 @@ def get_remote_addr(request: Request):
return str(ip)
# if there wasn't anything in the route, just return the default
return request.remote_addr or "127.0.0.1"
remote_addr = None
if hasattr(request, "remote_addr"):
remote_addr = request.remote_addr
return remote_addr or "127.0.0.1"
def get_jwt_secret() -> str:
@@ -324,7 +329,7 @@ def login(request: Request, body: AppPostLoginBody):
try:
db_user: User = User.get_by_id(user)
except DoesNotExist:
return JSONResponse(content={"message": "Login failed"}, status_code=400)
return JSONResponse(content={"message": "Login failed"}, status_code=401)
password_hash = db_user.password_hash
if verify_password(password, password_hash):
@@ -335,7 +340,7 @@ def login(request: Request, body: AppPostLoginBody):
response, JWT_COOKIE_NAME, encoded_jwt, expiration, JWT_COOKIE_SECURE
)
return response
return JSONResponse(content={"message": "Login failed"}, status_code=400)
return JSONResponse(content={"message": "Login failed"}, status_code=401)
@router.get("/users")

View File

View File

@@ -28,6 +28,7 @@ class EventsQueryParams(BaseModel):
is_submitted: Optional[int] = None
min_length: Optional[float] = None
max_length: Optional[float] = None
event_id: Optional[str] = None
sort: Optional[str] = None
timezone: Optional[str] = "utc"
@@ -46,6 +47,7 @@ class EventsSearchQueryParams(BaseModel):
time_range: Optional[str] = DEFAULT_TIME_RANGE
has_clip: Optional[bool] = None
has_snapshot: Optional[bool] = None
is_submitted: Optional[bool] = None
timezone: Optional[str] = "utc"
min_score: Optional[float] = None
max_score: Optional[float] = None

View File

@@ -0,0 +1,31 @@
from typing import Union
from pydantic import BaseModel
from pydantic.json_schema import SkipJsonSchema
from frigate.review.types import SeverityEnum
class ReviewQueryParams(BaseModel):
cameras: str = "all"
labels: str = "all"
zones: str = "all"
reviewed: int = 0
limit: Union[int, SkipJsonSchema[None]] = None
severity: Union[SeverityEnum, SkipJsonSchema[None]] = None
before: Union[float, SkipJsonSchema[None]] = None
after: Union[float, SkipJsonSchema[None]] = None
class ReviewSummaryQueryParams(BaseModel):
cameras: str = "all"
labels: str = "all"
zones: str = "all"
timezone: str = "utc"
class ReviewActivityMotionQueryParams(BaseModel):
cameras: str = "all"
before: Union[float, SkipJsonSchema[None]] = None
after: Union[float, SkipJsonSchema[None]] = None
scale: int = 30

View File

View File

@@ -1,4 +1,4 @@
from typing import Optional, Union
from typing import List, Optional, Union
from pydantic import BaseModel, Field
@@ -17,14 +17,18 @@ class EventsDescriptionBody(BaseModel):
class EventsCreateBody(BaseModel):
source_type: Optional[str] = "api"
sub_label: Optional[str] = None
score: Optional[int] = 0
score: Optional[float] = 0
duration: Optional[int] = 30
include_recording: Optional[bool] = True
draw: Optional[dict] = {}
class EventsEndBody(BaseModel):
end_time: Optional[int] = None
end_time: Optional[float] = None
class EventsDeleteBody(BaseModel):
event_ids: List[str] = Field(title="The event IDs to delete")
class SubmitPlusBody(BaseModel):

View File

@@ -0,0 +1,20 @@
from typing import Union
from pydantic import BaseModel, Field
from pydantic.json_schema import SkipJsonSchema
from frigate.record.export import (
PlaybackFactorEnum,
PlaybackSourceEnum,
)
class ExportRecordingsBody(BaseModel):
playback: PlaybackFactorEnum = Field(
default=PlaybackFactorEnum.realtime, title="Playback factor"
)
source: PlaybackSourceEnum = Field(
default=PlaybackSourceEnum.recordings, title="Playback source"
)
name: str = Field(title="Friendly name", default=None, max_length=256)
image_path: Union[str, SkipJsonSchema[None]] = None

View File

@@ -0,0 +1,6 @@
from pydantic import BaseModel, conlist, constr
class ReviewModifyMultipleBody(BaseModel):
# List of string with at least one element and each element with at least one char
ids: conlist(constr(min_length=1), min_length=1)

View File

@@ -0,0 +1,42 @@
from typing import Any, Optional
from pydantic import BaseModel, ConfigDict
class EventResponse(BaseModel):
id: str
label: str
sub_label: Optional[str]
camera: str
start_time: float
end_time: Optional[float]
false_positive: Optional[bool]
zones: list[str]
thumbnail: str
has_clip: bool
has_snapshot: bool
retain_indefinitely: bool
plus_id: Optional[str]
model_hash: Optional[str]
detector_type: Optional[str]
model_type: Optional[str]
data: dict[str, Any]
model_config = ConfigDict(protected_namespaces=())
class EventCreateResponse(BaseModel):
success: bool
message: str
event_id: str
class EventMultiDeleteResponse(BaseModel):
success: bool
deleted_events: list[str]
not_found_events: list[str]
class EventUploadPlusResponse(BaseModel):
success: bool
plus_id: str

View File

@@ -0,0 +1,6 @@
from pydantic import BaseModel
class GenericResponse(BaseModel):
success: bool
message: str

View File

@@ -0,0 +1,43 @@
from datetime import datetime
from typing import Dict
from pydantic import BaseModel, Json
from frigate.review.types import SeverityEnum
class ReviewSegmentResponse(BaseModel):
id: str
camera: str
start_time: datetime
end_time: datetime
has_been_reviewed: bool
severity: SeverityEnum
thumb_path: str
data: Json
class Last24HoursReview(BaseModel):
reviewed_alert: int
reviewed_detection: int
total_alert: int
total_detection: int
class DayReview(BaseModel):
day: datetime
reviewed_alert: int
reviewed_detection: int
total_alert: int
total_detection: int
class ReviewSummaryResponse(BaseModel):
last24Hours: Last24HoursReview
root: Dict[str, DayReview]
class ReviewActivityMotionResponse(BaseModel):
start_time: int
motion: float
camera: str

View File

@@ -1,28 +0,0 @@
from typing import Optional
from pydantic import BaseModel
class ReviewQueryParams(BaseModel):
cameras: Optional[str] = "all"
labels: Optional[str] = "all"
zones: Optional[str] = "all"
reviewed: Optional[int] = 0
limit: Optional[int] = None
severity: Optional[str] = None
before: Optional[float] = None
after: Optional[float] = None
class ReviewSummaryQueryParams(BaseModel):
cameras: Optional[str] = "all"
labels: Optional[str] = "all"
zones: Optional[str] = "all"
timezone: Optional[str] = "utc"
class ReviewActivityMotionQueryParams(BaseModel):
cameras: Optional[str] = "all"
before: Optional[float] = None
after: Optional[float] = None
scale: Optional[int] = 30

View File

@@ -14,29 +14,36 @@ from fastapi.responses import JSONResponse
from peewee import JOIN, DoesNotExist, fn, operator
from playhouse.shortcuts import model_to_dict
from frigate.api.defs.events_body import (
EventsCreateBody,
EventsDescriptionBody,
EventsEndBody,
EventsSubLabelBody,
SubmitPlusBody,
)
from frigate.api.defs.events_query_parameters import (
from frigate.api.defs.query.events_query_parameters import (
DEFAULT_TIME_RANGE,
EventsQueryParams,
EventsSearchQueryParams,
EventsSummaryQueryParams,
)
from frigate.api.defs.regenerate_query_parameters import (
from frigate.api.defs.query.regenerate_query_parameters import (
RegenerateQueryParameters,
)
from frigate.api.defs.tags import Tags
from frigate.const import (
CLIPS_DIR,
from frigate.api.defs.request.events_body import (
EventsCreateBody,
EventsDeleteBody,
EventsDescriptionBody,
EventsEndBody,
EventsSubLabelBody,
SubmitPlusBody,
)
from frigate.api.defs.response.event_response import (
EventCreateResponse,
EventMultiDeleteResponse,
EventResponse,
EventUploadPlusResponse,
)
from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.tags import Tags
from frigate.const import CLIPS_DIR
from frigate.embeddings import EmbeddingsContext
from frigate.events.external import ExternalEventProcessor
from frigate.models import Event, ReviewSegment, Timeline
from frigate.object_processing import TrackedObject
from frigate.object_processing import TrackedObject, TrackedObjectProcessor
from frigate.util.builtin import get_tz_modifiers
logger = logging.getLogger(__name__)
@@ -44,7 +51,7 @@ logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.events])
@router.get("/events")
@router.get("/events", response_model=list[EventResponse])
def events(params: EventsQueryParams = Depends()):
camera = params.camera
cameras = params.cameras
@@ -88,6 +95,7 @@ def events(params: EventsQueryParams = Depends()):
is_submitted = params.is_submitted
min_length = params.min_length
max_length = params.max_length
event_id = params.event_id
sort = params.sort
@@ -230,6 +238,9 @@ def events(params: EventsQueryParams = Depends()):
elif is_submitted > 0:
clauses.append((Event.plus_id != ""))
if event_id is not None:
clauses.append((Event.id == event_id))
if len(clauses) == 0:
clauses.append((True))
@@ -242,6 +253,8 @@ def events(params: EventsQueryParams = Depends()):
order_by = Event.start_time.asc()
elif sort == "date_desc":
order_by = Event.start_time.desc()
else:
order_by = Event.start_time.desc()
else:
order_by = Event.start_time.desc()
@@ -257,7 +270,7 @@ def events(params: EventsQueryParams = Depends()):
return JSONResponse(content=list(events))
@router.get("/events/explore")
@router.get("/events/explore", response_model=list[EventResponse])
def events_explore(limit: int = 10):
# get distinct labels for all events
distinct_labels = Event.select(Event.label).distinct().order_by(Event.label)
@@ -302,7 +315,8 @@ def events_explore(limit: int = 10):
"data": {
k: v
for k, v in event.data.items()
if k in ["type", "score", "top_score", "description"]
if k
in ["type", "score", "top_score", "description", "sub_label_score"]
},
"event_count": label_counts[event.label],
}
@@ -318,7 +332,7 @@ def events_explore(limit: int = 10):
return JSONResponse(content=processed_events)
@router.get("/event_ids")
@router.get("/event_ids", response_model=list[EventResponse])
def event_ids(ids: str):
ids = ids.split(",")
@@ -356,6 +370,7 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends())
time_range = params.time_range
has_clip = params.has_clip
has_snapshot = params.has_snapshot
is_submitted = params.is_submitted
# for similarity search
event_id = params.event_id
@@ -394,6 +409,7 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends())
Event.end_time,
Event.has_clip,
Event.has_snapshot,
Event.top_score,
Event.data,
Event.plus_id,
ReviewSegment.thumb_path,
@@ -436,6 +452,12 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends())
if has_snapshot is not None:
event_filters.append((Event.has_snapshot == has_snapshot))
if is_submitted is not None:
if is_submitted == 0:
event_filters.append((Event.plus_id.is_null()))
elif is_submitted > 0:
event_filters.append((Event.plus_id != ""))
if min_score is not None and max_score is not None:
event_filters.append((Event.data["score"].between(min_score, max_score)))
else:
@@ -568,19 +590,17 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends())
processed_events.append(processed_event)
# Sort by search distance if search_results are available, otherwise by start_time as default
if search_results:
if (sort is None or sort == "relevance") and search_results:
processed_events.sort(key=lambda x: x.get("search_distance", float("inf")))
elif min_score is not None and max_score is not None and sort == "score_asc":
processed_events.sort(key=lambda x: x["score"])
elif min_score is not None and max_score is not None and sort == "score_desc":
processed_events.sort(key=lambda x: x["score"], reverse=True)
elif sort == "date_asc":
processed_events.sort(key=lambda x: x["start_time"])
else:
if sort == "score_asc":
processed_events.sort(key=lambda x: x["score"])
elif sort == "score_desc":
processed_events.sort(key=lambda x: x["score"], reverse=True)
elif sort == "date_asc":
processed_events.sort(key=lambda x: x["start_time"])
else:
# "date_desc" default
processed_events.sort(key=lambda x: x["start_time"], reverse=True)
# "date_desc" default
processed_events.sort(key=lambda x: x["start_time"], reverse=True)
# Limit the number of events returned
processed_events = processed_events[:limit]
@@ -633,7 +653,7 @@ def events_summary(params: EventsSummaryQueryParams = Depends()):
return JSONResponse(content=[e for e in groups.dicts()])
@router.get("/events/{event_id}")
@router.get("/events/{event_id}", response_model=EventResponse)
def event(event_id: str):
try:
return model_to_dict(Event.get(Event.id == event_id))
@@ -641,7 +661,7 @@ def event(event_id: str):
return JSONResponse(content="Event not found", status_code=404)
@router.post("/events/{event_id}/retain")
@router.post("/events/{event_id}/retain", response_model=GenericResponse)
def set_retain(event_id: str):
try:
event = Event.get(Event.id == event_id)
@@ -660,7 +680,7 @@ def set_retain(event_id: str):
)
@router.post("/events/{event_id}/plus")
@router.post("/events/{event_id}/plus", response_model=EventUploadPlusResponse)
def send_to_plus(request: Request, event_id: str, body: SubmitPlusBody = None):
if not request.app.frigate_config.plus_api.is_active():
message = "PLUS_API_KEY environment variable is not set"
@@ -772,7 +792,7 @@ def send_to_plus(request: Request, event_id: str, body: SubmitPlusBody = None):
)
@router.put("/events/{event_id}/false_positive")
@router.put("/events/{event_id}/false_positive", response_model=EventUploadPlusResponse)
def false_positive(request: Request, event_id: str):
if not request.app.frigate_config.plus_api.is_active():
message = "PLUS_API_KEY environment variable is not set"
@@ -861,7 +881,7 @@ def false_positive(request: Request, event_id: str):
)
@router.delete("/events/{event_id}/retain")
@router.delete("/events/{event_id}/retain", response_model=GenericResponse)
def delete_retain(event_id: str):
try:
event = Event.get(Event.id == event_id)
@@ -880,7 +900,7 @@ def delete_retain(event_id: str):
)
@router.post("/events/{event_id}/sub_label")
@router.post("/events/{event_id}/sub_label", response_model=GenericResponse)
def set_sub_label(
request: Request,
event_id: str,
@@ -932,7 +952,7 @@ def set_sub_label(
)
@router.post("/events/{event_id}/description")
@router.post("/events/{event_id}/description", response_model=GenericResponse)
def set_description(
request: Request,
event_id: str,
@@ -979,7 +999,7 @@ def set_description(
)
@router.put("/events/{event_id}/description/regenerate")
@router.put("/events/{event_id}/description/regenerate", response_model=GenericResponse)
def regenerate_description(
request: Request, event_id: str, params: RegenerateQueryParameters = Depends()
):
@@ -991,9 +1011,11 @@ def regenerate_description(
status_code=404,
)
camera_config = request.app.frigate_config.cameras[event.camera]
if (
request.app.frigate_config.semantic_search.enabled
and request.app.frigate_config.genai.enabled
and camera_config.genai.enabled
):
request.app.event_metadata_updater.publish((event.id, params.source))
@@ -1014,47 +1036,74 @@ def regenerate_description(
content=(
{
"success": False,
"message": "Semantic search and generative AI are not enabled",
"message": "Semantic Search and Generative AI must be enabled to regenerate a description",
}
),
status_code=400,
)
@router.delete("/events/{event_id}")
def delete_event(request: Request, event_id: str):
def delete_single_event(event_id: str, request: Request) -> dict:
try:
event = Event.get(Event.id == event_id)
except DoesNotExist:
return JSONResponse(
content=({"success": False, "message": "Event " + event_id + " not found"}),
status_code=404,
)
return {"success": False, "message": f"Event {event_id} not found"}
media_name = f"{event.camera}-{event.id}"
if event.has_snapshot:
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg")
media.unlink(missing_ok=True)
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}-clean.png")
media.unlink(missing_ok=True)
if event.has_clip:
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.mp4")
media.unlink(missing_ok=True)
snapshot_paths = [
Path(f"{os.path.join(CLIPS_DIR, media_name)}.jpg"),
Path(f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"),
]
for media in snapshot_paths:
media.unlink(missing_ok=True)
event.delete_instance()
Timeline.delete().where(Timeline.source_id == event_id).execute()
# If semantic search is enabled, update the index
if request.app.frigate_config.semantic_search.enabled:
context: EmbeddingsContext = request.app.embeddings
context.db.delete_embeddings_thumbnail(event_ids=[event_id])
context.db.delete_embeddings_description(event_ids=[event_id])
return JSONResponse(
content=({"success": True, "message": "Event " + event_id + " deleted"}),
status_code=200,
)
return {"success": True, "message": f"Event {event_id} deleted"}
@router.post("/events/{camera_name}/{label}/create")
@router.delete("/events/{event_id}", response_model=GenericResponse)
def delete_event(request: Request, event_id: str):
result = delete_single_event(event_id, request)
status_code = 200 if result["success"] else 404
return JSONResponse(content=result, status_code=status_code)
@router.delete("/events/", response_model=EventMultiDeleteResponse)
def delete_events(request: Request, body: EventsDeleteBody):
if not body.event_ids:
return JSONResponse(
content=({"success": False, "message": "No event IDs provided."}),
status_code=404,
)
deleted_events = []
not_found_events = []
for event_id in body.event_ids:
result = delete_single_event(event_id, request)
if result["success"]:
deleted_events.append(event_id)
else:
not_found_events.append(event_id)
response = {
"success": True,
"deleted_events": deleted_events,
"not_found_events": not_found_events,
}
return JSONResponse(content=response, status_code=200)
@router.post("/events/{camera_name}/{label}/create", response_model=EventCreateResponse)
def create_event(
request: Request,
camera_name: str,
@@ -1076,9 +1125,11 @@ def create_event(
)
try:
frame = request.app.detected_frames_processor.get_current_frame(camera_name)
frame_processor: TrackedObjectProcessor = request.app.detected_frames_processor
external_processor: ExternalEventProcessor = request.app.external_processor
event_id = request.app.external_processor.create_manual_event(
frame = frame_processor.get_current_frame(camera_name)
event_id = external_processor.create_manual_event(
camera_name,
label,
body.source_type,
@@ -1108,7 +1159,7 @@ def create_event(
)
@router.put("/events/{event_id}/end")
@router.put("/events/{event_id}/end", response_model=GenericResponse)
def end_event(request: Request, event_id: str, body: EventsEndBody):
try:
end_time = body.end_time or datetime.datetime.now().timestamp()

View File

@@ -4,17 +4,23 @@ import logging
import random
import string
from pathlib import Path
from typing import Optional
import psutil
from fastapi import APIRouter, Request
from fastapi.responses import JSONResponse
from peewee import DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.api.defs.request.export_recordings_body import ExportRecordingsBody
from frigate.api.defs.tags import Tags
from frigate.const import EXPORT_DIR
from frigate.models import Export, Recordings
from frigate.record.export import PlaybackFactorEnum, RecordingExporter
from frigate.models import Export, Previews, Recordings
from frigate.record.export import (
PlaybackFactorEnum,
PlaybackSourceEnum,
RecordingExporter,
)
from frigate.util.builtin import is_current_hour
logger = logging.getLogger(__name__)
@@ -33,7 +39,7 @@ def export_recording(
camera_name: str,
start_time: float,
end_time: float,
body: dict = None,
body: ExportRecordingsBody,
):
if not camera_name or not request.app.frigate_config.cameras.get(camera_name):
return JSONResponse(
@@ -43,36 +49,52 @@ def export_recording(
status_code=404,
)
json: dict[str, any] = body or {}
playback_factor = json.get("playback", "realtime")
friendly_name: Optional[str] = json.get("name")
playback_factor = body.playback
playback_source = body.source
friendly_name = body.name
existing_image = body.image_path
if len(friendly_name or "") > 256:
return JSONResponse(
content=({"success": False, "message": "File name is too long."}),
status_code=401,
if playback_source == "recordings":
recordings_count = (
Recordings.select()
.where(
Recordings.start_time.between(start_time, end_time)
| Recordings.end_time.between(start_time, end_time)
| (
(start_time > Recordings.start_time)
& (end_time < Recordings.end_time)
)
)
.where(Recordings.camera == camera_name)
.count()
)
existing_image = json.get("image_path")
recordings_count = (
Recordings.select()
.where(
Recordings.start_time.between(start_time, end_time)
| Recordings.end_time.between(start_time, end_time)
| ((start_time > Recordings.start_time) & (end_time < Recordings.end_time))
if recordings_count <= 0:
return JSONResponse(
content=(
{"success": False, "message": "No recordings found for time range"}
),
status_code=400,
)
else:
previews_count = (
Previews.select()
.where(
Previews.start_time.between(start_time, end_time)
| Previews.end_time.between(start_time, end_time)
| ((start_time > Previews.start_time) & (end_time < Previews.end_time))
)
.where(Previews.camera == camera_name)
.count()
)
.where(Recordings.camera == camera_name)
.count()
)
if recordings_count <= 0:
return JSONResponse(
content=(
{"success": False, "message": "No recordings found for time range"}
),
status_code=400,
)
if not is_current_hour(start_time) and previews_count <= 0:
return JSONResponse(
content=(
{"success": False, "message": "No previews found for time range"}
),
status_code=400,
)
export_id = f"{camera_name}_{''.join(random.choices(string.ascii_lowercase + string.digits, k=6))}"
exporter = RecordingExporter(
@@ -88,6 +110,11 @@ def export_recording(
if playback_factor in PlaybackFactorEnum.__members__.values()
else PlaybackFactorEnum.realtime
),
(
PlaybackSourceEnum[playback_source]
if playback_source in PlaybackSourceEnum.__members__.values()
else PlaybackSourceEnum.recordings
),
)
exporter.start()
return JSONResponse(
@@ -181,3 +208,14 @@ def export_delete(event_id: str):
),
status_code=200,
)
@router.get("/exports/{export_id}")
def get_export(export_id: str):
try:
return JSONResponse(content=model_to_dict(Export.get(Export.id == export_id)))
except DoesNotExist:
return JSONResponse(
content={"success": False, "message": "Export not found"},
status_code=404,
)

View File

@@ -82,8 +82,16 @@ def create_fastapi_app(
database.close()
return response
@app.on_event("startup")
async def startup():
logger.info("FastAPI started")
# Rate limiter (used for login endpoint)
auth.rateLimiter.set_limit(frigate_config.auth.failed_login_rate_limit or "")
if frigate_config.auth.failed_login_rate_limit is None:
limiter.enabled = False
else:
auth.rateLimiter.set_limit(frigate_config.auth.failed_login_rate_limit)
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)
app.add_middleware(SlowAPIMiddleware)

View File

@@ -20,7 +20,7 @@ from pathvalidate import sanitize_filename
from peewee import DoesNotExist, fn
from tzlocal import get_localzone_name
from frigate.api.defs.media_query_parameters import (
from frigate.api.defs.query.media_query_parameters import (
Extension,
MediaEventsSnapshotQueryParams,
MediaLatestFrameQueryParams,
@@ -36,6 +36,7 @@ from frigate.const import (
RECORD_DIR,
)
from frigate.models import Event, Previews, Recordings, Regions, ReviewSegment
from frigate.object_processing import TrackedObjectProcessor
from frigate.util.builtin import get_tz_modifiers
from frigate.util.image import get_image_from_recording
@@ -79,7 +80,11 @@ def mjpeg_feed(
def imagestream(
detected_frames_processor, camera_name: str, fps: int, height: int, draw_options
detected_frames_processor: TrackedObjectProcessor,
camera_name: str,
fps: int,
height: int,
draw_options: dict[str, any],
):
while True:
# max out at specified FPS
@@ -118,6 +123,7 @@ def latest_frame(
extension: Extension,
params: MediaLatestFrameQueryParams = Depends(),
):
frame_processor: TrackedObjectProcessor = request.app.detected_frames_processor
draw_options = {
"bounding_boxes": params.bbox,
"timestamp": params.timestamp,
@@ -129,17 +135,14 @@ def latest_frame(
quality = params.quality
if camera_name in request.app.frigate_config.cameras:
frame = request.app.detected_frames_processor.get_current_frame(
camera_name, draw_options
)
frame = frame_processor.get_current_frame(camera_name, draw_options)
retry_interval = float(
request.app.frigate_config.cameras.get(camera_name).ffmpeg.retry_interval
or 10
)
if frame is None or datetime.now().timestamp() > (
request.app.detected_frames_processor.get_current_frame_time(camera_name)
+ retry_interval
frame_processor.get_current_frame_time(camera_name) + retry_interval
):
if request.app.camera_error_image is None:
error_image = glob.glob("/opt/frigate/frigate/images/camera-error.jpg")
@@ -180,7 +183,7 @@ def latest_frame(
)
elif camera_name == "birdseye" and request.app.frigate_config.birdseye.restream:
frame = cv2.cvtColor(
request.app.detected_frames_processor.get_current_frame(camera_name),
frame_processor.get_current_frame(camera_name),
cv2.COLOR_YUV2BGR_I420,
)
@@ -460,8 +463,8 @@ def recording_clip(
text=False,
) as ffmpeg:
while True:
data = ffmpeg.stdout.read(1024)
if data is not None:
data = ffmpeg.stdout.read(8192)
if data is not None and len(data) > 0:
yield data
else:
if ffmpeg.returncode and ffmpeg.returncode != 0:
@@ -813,15 +816,15 @@ def grid_snapshot(
):
if camera_name in request.app.frigate_config.cameras:
detect = request.app.frigate_config.cameras[camera_name].detect
frame = request.app.detected_frames_processor.get_current_frame(camera_name, {})
frame_processor: TrackedObjectProcessor = request.app.detected_frames_processor
frame = frame_processor.get_current_frame(camera_name, {})
retry_interval = float(
request.app.frigate_config.cameras.get(camera_name).ffmpeg.retry_interval
or 10
)
if frame is None or datetime.now().timestamp() > (
request.app.detected_frames_processor.get_current_frame_time(camera_name)
+ retry_interval
frame_processor.get_current_frame_time(camera_name) + retry_interval
):
return JSONResponse(
content={"success": False, "message": "Unable to get valid frame"},
@@ -917,7 +920,7 @@ def grid_snapshot(
ret, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
return Response(
jpg.tobytes,
jpg.tobytes(),
media_type="image/jpeg",
headers={"Cache-Control": "no-store"},
)
@@ -1453,7 +1456,6 @@ def preview_thumbnail(file_name: str):
return Response(
jpg_bytes,
# FIXME: Shouldn't it be either jpg or webp depending on the endpoint?
media_type="image/webp",
headers={
"Content-Type": "image/webp",
@@ -1482,7 +1484,7 @@ def label_thumbnail(request: Request, camera_name: str, label: str):
ret, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
return Response(
jpg.tobytes,
jpg.tobytes(),
media_type="image/jpeg",
headers={"Cache-Control": "no-store"},
)
@@ -1535,6 +1537,6 @@ def label_snapshot(request: Request, camera_name: str, label: str):
_, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
return Response(
jpg.tobytes,
jpg.tobytes(),
media_type="image/jpeg",
)

View File

@@ -12,13 +12,21 @@ from fastapi.responses import JSONResponse
from peewee import Case, DoesNotExist, fn, operator
from playhouse.shortcuts import model_to_dict
from frigate.api.defs.review_query_parameters import (
from frigate.api.defs.query.review_query_parameters import (
ReviewActivityMotionQueryParams,
ReviewQueryParams,
ReviewSummaryQueryParams,
)
from frigate.api.defs.request.review_body import ReviewModifyMultipleBody
from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.response.review_response import (
ReviewActivityMotionResponse,
ReviewSegmentResponse,
ReviewSummaryResponse,
)
from frigate.api.defs.tags import Tags
from frigate.models import Recordings, ReviewSegment
from frigate.review.types import SeverityEnum
from frigate.util.builtin import get_tz_modifiers
logger = logging.getLogger(__name__)
@@ -26,7 +34,7 @@ logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.review])
@router.get("/review")
@router.get("/review", response_model=list[ReviewSegmentResponse])
def review(params: ReviewQueryParams = Depends()):
cameras = params.cameras
labels = params.labels
@@ -102,7 +110,7 @@ def review(params: ReviewQueryParams = Depends()):
return JSONResponse(content=[r for r in review])
@router.get("/review/summary")
@router.get("/review/summary", response_model=ReviewSummaryResponse)
def review_summary(params: ReviewSummaryQueryParams = Depends()):
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(params.timezone)
day_ago = (datetime.datetime.now() - datetime.timedelta(hours=24)).timestamp()
@@ -154,7 +162,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "alert"),
(ReviewSegment.severity == SeverityEnum.alert),
ReviewSegment.has_been_reviewed,
)
],
@@ -166,7 +174,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "detection"),
(ReviewSegment.severity == SeverityEnum.detection),
ReviewSegment.has_been_reviewed,
)
],
@@ -178,19 +186,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "significant_motion"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_motion"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
(ReviewSegment.severity == SeverityEnum.alert),
1,
)
],
@@ -202,25 +198,13 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "detection"),
(ReviewSegment.severity == SeverityEnum.detection),
1,
)
],
0,
)
).alias("total_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
1,
)
],
0,
)
).alias("total_motion"),
)
.where(reduce(operator.and_, clauses))
.dicts()
@@ -247,6 +231,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
label_clause = reduce(operator.or_, label_clauses)
clauses.append((label_clause))
day_in_seconds = 60 * 60 * 24
last_month = (
ReviewSegment.select(
fn.strftime(
@@ -263,7 +248,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "alert"),
(ReviewSegment.severity == SeverityEnum.alert),
ReviewSegment.has_been_reviewed,
)
],
@@ -275,7 +260,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "detection"),
(ReviewSegment.severity == SeverityEnum.detection),
ReviewSegment.has_been_reviewed,
)
],
@@ -287,19 +272,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "significant_motion"),
ReviewSegment.has_been_reviewed,
)
],
0,
)
).alias("reviewed_motion"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "alert"),
(ReviewSegment.severity == SeverityEnum.alert),
1,
)
],
@@ -311,29 +284,17 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "detection"),
(ReviewSegment.severity == SeverityEnum.detection),
1,
)
],
0,
)
).alias("total_detection"),
fn.SUM(
Case(
None,
[
(
(ReviewSegment.severity == "significant_motion"),
1,
)
],
0,
)
).alias("total_motion"),
)
.where(reduce(operator.and_, clauses))
.group_by(
(ReviewSegment.start_time + seconds_offset).cast("int") / (3600 * 24),
(ReviewSegment.start_time + seconds_offset).cast("int") / day_in_seconds,
)
.order_by(ReviewSegment.start_time.desc())
)
@@ -348,19 +309,10 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
return JSONResponse(content=data)
@router.post("/reviews/viewed")
def set_multiple_reviewed(body: dict = None):
json: dict[str, any] = body or {}
list_of_ids = json.get("ids", "")
if not list_of_ids or len(list_of_ids) == 0:
return JSONResponse(
context=({"success": False, "message": "Not a valid list of ids"}),
status_code=404,
)
@router.post("/reviews/viewed", response_model=GenericResponse)
def set_multiple_reviewed(body: ReviewModifyMultipleBody):
ReviewSegment.update(has_been_reviewed=True).where(
ReviewSegment.id << list_of_ids
ReviewSegment.id << body.ids
).execute()
return JSONResponse(
@@ -369,17 +321,9 @@ def set_multiple_reviewed(body: dict = None):
)
@router.post("/reviews/delete")
def delete_reviews(body: dict = None):
json: dict[str, any] = body or {}
list_of_ids = json.get("ids", "")
if not list_of_ids or len(list_of_ids) == 0:
return JSONResponse(
content=({"success": False, "message": "Not a valid list of ids"}),
status_code=404,
)
@router.post("/reviews/delete", response_model=GenericResponse)
def delete_reviews(body: ReviewModifyMultipleBody):
list_of_ids = body.ids
reviews = (
ReviewSegment.select(
ReviewSegment.camera,
@@ -420,11 +364,13 @@ def delete_reviews(body: dict = None):
ReviewSegment.delete().where(ReviewSegment.id << list_of_ids).execute()
return JSONResponse(
content=({"success": True, "message": "Delete reviews"}), status_code=200
content=({"success": True, "message": "Deleted review items."}), status_code=200
)
@router.get("/review/activity/motion")
@router.get(
"/review/activity/motion", response_model=list[ReviewActivityMotionResponse]
)
def motion_activity(params: ReviewActivityMotionQueryParams = Depends()):
"""Get motion and audio activity."""
cameras = params.cameras
@@ -498,98 +444,44 @@ def motion_activity(params: ReviewActivityMotionQueryParams = Depends()):
return JSONResponse(content=normalized)
@router.get("/review/activity/audio")
def audio_activity(params: ReviewActivityMotionQueryParams = Depends()):
"""Get motion and audio activity."""
cameras = params.cameras
before = params.before or datetime.datetime.now().timestamp()
after = (
params.after
or (datetime.datetime.now() - datetime.timedelta(hours=1)).timestamp()
)
# get scale in seconds
scale = params.scale
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((Recordings.camera << camera_list))
all_recordings: list[Recordings] = (
Recordings.select(
Recordings.start_time,
Recordings.duration,
Recordings.objects,
Recordings.dBFS,
)
.where(reduce(operator.and_, clauses))
.order_by(Recordings.start_time.asc())
.iterator()
)
# format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] }
# periods where active objects / audio was detected will cause audio to be scaled down
data: list[dict[str, float]] = []
for rec in all_recordings:
data.append(
{
"start_time": rec.start_time,
"audio": rec.dBFS if rec.objects == 0 else 0,
}
)
# resample data using pandas to get activity on scaled basis
df = pd.DataFrame(data, columns=["start_time", "audio"])
df = df.astype(dtype={"audio": "float16"})
# set date as datetime index
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
df.set_index(["start_time"], inplace=True)
# normalize data
df = df.resample(f"{scale}S").mean().fillna(0.0)
df["audio"] = (
(df["audio"] - df["audio"].max())
/ (df["audio"].min() - df["audio"].max())
* -100
)
# change types for output
df.index = df.index.astype(int) // (10**9)
normalized = df.reset_index().to_dict("records")
return JSONResponse(content=normalized)
@router.get("/review/event/{event_id}")
@router.get("/review/event/{event_id}", response_model=ReviewSegmentResponse)
def get_review_from_event(event_id: str):
try:
return model_to_dict(
ReviewSegment.get(
ReviewSegment.data["detections"].cast("text") % f'*"{event_id}"*'
return JSONResponse(
model_to_dict(
ReviewSegment.get(
ReviewSegment.data["detections"].cast("text") % f'*"{event_id}"*'
)
)
)
except DoesNotExist:
return "Review item not found", 404
return JSONResponse(
content={"success": False, "message": "Review item not found"},
status_code=404,
)
@router.get("/review/{event_id}")
def get_review(event_id: str):
@router.get("/review/{review_id}", response_model=ReviewSegmentResponse)
def get_review(review_id: str):
try:
return model_to_dict(ReviewSegment.get(ReviewSegment.id == event_id))
return JSONResponse(
content=model_to_dict(ReviewSegment.get(ReviewSegment.id == review_id))
)
except DoesNotExist:
return "Review item not found", 404
return JSONResponse(
content={"success": False, "message": "Review item not found"},
status_code=404,
)
@router.delete("/review/{event_id}/viewed")
def set_not_reviewed(event_id: str):
@router.delete("/review/{review_id}/viewed", response_model=GenericResponse)
def set_not_reviewed(review_id: str):
try:
review: ReviewSegment = ReviewSegment.get(ReviewSegment.id == event_id)
review: ReviewSegment = ReviewSegment.get(ReviewSegment.id == review_id)
except DoesNotExist:
return JSONResponse(
content=(
{"success": False, "message": "Review " + event_id + " not found"}
{"success": False, "message": "Review " + review_id + " not found"}
),
status_code=404,
)
@@ -598,6 +490,8 @@ def set_not_reviewed(event_id: str):
review.save()
return JSONResponse(
content=({"success": True, "message": "Reviewed " + event_id + " not viewed"}),
content=(
{"success": True, "message": "Set Review " + review_id + " as not viewed"}
),
status_code=200,
)

View File

@@ -36,6 +36,7 @@ from frigate.const import (
EXPORT_DIR,
MODEL_CACHE_DIR,
RECORD_DIR,
SHM_FRAMES_VAR,
)
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.embeddings import EmbeddingsContext, manage_embeddings
@@ -68,6 +69,7 @@ from frigate.stats.util import stats_init
from frigate.storage import StorageMaintainer
from frigate.timeline import TimelineProcessor
from frigate.util.builtin import empty_and_close_queue
from frigate.util.image import SharedMemoryFrameManager, UntrackedSharedMemory
from frigate.util.object import get_camera_regions_grid
from frigate.version import VERSION
from frigate.video import capture_camera, track_camera
@@ -90,6 +92,7 @@ class FrigateApp:
self.processes: dict[str, int] = {}
self.embeddings: Optional[EmbeddingsContext] = None
self.region_grids: dict[str, list[list[dict[str, int]]]] = {}
self.frame_manager = SharedMemoryFrameManager()
self.config = config
def ensure_dirs(self) -> None:
@@ -325,20 +328,20 @@ class FrigateApp:
for det in self.config.detectors.values()
]
)
shm_in = mp.shared_memory.SharedMemory(
shm_in = UntrackedSharedMemory(
name=name,
create=True,
size=largest_frame,
)
except FileExistsError:
shm_in = mp.shared_memory.SharedMemory(name=name)
shm_in = UntrackedSharedMemory(name=name)
try:
shm_out = mp.shared_memory.SharedMemory(
shm_out = UntrackedSharedMemory(
name=f"out-{name}", create=True, size=20 * 6 * 4
)
except FileExistsError:
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}")
shm_out = UntrackedSharedMemory(name=f"out-{name}")
self.detection_shms.append(shm_in)
self.detection_shms.append(shm_out)
@@ -431,6 +434,11 @@ class FrigateApp:
logger.info(f"Capture process not started for disabled camera {name}")
continue
# pre-create shms
for i in range(shm_frame_count):
frame_size = config.frame_shape_yuv[0] * config.frame_shape_yuv[1]
self.frame_manager.create(f"{config.name}_{i}", frame_size)
capture_process = util.Process(
target=capture_camera,
name=f"camera_capture:{name}",
@@ -513,15 +521,21 @@ class FrigateApp:
1,
)
shm_frame_count = min(50, int(available_shm / (cam_total_frame_size)))
if cam_total_frame_size == 0.0:
return 0
shm_frame_count = min(
int(os.environ.get(SHM_FRAMES_VAR, "50")),
int(available_shm / (cam_total_frame_size)),
)
logger.debug(
f"Calculated total camera size {available_shm} / {cam_total_frame_size} :: {shm_frame_count} frames for each camera in SHM"
)
if shm_frame_count < 10:
if shm_frame_count < 20:
logger.warning(
f"The current SHM size of {total_shm}MB is too small, recommend increasing it to at least {round(min_req_shm + cam_total_frame_size * 10)}MB."
f"The current SHM size of {total_shm}MB is too small, recommend increasing it to at least {round(min_req_shm + cam_total_frame_size * 20)}MB."
)
return shm_frame_count
@@ -707,6 +721,7 @@ class FrigateApp:
self.event_metadata_updater.stop()
self.inter_zmq_proxy.stop()
self.frame_manager.cleanup()
while len(self.detection_shms) > 0:
shm = self.detection_shms.pop()
shm.close()

View File

@@ -22,7 +22,7 @@ from frigate.const import (
)
from frigate.models import Event, Previews, Recordings, ReviewSegment
from frigate.ptz.onvif import OnvifCommandEnum, OnvifController
from frigate.types import ModelStatusTypesEnum
from frigate.types import ModelStatusTypesEnum, TrackedObjectUpdateTypesEnum
from frigate.util.object import get_camera_regions_grid
from frigate.util.services import restart_frigate
@@ -137,8 +137,14 @@ class Dispatcher:
event.data["description"] = payload["description"]
event.save()
self.publish(
"event_update",
json.dumps({"id": event.id, "description": event.data["description"]}),
"tracked_object_update",
json.dumps(
{
"type": TrackedObjectUpdateTypesEnum.description,
"id": event.id,
"description": event.data["description"],
}
),
)
def handle_update_model_state():

View File

@@ -14,7 +14,7 @@ class EventUpdatePublisher(Publisher):
super().__init__("update")
def publish(
self, payload: tuple[EventTypeEnum, EventStateEnum, str, dict[str, any]]
self, payload: tuple[EventTypeEnum, EventStateEnum, str, str, dict[str, any]]
) -> None:
super().publish(payload)

View File

@@ -17,7 +17,7 @@ class MqttClient(Communicator): # type: ignore[misc]
def __init__(self, config: FrigateConfig) -> None:
self.config = config
self.mqtt_config = config.mqtt
self.connected: bool = False
self.connected = False
def subscribe(self, receiver: Callable) -> None:
"""Wrapper for allowing dispatcher to subscribe."""
@@ -27,7 +27,7 @@ class MqttClient(Communicator): # type: ignore[misc]
def publish(self, topic: str, payload: Any, retain: bool = False) -> None:
"""Wrapper for publishing when client is in valid state."""
if not self.connected:
logger.error(f"Unable to publish to {topic}: client is not connected")
logger.debug(f"Unable to publish to {topic}: client is not connected")
return
self.client.publish(
@@ -133,7 +133,7 @@ class MqttClient(Communicator): # type: ignore[misc]
"""Mqtt connection callback."""
threading.current_thread().name = "mqtt"
if reason_code != 0:
if reason_code == "Server Unavailable":
if reason_code == "Server unavailable":
logger.error(
"Unable to connect to MQTT server: MQTT Server unavailable"
)
@@ -173,6 +173,7 @@ class MqttClient(Communicator): # type: ignore[misc]
client_id=self.mqtt_config.client_id,
)
self.client.on_connect = self._on_connect
self.client.on_disconnect = self._on_disconnect
self.client.will_set(
self.mqtt_config.topic_prefix + "/available",
payload="offline",
@@ -197,14 +198,6 @@ class MqttClient(Communicator): # type: ignore[misc]
for name in self.config.cameras.keys():
for callback in callback_types:
# We need to pre-clear existing set topics because in previous
# versions the webUI retained on the /set topic but this is
# no longer the case.
self.client.publish(
f"{self.mqtt_config.topic_prefix}/{name}/{callback}/set",
None,
retain=True,
)
self.client.message_callback_add(
f"{self.mqtt_config.topic_prefix}/{name}/{callback}/set",
self.on_mqtt_command,

View File

@@ -13,7 +13,7 @@ class AuthConfig(FrigateBaseModel):
default=False, title="Reset the admin password on startup"
)
cookie_name: str = Field(
default="frigate_token", title="Name for jwt token cookie", pattern=r"^[a-z]_*$"
default="frigate_token", title="Name for jwt token cookie", pattern=r"^[a-z_]+$"
)
cookie_secure: bool = Field(default=False, title="Set secure flag on cookie")
session_length: int = Field(

View File

@@ -94,3 +94,10 @@ class RecordConfig(FrigateBaseModel):
enabled_in_config: Optional[bool] = Field(
default=None, title="Keep track of original state of recording."
)
@property
def event_pre_capture(self) -> int:
return max(
self.alerts.pre_capture,
self.detections.pre_capture,
)

View File

@@ -29,6 +29,7 @@ from frigate.util.builtin import (
)
from frigate.util.config import (
StreamInfoRetriever,
find_config_file,
get_relative_coordinates,
migrate_frigate_config,
)
@@ -67,7 +68,6 @@ logger = logging.getLogger(__name__)
yaml = YAML()
DEFAULT_CONFIG_FILES = ["/config/config.yaml", "/config/config.yml"]
DEFAULT_CONFIG = """
mqtt:
enabled: False
@@ -230,12 +230,16 @@ def verify_recording_segments_setup_with_reasonable_time(
try:
seg_arg_index = record_args.index("-segment_time")
except ValueError:
raise ValueError(f"Camera {camera_config.name} has no segment_time in \
recording output args, segment args are required for record.")
raise ValueError(
f"Camera {camera_config.name} has no segment_time in \
recording output args, segment args are required for record."
)
if int(record_args[seg_arg_index + 1]) > 60:
raise ValueError(f"Camera {camera_config.name} has invalid segment_time output arg, \
segment_time must be 60 or less.")
raise ValueError(
f"Camera {camera_config.name} has invalid segment_time output arg, \
segment_time must be 60 or less."
)
def verify_zone_objects_are_tracked(camera_config: CameraConfig) -> None:
@@ -634,27 +638,20 @@ class FrigateConfig(FrigateBaseModel):
@classmethod
def load(cls, **kwargs):
config_path = os.environ.get("CONFIG_FILE")
# No explicit configuration file, try to find one in the default paths.
if config_path is None:
for path in DEFAULT_CONFIG_FILES:
if os.path.isfile(path):
config_path = path
break
config_path = find_config_file()
# No configuration file found, create one.
new_config = False
if config_path is None:
if not os.path.isfile(config_path):
logger.info("No config file found, saving default config")
config_path = DEFAULT_CONFIG_FILES[-1]
config_path = config_path
new_config = True
else:
# Check if the config file needs to be migrated.
migrate_frigate_config(config_path)
# Finally, load the resulting configuration file.
with open(config_path, "a+") as f:
with open(config_path, "a+" if new_config else "r") as f:
# Only write the default config if the opened file is non-empty. This can happen as
# a race condition. It's extremely unlikely, but eh. Might as well check it.
if new_config and f.tell() == 0:

View File

@@ -23,7 +23,7 @@ EnvString = Annotated[str, AfterValidator(validate_env_string)]
def validate_env_vars(v: dict[str, str], info: ValidationInfo) -> dict[str, str]:
if isinstance(info.context, dict) and info.context.get("install", False):
for k, v in v:
for k, v in v.items():
os.environ[k] = v
return v

View File

@@ -13,6 +13,8 @@ FRIGATE_LOCALHOST = "http://127.0.0.1:5000"
PLUS_ENV_VAR = "PLUS_API_KEY"
PLUS_API_HOST = "https://api.frigate.video"
SHM_FRAMES_VAR = "SHM_MAX_FRAMES"
# Attribute & Object constants
DEFAULT_ATTRIBUTE_LABEL_MAP = {

View File

@@ -27,6 +27,11 @@ class InputTensorEnum(str, Enum):
nhwc = "nhwc"
class InputDTypeEnum(str, Enum):
float = "float"
int = "int"
class ModelTypeEnum(str, Enum):
ssd = "ssd"
yolox = "yolox"
@@ -53,6 +58,9 @@ class ModelConfig(BaseModel):
input_pixel_format: PixelFormatEnum = Field(
default=PixelFormatEnum.rgb, title="Model Input Pixel Color Format"
)
input_dtype: InputDTypeEnum = Field(
default=InputDTypeEnum.int, title="Model Input D Type"
)
model_type: ModelTypeEnum = Field(
default=ModelTypeEnum.ssd, title="Object Detection Model Type"
)

View File

@@ -32,6 +32,7 @@ class DeepStack(DetectionApi):
self.api_timeout = detector_config.api_timeout
self.api_key = detector_config.api_key
self.labels = detector_config.model.merged_labelmap
self.session = requests.Session()
def get_label_index(self, label_value):
if label_value.lower() == "truck":
@@ -51,7 +52,7 @@ class DeepStack(DetectionApi):
data = {"api_key": self.api_key}
try:
response = requests.post(
response = self.session.post(
self.api_url,
data=data,
files={"image": image_bytes},

View File

@@ -54,7 +54,7 @@ class ONNXDetector(DetectionApi):
logger.info(f"ONNX: {path} loaded")
def detect_raw(self, tensor_input):
def detect_raw(self, tensor_input: np.ndarray):
model_input_name = self.model.get_inputs()[0].name
tensor_output = self.model.run(None, {model_input_name: tensor_input})

View File

@@ -136,17 +136,17 @@ class Rknn(DetectionApi):
def check_config(self, config):
if (config.model.width != 320) or (config.model.height != 320):
raise Exception(
"Make sure to set the model width and height to 320 in your config.yml."
"Make sure to set the model width and height to 320 in your config."
)
if config.model.input_pixel_format != "bgr":
raise Exception(
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
'Make sure to set the model input_pixel_format to "bgr" in your config.'
)
if config.model.input_tensor != "nhwc":
raise Exception(
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
'Make sure to set the model input_tensor to "nhwc" in your config.'
)
def detect_raw(self, tensor_input):

View File

@@ -98,9 +98,7 @@ class ROCmDetector(DetectionApi):
else:
logger.info(f"AMD/ROCm: loading model from {path}")
if path.endswith(".onnx"):
self.model = migraphx.parse_onnx(path)
elif (
if (
path.endswith(".tf")
or path.endswith(".tf2")
or path.endswith(".tflite")
@@ -108,7 +106,7 @@ class ROCmDetector(DetectionApi):
# untested
self.model = migraphx.parse_tf(path)
else:
raise Exception(f"AMD/ROCm: unknown model format {path}")
self.model = migraphx.parse_onnx(path)
logger.info("AMD/ROCm: compiling the model")

View File

@@ -1,13 +1,11 @@
"""SQLite-vec embeddings database."""
import base64
import io
import logging
import os
import time
from numpy import ndarray
from PIL import Image
from playhouse.shortcuts import model_to_dict
from frigate.comms.inter_process import InterProcessRequestor
@@ -22,7 +20,7 @@ from frigate.models import Event
from frigate.types import ModelStatusTypesEnum
from frigate.util.builtin import serialize
from .functions.onnx import GenericONNXEmbedding
from .functions.onnx import GenericONNXEmbedding, ModelTypeEnum
logger = logging.getLogger(__name__)
@@ -97,7 +95,7 @@ class Embeddings:
"text_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/text_model_fp16.onnx",
},
model_size=config.model_size,
model_type="text",
model_type=ModelTypeEnum.text,
requestor=self.requestor,
device="CPU",
)
@@ -118,83 +116,102 @@ class Embeddings:
model_file=model_file,
download_urls=download_urls,
model_size=config.model_size,
model_type="vision",
model_type=ModelTypeEnum.vision,
requestor=self.requestor,
device="GPU" if config.model_size == "large" else "CPU",
)
def upsert_thumbnail(self, event_id: str, thumbnail: bytes) -> ndarray:
# Convert thumbnail bytes to PIL Image
image = Image.open(io.BytesIO(thumbnail)).convert("RGB")
embedding = self.vision_embedding([image])[0]
def embed_thumbnail(
self, event_id: str, thumbnail: bytes, upsert: bool = True
) -> ndarray:
"""Embed thumbnail and optionally insert into DB.
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
VALUES(?, ?)
""",
(event_id, serialize(embedding)),
)
@param: event_id in Events DB
@param: thumbnail bytes in jpg format
@param: upsert If embedding should be upserted into vec DB
"""
# Convert thumbnail bytes to PIL Image
embedding = self.vision_embedding([thumbnail])[0]
if upsert:
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
VALUES(?, ?)
""",
(event_id, serialize(embedding)),
)
return embedding
def batch_upsert_thumbnail(self, event_thumbs: dict[str, bytes]) -> list[ndarray]:
images = [
Image.open(io.BytesIO(thumb)).convert("RGB")
for thumb in event_thumbs.values()
]
def batch_embed_thumbnail(
self, event_thumbs: dict[str, bytes], upsert: bool = True
) -> list[ndarray]:
"""Embed thumbnails and optionally insert into DB.
@param: event_thumbs Map of Event IDs in DB to thumbnail bytes in jpg format
@param: upsert If embedding should be upserted into vec DB
"""
ids = list(event_thumbs.keys())
embeddings = self.vision_embedding(images)
embeddings = self.vision_embedding(list(event_thumbs.values()))
items = []
if upsert:
items = []
for i in range(len(ids)):
items.append(ids[i])
items.append(serialize(embeddings[i]))
for i in range(len(ids)):
items.append(ids[i])
items.append(serialize(embeddings[i]))
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
VALUES {}
""".format(", ".join(["(?, ?)"] * len(ids))),
items,
)
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_thumbnails(id, thumbnail_embedding)
VALUES {}
""".format(", ".join(["(?, ?)"] * len(ids))),
items,
)
return embeddings
def upsert_description(self, event_id: str, description: str) -> ndarray:
def embed_description(
self, event_id: str, description: str, upsert: bool = True
) -> ndarray:
embedding = self.text_embedding([description])[0]
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
VALUES(?, ?)
""",
(event_id, serialize(embedding)),
)
if upsert:
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
VALUES(?, ?)
""",
(event_id, serialize(embedding)),
)
return embedding
def batch_upsert_description(self, event_descriptions: dict[str, str]) -> ndarray:
def batch_embed_description(
self, event_descriptions: dict[str, str], upsert: bool = True
) -> ndarray:
# upsert embeddings one by one to avoid token limit
embeddings = []
for desc in event_descriptions.values():
embeddings.append(self.text_embedding([desc])[0])
ids = list(event_descriptions.keys())
if upsert:
ids = list(event_descriptions.keys())
items = []
items = []
for i in range(len(ids)):
items.append(ids[i])
items.append(serialize(embeddings[i]))
for i in range(len(ids)):
items.append(ids[i])
items.append(serialize(embeddings[i]))
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
VALUES {}
""".format(", ".join(["(?, ?)"] * len(ids))),
items,
)
self.db.execute_sql(
"""
INSERT OR REPLACE INTO vec_descriptions(id, description_embedding)
VALUES {}
""".format(", ".join(["(?, ?)"] * len(ids))),
items,
)
return embeddings
@@ -261,10 +278,10 @@ class Embeddings:
totals["processed_objects"] += 1
# run batch embedding
self.batch_upsert_thumbnail(batch_thumbs)
self.batch_embed_thumbnail(batch_thumbs)
if batch_descs:
self.batch_upsert_description(batch_descs)
self.batch_embed_description(batch_descs)
# report progress every batch so we don't spam the logs
progress = (totals["processed_objects"] / total_events) * 100

View File

@@ -1,6 +1,7 @@
import logging
import os
import warnings
from enum import Enum
from io import BytesIO
from typing import Dict, List, Optional, Union
@@ -31,6 +32,12 @@ disable_progress_bar()
logger = logging.getLogger(__name__)
class ModelTypeEnum(str, Enum):
face = "face"
vision = "vision"
text = "text"
class GenericONNXEmbedding:
"""Generic embedding function for ONNX models (text and vision)."""
@@ -88,7 +95,10 @@ class GenericONNXEmbedding:
file_name = os.path.basename(path)
if file_name in self.download_urls:
ModelDownloader.download_from_url(self.download_urls[file_name], path)
elif file_name == self.tokenizer_file and self.model_type == "text":
elif (
file_name == self.tokenizer_file
and self.model_type == ModelTypeEnum.text
):
if not os.path.exists(path + "/" + self.model_name):
logger.info(f"Downloading {self.model_name} tokenizer")
tokenizer = AutoTokenizer.from_pretrained(
@@ -119,7 +129,7 @@ class GenericONNXEmbedding:
if self.runner is None:
if self.downloader:
self.downloader.wait_for_download()
if self.model_type == "text":
if self.model_type == ModelTypeEnum.text:
self.tokenizer = self._load_tokenizer()
else:
self.feature_extractor = self._load_feature_extractor()
@@ -143,11 +153,35 @@ class GenericONNXEmbedding:
f"{MODEL_CACHE_DIR}/{self.model_name}",
)
def _preprocess_inputs(self, raw_inputs: any) -> any:
if self.model_type == ModelTypeEnum.text:
max_length = max(len(self.tokenizer.encode(text)) for text in raw_inputs)
return [
self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="np",
)
for text in raw_inputs
]
elif self.model_type == ModelTypeEnum.vision:
processed_images = [self._process_image(img) for img in raw_inputs]
return [
self.feature_extractor(images=image, return_tensors="np")
for image in processed_images
]
else:
raise ValueError(f"Unable to preprocess inputs for {self.model_type}")
def _process_image(self, image):
if isinstance(image, str):
if image.startswith("http"):
response = requests.get(image)
image = Image.open(BytesIO(response.content)).convert("RGB")
elif isinstance(image, bytes):
image = Image.open(BytesIO(image)).convert("RGB")
return image
@@ -163,25 +197,7 @@ class GenericONNXEmbedding:
)
return []
if self.model_type == "text":
max_length = max(len(self.tokenizer.encode(text)) for text in inputs)
processed_inputs = [
self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="np",
)
for text in inputs
]
else:
processed_images = [self._process_image(img) for img in inputs]
processed_inputs = [
self.feature_extractor(images=image, return_tensors="np")
for image in processed_images
]
processed_inputs = self._preprocess_inputs(inputs)
input_names = self.runner.get_input_names()
onnx_inputs = {name: [] for name in input_names}
input: dict[str, any]

View File

@@ -24,6 +24,7 @@ from frigate.const import CLIPS_DIR, UPDATE_EVENT_DESCRIPTION
from frigate.events.types import EventTypeEnum
from frigate.genai import get_genai_client
from frigate.models import Event
from frigate.types import TrackedObjectUpdateTypesEnum
from frigate.util.builtin import serialize
from frigate.util.image import SharedMemoryFrameManager, calculate_region
@@ -62,7 +63,7 @@ class EmbeddingMaintainer(threading.Thread):
self.requestor = InterProcessRequestor()
self.stop_event = stop_event
self.tracked_events = {}
self.genai_client = get_genai_client(config.genai)
self.genai_client = get_genai_client(config)
def run(self) -> None:
"""Maintain a SQLite-vec database for semantic search."""
@@ -86,7 +87,7 @@ class EmbeddingMaintainer(threading.Thread):
try:
if topic == EmbeddingsRequestEnum.embed_description.value:
return serialize(
self.embeddings.upsert_description(
self.embeddings.embed_description(
data["id"], data["description"]
),
pack=False,
@@ -94,7 +95,7 @@ class EmbeddingMaintainer(threading.Thread):
elif topic == EmbeddingsRequestEnum.embed_thumbnail.value:
thumbnail = base64.b64decode(data["thumbnail"])
return serialize(
self.embeddings.upsert_thumbnail(data["id"], thumbnail),
self.embeddings.embed_thumbnail(data["id"], thumbnail),
pack=False,
)
elif topic == EmbeddingsRequestEnum.generate_search.value:
@@ -113,7 +114,7 @@ class EmbeddingMaintainer(threading.Thread):
if update is None:
return
source_type, _, camera, data = update
source_type, _, camera, frame_name, data = update
if not camera or source_type != EventTypeEnum.tracked_object:
return
@@ -133,8 +134,9 @@ class EmbeddingMaintainer(threading.Thread):
# Create our own thumbnail based on the bounding box and the frame time
try:
frame_id = f"{camera}{data['frame_time']}"
yuv_frame = self.frame_manager.get(frame_id, camera_config.frame_shape_yuv)
yuv_frame = self.frame_manager.get(
frame_name, camera_config.frame_shape_yuv
)
if yuv_frame is not None:
data["thumbnail"] = self._create_thumbnail(yuv_frame, data["box"])
@@ -146,7 +148,7 @@ class EmbeddingMaintainer(threading.Thread):
self.tracked_events[data["id"]].append(data)
self.frame_manager.close(frame_id)
self.frame_manager.close(frame_name)
except FileNotFoundError:
pass
@@ -270,7 +272,7 @@ class EmbeddingMaintainer(threading.Thread):
def _embed_thumbnail(self, event_id: str, thumbnail: bytes) -> None:
"""Embed the thumbnail for an event."""
self.embeddings.upsert_thumbnail(event_id, thumbnail)
self.embeddings.embed_thumbnail(event_id, thumbnail)
def _embed_description(self, event: Event, thumbnails: list[bytes]) -> None:
"""Embed the description for an event."""
@@ -287,11 +289,15 @@ class EmbeddingMaintainer(threading.Thread):
# fire and forget description update
self.requestor.send_data(
UPDATE_EVENT_DESCRIPTION,
{"id": event.id, "description": description},
{
"type": TrackedObjectUpdateTypesEnum.description,
"id": event.id,
"description": description,
},
)
# Encode the description
self.embeddings.upsert_description(event.id, description)
# Embed the description
self.embeddings.embed_description(event.id, description)
logger.debug(
"Generated description for %s (%d images): %s",
@@ -319,18 +325,25 @@ class EmbeddingMaintainer(threading.Thread):
)
if event.has_snapshot and source == "snapshot":
with open(
os.path.join(CLIPS_DIR, f"{event.camera}-{event.id}.jpg"),
"rb",
) as image_file:
snapshot_file = os.path.join(CLIPS_DIR, f"{event.camera}-{event.id}.jpg")
if not os.path.isfile(snapshot_file):
logger.error(
f"Cannot regenerate description for {event.id}, snapshot file not found: {snapshot_file}"
)
return
with open(snapshot_file, "rb") as image_file:
snapshot_image = image_file.read()
img = cv2.imdecode(
np.frombuffer(snapshot_image, dtype=np.int8), cv2.IMREAD_COLOR
)
# crop snapshot based on region before sending off to genai
# provide full image if region doesn't exist (manual events)
region = event.data.get("region", [0, 0, 1, 1])
height, width = img.shape[:2]
x1_rel, y1_rel, width_rel, height_rel = event.data["region"]
x1_rel, y1_rel, width_rel, height_rel = region
x1, y1 = int(x1_rel * width), int(y1_rel * height)
cropped_image = img[

View File

@@ -64,6 +64,8 @@ def get_ffmpeg_command(ffmpeg: FfmpegConfig) -> list[str]:
class AudioProcessor(util.Process):
name = "frigate.audio_manager"
def __init__(
self,
cameras: list[CameraConfig],
@@ -214,6 +216,10 @@ class AudioEventMaintainer(threading.Thread):
"label": label,
"last_detection": datetime.datetime.now().timestamp(),
}
else:
self.logger.warning(
f"Failed to create audio event with status code {resp.status_code}"
)
def expire_detections(self) -> None:
now = datetime.datetime.now().timestamp()

View File

@@ -4,7 +4,6 @@ import datetime
import logging
import os
import threading
from enum import Enum
from multiprocessing.synchronize import Event as MpEvent
from pathlib import Path
@@ -16,9 +15,7 @@ from frigate.models import Event, Timeline
logger = logging.getLogger(__name__)
class EventCleanupType(str, Enum):
clips = "clips"
snapshots = "snapshots"
CHUNK_SIZE = 50
class EventCleanup(threading.Thread):
@@ -64,19 +61,11 @@ class EventCleanup(threading.Thread):
return self.camera_labels[camera]["labels"]
def expire(self, media_type: EventCleanupType) -> list[str]:
def expire_snapshots(self) -> list[str]:
## Expire events from unlisted cameras based on the global config
if media_type == EventCleanupType.clips:
expire_days = max(
self.config.record.alerts.retain.days,
self.config.record.detections.retain.days,
)
file_extension = None # mp4 clips are no longer stored in /clips
update_params = {"has_clip": False}
else:
retain_config = self.config.snapshots.retain
file_extension = "jpg"
update_params = {"has_snapshot": False}
retain_config = self.config.snapshots.retain
file_extension = "jpg"
update_params = {"has_snapshot": False}
distinct_labels = self.get_removed_camera_labels()
@@ -84,10 +73,7 @@ class EventCleanup(threading.Thread):
# loop over object types in db
for event in distinct_labels:
# get expiration time for this label
if media_type == EventCleanupType.snapshots:
expire_days = retain_config.objects.get(
event.label, retain_config.default
)
expire_days = retain_config.objects.get(event.label, retain_config.default)
expire_after = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
@@ -107,6 +93,7 @@ class EventCleanup(threading.Thread):
.namedtuples()
.iterator()
)
logger.debug(f"{len(list(expired_events))} events can be expired")
# delete the media from disk
for expired in expired_events:
media_name = f"{expired.camera}-{expired.id}"
@@ -125,25 +112,40 @@ class EventCleanup(threading.Thread):
logger.warning(f"Unable to delete event images: {e}")
# update the clips attribute for the db entry
update_query = Event.update(update_params).where(
query = Event.select(Event.id).where(
Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == event.label,
Event.retain_indefinitely == False,
)
update_query.execute()
events_to_update = []
for batch in query.iterator():
events_to_update.extend([event.id for event in batch])
if len(events_to_update) >= CHUNK_SIZE:
logger.debug(
f"Updating {update_params} for {len(events_to_update)} events"
)
Event.update(update_params).where(
Event.id << events_to_update
).execute()
events_to_update = []
# Update any remaining events
if events_to_update:
logger.debug(
f"Updating clips/snapshots attribute for {len(events_to_update)} events"
)
Event.update(update_params).where(
Event.id << events_to_update
).execute()
events_to_update = []
## Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
if media_type == EventCleanupType.clips:
expire_days = max(
camera.record.alerts.retain.days,
camera.record.detections.retain.days,
)
else:
retain_config = camera.snapshots.retain
retain_config = camera.snapshots.retain
# get distinct objects in database for this camera
distinct_labels = self.get_camera_labels(name)
@@ -151,10 +153,9 @@ class EventCleanup(threading.Thread):
# loop over object types in db
for event in distinct_labels:
# get expiration time for this label
if media_type == EventCleanupType.snapshots:
expire_days = retain_config.objects.get(
event.label, retain_config.default
)
expire_days = retain_config.objects.get(
event.label, retain_config.default
)
expire_after = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
@@ -181,28 +182,157 @@ class EventCleanup(threading.Thread):
for event in expired_events:
events_to_update.append(event.id)
if media_type == EventCleanupType.snapshots:
try:
media_name = f"{event.camera}-{event.id}"
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}"
)
media_path.unlink(missing_ok=True)
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"
)
media_path.unlink(missing_ok=True)
except OSError as e:
logger.warning(f"Unable to delete event images: {e}")
try:
media_name = f"{event.camera}-{event.id}"
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}"
)
media_path.unlink(missing_ok=True)
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"
)
media_path.unlink(missing_ok=True)
except OSError as e:
logger.warning(f"Unable to delete event images: {e}")
# update the clips attribute for the db entry
Event.update(update_params).where(Event.id << events_to_update).execute()
for i in range(0, len(events_to_update), CHUNK_SIZE):
batch = events_to_update[i : i + CHUNK_SIZE]
logger.debug(f"Updating {update_params} for {len(batch)} events")
Event.update(update_params).where(Event.id << batch).execute()
return events_to_update
def expire_clips(self) -> list[str]:
## Expire events from unlisted cameras based on the global config
expire_days = max(
self.config.record.alerts.retain.days,
self.config.record.detections.retain.days,
)
file_extension = None # mp4 clips are no longer stored in /clips
update_params = {"has_clip": False}
# get expiration time for this label
expire_after = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
# grab all events after specific time
expired_events: list[Event] = (
Event.select(
Event.id,
Event.camera,
)
.where(
Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.retain_indefinitely == False,
)
.namedtuples()
.iterator()
)
logger.debug(f"{len(list(expired_events))} events can be expired")
# delete the media from disk
for expired in expired_events:
media_name = f"{expired.camera}-{expired.id}"
media_path = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
try:
media_path.unlink(missing_ok=True)
if file_extension == "jpg":
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"
)
media_path.unlink(missing_ok=True)
except OSError as e:
logger.warning(f"Unable to delete event images: {e}")
# update the clips attribute for the db entry
query = Event.select(Event.id).where(
Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.retain_indefinitely == False,
)
events_to_update = []
for event in query.iterator():
events_to_update.append(event)
if len(events_to_update) >= CHUNK_SIZE:
logger.debug(
f"Updating {update_params} for {len(events_to_update)} events"
)
Event.update(update_params).where(
Event.id << events_to_update
).execute()
events_to_update = []
# Update any remaining events
if events_to_update:
logger.debug(
f"Updating clips/snapshots attribute for {len(events_to_update)} events"
)
Event.update(update_params).where(Event.id << events_to_update).execute()
events_to_update = []
now = datetime.datetime.now()
## Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
expire_days = max(
camera.record.alerts.retain.days,
camera.record.detections.retain.days,
)
alert_expire_date = (
now - datetime.timedelta(days=camera.record.alerts.retain.days)
).timestamp()
detection_expire_date = (
now - datetime.timedelta(days=camera.record.detections.retain.days)
).timestamp()
# grab all events after specific time
expired_events = (
Event.select(
Event.id,
Event.camera,
)
.where(
Event.camera == name,
Event.retain_indefinitely == False,
(
(
(Event.data["max_severity"] != "detection")
| (Event.data["max_severity"].is_null())
)
& (Event.end_time < alert_expire_date)
)
| (
(Event.data["max_severity"] == "detection")
& (Event.end_time < detection_expire_date)
),
)
.namedtuples()
.iterator()
)
# delete the grabbed clips from disk
# only snapshots are stored in /clips
# so no need to delete mp4 files
for event in expired_events:
events_to_update.append(event.id)
# update the clips attribute for the db entry
for i in range(0, len(events_to_update), CHUNK_SIZE):
batch = events_to_update[i : i + CHUNK_SIZE]
logger.debug(f"Updating {update_params} for {len(batch)} events")
Event.update(update_params).where(Event.id << batch).execute()
return events_to_update
def run(self) -> None:
# only expire events every 5 minutes
while not self.stop_event.wait(300):
events_with_expired_clips = self.expire(EventCleanupType.clips)
events_with_expired_clips = self.expire_clips()
# delete timeline entries for events that have expired recordings
# delete up to 100,000 at a time
@@ -213,7 +343,7 @@ class EventCleanup(threading.Thread):
Timeline.source_id << deleted_events_list[i : i + max_deletes]
).execute()
self.expire(EventCleanupType.snapshots)
self.expire_snapshots()
# drop events from db where has_clip and has_snapshot are false
events = (
@@ -222,10 +352,11 @@ class EventCleanup(threading.Thread):
.iterator()
)
events_to_delete = [e.id for e in events]
logger.debug(f"Found {len(events_to_delete)} events that can be expired")
if len(events_to_delete) > 0:
chunk_size = 50
for i in range(0, len(events_to_delete), chunk_size):
chunk = events_to_delete[i : i + chunk_size]
for i in range(0, len(events_to_delete), CHUNK_SIZE):
chunk = events_to_delete[i : i + CHUNK_SIZE]
logger.debug(f"Deleting {len(chunk)} events from the database")
Event.delete().where(Event.id << chunk).execute()
if self.config.semantic_search.enabled:

View File

@@ -10,6 +10,7 @@ from enum import Enum
from typing import Optional
import cv2
from numpy import ndarray
from frigate.comms.detections_updater import DetectionPublisher, DetectionTypeEnum
from frigate.comms.events_updater import EventUpdatePublisher
@@ -45,7 +46,7 @@ class ExternalEventProcessor:
duration: Optional[int],
include_recording: bool,
draw: dict[str, any],
snapshot_frame: any,
snapshot_frame: Optional[ndarray],
) -> str:
now = datetime.datetime.now().timestamp()
camera_config = self.config.cameras.get(camera)
@@ -64,13 +65,14 @@ class ExternalEventProcessor:
EventTypeEnum.api,
EventStateEnum.start,
camera,
"",
{
"id": event_id,
"label": label,
"sub_label": sub_label,
"score": score,
"camera": camera,
"start_time": now,
"start_time": now - camera_config.record.event_pre_capture,
"end_time": end,
"thumbnail": thumbnail,
"has_clip": camera_config.record.enabled and include_recording,
@@ -106,6 +108,7 @@ class ExternalEventProcessor:
EventTypeEnum.api,
EventStateEnum.end,
None,
"",
{"id": event_id, "end_time": end_time},
)
)
@@ -130,8 +133,11 @@ class ExternalEventProcessor:
label: str,
event_id: str,
draw: dict[str, any],
img_frame: any,
) -> str:
img_frame: Optional[ndarray],
) -> Optional[str]:
if img_frame is None:
return None
# write clean snapshot if enabled
if camera_config.snapshots.clean_copy:
ret, png = cv2.imencode(".png", img_frame)

View File

@@ -75,25 +75,30 @@ class EventProcessor(threading.Thread):
if update == None:
continue
source_type, event_type, camera, event_data = update
source_type, event_type, camera, _, event_data = update
logger.debug(
f"Event received: {source_type} {event_type} {camera} {event_data['id']}"
)
if source_type == EventTypeEnum.tracked_object:
id = event_data["id"]
self.timeline_queue.put(
(
camera,
source_type,
event_type,
self.events_in_process.get(event_data["id"]),
self.events_in_process.get(id),
event_data,
)
)
if event_type == EventStateEnum.start:
self.events_in_process[event_data["id"]] = event_data
# if this is the first message, just store it and continue, its not time to insert it in the db
if (
event_type == EventStateEnum.start
or id not in self.events_in_process
):
self.events_in_process[id] = event_data
continue
self.handle_object_detection(event_type, camera, event_data)
@@ -123,10 +128,6 @@ class EventProcessor(threading.Thread):
"""handle tracked object event updates."""
updated_db = False
# if this is the first message, just store it and continue, its not time to insert it in the db
if event_type == EventStateEnum.start:
self.events_in_process[event_data["id"]] = event_data
if should_update_db(self.events_in_process[event_data["id"]], event_data):
updated_db = True
camera_config = self.config.cameras[camera]
@@ -210,6 +211,7 @@ class EventProcessor(threading.Thread):
"top_score": event_data["top_score"],
"attributes": attributes,
"type": "object",
"max_severity": event_data.get("max_severity"),
},
}

View File

@@ -1,14 +1,17 @@
"""Generative AI module for Frigate."""
import importlib
import logging
import os
from typing import Optional
from playhouse.shortcuts import model_to_dict
from frigate.config import CameraConfig, GenAIConfig, GenAIProviderEnum
from frigate.config import CameraConfig, FrigateConfig, GenAIConfig, GenAIProviderEnum
from frigate.models import Event
logger = logging.getLogger(__name__)
PROVIDERS = {}
@@ -41,6 +44,7 @@ class GenAIClient:
event.label,
camera_config.genai.prompt,
).format(**model_to_dict(event))
logger.debug(f"Sending images to genai provider with prompt: {prompt}")
return self._send(prompt, thumbnails)
def _init_provider(self):
@@ -52,13 +56,19 @@ class GenAIClient:
return None
def get_genai_client(genai_config: GenAIConfig) -> Optional[GenAIClient]:
def get_genai_client(config: FrigateConfig) -> Optional[GenAIClient]:
"""Get the GenAI client."""
if genai_config.enabled:
genai_config = config.genai
genai_cameras = [
c for c in config.cameras.values() if c.enabled and c.genai.enabled
]
if genai_cameras:
load_providers()
provider = PROVIDERS.get(genai_config.provider)
if provider:
return provider(genai_config)
return None

View File

@@ -21,15 +21,28 @@ class OllamaClient(GenAIClient):
def _init_provider(self):
"""Initialize the client."""
client = ApiClient(host=self.genai_config.base_url, timeout=self.timeout)
response = client.pull(self.genai_config.model)
if response["status"] != "success":
logger.error("Failed to pull %s model from Ollama", self.genai_config.model)
try:
client = ApiClient(host=self.genai_config.base_url, timeout=self.timeout)
# ensure the model is available locally
response = client.show(self.genai_config.model)
if response.get("error"):
logger.error(
"Ollama error: %s",
response["error"],
)
return None
return client
except Exception as e:
logger.warning("Error initializing Ollama: %s", str(e))
return None
return client
def _send(self, prompt: str, images: list[bytes]) -> Optional[str]:
"""Submit a request to Ollama"""
if self.provider is None:
logger.warning(
"Ollama provider has not been initialized, a description will not be generated. Check your Ollama configuration."
)
return None
try:
result = self.provider.generate(
self.genai_config.model,

View File

@@ -93,7 +93,7 @@ class ReviewSegment(Model): # type: ignore[misc]
start_time = DateTimeField()
end_time = DateTimeField()
has_been_reviewed = BooleanField(default=False)
severity = CharField(max_length=30) # alert, detection, significant_motion
severity = CharField(max_length=30) # alert, detection
thumb_path = CharField(unique=True)
data = JSONField() # additional data about detection like list of labels, zone, areas of significant motion

View File

@@ -59,3 +59,7 @@ ignore_errors = false
[mypy-frigate.watchdog]
ignore_errors = false
disallow_untyped_calls = false
[mypy-frigate.service_manager.*]
ignore_errors = false

View File

@@ -12,10 +12,14 @@ from setproctitle import setproctitle
import frigate.util as util
from frigate.detectors import create_detector
from frigate.detectors.detector_config import BaseDetectorConfig, InputTensorEnum
from frigate.detectors.detector_config import (
BaseDetectorConfig,
InputDTypeEnum,
InputTensorEnum,
)
from frigate.detectors.plugins.rocm import DETECTOR_KEY as ROCM_DETECTOR_KEY
from frigate.util.builtin import EventsPerSecond, load_labels
from frigate.util.image import SharedMemoryFrameManager
from frigate.util.image import SharedMemoryFrameManager, UntrackedSharedMemory
from frigate.util.services import listen
logger = logging.getLogger(__name__)
@@ -55,12 +59,15 @@ class LocalObjectDetector(ObjectDetector):
self.input_transform = tensor_transform(
detector_config.model.input_tensor
)
self.dtype = detector_config.model.input_dtype
else:
self.input_transform = None
self.dtype = InputDTypeEnum.int
self.detect_api = create_detector(detector_config)
def detect(self, tensor_input, threshold=0.4):
def detect(self, tensor_input: np.ndarray, threshold=0.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
@@ -77,9 +84,14 @@ class LocalObjectDetector(ObjectDetector):
self.fps.update()
return detections
def detect_raw(self, tensor_input):
def detect_raw(self, tensor_input: np.ndarray):
if self.input_transform:
tensor_input = np.transpose(tensor_input, self.input_transform)
if self.dtype == InputDTypeEnum.float:
tensor_input = tensor_input.astype(np.float32)
tensor_input /= 255
return self.detect_api.detect_raw(tensor_input=tensor_input)
@@ -110,7 +122,7 @@ def run_detector(
outputs = {}
for name in out_events.keys():
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
out_shm = UntrackedSharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {"shm": out_shm, "np": out_np}
@@ -200,15 +212,13 @@ class RemoteObjectDetector:
self.detection_queue = detection_queue
self.event = event
self.stop_event = stop_event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.shm = UntrackedSharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray(
(1, model_config.height, model_config.width, 3),
dtype=np.uint8,
buffer=self.shm.buf,
)
self.out_shm = mp.shared_memory.SharedMemory(
name=f"out-{self.name}", create=False
)
self.out_shm = UntrackedSharedMemory(name=f"out-{self.name}", create=False)
self.out_np_shm = np.ndarray((20, 6), dtype=np.float32, buffer=self.out_shm.buf)
def detect(self, tensor_input, threshold=0.4):

View File

@@ -6,7 +6,7 @@ import queue
import threading
from collections import Counter, defaultdict
from multiprocessing.synchronize import Event as MpEvent
from typing import Callable
from typing import Callable, Optional
import cv2
import numpy as np
@@ -233,17 +233,18 @@ class CameraState:
def on(self, event_type: str, callback: Callable[[dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, current_detections, motion_boxes, regions):
# get the new frame
frame_id = f"{self.name}{frame_time}"
def update(
self,
frame_name: str,
frame_time: float,
current_detections: dict[str, dict[str, any]],
motion_boxes: list[tuple[int, int, int, int]],
regions: list[tuple[int, int, int, int]],
):
current_frame = self.frame_manager.get(
frame_id, self.camera_config.frame_shape_yuv
frame_name, self.camera_config.frame_shape_yuv
)
if current_frame is None:
logger.debug(f"Failed to get frame {frame_id} from SHM")
tracked_objects = self.tracked_objects.copy()
current_ids = set(current_detections.keys())
previous_ids = set(tracked_objects.keys())
@@ -261,7 +262,7 @@ class CameraState:
# call event handlers
for c in self.callbacks["start"]:
c(self.name, new_obj, frame_time)
c(self.name, new_obj, frame_name)
for id in updated_ids:
updated_obj = tracked_objects[id]
@@ -271,7 +272,7 @@ class CameraState:
if autotracker_update or significant_update:
for c in self.callbacks["autotrack"]:
c(self.name, updated_obj, frame_time)
c(self.name, updated_obj, frame_name)
if thumb_update and current_frame is not None:
# ensure this frame is stored in the cache
@@ -292,7 +293,7 @@ class CameraState:
) or significant_update:
# call event handlers
for c in self.callbacks["update"]:
c(self.name, updated_obj, frame_time)
c(self.name, updated_obj, frame_name)
updated_obj.last_published = frame_time
for id in removed_ids:
@@ -301,7 +302,7 @@ class CameraState:
if "end_time" not in removed_obj.obj_data:
removed_obj.obj_data["end_time"] = frame_time
for c in self.callbacks["end"]:
c(self.name, removed_obj, frame_time)
c(self.name, removed_obj, frame_name)
# TODO: can i switch to looking this up and only changing when an event ends?
# maintain best objects
@@ -344,6 +345,7 @@ class CameraState:
# if the object's thumbnail is not from the current frame, skip
if (
current_frame is None
or obj.thumbnail_data is None
or obj.false_positive
or obj.thumbnail_data["frame_time"] != frame_time
):
@@ -366,11 +368,11 @@ class CameraState:
):
self.best_objects[object_type] = obj
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[object_type], frame_time)
c(self.name, self.best_objects[object_type], frame_name)
else:
self.best_objects[object_type] = obj
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[object_type], frame_time)
c(self.name, self.best_objects[object_type], frame_name)
for c in self.callbacks["camera_activity"]:
c(self.name, camera_activity)
@@ -445,7 +447,7 @@ class CameraState:
c(self.name, obj_name, 0)
self.active_object_counts[obj_name] = 0
for c in self.callbacks["snapshot"]:
c(self.name, self.best_objects[obj_name], frame_time)
c(self.name, self.best_objects[obj_name], frame_name)
# cleanup thumbnail frame cache
current_thumb_frames = {
@@ -476,7 +478,7 @@ class CameraState:
if self.previous_frame_id is not None:
self.frame_manager.close(self.previous_frame_id)
self.previous_frame_id = frame_id
self.previous_frame_id = frame_name
class TrackedObjectProcessor(threading.Thread):
@@ -516,17 +518,18 @@ class TrackedObjectProcessor(threading.Thread):
self.zone_data = defaultdict(lambda: defaultdict(dict))
self.active_zone_data = defaultdict(lambda: defaultdict(dict))
def start(camera, obj: TrackedObject, current_frame_time):
def start(camera: str, obj: TrackedObject, frame_name: str):
self.event_sender.publish(
(
EventTypeEnum.tracked_object,
EventStateEnum.start,
camera,
frame_name,
obj.to_dict(),
)
)
def update(camera, obj: TrackedObject, current_frame_time):
def update(camera: str, obj: TrackedObject, frame_name: str):
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
after = obj.to_dict()
@@ -542,14 +545,15 @@ class TrackedObjectProcessor(threading.Thread):
EventTypeEnum.tracked_object,
EventStateEnum.update,
camera,
frame_name,
obj.to_dict(include_thumbnail=True),
)
)
def autotrack(camera, obj: TrackedObject, current_frame_time):
def autotrack(camera: str, obj: TrackedObject, frame_name: str):
self.ptz_autotracker_thread.ptz_autotracker.autotrack_object(camera, obj)
def end(camera, obj: TrackedObject, current_frame_time):
def end(camera: str, obj: TrackedObject, frame_name: str):
# populate has_snapshot
obj.has_snapshot = self.should_save_snapshot(camera, obj)
obj.has_clip = self.should_retain_recording(camera, obj)
@@ -604,11 +608,12 @@ class TrackedObjectProcessor(threading.Thread):
EventTypeEnum.tracked_object,
EventStateEnum.end,
camera,
frame_name,
obj.to_dict(include_thumbnail=True),
)
)
def snapshot(camera, obj: TrackedObject, current_frame_time):
def snapshot(camera, obj: TrackedObject, frame_name: str):
mqtt_config: MqttConfig = self.config.cameras[camera].mqtt
if mqtt_config.enabled and self.should_mqtt_snapshot(camera, obj):
jpg_bytes = obj.get_jpg_bytes(
@@ -697,29 +702,7 @@ class TrackedObjectProcessor(threading.Thread):
return False
# If the object is not considered an alert or detection
review_config = self.config.cameras[camera].review
if not (
(
obj.obj_data["label"] in review_config.alerts.labels
and (
not review_config.alerts.required_zones
or set(obj.entered_zones) & set(review_config.alerts.required_zones)
)
)
or (
(
not review_config.detections.labels
or obj.obj_data["label"] in review_config.detections.labels
)
and (
not review_config.detections.required_zones
or set(obj.entered_zones) & set(review_config.alerts.required_zones)
)
)
):
logger.debug(
f"Not creating clip for {obj.obj_data['id']} because it did not qualify as an alert or detection"
)
if obj.max_severity is None:
return False
return True
@@ -778,13 +761,18 @@ class TrackedObjectProcessor(threading.Thread):
else:
return {}
def get_current_frame(self, camera, draw_options={}):
def get_current_frame(
self, camera: str, draw_options: dict[str, any] = {}
) -> Optional[np.ndarray]:
if camera == "birdseye":
return self.frame_manager.get(
"birdseye",
(self.config.birdseye.height * 3 // 2, self.config.birdseye.width),
)
if camera not in self.camera_states:
return None
return self.camera_states[camera].get_current_frame(draw_options)
def get_current_frame_time(self, camera) -> int:
@@ -796,6 +784,7 @@ class TrackedObjectProcessor(threading.Thread):
try:
(
camera,
frame_name,
frame_time,
current_tracked_objects,
motion_boxes,
@@ -807,7 +796,7 @@ class TrackedObjectProcessor(threading.Thread):
camera_state = self.camera_states[camera]
camera_state.update(
frame_time, current_tracked_objects, motion_boxes, regions
frame_name, frame_time, current_tracked_objects, motion_boxes, regions
)
self.update_mqtt_motion(camera, frame_time, motion_boxes)
@@ -820,6 +809,7 @@ class TrackedObjectProcessor(threading.Thread):
self.detection_publisher.publish(
(
camera,
frame_name,
frame_time,
tracked_objects,
motion_boxes,

View File

@@ -268,12 +268,10 @@ class BirdsEyeFrameManager:
def __init__(
self,
config: FrigateConfig,
frame_manager: SharedMemoryFrameManager,
stop_event: mp.Event,
):
self.config = config
self.mode = config.birdseye.mode
self.frame_manager = frame_manager
width, height = get_canvas_shape(config.birdseye.width, config.birdseye.height)
self.frame_shape = (height, width)
self.yuv_shape = (height * 3 // 2, width)
@@ -351,18 +349,13 @@ class BirdsEyeFrameManager:
logger.debug("Clearing the birdseye frame")
self.frame[:] = self.blank_frame
def copy_to_position(self, position, camera=None, frame_time=None):
def copy_to_position(self, position, camera=None, frame: np.ndarray = None):
if camera is None:
frame = None
channel_dims = None
else:
frame_id = f"{camera}{frame_time}"
frame = self.frame_manager.get(
frame_id, self.config.cameras[camera].frame_shape_yuv
)
if frame is None:
logger.debug(f"Unable to copy frame {camera}{frame_time} to birdseye.")
logger.debug(f"Unable to copy frame {camera} to birdseye.")
return
channel_dims = self.cameras[camera]["channel_dims"]
@@ -375,8 +368,6 @@ class BirdsEyeFrameManager:
channel_dims,
)
self.frame_manager.close(frame_id)
def camera_active(self, mode, object_box_count, motion_box_count):
if mode == BirdseyeModeEnum.continuous:
return True
@@ -387,7 +378,7 @@ class BirdsEyeFrameManager:
if mode == BirdseyeModeEnum.objects and object_box_count > 0:
return True
def update_frame(self):
def update_frame(self, frame: np.ndarray):
"""Update to a new frame for birdseye."""
# determine how many cameras are tracking objects within the last inactivity_threshold seconds
@@ -397,7 +388,7 @@ class BirdsEyeFrameManager:
for cam, cam_data in self.cameras.items()
if self.config.cameras[cam].birdseye.enabled
and cam_data["last_active_frame"] > 0
and cam_data["current_frame"] - cam_data["last_active_frame"]
and cam_data["current_frame_time"] - cam_data["last_active_frame"]
< self.inactivity_threshold
]
)
@@ -414,7 +405,7 @@ class BirdsEyeFrameManager:
limited_active_cameras = sorted(
active_cameras,
key=lambda active_camera: (
self.cameras[active_camera]["current_frame"]
self.cameras[active_camera]["current_frame_time"]
- self.cameras[active_camera]["last_active_frame"]
),
)
@@ -524,7 +515,9 @@ class BirdsEyeFrameManager:
for row in self.camera_layout:
for position in row:
self.copy_to_position(
position[1], position[0], self.cameras[position[0]]["current_frame"]
position[1],
position[0],
self.cameras[position[0]]["current_frame"],
)
return True
@@ -672,7 +665,14 @@ class BirdsEyeFrameManager:
else:
return standard_candidate_layout
def update(self, camera, object_count, motion_count, frame_time, frame) -> bool:
def update(
self,
camera: str,
object_count: int,
motion_count: int,
frame_time: float,
frame: np.ndarray,
) -> bool:
# don't process if birdseye is disabled for this camera
camera_config = self.config.cameras[camera].birdseye
@@ -689,7 +689,8 @@ class BirdsEyeFrameManager:
return False
# update the last active frame for the camera
self.cameras[camera]["current_frame"] = frame_time
self.cameras[camera]["current_frame"] = frame.copy()
self.cameras[camera]["current_frame_time"] = frame_time
if self.camera_active(camera_config.mode, object_count, motion_count):
self.cameras[camera]["last_active_frame"] = frame_time
@@ -700,7 +701,7 @@ class BirdsEyeFrameManager:
return False
try:
updated_frame = self.update_frame()
updated_frame = self.update_frame(frame)
except Exception:
updated_frame = False
self.active_cameras = []
@@ -737,12 +738,12 @@ class Birdseye:
self.broadcaster = BroadcastThread(
"birdseye", self.converter, websocket_server, stop_event
)
frame_manager = SharedMemoryFrameManager()
self.birdseye_manager = BirdsEyeFrameManager(config, frame_manager, stop_event)
self.birdseye_manager = BirdsEyeFrameManager(config, stop_event)
self.config_subscriber = ConfigSubscriber("config/birdseye/")
self.frame_manager = SharedMemoryFrameManager()
if config.birdseye.restream:
self.birdseye_buffer = frame_manager.create(
self.birdseye_buffer = self.frame_manager.create(
"birdseye",
self.birdseye_manager.yuv_shape[0] * self.birdseye_manager.yuv_shape[1],
)
@@ -756,7 +757,7 @@ class Birdseye:
current_tracked_objects: list[dict[str, any]],
motion_boxes: list[list[int]],
frame_time: float,
frame,
frame: np.ndarray,
) -> None:
# check if there is an updated config
while True:

View File

@@ -63,6 +63,7 @@ def output_frames(
birdseye: Optional[Birdseye] = None
preview_recorders: dict[str, PreviewRecorder] = {}
preview_write_times: dict[str, float] = {}
failed_frame_requests: dict[str, int] = {}
move_preview_frames("cache")
@@ -87,19 +88,27 @@ def output_frames(
(
camera,
frame_name,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
_,
) = data
frame_id = f"{camera}{frame_time}"
frame = frame_manager.get(frame_id, config.cameras[camera].frame_shape_yuv)
frame = frame_manager.get(frame_name, config.cameras[camera].frame_shape_yuv)
if frame is None:
logger.debug(f"Failed to get frame {frame_id} from SHM")
logger.debug(f"Failed to get frame {frame_name} from SHM")
failed_frame_requests[camera] = failed_frame_requests.get(camera, 0) + 1
if failed_frame_requests[camera] > config.cameras[camera].detect.fps:
logger.warning(
f"Failed to retrieve many frames for {camera} from SHM, consider increasing SHM size if this continues."
)
continue
else:
failed_frame_requests[camera] = 0
# send camera frame to ffmpeg process if websockets are connected
if any(
@@ -134,12 +143,15 @@ def output_frames(
# check for any cameras that are currently offline
# and need to generate a preview
if generated_preview:
logger.debug(
"Checking for offline cameras because another camera generated a preview."
)
for camera, time in preview_write_times.copy().items():
if time != 0 and frame_time - time > 10:
preview_recorders[camera].flag_offline(frame_time)
preview_write_times[camera] = frame_time
frame_manager.close(frame_id)
frame_manager.close(frame_name)
move_preview_frames("clips")
@@ -151,15 +163,15 @@ def output_frames(
(
camera,
frame_name,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = data
frame_id = f"{camera}{frame_time}"
frame = frame_manager.get(frame_id, config.cameras[camera].frame_shape_yuv)
frame_manager.close(frame_id)
frame = frame_manager.get(frame_name, config.cameras[camera].frame_shape_yuv)
frame_manager.close(frame_name)
detection_subscriber.stop()

View File

@@ -78,7 +78,7 @@ class FFMpegConverter(threading.Thread):
# write a PREVIEW at fps and 1 key frame per clip
self.ffmpeg_cmd = parse_preset_hardware_acceleration_encode(
config.ffmpeg.ffmpeg_path,
config.ffmpeg.hwaccel_args,
"default",
input="-f concat -y -protocol_whitelist pipe,file -safe 0 -threads 1 -i /dev/stdin",
output=f"-threads 1 -g {PREVIEW_KEYFRAME_INTERVAL} -bf 0 -b:v {PREVIEW_QUALITY_BIT_RATES[self.config.record.preview.quality]} {FPS_VFR_PARAM} -movflags +faststart -pix_fmt yuv420p {self.path}",
type=EncodeTypeEnum.preview,
@@ -154,6 +154,7 @@ class PreviewRecorder:
self.start_time = 0
self.last_output_time = 0
self.output_frames = []
if config.detect.width > config.detect.height:
self.out_height = PREVIEW_HEIGHT
self.out_width = (
@@ -274,7 +275,7 @@ class PreviewRecorder:
return False
def write_frame_to_cache(self, frame_time: float, frame) -> None:
def write_frame_to_cache(self, frame_time: float, frame: np.ndarray) -> None:
# resize yuv frame
small_frame = np.zeros((self.out_height * 3 // 2, self.out_width), np.uint8)
copy_yuv_to_position(
@@ -303,7 +304,7 @@ class PreviewRecorder:
current_tracked_objects: list[dict[str, any]],
motion_boxes: list[list[int]],
frame_time: float,
frame,
frame: np.ndarray,
) -> bool:
# check for updated record config
_, updated_record_config = self.config_subscriber.check_for_update()
@@ -332,6 +333,10 @@ class PreviewRecorder:
self.output_frames,
self.requestor,
).start()
else:
logger.debug(
f"Not saving preview for {self.config.name} because there are no saved frames."
)
# reset frame cache
self.segment_end = (

Some files were not shown because too many files have changed in this diff Show More