Compare commits
460 Commits
dependabot
...
0.16
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3d1ebdcbd5 | ||
|
|
91c6618cab | ||
|
|
65d1bb6449 | ||
|
|
1ffd0d3897 | ||
|
|
2139d621b5 | ||
|
|
d326846790 | ||
|
|
1a2ef37d95 | ||
|
|
384487af41 | ||
|
|
7bc0acc2f7 | ||
|
|
fcb4a094e5 | ||
|
|
957613b2af | ||
|
|
5fa0bfe6d3 | ||
|
|
e8d27d1f91 | ||
|
|
39ecffbf92 | ||
|
|
d5fb957503 | ||
|
|
ee81b5623e | ||
|
|
e010206efe | ||
|
|
052634d020 | ||
|
|
44d9c3a654 | ||
|
|
59088fd10f | ||
|
|
c6ef5160c1 | ||
|
|
11d8b304a3 | ||
|
|
52c1c9c327 | ||
|
|
d91602acee | ||
|
|
2b12117df5 | ||
|
|
4fb2f89ac8 | ||
|
|
c97457d22a | ||
|
|
6742363017 | ||
|
|
7c4f36716e | ||
|
|
304fc4d44b | ||
|
|
310af75c86 | ||
|
|
bd6b2868d0 | ||
|
|
d8cae0f597 | ||
|
|
27a743ca96 | ||
|
|
c269b4c320 | ||
|
|
d56b5dac28 | ||
|
|
15e01b67c9 | ||
|
|
65a178e8d3 | ||
|
|
81123f7aec | ||
|
|
4e2b52db56 | ||
|
|
bb36b9ced6 | ||
|
|
a90619bff7 | ||
|
|
1ac7b30fb7 | ||
|
|
ac5bd15fc1 | ||
|
|
b380f94297 | ||
|
|
173b7aa308 | ||
|
|
c4727f19e1 | ||
|
|
b8a74793ca | ||
|
|
c1dede9369 | ||
|
|
0c4ea504d8 | ||
|
|
b265b6b190 | ||
|
|
d57a61b50f | ||
|
|
4fc9106c17 | ||
|
|
38e098ca31 | ||
|
|
e7ad38d827 | ||
|
|
a1ce9aacf2 | ||
|
|
322b847356 | ||
|
|
98338e4c7f | ||
|
|
171a89f37b | ||
|
|
8114b541a8 | ||
|
|
c48396c5c6 | ||
|
|
00371546a3 | ||
|
|
87e7b62c85 | ||
|
|
15ffe5c254 | ||
|
|
a767dad3a1 | ||
|
|
9387246f83 | ||
|
|
bed20de302 | ||
|
|
70fc5393b1 | ||
|
|
9b80dbe014 | ||
|
|
78a013d63a | ||
|
|
ddfe8f3921 | ||
|
|
4af752028f | ||
|
|
b149828c9f | ||
|
|
3dc26e78ef | ||
|
|
d9ef8fa206 | ||
|
|
292499aebc | ||
|
|
717493e668 | ||
|
|
d49f958d4d | ||
|
|
33ee32865f | ||
|
|
17f8939f97 | ||
|
|
1b7fe9523d | ||
|
|
0763f56047 | ||
|
|
1ea282fba8 | ||
|
|
869fa2631e | ||
|
|
f336a91fee | ||
|
|
d302b6e198 | ||
|
|
ed2e1f3f72 | ||
|
|
b4d82084a9 | ||
|
|
53b96dfb89 | ||
|
|
0e3fb6cbdd | ||
|
|
6b12a45a95 | ||
|
|
0b9c4c18dd | ||
|
|
d0cc8cb64b | ||
|
|
bb86e71e65 | ||
|
|
8aa6297308 | ||
|
|
d3b631a952 | ||
|
|
47d495fc01 | ||
|
|
32322b23b2 | ||
|
|
c0ba98e26f | ||
|
|
a5a7cd3107 | ||
|
|
a729408599 | ||
|
|
4dddc53735 | ||
|
|
5f42caad03 | ||
|
|
5475672a9d | ||
|
|
833cdcb6d2 | ||
|
|
c95bc9fe44 | ||
|
|
a1fa9decad | ||
|
|
4a5fe4138e | ||
|
|
002fdeae67 | ||
|
|
5802a66469 | ||
|
|
71e8f75a01 | ||
|
|
ee816b2251 | ||
|
|
f094c59cd0 | ||
|
|
d25ffdb292 | ||
|
|
2207a91f7b | ||
|
|
33957e5360 | ||
|
|
ff92b13f35 | ||
|
|
e76f4e9bd9 | ||
|
|
0df091f387 | ||
|
|
66277fbb6c | ||
|
|
a67ff3843a | ||
|
|
9ae839ad72 | ||
|
|
66f71aecf7 | ||
|
|
0b203a3673 | ||
|
|
26c3f9f914 | ||
|
|
474c248c9d | ||
|
|
5b1b6b5be0 | ||
|
|
45e9030358 | ||
|
|
f9c1600f0d | ||
|
|
ad85f8882b | ||
|
|
206ed06905 | ||
|
|
e407ba47c2 | ||
|
|
7fdf42a56f | ||
|
|
4eea541352 | ||
|
|
ed9c67804a | ||
|
|
9c20cd5f7b | ||
|
|
6c86827d3a | ||
|
|
d2b2f3d54d | ||
|
|
64b3397f8e | ||
|
|
0829517b72 | ||
|
|
c1bfc1df67 | ||
|
|
96c0c43dc8 | ||
|
|
a68c7f4ef8 | ||
|
|
7c474e6827 | ||
|
|
143bab87f1 | ||
|
|
580f35112e | ||
|
|
3249ffb273 | ||
|
|
7bae9463b2 | ||
|
|
ae30ac6e3c | ||
|
|
46ed520886 | ||
|
|
ace02a6dfa | ||
|
|
0d59754be2 | ||
|
|
15bd26c9b1 | ||
|
|
bc371acb3e | ||
|
|
2eb5fbf112 | ||
|
|
fc0fb158d5 | ||
|
|
404807c697 | ||
|
|
29ea7c53f2 | ||
|
|
1fc4af9c86 | ||
|
|
ac762762c3 | ||
|
|
553676aade | ||
|
|
a13b9815f6 | ||
|
|
156e7cc628 | ||
|
|
959ca0f412 | ||
|
|
9755fa0537 | ||
|
|
77ec86d31a | ||
|
|
189d4b459f | ||
|
|
44f40966e7 | ||
|
|
7d3313e732 | ||
|
|
591b50dfa7 | ||
|
|
27ef661fec | ||
|
|
d7935abc14 | ||
|
|
11068aa9d0 | ||
|
|
1234003527 | ||
|
|
e5ebf938f6 | ||
|
|
8c2c07fd18 | ||
|
|
9e1a50c3be | ||
|
|
ac8ddada0b | ||
|
|
885485da70 | ||
|
|
bb4e863e87 | ||
|
|
c7a4220d65 | ||
|
|
03dd9b2d42 | ||
|
|
89ca085b94 | ||
|
|
fffd9defea | ||
|
|
d10fea6012 | ||
|
|
ab26aee8b2 | ||
|
|
bb80a7b2ee | ||
|
|
e4a6b29279 | ||
|
|
d12c7809dd | ||
|
|
357ce0382e | ||
|
|
73da3d9b20 | ||
|
|
e67b7a6d5e | ||
|
|
4e25bebdd0 | ||
|
|
abd22d2566 | ||
|
|
8aeb597780 | ||
|
|
33825f6d96 | ||
|
|
eca504cb07 | ||
|
|
4c75440af4 | ||
|
|
94f7528885 | ||
|
|
4dadf6d353 | ||
|
|
2d27e72ed9 | ||
|
|
4ff0c8a8d1 | ||
|
|
f9fba94863 | ||
|
|
f9b246dbd0 | ||
|
|
8fefded8dc | ||
|
|
18824830fd | ||
|
|
fa81d87dc0 | ||
|
|
8bc145472a | ||
|
|
7afc1e9762 | ||
|
|
fc59c83e16 | ||
|
|
e4048be088 | ||
|
|
d715a8c290 | ||
|
|
ad308252a1 | ||
|
|
c7d9f83638 | ||
|
|
828fdbfd2d | ||
|
|
40c6fda19d | ||
|
|
b69816c2f9 | ||
|
|
46f5234bd9 | ||
|
|
81b8d7a66b | ||
|
|
b1285a16c1 | ||
|
|
90140e7710 | ||
|
|
8364e68667 | ||
|
|
4bb420d049 | ||
|
|
560dc68120 | ||
|
|
8fcb8e54f7 | ||
|
|
6c70e56059 | ||
|
|
b24d292ade | ||
|
|
2137de37b9 | ||
|
|
3c591ad8a9 | ||
|
|
b56f4c4558 | ||
|
|
5d8bcb42c6 | ||
|
|
b299652e86 | ||
|
|
8ac4b001a2 | ||
|
|
6294ce7807 | ||
|
|
8173cd7776 | ||
|
|
edaccd86d6 | ||
|
|
5f77408956 | ||
|
|
e836523bc3 | ||
|
|
9f866be110 | ||
|
|
f6879f40b0 | ||
|
|
06f47f262f | ||
|
|
eda52a3b82 | ||
|
|
3f1ab66899 | ||
|
|
af844ea9d5 | ||
|
|
b75efcbca2 | ||
|
|
25043278ab | ||
|
|
644069fb23 | ||
|
|
0eccb6a610 | ||
|
|
0abd514064 | ||
|
|
3879fde06d | ||
|
|
887433fc6a | ||
|
|
dd7a07bd0d | ||
|
|
0ee32cf110 | ||
|
|
72aa68cedc | ||
|
|
9adffa1ef5 | ||
|
|
4ca267ea17 | ||
|
|
833768172d | ||
|
|
1ec459ea3a | ||
|
|
66d0ad5803 | ||
|
|
92ac025e43 | ||
|
|
e8b2fde753 | ||
|
|
0fc7999780 | ||
|
|
3a403392e7 | ||
|
|
acccc6fd93 | ||
|
|
40bb4765d4 | ||
|
|
48c60621b6 | ||
|
|
51509760e3 | ||
|
|
1e1610671e | ||
|
|
de86c37687 | ||
|
|
6e332bbdf8 | ||
|
|
8a8a0c7dec | ||
|
|
d4b9b5a7dd | ||
|
|
6df541e1fd | ||
|
|
748087483c | ||
|
|
ae91fa6a39 | ||
|
|
2897afce41 | ||
|
|
ee8091ba91 | ||
|
|
30b5faebae | ||
|
|
8d753f821d | ||
|
|
54eb03d2a1 | ||
|
|
dd6276e706 | ||
|
|
f67ec241d4 | ||
|
|
8ade85edec | ||
|
|
a2ca18a714 | ||
|
|
6a83ff2511 | ||
|
|
bc3a06178b | ||
|
|
9fda259c0c | ||
|
|
d4925622f9 | ||
|
|
dbeaf43b8f | ||
|
|
f86957e5e1 | ||
|
|
a2f42d51fd | ||
|
|
0b71cfaf06 | ||
|
|
d558ac83b6 | ||
|
|
74efc94649 | ||
|
|
2541a345d0 | ||
|
|
23ce1e930d | ||
|
|
6ebad84160 | ||
|
|
24ac9f3e5a | ||
|
|
2a15b95f18 | ||
|
|
757150dec1 | ||
|
|
ddcec82b61 | ||
|
|
74047453ef | ||
|
|
dcaed0e90f | ||
|
|
cae304e07f | ||
|
|
039ab1ccd7 | ||
|
|
47ad0ca993 | ||
|
|
9c751230a1 | ||
|
|
a468ed316d | ||
|
|
e725730982 | ||
|
|
21c12d118b | ||
|
|
b9e74ee9ab | ||
|
|
0f2cff5078 | ||
|
|
e5e196bd7f | ||
|
|
077402406b | ||
|
|
54900ae318 | ||
|
|
3c015bf822 | ||
|
|
a1efcfb2d0 | ||
|
|
75d531285a | ||
|
|
0aad7db2d2 | ||
|
|
20c3b890ae | ||
|
|
0126960d79 | ||
|
|
849d441c5c | ||
|
|
b5f5627ca6 | ||
|
|
5b0c1e5b9e | ||
|
|
3cff0df0ce | ||
|
|
15fa55c223 | ||
|
|
594ca3a04b | ||
|
|
fafe5623d1 | ||
|
|
141cf39368 | ||
|
|
1fa050fd7a | ||
|
|
f36e7430ae | ||
|
|
94fd75e014 | ||
|
|
95d6da3111 | ||
|
|
4dc4704bb4 | ||
|
|
18bf7f93fa | ||
|
|
c73f694c63 | ||
|
|
3688a3bc67 | ||
|
|
775a3a1c22 | ||
|
|
bbbb3b4a06 | ||
|
|
576191cd4e | ||
|
|
38d398c967 | ||
|
|
7da44115d3 | ||
|
|
b54032bdc7 | ||
|
|
cab497e81e | ||
|
|
50e9c67609 | ||
|
|
bd57ea0110 | ||
|
|
05fe7f8a48 | ||
|
|
c0bd3b362c | ||
|
|
6381028fd6 | ||
|
|
1f328be1bd | ||
|
|
ddfdb71783 | ||
|
|
da1478c0c1 | ||
|
|
40fe3b4358 | ||
|
|
20fd1db0f4 | ||
|
|
a65aaab849 | ||
|
|
a5595189ed | ||
|
|
4a1da3ebc5 | ||
|
|
35a4460334 | ||
|
|
a6ccb37683 | ||
|
|
68465aed49 | ||
|
|
fc3aac96f2 | ||
|
|
32c7669b28 | ||
|
|
fef30bc671 | ||
|
|
ae547d27e4 | ||
|
|
be3e1831d4 | ||
|
|
45aceea53b | ||
|
|
25819584bd | ||
|
|
4c24b70d47 | ||
|
|
4c12673fbb | ||
|
|
e935db5075 | ||
|
|
a7f1f8d327 | ||
|
|
8c540d7210 | ||
|
|
4c4b884f8e | ||
|
|
a3d3fe07ce | ||
|
|
1ae521f560 | ||
|
|
7854e1c2c1 | ||
|
|
a9ff795948 | ||
|
|
a8e2f97260 | ||
|
|
d17253b023 | ||
|
|
ecbf0410eb | ||
|
|
cffc431bf0 | ||
|
|
dc54981784 | ||
|
|
811da2e159 | ||
|
|
c4e2f3bc70 | ||
|
|
bd906a7915 | ||
|
|
3df33199bc | ||
|
|
7ad30f15d5 | ||
|
|
2f38d960d4 | ||
|
|
2fc58fea81 | ||
|
|
e7dfbf76bb | ||
|
|
94de29187a | ||
|
|
a82c1f303b | ||
|
|
55e1f865d8 | ||
|
|
3f996cd62c | ||
|
|
58a8028485 | ||
|
|
190ce5ee31 | ||
|
|
70aab068fd | ||
|
|
617d279419 | ||
|
|
4de088d725 | ||
|
|
f8fd746678 | ||
|
|
1529ee59fe | ||
|
|
19c253b429 | ||
|
|
13bb9dd715 | ||
|
|
9b4602acb3 | ||
|
|
e5448110fc | ||
|
|
4974defe6f | ||
|
|
65ceadda2b | ||
|
|
8b2adb55ed | ||
|
|
58ca44bd15 | ||
|
|
ef46451b80 | ||
|
|
758b0f9734 | ||
|
|
3650000b31 | ||
|
|
dbd042ca3e | ||
|
|
6b9082bdd9 | ||
|
|
f9baa3bf20 | ||
|
|
a75feb7f8f | ||
|
|
009900b29b | ||
|
|
dc04cf82d8 | ||
|
|
b2c23a367d | ||
|
|
338b59a32e | ||
|
|
07ffd76437 | ||
|
|
3eaf9f4011 | ||
|
|
9832831c5e | ||
|
|
d3259c4782 | ||
|
|
940c12d9d8 | ||
|
|
8f2cbe261b | ||
|
|
e86788034d | ||
|
|
4ecc0e15ce | ||
|
|
b01ce31903 | ||
|
|
87b69c373a | ||
|
|
07b3160dff | ||
|
|
096e2791f5 | ||
|
|
9d456ccfcf | ||
|
|
ad5c3741e9 | ||
|
|
fe188bd646 | ||
|
|
f47984818f | ||
|
|
7b274b6974 | ||
|
|
b1806b0a7c | ||
|
|
ff2e46650c | ||
|
|
69fe6cdc05 | ||
|
|
b7e0d14b83 | ||
|
|
7db6ed9ad5 | ||
|
|
da0f63f095 | ||
|
|
90221e8c94 | ||
|
|
37680c317c | ||
|
|
70ea6fc9a1 | ||
|
|
67e692a7f3 | ||
|
|
34382ac38e | ||
|
|
b94b08a33c | ||
|
|
540d66af57 | ||
|
|
a2deeb0d12 | ||
|
|
22fe261dd6 | ||
|
|
b44354ad29 | ||
|
|
3ffbdb35a2 | ||
|
|
0504e9ef79 | ||
|
|
b309287087 | ||
|
|
e891f2ad6d | ||
|
|
9b1fb33ac6 | ||
|
|
8a099b4ae5 | ||
|
|
2cdd483126 |
@@ -2,6 +2,7 @@ aarch
|
||||
absdiff
|
||||
airockchip
|
||||
Alloc
|
||||
alpr
|
||||
Amcrest
|
||||
amdgpu
|
||||
analyzeduration
|
||||
@@ -12,6 +13,7 @@ argmax
|
||||
argmin
|
||||
argpartition
|
||||
ascontiguousarray
|
||||
astype
|
||||
authelia
|
||||
authentik
|
||||
autodetected
|
||||
@@ -42,6 +44,7 @@ codeproject
|
||||
colormap
|
||||
colorspace
|
||||
comms
|
||||
coro
|
||||
ctypeslib
|
||||
CUDA
|
||||
Cuvid
|
||||
@@ -59,6 +62,8 @@ dsize
|
||||
dtype
|
||||
ECONNRESET
|
||||
edgetpu
|
||||
facenet
|
||||
fastapi
|
||||
faststart
|
||||
fflags
|
||||
ffprobe
|
||||
@@ -111,6 +116,8 @@ itemsize
|
||||
Jellyfin
|
||||
jetson
|
||||
jetsons
|
||||
jina
|
||||
jinaai
|
||||
joserfc
|
||||
jsmpeg
|
||||
jsonify
|
||||
@@ -184,6 +191,7 @@ openai
|
||||
opencv
|
||||
openvino
|
||||
OWASP
|
||||
paddleocr
|
||||
paho
|
||||
passwordless
|
||||
popleft
|
||||
@@ -193,6 +201,7 @@ poweroff
|
||||
preexec
|
||||
probesize
|
||||
protobuf
|
||||
pstate
|
||||
psutil
|
||||
pubkey
|
||||
putenv
|
||||
@@ -212,6 +221,7 @@ rcond
|
||||
RDONLY
|
||||
rebranded
|
||||
referer
|
||||
reindex
|
||||
Reolink
|
||||
restream
|
||||
restreamed
|
||||
@@ -236,6 +246,7 @@ sleeptime
|
||||
SNDMORE
|
||||
socs
|
||||
sqliteq
|
||||
sqlitevecq
|
||||
ssdlite
|
||||
statm
|
||||
stimeout
|
||||
@@ -270,9 +281,11 @@ unraid
|
||||
unreviewed
|
||||
userdata
|
||||
usermod
|
||||
uvicorn
|
||||
vaapi
|
||||
vainfo
|
||||
variations
|
||||
vbios
|
||||
vconcat
|
||||
vitb
|
||||
vstream
|
||||
@@ -300,4 +313,4 @@ yolo
|
||||
yolonas
|
||||
yolox
|
||||
zeep
|
||||
zerolatency
|
||||
zerolatency
|
||||
@@ -3,10 +3,12 @@
|
||||
set -euxo pipefail
|
||||
|
||||
# Cleanup the old github host key
|
||||
sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts
|
||||
# Add new github host key
|
||||
curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \
|
||||
sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
|
||||
if [[ -f ~/.ssh/known_hosts ]]; then
|
||||
# Add new github host key
|
||||
sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts
|
||||
curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \
|
||||
sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
|
||||
fi
|
||||
|
||||
# Frigate normal container runs as root, so it have permission to create
|
||||
# the folders. But the devcontainer runs as the host user, so we need to
|
||||
|
||||
@@ -90,6 +90,9 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
@@ -102,7 +105,7 @@ body:
|
||||
- TensorRT
|
||||
- RKNN
|
||||
- Other
|
||||
- CPU (no Coral)
|
||||
- CPU (no coral)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
||||
11
.github/DISCUSSION_TEMPLATE/config-support.yml
vendored
@@ -76,6 +76,17 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: docker
|
||||
attributes:
|
||||
label: docker-compose file or Docker CLI command
|
||||
description: This will be automatically formatted into code, so no need for backticks.
|
||||
render: yaml
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
||||
25
.github/DISCUSSION_TEMPLATE/detector-support.yml
vendored
@@ -48,28 +48,6 @@ body:
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: go2rtclogs
|
||||
attributes:
|
||||
label: Relevant go2rtc log output
|
||||
description: Please copy and paste any relevant go2rtc log output. Include logs before and after your exact error when possible. Logs can be viewed via the Frigate UI, Docker, or the go2rtc dashboard. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating system
|
||||
options:
|
||||
- HassOS
|
||||
- Debian
|
||||
- Other Linux
|
||||
- Proxmox
|
||||
- UNRAID
|
||||
- Windows
|
||||
- Other
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: install-method
|
||||
attributes:
|
||||
@@ -78,6 +56,9 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
||||
25
.github/DISCUSSION_TEMPLATE/general-support.yml
vendored
@@ -68,20 +68,6 @@ body:
|
||||
label: Frigate stats
|
||||
description: Output from frigate's /api/stats endpoint
|
||||
render: json
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating system
|
||||
options:
|
||||
- HassOS
|
||||
- Debian
|
||||
- Other Linux
|
||||
- Proxmox
|
||||
- UNRAID
|
||||
- Windows
|
||||
- Other
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: install-method
|
||||
attributes:
|
||||
@@ -90,6 +76,17 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: docker
|
||||
attributes:
|
||||
label: docker-compose file or Docker CLI command
|
||||
description: This will be automatically formatted into code, so no need for backticks.
|
||||
render: yaml
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
||||
@@ -24,12 +24,6 @@ body:
|
||||
description: Visible on the System page in the Web UI. Please include the full version including the build identifier (eg. 0.14.0-ea36ds1)
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
attributes:
|
||||
label: In which browser(s) are you experiencing the issue with?
|
||||
placeholder: Google Chrome 88.0.4324.150
|
||||
description: >
|
||||
Provide the full name and don't forget to add the version!
|
||||
- type: textarea
|
||||
id: config
|
||||
attributes:
|
||||
@@ -70,20 +64,6 @@ body:
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating system
|
||||
options:
|
||||
- HassOS
|
||||
- Debian
|
||||
- Other Linux
|
||||
- Proxmox
|
||||
- UNRAID
|
||||
- Windows
|
||||
- Other
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: install-method
|
||||
attributes:
|
||||
@@ -92,6 +72,22 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: object-detector
|
||||
attributes:
|
||||
label: Object Detector
|
||||
options:
|
||||
- Coral
|
||||
- OpenVino
|
||||
- TensorRT
|
||||
- RKNN
|
||||
- Other
|
||||
- CPU (no coral)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
||||
32
.github/pull_request_template.md
vendored
Normal file
@@ -0,0 +1,32 @@
|
||||
## Proposed change
|
||||
<!--
|
||||
Describe what this pull request does and how it will benefit users of Frigate.
|
||||
Please describe in detail any considerations, breaking changes, etc. that are
|
||||
made in this pull request.
|
||||
-->
|
||||
|
||||
|
||||
## Type of change
|
||||
|
||||
- [ ] Dependency upgrade
|
||||
- [ ] Bugfix (non-breaking change which fixes an issue)
|
||||
- [ ] New feature
|
||||
- [ ] Breaking change (fix/feature causing existing functionality to break)
|
||||
- [ ] Code quality improvements to existing code
|
||||
- [ ] Documentation Update
|
||||
|
||||
## Additional information
|
||||
|
||||
- This PR fixes or closes issue: fixes #
|
||||
- This PR is related to issue:
|
||||
|
||||
## Checklist
|
||||
|
||||
<!--
|
||||
Put an `x` in the boxes that apply.
|
||||
-->
|
||||
|
||||
- [ ] The code change is tested and works locally.
|
||||
- [ ] Local tests pass. **Your PR cannot be merged unless tests pass**
|
||||
- [ ] There is no commented out code in this PR.
|
||||
- [ ] The code has been formatted using Ruff (`ruff format frigate`)
|
||||
49
.github/workflows/ci.yml
vendored
@@ -6,6 +6,8 @@ on:
|
||||
branches:
|
||||
- dev
|
||||
- master
|
||||
paths-ignore:
|
||||
- "docs/**"
|
||||
|
||||
# only run the latest commit to avoid cache overwrites
|
||||
concurrency:
|
||||
@@ -22,6 +24,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -43,6 +47,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -69,21 +75,14 @@ jobs:
|
||||
rpi.tags=${{ steps.setup.outputs.image-name }}-rpi
|
||||
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64,mode=max
|
||||
- name: Build and push Rockchip build
|
||||
uses: docker/bake-action@v3
|
||||
with:
|
||||
push: true
|
||||
targets: rk
|
||||
files: docker/rockchip/rk.hcl
|
||||
set: |
|
||||
rk.tags=${{ steps.setup.outputs.image-name }}-rk
|
||||
*.cache-from=type=gha
|
||||
jetson_jp4_build:
|
||||
runs-on: ubuntu-latest
|
||||
name: Jetson Jetpack 4
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -110,6 +109,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -138,6 +139,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -155,6 +158,30 @@ jobs:
|
||||
tensorrt.tags=${{ steps.setup.outputs.image-name }}-tensorrt
|
||||
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-amd64
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-amd64,mode=max
|
||||
arm64_extra_builds:
|
||||
runs-on: ubuntu-latest
|
||||
name: ARM Extra Build
|
||||
needs:
|
||||
- arm64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
with:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Build and push Rockchip build
|
||||
uses: docker/bake-action@v3
|
||||
with:
|
||||
push: true
|
||||
targets: rk
|
||||
files: docker/rockchip/rk.hcl
|
||||
set: |
|
||||
rk.tags=${{ steps.setup.outputs.image-name }}-rk
|
||||
*.cache-from=type=gha
|
||||
combined_extra_builds:
|
||||
runs-on: ubuntu-latest
|
||||
name: Combined Extra Builds
|
||||
@@ -164,6 +191,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@@ -205,7 +234,7 @@ jobs:
|
||||
with:
|
||||
string: ${{ github.repository }}
|
||||
- name: Log in to the Container registry
|
||||
uses: docker/login-action@0d4c9c5ea7693da7b068278f7b52bda2a190a446
|
||||
uses: docker/login-action@9780b0c442fbb1117ed29e0efdff1e18412f7567
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.actor }}
|
||||
|
||||
24
.github/workflows/dependabot-auto-merge.yaml
vendored
@@ -1,24 +0,0 @@
|
||||
name: dependabot-auto-merge
|
||||
on: pull_request
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
dependabot-auto-merge:
|
||||
runs-on: ubuntu-latest
|
||||
if: github.actor == 'dependabot[bot]'
|
||||
steps:
|
||||
- name: Get Dependabot metadata
|
||||
id: metadata
|
||||
uses: dependabot/fetch-metadata@v2
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable auto-merge for Dependabot PRs
|
||||
if: steps.metadata.outputs.dependency-type == 'direct:development' && (steps.metadata.outputs.update-type == 'version-update:semver-minor' || steps.metadata.outputs.update-type == 'version-update:semver-patch')
|
||||
run: |
|
||||
gh pr review --approve "$PR_URL"
|
||||
gh pr merge --auto --squash "$PR_URL"
|
||||
env:
|
||||
PR_URL: ${{ github.event.pull_request.html_url }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
19
.github/workflows/pull_request.yml
vendored
@@ -1,9 +1,12 @@
|
||||
name: On pull request
|
||||
|
||||
on: pull_request
|
||||
on:
|
||||
pull_request:
|
||||
paths-ignore:
|
||||
- "docs/**"
|
||||
|
||||
env:
|
||||
DEFAULT_PYTHON: 3.9
|
||||
DEFAULT_PYTHON: 3.11
|
||||
|
||||
jobs:
|
||||
build_devcontainer:
|
||||
@@ -16,6 +19,8 @@ jobs:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
@@ -35,6 +40,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
@@ -49,6 +56,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 20.x
|
||||
@@ -64,8 +73,10 @@ jobs:
|
||||
steps:
|
||||
- name: Check out the repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up Python ${{ env.DEFAULT_PYTHON }}
|
||||
uses: actions/setup-python@v5.1.0
|
||||
uses: actions/setup-python@v5.3.0
|
||||
with:
|
||||
python-version: ${{ env.DEFAULT_PYTHON }}
|
||||
- name: Install requirements
|
||||
@@ -85,6 +96,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
|
||||
15
.github/workflows/release.yml
vendored
@@ -11,21 +11,26 @@ jobs:
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- id: lowercaseRepo
|
||||
uses: ASzc/change-string-case-action@v6
|
||||
with:
|
||||
string: ${{ github.repository }}
|
||||
- name: Log in to the Container registry
|
||||
uses: docker/login-action@0d4c9c5ea7693da7b068278f7b52bda2a190a446
|
||||
uses: docker/login-action@9780b0c442fbb1117ed29e0efdff1e18412f7567
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Create tag variables
|
||||
env:
|
||||
TAG: ${{ github.ref_name }}
|
||||
LOWERCASE_REPO: ${{ steps.lowercaseRepo.outputs.lowercase }}
|
||||
run: |
|
||||
BUILD_TYPE=$([[ "${{ github.ref_name }}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
|
||||
BUILD_TYPE=$([[ "${TAG}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
|
||||
echo "BUILD_TYPE=${BUILD_TYPE}" >> $GITHUB_ENV
|
||||
echo "BASE=ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}" >> $GITHUB_ENV
|
||||
echo "BASE=ghcr.io/${LOWERCASE_REPO}" >> $GITHUB_ENV
|
||||
echo "BUILD_TAG=${GITHUB_SHA::7}" >> $GITHUB_ENV
|
||||
echo "CLEAN_VERSION=$(echo ${GITHUB_REF##*/} | tr '[:upper:]' '[:lower:]' | sed 's/^[v]//')" >> $GITHUB_ENV
|
||||
- name: Tag and push the main image
|
||||
@@ -34,14 +39,14 @@ jobs:
|
||||
STABLE_TAG=${BASE}:stable
|
||||
PULL_TAG=${BASE}:${BUILD_TAG}
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${VERSION_TAG}
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${VERSION_TAG}-${variant}
|
||||
done
|
||||
|
||||
# stable tag
|
||||
if [[ "${BUILD_TYPE}" == "stable" ]]; then
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${STABLE_TAG}
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${STABLE_TAG}-${variant}
|
||||
done
|
||||
fi
|
||||
|
||||
5
.github/workflows/stale.yml
vendored
@@ -23,7 +23,9 @@ jobs:
|
||||
exempt-pr-labels: "pinned,security,dependencies"
|
||||
operations-per-run: 120
|
||||
- name: Print outputs
|
||||
run: echo ${{ join(steps.stale.outputs.*, ',') }}
|
||||
env:
|
||||
STALE_OUTPUT: ${{ join(steps.stale.outputs.*, ',') }}
|
||||
run: echo "$STALE_OUTPUT"
|
||||
|
||||
# clean_ghcr:
|
||||
# name: Delete outdated dev container images
|
||||
@@ -38,4 +40,3 @@ jobs:
|
||||
# account-type: personal
|
||||
# token: ${{ secrets.GITHUB_TOKEN }}
|
||||
# token-type: github-token
|
||||
|
||||
|
||||
2
Makefile
@@ -1,7 +1,7 @@
|
||||
default_target: local
|
||||
|
||||
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
|
||||
VERSION = 0.15.0
|
||||
VERSION = 0.16.0
|
||||
IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate
|
||||
GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD)
|
||||
BOARDS= #Initialized empty
|
||||
|
||||
@@ -4,6 +4,7 @@ from statistics import mean
|
||||
|
||||
import numpy as np
|
||||
|
||||
import frigate.util as util
|
||||
from frigate.config import DetectorTypeEnum
|
||||
from frigate.object_detection import (
|
||||
ObjectDetectProcess,
|
||||
@@ -60,7 +61,7 @@ def start(id, num_detections, detection_queue, event):
|
||||
object_detector.cleanup()
|
||||
print(f"{id} - Processed for {duration:.2f} seconds.")
|
||||
print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
|
||||
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||
print(f"{id} - Average frame processing time: {mean(frame_times) * 1000:.2f}ms")
|
||||
|
||||
|
||||
######
|
||||
@@ -90,7 +91,7 @@ edgetpu_process_2 = ObjectDetectProcess(
|
||||
)
|
||||
|
||||
for x in range(0, 10):
|
||||
camera_process = mp.Process(
|
||||
camera_process = util.Process(
|
||||
target=start, args=(x, 300, detection_queue, events[str(x)])
|
||||
)
|
||||
camera_process.daemon = True
|
||||
|
||||
@@ -23,7 +23,7 @@ services:
|
||||
# count: 1
|
||||
# capabilities: [gpu]
|
||||
environment:
|
||||
YOLO_MODELS: yolov7-320
|
||||
YOLO_MODELS: ""
|
||||
devices:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
# - /dev/dri:/dev/dri # for intel hwaccel, needs to be updated for your hardware
|
||||
|
||||
@@ -5,6 +5,7 @@ ARG DEBIAN_FRONTEND=noninteractive
|
||||
# Build Python wheels
|
||||
FROM wheels AS h8l-wheels
|
||||
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
|
||||
COPY docker/hailo8l/requirements-wheels-h8l.txt /requirements-wheels-h8l.txt
|
||||
|
||||
@@ -16,89 +17,26 @@ RUN mkdir /h8l-wheels
|
||||
# Build the wheels
|
||||
RUN pip3 wheel --wheel-dir=/h8l-wheels -c /requirements-wheels.txt -r /requirements-wheels-h8l.txt
|
||||
|
||||
# Build HailoRT and create wheel
|
||||
FROM wheels AS build-hailort
|
||||
FROM wget AS hailort
|
||||
ARG TARGETARCH
|
||||
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
# Install necessary APT packages
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
apt-transport-https \
|
||||
gnupg \
|
||||
wget \
|
||||
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
|
||||
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
|
||||
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
|
||||
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
|
||||
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
|
||||
&& apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
python3.9 \
|
||||
python3.9-dev \
|
||||
build-essential cmake git \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Extract Python version and set environment variables
|
||||
RUN PYTHON_VERSION=$(python3 --version 2>&1 | awk '{print $2}' | cut -d. -f1,2) && \
|
||||
PYTHON_VERSION_NO_DOT=$(echo $PYTHON_VERSION | sed 's/\.//') && \
|
||||
echo "PYTHON_VERSION=$PYTHON_VERSION" > /etc/environment && \
|
||||
echo "PYTHON_VERSION_NO_DOT=$PYTHON_VERSION_NO_DOT" >> /etc/environment
|
||||
|
||||
# Clone and build HailoRT
|
||||
RUN . /etc/environment && \
|
||||
git clone https://github.com/hailo-ai/hailort.git /opt/hailort && \
|
||||
cd /opt/hailort && \
|
||||
git checkout v4.17.0 && \
|
||||
cmake -H. -Bbuild -DCMAKE_BUILD_TYPE=Release -DHAILO_BUILD_PYBIND=1 -DPYBIND11_PYTHON_VERSION=${PYTHON_VERSION} && \
|
||||
cmake --build build --config release --target libhailort && \
|
||||
cmake --build build --config release --target _pyhailort && \
|
||||
cp build/hailort/libhailort/bindings/python/src/_pyhailort.cpython-${PYTHON_VERSION_NO_DOT}-$(if [ $TARGETARCH == "amd64" ]; then echo 'x86_64'; else echo 'aarch64'; fi )-linux-gnu.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/ && \
|
||||
cp build/hailort/libhailort/src/libhailort.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
|
||||
|
||||
RUN ls -ahl /opt/hailort/build/hailort/libhailort/src/
|
||||
RUN ls -ahl /opt/hailort/hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
|
||||
|
||||
# Remove the existing setup.py if it exists in the target directory
|
||||
RUN rm -f /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
|
||||
|
||||
# Copy generate_wheel_conf.py and setup.py
|
||||
COPY docker/hailo8l/pyhailort_build_scripts/generate_wheel_conf.py /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
|
||||
COPY docker/hailo8l/pyhailort_build_scripts/setup.py /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
|
||||
|
||||
# Run the generate_wheel_conf.py script
|
||||
RUN python3 /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
|
||||
|
||||
# Create a wheel file using pip3 wheel
|
||||
RUN cd /opt/hailort/hailort/libhailort/bindings/python/platform && \
|
||||
python3 setup.py bdist_wheel --dist-dir /hailo-wheels
|
||||
RUN --mount=type=bind,source=docker/hailo8l/install_hailort.sh,target=/deps/install_hailort.sh \
|
||||
/deps/install_hailort.sh
|
||||
|
||||
# Use deps as the base image
|
||||
FROM deps AS h8l-frigate
|
||||
|
||||
# Copy the wheels from the wheels stage
|
||||
COPY --from=h8l-wheels /h8l-wheels /deps/h8l-wheels
|
||||
COPY --from=build-hailort /hailo-wheels /deps/hailo-wheels
|
||||
COPY --from=build-hailort /etc/environment /etc/environment
|
||||
RUN CC=$(python3 -c "import sysconfig; import shlex; cc = sysconfig.get_config_var('CC'); cc_cmd = shlex.split(cc)[0]; print(cc_cmd[:-4] if cc_cmd.endswith('-gcc') else cc_cmd)") && \
|
||||
echo "CC=$CC" >> /etc/environment
|
||||
COPY --from=hailort /hailo-wheels /deps/hailo-wheels
|
||||
COPY --from=hailort /rootfs/ /
|
||||
|
||||
# Install the wheels
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
RUN pip3 install -U /deps/h8l-wheels/*.whl
|
||||
RUN pip3 install -U /deps/hailo-wheels/*.whl
|
||||
|
||||
RUN . /etc/environment && \
|
||||
mv /usr/local/lib/python${PYTHON_VERSION}/dist-packages/hailo_platform/pyhailort/libhailort.so /usr/lib/${CC} && \
|
||||
cd /usr/lib/${CC}/ && \
|
||||
ln -s libhailort.so libhailort.so.4.17.0
|
||||
|
||||
# Copy base files from the rootfs stage
|
||||
COPY --from=rootfs / /
|
||||
|
||||
# Set environment variables for Hailo SDK
|
||||
ENV PATH="/opt/hailort/bin:${PATH}"
|
||||
ENV LD_LIBRARY_PATH="/usr/lib/$(if [ $TARGETARCH == "amd64" ]; then echo 'x86_64'; else echo 'aarch64'; fi )-linux-gnu:${LD_LIBRARY_PATH}"
|
||||
|
||||
# Set workdir
|
||||
WORKDIR /opt/frigate/
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
target wget {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/arm64","linux/amd64"]
|
||||
target = "wget"
|
||||
}
|
||||
|
||||
target wheels {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/arm64","linux/amd64"]
|
||||
@@ -19,6 +25,7 @@ target rootfs {
|
||||
target h8l {
|
||||
dockerfile = "docker/hailo8l/Dockerfile"
|
||||
contexts = {
|
||||
wget = "target:wget"
|
||||
wheels = "target:wheels"
|
||||
deps = "target:deps"
|
||||
rootfs = "target:rootfs"
|
||||
|
||||
19
docker/hailo8l/install_hailort.sh
Executable file
@@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euxo pipefail
|
||||
|
||||
hailo_version="4.20.0"
|
||||
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
arch="x86_64"
|
||||
elif [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
arch="aarch64"
|
||||
fi
|
||||
|
||||
wget -qO- "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${TARGETARCH}.tar.gz" |
|
||||
tar -C / -xzf -
|
||||
|
||||
mkdir -p /hailo-wheels
|
||||
|
||||
wget -P /hailo-wheels/ "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${hailo_version}-cp311-cp311-linux_${arch}.whl"
|
||||
|
||||
@@ -1,67 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
import sysconfig
|
||||
|
||||
|
||||
def extract_toolchain_info(compiler):
|
||||
# Remove the "-gcc" or "-g++" suffix if present
|
||||
if compiler.endswith("-gcc") or compiler.endswith("-g++"):
|
||||
compiler = compiler.rsplit("-", 1)[0]
|
||||
|
||||
# Extract the toolchain and ABI part (e.g., "gnu")
|
||||
toolchain_parts = compiler.split("-")
|
||||
abi_conventions = next(
|
||||
(part for part in toolchain_parts if part in ["gnu", "musl", "eabi", "uclibc"]),
|
||||
"",
|
||||
)
|
||||
|
||||
return abi_conventions
|
||||
|
||||
|
||||
def generate_wheel_conf():
|
||||
conf_file_path = os.path.join(
|
||||
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
|
||||
)
|
||||
|
||||
# Extract current system and Python version information
|
||||
py_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
|
||||
arch = platform.machine()
|
||||
system = platform.system().lower()
|
||||
libc_version = platform.libc_ver()[1]
|
||||
|
||||
# Get the compiler information
|
||||
compiler = sysconfig.get_config_var("CC")
|
||||
abi_conventions = extract_toolchain_info(compiler)
|
||||
|
||||
# Create the new configuration data
|
||||
new_conf_data = {
|
||||
"py_version": py_version,
|
||||
"arch": arch,
|
||||
"system": system,
|
||||
"libc_version": libc_version,
|
||||
"abi": abi_conventions,
|
||||
"extension": {
|
||||
"posix": "so",
|
||||
"nt": "pyd", # Windows
|
||||
}[os.name],
|
||||
}
|
||||
|
||||
# If the file exists, load the existing data
|
||||
if os.path.isfile(conf_file_path):
|
||||
with open(conf_file_path, "r") as conf_file:
|
||||
conf_data = json.load(conf_file)
|
||||
# Update the existing data with the new data
|
||||
conf_data.update(new_conf_data)
|
||||
else:
|
||||
# If the file does not exist, use the new data
|
||||
conf_data = new_conf_data
|
||||
|
||||
# Write the updated data to the file
|
||||
with open(conf_file_path, "w") as conf_file:
|
||||
json.dump(conf_data, conf_file, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
generate_wheel_conf()
|
||||
@@ -1,111 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
from setuptools import find_packages, setup
|
||||
from wheel.bdist_wheel import bdist_wheel as orig_bdist_wheel
|
||||
|
||||
|
||||
class NonPurePythonBDistWheel(orig_bdist_wheel):
|
||||
"""Makes the wheel platform-dependent so it can be based on the _pyhailort architecture"""
|
||||
|
||||
def finalize_options(self):
|
||||
orig_bdist_wheel.finalize_options(self)
|
||||
self.root_is_pure = False
|
||||
|
||||
|
||||
def _get_hailort_lib_path():
|
||||
lib_filename = "libhailort.so"
|
||||
lib_path = os.path.join(
|
||||
os.path.abspath(os.path.dirname(__file__)),
|
||||
f"hailo_platform/pyhailort/{lib_filename}",
|
||||
)
|
||||
if os.path.exists(lib_path):
|
||||
print(f"Found libhailort shared library at: {lib_path}")
|
||||
else:
|
||||
print(f"Error: libhailort shared library not found at: {lib_path}")
|
||||
raise FileNotFoundError(f"libhailort shared library not found at: {lib_path}")
|
||||
return lib_path
|
||||
|
||||
|
||||
def _get_pyhailort_lib_path():
|
||||
conf_file_path = os.path.join(
|
||||
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
|
||||
)
|
||||
if not os.path.isfile(conf_file_path):
|
||||
raise FileNotFoundError(f"Configuration file not found: {conf_file_path}")
|
||||
|
||||
with open(conf_file_path, "r") as conf_file:
|
||||
content = json.load(conf_file)
|
||||
py_version = content["py_version"]
|
||||
arch = content["arch"]
|
||||
system = content["system"]
|
||||
extension = content["extension"]
|
||||
abi = content["abi"]
|
||||
|
||||
# Construct the filename directly
|
||||
lib_filename = f"_pyhailort.cpython-{py_version.split('cp')[1]}-{arch}-{system}-{abi}.{extension}"
|
||||
lib_path = os.path.join(
|
||||
os.path.abspath(os.path.dirname(__file__)),
|
||||
f"hailo_platform/pyhailort/{lib_filename}",
|
||||
)
|
||||
|
||||
if os.path.exists(lib_path):
|
||||
print(f"Found _pyhailort shared library at: {lib_path}")
|
||||
else:
|
||||
print(f"Error: _pyhailort shared library not found at: {lib_path}")
|
||||
raise FileNotFoundError(
|
||||
f"_pyhailort shared library not found at: {lib_path}"
|
||||
)
|
||||
|
||||
return lib_path
|
||||
|
||||
|
||||
def _get_package_paths():
|
||||
packages = []
|
||||
pyhailort_lib = _get_pyhailort_lib_path()
|
||||
hailort_lib = _get_hailort_lib_path()
|
||||
if pyhailort_lib:
|
||||
packages.append(pyhailort_lib)
|
||||
if hailort_lib:
|
||||
packages.append(hailort_lib)
|
||||
packages.append(os.path.abspath("hailo_tutorials/notebooks/*"))
|
||||
packages.append(os.path.abspath("hailo_tutorials/hefs/*"))
|
||||
return packages
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
setup(
|
||||
author="Hailo team",
|
||||
author_email="contact@hailo.ai",
|
||||
cmdclass={
|
||||
"bdist_wheel": NonPurePythonBDistWheel,
|
||||
},
|
||||
description="HailoRT",
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
"hailo=hailo_platform.tools.hailocli.main:main",
|
||||
]
|
||||
},
|
||||
install_requires=[
|
||||
"argcomplete",
|
||||
"contextlib2",
|
||||
"future",
|
||||
"netaddr",
|
||||
"netifaces",
|
||||
"verboselogs",
|
||||
"numpy==1.23.3",
|
||||
],
|
||||
name="hailort",
|
||||
package_data={
|
||||
"hailo_platform": _get_package_paths(),
|
||||
},
|
||||
packages=find_packages(),
|
||||
platforms=[
|
||||
"linux_x86_64",
|
||||
"linux_aarch64",
|
||||
"win_amd64",
|
||||
],
|
||||
url="https://hailo.ai/",
|
||||
version="4.17.0",
|
||||
zip_safe=False,
|
||||
)
|
||||
@@ -1,12 +1,12 @@
|
||||
appdirs==1.4.4
|
||||
argcomplete==2.0.0
|
||||
contextlib2==0.6.0.post1
|
||||
distlib==0.3.6
|
||||
filelock==3.8.0
|
||||
future==0.18.2
|
||||
importlib-metadata==5.1.0
|
||||
importlib-resources==5.1.2
|
||||
netaddr==0.8.0
|
||||
netifaces==0.10.9
|
||||
verboselogs==1.7
|
||||
virtualenv==20.17.0
|
||||
appdirs==1.4.*
|
||||
argcomplete==2.0.*
|
||||
contextlib2==0.6.*
|
||||
distlib==0.3.*
|
||||
filelock==3.8.*
|
||||
future==0.18.*
|
||||
importlib-metadata==5.1.*
|
||||
importlib-resources==5.1.*
|
||||
netaddr==0.8.*
|
||||
netifaces==0.10.*
|
||||
verboselogs==1.7.*
|
||||
virtualenv==20.17.*
|
||||
|
||||
@@ -2,8 +2,9 @@
|
||||
|
||||
# Update package list and install dependencies
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential cmake git wget linux-modules-extra-$(uname -r)
|
||||
sudo apt-get install -y build-essential cmake git wget
|
||||
|
||||
hailo_version="4.20.0"
|
||||
arch=$(uname -m)
|
||||
|
||||
if [[ $arch == "x86_64" ]]; then
|
||||
@@ -13,7 +14,7 @@ else
|
||||
fi
|
||||
|
||||
# Clone the HailoRT driver repository
|
||||
git clone --depth 1 --branch v4.17.0 https://github.com/hailo-ai/hailort-drivers.git
|
||||
git clone --depth 1 --branch v${hailo_version} https://github.com/hailo-ai/hailort-drivers.git
|
||||
|
||||
# Build and install the HailoRT driver
|
||||
cd hailort-drivers/linux/pcie
|
||||
@@ -23,13 +24,26 @@ sudo make install
|
||||
# Load the Hailo PCI driver
|
||||
sudo modprobe hailo_pci
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Unable to load hailo_pci module, common reasons for this are:"
|
||||
echo "- Key was rejected by service: Secure Boot is enabling disallowing install."
|
||||
echo "- Permissions are not setup correctly."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Download and install the firmware
|
||||
cd ../../
|
||||
./download_firmware.sh
|
||||
sudo mv hailo8_fw.4.17.0.bin /lib/firmware/hailo/hailo8_fw.bin
|
||||
|
||||
# verify the firmware folder is present
|
||||
if [ ! -d /lib/firmware/hailo ]; then
|
||||
sudo mkdir /lib/firmware/hailo
|
||||
fi
|
||||
sudo mv hailo8_fw.*.bin /lib/firmware/hailo/hailo8_fw.bin
|
||||
|
||||
# Install udev rules
|
||||
sudo cp ./linux/pcie/51-hailo-udev.rules /etc/udev/rules.d/
|
||||
sudo udevadm control --reload-rules && sudo udevadm trigger
|
||||
|
||||
echo "HailoRT driver installation complete."
|
||||
echo "reboot your system to load the firmware!"
|
||||
|
||||
@@ -3,12 +3,12 @@
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG BASE_IMAGE=debian:11
|
||||
ARG SLIM_BASE=debian:11-slim
|
||||
ARG BASE_IMAGE=debian:12
|
||||
ARG SLIM_BASE=debian:12-slim
|
||||
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
|
||||
FROM --platform=${BUILDPLATFORM} debian:11 AS base_host
|
||||
FROM --platform=${BUILDPLATFORM} debian:12 AS base_host
|
||||
|
||||
FROM ${SLIM_BASE} AS slim-base
|
||||
|
||||
@@ -30,6 +30,16 @@ RUN --mount=type=tmpfs,target=/tmp --mount=type=tmpfs,target=/var/cache/apt \
|
||||
--mount=type=cache,target=/root/.ccache \
|
||||
/deps/build_nginx.sh
|
||||
|
||||
FROM wget AS sqlite-vec
|
||||
ARG DEBIAN_FRONTEND
|
||||
|
||||
# Build sqlite_vec from source
|
||||
COPY docker/main/build_sqlite_vec.sh /deps/build_sqlite_vec.sh
|
||||
RUN --mount=type=tmpfs,target=/tmp --mount=type=tmpfs,target=/var/cache/apt \
|
||||
--mount=type=bind,source=docker/main/build_sqlite_vec.sh,target=/deps/build_sqlite_vec.sh \
|
||||
--mount=type=cache,target=/root/.ccache \
|
||||
/deps/build_sqlite_vec.sh
|
||||
|
||||
FROM scratch AS go2rtc
|
||||
ARG TARGETARCH
|
||||
WORKDIR /rootfs/usr/local/go2rtc/bin
|
||||
@@ -56,8 +66,8 @@ COPY docker/main/requirements-ov.txt /requirements-ov.txt
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y wget python3 python3-dev python3-distutils gcc pkg-config libhdf5-dev \
|
||||
&& wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
&& python3 get-pip.py "pip" \
|
||||
&& pip install -r /requirements-ov.txt
|
||||
&& python3 get-pip.py "pip" --break-system-packages \
|
||||
&& pip install --break-system-packages -r /requirements-ov.txt
|
||||
|
||||
# Get OpenVino Model
|
||||
RUN --mount=type=bind,source=docker/main/build_ov_model.py,target=/build_ov_model.py \
|
||||
@@ -129,24 +139,17 @@ ARG TARGETARCH
|
||||
# Use a separate container to build wheels to prevent build dependencies in final image
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
apt-transport-https \
|
||||
gnupg \
|
||||
wget \
|
||||
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
|
||||
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
|
||||
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
|
||||
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
|
||||
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
|
||||
apt-transport-https wget \
|
||||
&& apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
python3.9 \
|
||||
python3.9-dev \
|
||||
python3 \
|
||||
python3-dev \
|
||||
# opencv dependencies
|
||||
build-essential cmake git pkg-config libgtk-3-dev \
|
||||
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
|
||||
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
|
||||
gfortran openexr libatlas-base-dev libssl-dev\
|
||||
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
|
||||
libtbbmalloc2 libtbb-dev libdc1394-dev libopenexr-dev \
|
||||
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
|
||||
# sqlite3 dependencies
|
||||
tclsh \
|
||||
@@ -154,29 +157,24 @@ RUN apt-get -qq update \
|
||||
gcc gfortran libopenblas-dev liblapack-dev && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Ensure python3 defaults to python3.9
|
||||
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
|
||||
|
||||
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
&& python3 get-pip.py "pip"
|
||||
&& python3 get-pip.py "pip" --break-system-packages
|
||||
|
||||
COPY docker/main/requirements.txt /requirements.txt
|
||||
RUN pip3 install -r /requirements.txt
|
||||
RUN pip3 install -r /requirements.txt --break-system-packages
|
||||
|
||||
# Build pysqlite3 from source to support ChromaDB
|
||||
# Build pysqlite3 from source
|
||||
COPY docker/main/build_pysqlite3.sh /build_pysqlite3.sh
|
||||
RUN /build_pysqlite3.sh
|
||||
|
||||
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
|
||||
RUN pip3 wheel --wheel-dir=/wheels -r /requirements-wheels.txt
|
||||
|
||||
COPY docker/main/requirements-wheels-post.txt /requirements-wheels-post.txt
|
||||
RUN pip3 wheel --no-deps --wheel-dir=/wheels-post -r /requirements-wheels-post.txt
|
||||
|
||||
|
||||
# Collect deps in a single layer
|
||||
FROM scratch AS deps-rootfs
|
||||
COPY --from=nginx /usr/local/nginx/ /usr/local/nginx/
|
||||
COPY --from=sqlite-vec /usr/local/lib/ /usr/local/lib/
|
||||
COPY --from=go2rtc /rootfs/ /
|
||||
COPY --from=libusb-build /usr/local/lib /usr/local/lib
|
||||
COPY --from=tempio /rootfs/ /
|
||||
@@ -197,12 +195,14 @@ ARG APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES="compute,video,utility"
|
||||
|
||||
# Turn off Chroma Telemetry: https://docs.trychroma.com/telemetry#opting-out
|
||||
ENV ANONYMIZED_TELEMETRY=False
|
||||
# Allow resetting the chroma database
|
||||
ENV ALLOW_RESET=True
|
||||
# Disable tokenizer parallelism warning
|
||||
# https://stackoverflow.com/questions/62691279/how-to-disable-tokenizers-parallelism-true-false-warning/72926996#72926996
|
||||
ENV TOKENIZERS_PARALLELISM=true
|
||||
# https://github.com/huggingface/transformers/issues/27214
|
||||
ENV TRANSFORMERS_NO_ADVISORY_WARNINGS=1
|
||||
|
||||
# Set OpenCV ffmpeg loglevel to fatal: https://ffmpeg.org/doxygen/trunk/log_8h.html
|
||||
ENV OPENCV_FFMPEG_LOGLEVEL=8
|
||||
|
||||
ENV PATH="/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}"
|
||||
ENV LIBAVFORMAT_VERSION_MAJOR=60
|
||||
@@ -212,16 +212,8 @@ RUN --mount=type=bind,source=docker/main/install_deps.sh,target=/deps/install_de
|
||||
/deps/install_deps.sh
|
||||
|
||||
RUN --mount=type=bind,from=wheels,source=/wheels,target=/deps/wheels \
|
||||
python3 -m pip install --upgrade pip && \
|
||||
pip3 install -U /deps/wheels/*.whl
|
||||
|
||||
# We have to uninstall this dependency specifically
|
||||
# as it will break onnxruntime-openvino
|
||||
RUN pip3 uninstall -y onnxruntime
|
||||
|
||||
RUN --mount=type=bind,from=wheels,source=/wheels-post,target=/deps/wheels \
|
||||
python3 -m pip install --upgrade pip && \
|
||||
pip3 install -U /deps/wheels/*.whl
|
||||
python3 -m pip install --upgrade pip --break-system-packages && \
|
||||
pip3 install -U /deps/wheels/*.whl --break-system-packages
|
||||
|
||||
COPY --from=deps-rootfs / /
|
||||
|
||||
@@ -239,7 +231,7 @@ ENV S6_CMD_WAIT_FOR_SERVICES_MAXTIME=0
|
||||
ENTRYPOINT ["/init"]
|
||||
CMD []
|
||||
|
||||
HEALTHCHECK --start-period=120s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
|
||||
HEALTHCHECK --start-period=300s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
|
||||
CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1
|
||||
|
||||
# Frigate deps with Node.js and NPM for devcontainer
|
||||
@@ -268,7 +260,7 @@ RUN apt-get update \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN --mount=type=bind,source=./docker/main/requirements-dev.txt,target=/workspace/frigate/requirements-dev.txt \
|
||||
pip3 install -r requirements-dev.txt
|
||||
pip3 install -r requirements-dev.txt --break-system-packages
|
||||
|
||||
HEALTHCHECK NONE
|
||||
|
||||
|
||||
@@ -8,8 +8,7 @@ SECURE_TOKEN_MODULE_VERSION="1.5"
|
||||
SET_MISC_MODULE_VERSION="v0.33"
|
||||
NGX_DEVEL_KIT_VERSION="v0.3.3"
|
||||
|
||||
cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list
|
||||
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
|
||||
sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources
|
||||
apt-get update
|
||||
|
||||
apt-get -yqq build-dep nginx
|
||||
|
||||
@@ -4,7 +4,7 @@ from openvino.tools import mo
|
||||
ov_model = mo.convert_model(
|
||||
"/models/ssdlite_mobilenet_v2_coco_2018_05_09/frozen_inference_graph.pb",
|
||||
compress_to_fp16=True,
|
||||
transformations_config="/usr/local/lib/python3.9/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json",
|
||||
transformations_config="/usr/local/lib/python3.11/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json",
|
||||
tensorflow_object_detection_api_pipeline_config="/models/ssdlite_mobilenet_v2_coco_2018_05_09/pipeline.config",
|
||||
reverse_input_channels=True,
|
||||
)
|
||||
|
||||
30
docker/main/build_sqlite_vec.sh
Executable file
@@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euxo pipefail
|
||||
|
||||
SQLITE_VEC_VERSION="0.1.3"
|
||||
|
||||
sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources
|
||||
apt-get update
|
||||
apt-get -yqq build-dep sqlite3 gettext git
|
||||
|
||||
mkdir /tmp/sqlite_vec
|
||||
# Grab the sqlite_vec source code.
|
||||
wget -nv https://github.com/asg017/sqlite-vec/archive/refs/tags/v${SQLITE_VEC_VERSION}.tar.gz
|
||||
tar -zxf v${SQLITE_VEC_VERSION}.tar.gz -C /tmp/sqlite_vec
|
||||
|
||||
cd /tmp/sqlite_vec/sqlite-vec-${SQLITE_VEC_VERSION}
|
||||
|
||||
mkdir -p vendor
|
||||
wget -O sqlite-amalgamation.zip https://www.sqlite.org/2024/sqlite-amalgamation-3450300.zip
|
||||
unzip sqlite-amalgamation.zip
|
||||
mv sqlite-amalgamation-3450300/* vendor/
|
||||
rmdir sqlite-amalgamation-3450300
|
||||
rm sqlite-amalgamation.zip
|
||||
|
||||
# build loadable module
|
||||
make loadable
|
||||
|
||||
# install it
|
||||
cp dist/vec0.* /usr/local/lib
|
||||
|
||||
@@ -8,34 +8,37 @@ apt-get -qq install --no-install-recommends -y \
|
||||
apt-transport-https \
|
||||
gnupg \
|
||||
wget \
|
||||
lbzip2 \
|
||||
procps vainfo \
|
||||
unzip locales tzdata libxml2 xz-utils \
|
||||
python3.9 \
|
||||
python3 \
|
||||
python3-pip \
|
||||
curl \
|
||||
lsof \
|
||||
jq \
|
||||
nethogs
|
||||
|
||||
# ensure python3 defaults to python3.9
|
||||
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
|
||||
nethogs \
|
||||
libgl1 \
|
||||
libglib2.0-0 \
|
||||
libusb-1.0.0
|
||||
|
||||
mkdir -p -m 600 /root/.gnupg
|
||||
|
||||
# add coral repo
|
||||
curl -fsSLo - https://packages.cloud.google.com/apt/doc/apt-key.gpg | \
|
||||
gpg --dearmor -o /etc/apt/trusted.gpg.d/google-cloud-packages-archive-keyring.gpg
|
||||
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | tee /etc/apt/sources.list.d/coral-edgetpu.list
|
||||
echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections
|
||||
# install coral runtime
|
||||
wget -q -O /tmp/libedgetpu1-max.deb "https://github.com/feranick/libedgetpu/releases/download/16.0TF2.17.0-1/libedgetpu1-max_16.0tf2.17.0-1.bookworm_${TARGETARCH}.deb"
|
||||
unset DEBIAN_FRONTEND
|
||||
yes | dpkg -i /tmp/libedgetpu1-max.deb && export DEBIAN_FRONTEND=noninteractive
|
||||
rm /tmp/libedgetpu1-max.deb
|
||||
|
||||
# enable non-free repo in Debian
|
||||
if grep -q "Debian" /etc/issue; then
|
||||
sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list
|
||||
# install python3 & tflite runtime
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_x86_64.whl
|
||||
pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_x86_64.whl
|
||||
fi
|
||||
|
||||
# coral drivers
|
||||
apt-get -qq update
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
libedgetpu1-max python3-tflite-runtime python3-pycoral
|
||||
if [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_aarch64.whl
|
||||
pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_aarch64.whl
|
||||
fi
|
||||
|
||||
# btbn-ffmpeg -> amd64
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
@@ -44,7 +47,7 @@ if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/NickM-27/FFmpeg-Builds/releases/download/autobuild-2022-07-31-12-37/ffmpeg-n5.1-2-g915ef932a3-linux64-gpl-5.1.tar.xz"
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/ffmpeg/5.0 --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/ffmpeg/5.0/doc /usr/lib/ffmpeg/5.0/bin/ffplay
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2024-09-19-12-51/ffmpeg-n7.0.2-18-g3e6cec1286-linux64-gpl-7.0.tar.xz"
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/NickM-27/FFmpeg-Builds/releases/download/autobuild-2024-09-19-12-51/ffmpeg-n7.0.2-18-g3e6cec1286-linux64-gpl-7.0.tar.xz"
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/ffmpeg/7.0 --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/ffmpeg/7.0/doc /usr/lib/ffmpeg/7.0/bin/ffplay
|
||||
fi
|
||||
@@ -56,34 +59,29 @@ if [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/NickM-27/FFmpeg-Builds/releases/download/autobuild-2022-07-31-12-37/ffmpeg-n5.1-2-g915ef932a3-linuxarm64-gpl-5.1.tar.xz"
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/ffmpeg/5.0 --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/ffmpeg/5.0/doc /usr/lib/ffmpeg/5.0/bin/ffplay
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2024-09-19-12-51/ffmpeg-n7.0.2-18-g3e6cec1286-linuxarm64-gpl-7.0.tar.xz"
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/NickM-27/FFmpeg-Builds/releases/download/autobuild-2024-09-19-12-51/ffmpeg-n7.0.2-18-g3e6cec1286-linuxarm64-gpl-7.0.tar.xz"
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/ffmpeg/7.0 --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/ffmpeg/7.0/doc /usr/lib/ffmpeg/7.0/bin/ffplay
|
||||
fi
|
||||
|
||||
# arch specific packages
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
# use debian bookworm for amd / intel-i965 driver packages
|
||||
echo 'deb https://deb.debian.org/debian bookworm main contrib non-free' >/etc/apt/sources.list.d/debian-bookworm.list
|
||||
apt-get -qq update
|
||||
# install amd / intel-i965 driver packages
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
i965-va-driver intel-gpu-tools onevpl-tools \
|
||||
libva-drm2 \
|
||||
mesa-va-drivers radeontop
|
||||
|
||||
# something about this dependency requires it to be installed in a separate call rather than in the line above
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
i965-va-driver-shaders
|
||||
|
||||
rm -f /etc/apt/sources.list.d/debian-bookworm.list
|
||||
# intel packages use zst compression so we need to update dpkg
|
||||
apt-get install -y dpkg
|
||||
|
||||
# use intel apt intel packages
|
||||
wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
|
||||
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list
|
||||
apt-get -qq update
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
intel-opencl-icd intel-level-zero-gpu intel-media-va-driver-non-free \
|
||||
libmfx1 libmfxgen1 libvpl2
|
||||
intel-opencl-icd=24.35.30872.31-996~22.04 intel-level-zero-gpu=1.3.29735.27-914~22.04 intel-media-va-driver-non-free=24.3.3-996~22.04 \
|
||||
libmfx1=23.2.2-880~22.04 libmfxgen1=24.2.4-914~22.04 libvpl2=1:2.13.0.0-996~22.04
|
||||
|
||||
rm -f /usr/share/keyrings/intel-graphics.gpg
|
||||
rm -f /etc/apt/sources.list.d/intel-gpu-jammy.list
|
||||
|
||||
@@ -1,3 +0,0 @@
|
||||
# ONNX
|
||||
onnxruntime-openvino == 1.19.* ; platform_machine == 'x86_64'
|
||||
onnxruntime == 1.19.* ; platform_machine == 'aarch64'
|
||||
@@ -1,40 +1,54 @@
|
||||
click == 8.1.*
|
||||
Flask == 3.0.*
|
||||
Flask_Limiter == 3.8.*
|
||||
# FastAPI
|
||||
aiohttp == 3.11.2
|
||||
starlette == 0.41.2
|
||||
starlette-context == 0.3.6
|
||||
fastapi == 0.115.*
|
||||
uvicorn == 0.30.*
|
||||
slowapi == 0.1.*
|
||||
imutils == 0.5.*
|
||||
joserfc == 1.0.*
|
||||
pathvalidate == 3.2.*
|
||||
markupsafe == 2.1.*
|
||||
python-multipart == 0.0.12
|
||||
# General
|
||||
mypy == 1.6.1
|
||||
numpy == 1.26.*
|
||||
onvif_zeep == 0.2.12
|
||||
opencv-python-headless == 4.9.0.*
|
||||
onvif-zeep-async == 3.1.*
|
||||
paho-mqtt == 2.1.*
|
||||
pandas == 2.2.*
|
||||
peewee == 3.17.*
|
||||
peewee_migrate == 1.13.*
|
||||
psutil == 5.9.*
|
||||
psutil == 6.1.*
|
||||
pydantic == 2.8.*
|
||||
git+https://github.com/fbcotter/py3nvml#egg=py3nvml
|
||||
pytz == 2024.1
|
||||
pytz == 2024.*
|
||||
pyzmq == 26.2.*
|
||||
ruamel.yaml == 0.18.*
|
||||
tzlocal == 5.2
|
||||
requests == 2.32.*
|
||||
types-requests == 2.32.*
|
||||
scipy == 1.13.*
|
||||
norfair == 2.2.*
|
||||
setproctitle == 1.3.*
|
||||
ws4py == 0.5.*
|
||||
unidecode == 1.3.*
|
||||
# OpenVino (ONNX installed in wheels-post)
|
||||
openvino == 2024.3.*
|
||||
# Image Manipulation
|
||||
numpy == 1.26.*
|
||||
opencv-python-headless == 4.10.0.*
|
||||
opencv-contrib-python == 4.9.0.*
|
||||
scipy == 1.14.*
|
||||
# OpenVino & ONNX
|
||||
openvino == 2024.4.*
|
||||
onnxruntime-openvino == 1.20.* ; platform_machine == 'x86_64'
|
||||
onnxruntime == 1.20.* ; platform_machine == 'aarch64'
|
||||
# Embeddings
|
||||
chromadb == 0.5.0
|
||||
onnx_clip == 4.0.*
|
||||
transformers == 4.45.*
|
||||
# Generative AI
|
||||
google-generativeai == 0.6.*
|
||||
ollama == 0.2.*
|
||||
openai == 1.30.*
|
||||
google-generativeai == 0.8.*
|
||||
ollama == 0.3.*
|
||||
openai == 1.51.*
|
||||
# push notifications
|
||||
py-vapid == 1.9.*
|
||||
pywebpush == 2.0.*
|
||||
# alpr
|
||||
pyclipper == 1.3.*
|
||||
shapely == 2.0.*
|
||||
|
||||
@@ -1,2 +1,2 @@
|
||||
scikit-build == 0.17.*
|
||||
scikit-build == 0.18.*
|
||||
nvidia-pyindex
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
chroma
|
||||
@@ -1 +0,0 @@
|
||||
chroma-pipeline
|
||||
@@ -1,4 +0,0 @@
|
||||
#!/command/with-contenv bash
|
||||
# shellcheck shell=bash
|
||||
|
||||
exec logutil-service /dev/shm/logs/chroma
|
||||
@@ -1 +0,0 @@
|
||||
longrun
|
||||
@@ -1,28 +0,0 @@
|
||||
#!/command/with-contenv bash
|
||||
# shellcheck shell=bash
|
||||
# Take down the S6 supervision tree when the service exits
|
||||
|
||||
set -o errexit -o nounset -o pipefail
|
||||
|
||||
# Logs should be sent to stdout so that s6 can collect them
|
||||
|
||||
declare exit_code_container
|
||||
exit_code_container=$(cat /run/s6-linux-init-container-results/exitcode)
|
||||
readonly exit_code_container
|
||||
readonly exit_code_service="${1}"
|
||||
readonly exit_code_signal="${2}"
|
||||
readonly service="ChromaDB"
|
||||
|
||||
echo "[INFO] Service ${service} exited with code ${exit_code_service} (by signal ${exit_code_signal})"
|
||||
|
||||
if [[ "${exit_code_service}" -eq 256 ]]; then
|
||||
if [[ "${exit_code_container}" -eq 0 ]]; then
|
||||
echo $((128 + exit_code_signal)) >/run/s6-linux-init-container-results/exitcode
|
||||
fi
|
||||
elif [[ "${exit_code_service}" -ne 0 ]]; then
|
||||
if [[ "${exit_code_container}" -eq 0 ]]; then
|
||||
echo "${exit_code_service}" >/run/s6-linux-init-container-results/exitcode
|
||||
fi
|
||||
fi
|
||||
|
||||
exec /run/s6/basedir/bin/halt
|
||||
@@ -1 +0,0 @@
|
||||
chroma-log
|
||||
@@ -1,27 +0,0 @@
|
||||
#!/command/with-contenv bash
|
||||
# shellcheck shell=bash
|
||||
# Start the Frigate service
|
||||
|
||||
set -o errexit -o nounset -o pipefail
|
||||
|
||||
# Logs should be sent to stdout so that s6 can collect them
|
||||
|
||||
# Tell S6-Overlay not to restart this service
|
||||
s6-svc -O .
|
||||
|
||||
search_enabled=`python3 /usr/local/semantic_search/get_search_settings.py | jq -r .enabled`
|
||||
|
||||
# Replace the bash process with the Frigate process, redirecting stderr to stdout
|
||||
exec 2>&1
|
||||
|
||||
if [[ "$search_enabled" == 'true' ]]; then
|
||||
echo "[INFO] Starting ChromaDB..."
|
||||
exec /usr/local/chroma run --path /config/chroma --host 127.0.0.1
|
||||
else
|
||||
while true
|
||||
do
|
||||
sleep 9999
|
||||
continue
|
||||
done
|
||||
exit 0
|
||||
fi
|
||||
@@ -1 +0,0 @@
|
||||
120000
|
||||
@@ -1 +0,0 @@
|
||||
longrun
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
set -o errexit -o nounset -o pipefail
|
||||
|
||||
dirs=(/dev/shm/logs/frigate /dev/shm/logs/go2rtc /dev/shm/logs/nginx /dev/shm/logs/certsync /dev/shm/logs/chroma)
|
||||
dirs=(/dev/shm/logs/frigate /dev/shm/logs/go2rtc /dev/shm/logs/nginx /dev/shm/logs/certsync)
|
||||
|
||||
mkdir -p "${dirs[@]}"
|
||||
chown nobody:nogroup "${dirs[@]}"
|
||||
|
||||
@@ -1,14 +0,0 @@
|
||||
#!/usr/bin/python3
|
||||
# -*- coding: utf-8 -*-s
|
||||
__import__("pysqlite3")
|
||||
|
||||
import re
|
||||
import sys
|
||||
|
||||
sys.modules["sqlite3"] = sys.modules.pop("pysqlite3")
|
||||
|
||||
from chromadb.cli.cli import app
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.argv[0] = re.sub(r"(-script\.pyw|\.exe)?$", "", sys.argv[0])
|
||||
sys.exit(app())
|
||||
@@ -165,7 +165,7 @@ if config.get("birdseye", {}).get("restream", False):
|
||||
birdseye: dict[str, any] = config.get("birdseye")
|
||||
|
||||
input = f"-f rawvideo -pix_fmt yuv420p -video_size {birdseye.get('width', 1280)}x{birdseye.get('height', 720)} -r 10 -i {BIRDSEYE_PIPE}"
|
||||
ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(ffmpeg_path, config.get('ffmpeg', {}).get('hwaccel_args'), input, '-rtsp_transport tcp -f rtsp {output}')}"
|
||||
ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(ffmpeg_path, config.get('ffmpeg', {}).get('hwaccel_args', ''), input, '-rtsp_transport tcp -f rtsp {output}')}"
|
||||
|
||||
if go2rtc_config.get("streams"):
|
||||
go2rtc_config["streams"]["birdseye"] = ffmpeg_cmd
|
||||
|
||||
@@ -81,6 +81,9 @@ http {
|
||||
open_file_cache_errors on;
|
||||
aio on;
|
||||
|
||||
# file upload size
|
||||
client_max_body_size 10M;
|
||||
|
||||
# https://github.com/kaltura/nginx-vod-module#vod_open_file_thread_pool
|
||||
vod_open_file_thread_pool default;
|
||||
|
||||
@@ -226,7 +229,7 @@ http {
|
||||
|
||||
location ~* /api/.*\.(jpg|jpeg|png|webp|gif)$ {
|
||||
include auth_request.conf;
|
||||
rewrite ^/api/(.*)$ $1 break;
|
||||
rewrite ^/api/(.*)$ /$1 break;
|
||||
proxy_pass http://frigate_api;
|
||||
include proxy.conf;
|
||||
}
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
"""Prints the semantic_search config as json to stdout."""
|
||||
|
||||
import json
|
||||
import os
|
||||
|
||||
from ruamel.yaml import YAML
|
||||
|
||||
yaml = YAML()
|
||||
|
||||
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
|
||||
|
||||
# Check if we can use .yaml instead of .yml
|
||||
config_file_yaml = config_file.replace(".yml", ".yaml")
|
||||
if os.path.isfile(config_file_yaml):
|
||||
config_file = config_file_yaml
|
||||
|
||||
try:
|
||||
with open(config_file) as f:
|
||||
raw_config = f.read()
|
||||
|
||||
if config_file.endswith((".yaml", ".yml")):
|
||||
config: dict[str, any] = yaml.load(raw_config)
|
||||
elif config_file.endswith(".json"):
|
||||
config: dict[str, any] = json.loads(raw_config)
|
||||
except FileNotFoundError:
|
||||
config: dict[str, any] = {}
|
||||
|
||||
search_config: dict[str, any] = config.get("semantic_search", {"enabled": False})
|
||||
|
||||
print(json.dumps(search_config))
|
||||
20
docker/rockchip/COCO/coco_subset_20.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
./subset/000000005001.jpg
|
||||
./subset/000000038829.jpg
|
||||
./subset/000000052891.jpg
|
||||
./subset/000000075612.jpg
|
||||
./subset/000000098261.jpg
|
||||
./subset/000000181542.jpg
|
||||
./subset/000000215245.jpg
|
||||
./subset/000000277005.jpg
|
||||
./subset/000000288685.jpg
|
||||
./subset/000000301421.jpg
|
||||
./subset/000000334371.jpg
|
||||
./subset/000000348481.jpg
|
||||
./subset/000000373353.jpg
|
||||
./subset/000000397681.jpg
|
||||
./subset/000000414673.jpg
|
||||
./subset/000000419312.jpg
|
||||
./subset/000000465822.jpg
|
||||
./subset/000000475732.jpg
|
||||
./subset/000000559707.jpg
|
||||
./subset/000000574315.jpg
|
||||
BIN
docker/rockchip/COCO/subset/000000005001.jpg
Normal file
|
After Width: | Height: | Size: 207 KiB |
BIN
docker/rockchip/COCO/subset/000000038829.jpg
Normal file
|
After Width: | Height: | Size: 209 KiB |
BIN
docker/rockchip/COCO/subset/000000052891.jpg
Normal file
|
After Width: | Height: | Size: 150 KiB |
BIN
docker/rockchip/COCO/subset/000000075612.jpg
Normal file
|
After Width: | Height: | Size: 102 KiB |
BIN
docker/rockchip/COCO/subset/000000098261.jpg
Normal file
|
After Width: | Height: | Size: 14 KiB |
BIN
docker/rockchip/COCO/subset/000000181542.jpg
Normal file
|
After Width: | Height: | Size: 201 KiB |
BIN
docker/rockchip/COCO/subset/000000215245.jpg
Normal file
|
After Width: | Height: | Size: 233 KiB |
BIN
docker/rockchip/COCO/subset/000000277005.jpg
Normal file
|
After Width: | Height: | Size: 242 KiB |
BIN
docker/rockchip/COCO/subset/000000288685.jpg
Normal file
|
After Width: | Height: | Size: 230 KiB |
BIN
docker/rockchip/COCO/subset/000000301421.jpg
Normal file
|
After Width: | Height: | Size: 80 KiB |
BIN
docker/rockchip/COCO/subset/000000334371.jpg
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
docker/rockchip/COCO/subset/000000348481.jpg
Normal file
|
After Width: | Height: | Size: 113 KiB |
BIN
docker/rockchip/COCO/subset/000000373353.jpg
Normal file
|
After Width: | Height: | Size: 281 KiB |
BIN
docker/rockchip/COCO/subset/000000397681.jpg
Normal file
|
After Width: | Height: | Size: 272 KiB |
BIN
docker/rockchip/COCO/subset/000000414673.jpg
Normal file
|
After Width: | Height: | Size: 152 KiB |
BIN
docker/rockchip/COCO/subset/000000419312.jpg
Normal file
|
After Width: | Height: | Size: 166 KiB |
BIN
docker/rockchip/COCO/subset/000000465822.jpg
Normal file
|
After Width: | Height: | Size: 109 KiB |
BIN
docker/rockchip/COCO/subset/000000475732.jpg
Normal file
|
After Width: | Height: | Size: 103 KiB |
BIN
docker/rockchip/COCO/subset/000000559707.jpg
Normal file
|
After Width: | Height: | Size: 203 KiB |
BIN
docker/rockchip/COCO/subset/000000574315.jpg
Normal file
|
After Width: | Height: | Size: 110 KiB |
@@ -7,21 +7,26 @@ FROM wheels as rk-wheels
|
||||
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
|
||||
COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt
|
||||
RUN sed -i "/https:\/\//d" /requirements-wheels.txt
|
||||
RUN sed -i "/onnxruntime/d" /requirements-wheels.txt
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt
|
||||
RUN rm -rf /rk-wheels/opencv_python-*
|
||||
|
||||
FROM deps AS rk-frigate
|
||||
ARG TARGETARCH
|
||||
|
||||
RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \
|
||||
pip3 install -U /deps/rk-wheels/*.whl
|
||||
pip3 install --no-deps -U /deps/rk-wheels/*.whl --break-system-packages
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
COPY --from=rootfs / /
|
||||
COPY docker/rockchip/COCO /COCO
|
||||
COPY docker/rockchip/conv2rknn.py /opt/conv2rknn.py
|
||||
|
||||
ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.0.0/librknnrt.so /usr/lib/
|
||||
ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.0/librknnrt.so /usr/lib/
|
||||
|
||||
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffmpeg
|
||||
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffprobe
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-5/ffmpeg /usr/lib/ffmpeg/6.0/bin/
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-5/ffprobe /usr/lib/ffmpeg/6.0/bin/
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-6/ffmpeg /usr/lib/ffmpeg/6.0/bin/
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-6/ffprobe /usr/lib/ffmpeg/6.0/bin/
|
||||
ENV PATH="/usr/lib/ffmpeg/6.0/bin/:${PATH}"
|
||||
|
||||
82
docker/rockchip/conv2rknn.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import os
|
||||
|
||||
import rknn
|
||||
import yaml
|
||||
from rknn.api import RKNN
|
||||
|
||||
try:
|
||||
with open(rknn.__path__[0] + "/VERSION") as file:
|
||||
tk_version = file.read().strip()
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
try:
|
||||
with open("/config/conv2rknn.yaml", "r") as config_file:
|
||||
configuration = yaml.safe_load(config_file)
|
||||
except FileNotFoundError:
|
||||
raise Exception("Please place a config.yaml file in /config/conv2rknn.yaml")
|
||||
|
||||
if configuration["config"] != None:
|
||||
rknn_config = configuration["config"]
|
||||
else:
|
||||
rknn_config = {}
|
||||
|
||||
if not os.path.isdir("/config/model_cache/rknn_cache/onnx"):
|
||||
raise Exception(
|
||||
"Place the onnx models you want to convert to rknn format in /config/model_cache/rknn_cache/onnx"
|
||||
)
|
||||
|
||||
if "soc" not in configuration:
|
||||
try:
|
||||
with open("/proc/device-tree/compatible") as file:
|
||||
soc = file.read().split(",")[-1].strip("\x00")
|
||||
except FileNotFoundError:
|
||||
raise Exception("Make sure to run docker in privileged mode.")
|
||||
|
||||
configuration["soc"] = [
|
||||
soc,
|
||||
]
|
||||
|
||||
if "quantization" not in configuration:
|
||||
configuration["quantization"] = False
|
||||
|
||||
if "output_name" not in configuration:
|
||||
configuration["output_name"] = "{{input_basename}}"
|
||||
|
||||
for input_filename in os.listdir("/config/model_cache/rknn_cache/onnx"):
|
||||
for soc in configuration["soc"]:
|
||||
quant = "i8" if configuration["quantization"] else "fp16"
|
||||
|
||||
input_path = "/config/model_cache/rknn_cache/onnx/" + input_filename
|
||||
input_basename = input_filename[: input_filename.rfind(".")]
|
||||
|
||||
output_filename = (
|
||||
configuration["output_name"].format(
|
||||
quant=quant,
|
||||
input_basename=input_basename,
|
||||
soc=soc,
|
||||
tk_version=tk_version,
|
||||
)
|
||||
+ ".rknn"
|
||||
)
|
||||
output_path = "/config/model_cache/rknn_cache/" + output_filename
|
||||
|
||||
rknn_config["target_platform"] = soc
|
||||
|
||||
rknn = RKNN(verbose=True)
|
||||
rknn.config(**rknn_config)
|
||||
|
||||
if rknn.load_onnx(model=input_path) != 0:
|
||||
raise Exception("Error loading model.")
|
||||
|
||||
if (
|
||||
rknn.build(
|
||||
do_quantization=configuration["quantization"],
|
||||
dataset="/COCO/coco_subset_20.txt",
|
||||
)
|
||||
!= 0
|
||||
):
|
||||
raise Exception("Error building model.")
|
||||
|
||||
if rknn.export_rknn(output_path) != 0:
|
||||
raise Exception("Error exporting rknn model.")
|
||||
@@ -1 +1,2 @@
|
||||
rknn-toolkit-lite2 @ https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.0.0/rknn_toolkit_lite2-2.0.0b0-cp39-cp39-linux_aarch64.whl
|
||||
rknn-toolkit2 == 2.3.0
|
||||
rknn-toolkit-lite2 == 2.3.0
|
||||
@@ -34,7 +34,7 @@ RUN mkdir -p /opt/rocm-dist/etc/ld.so.conf.d/
|
||||
RUN echo /opt/rocm/lib|tee /opt/rocm-dist/etc/ld.so.conf.d/rocm.conf
|
||||
|
||||
#######################################################################
|
||||
FROM --platform=linux/amd64 debian:11 as debian-base
|
||||
FROM --platform=linux/amd64 debian:12 as debian-base
|
||||
|
||||
RUN apt-get update && apt-get -y upgrade
|
||||
RUN apt-get -y install --no-install-recommends libelf1 libdrm2 libdrm-amdgpu1 libnuma1 kmod
|
||||
@@ -51,7 +51,7 @@ COPY --from=rocm /opt/rocm-$ROCM /opt/rocm-$ROCM
|
||||
RUN ln -s /opt/rocm-$ROCM /opt/rocm
|
||||
|
||||
RUN apt-get -y install g++ cmake
|
||||
RUN apt-get -y install python3-pybind11 python3.9-distutils python3-dev
|
||||
RUN apt-get -y install python3-pybind11 python3-distutils python3-dev
|
||||
|
||||
WORKDIR /opt/build
|
||||
|
||||
@@ -70,10 +70,11 @@ RUN apt-get -y install libnuma1
|
||||
WORKDIR /opt/frigate/
|
||||
COPY --from=rootfs / /
|
||||
|
||||
COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt
|
||||
RUN python3 -m pip install --upgrade pip \
|
||||
&& pip3 uninstall -y onnxruntime-openvino \
|
||||
&& pip3 install -r /requirements.txt
|
||||
# Temporarily disabled to see if a new wheel can be built to support py3.11
|
||||
#COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt
|
||||
#RUN python3 -m pip install --upgrade pip \
|
||||
# && pip3 uninstall -y onnxruntime-openvino \
|
||||
# && pip3 install -r /requirements.txt
|
||||
|
||||
#######################################################################
|
||||
FROM scratch AS rocm-dist
|
||||
@@ -83,14 +84,15 @@ ARG AMDGPU
|
||||
|
||||
COPY --from=rocm /opt/rocm-$ROCM/bin/rocminfo /opt/rocm-$ROCM/bin/migraphx-driver /opt/rocm-$ROCM/bin/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*$AMDGPU* /opt/rocm-$ROCM/share/miopen/db/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx908* /opt/rocm-$ROCM/share/miopen/db/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*$AMDGPU* /opt/rocm-$ROCM/lib/rocblas/library/
|
||||
COPY --from=rocm /opt/rocm-dist/ /
|
||||
COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-39-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/
|
||||
COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-311-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/
|
||||
|
||||
#######################################################################
|
||||
FROM deps-prelim AS rocm-prelim-hsa-override0
|
||||
|
||||
ENV HSA_ENABLE_SDMA=0
|
||||
\
|
||||
ENV HSA_ENABLE_SDMA=0
|
||||
|
||||
COPY --from=rocm-dist / /
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list
|
||||
if [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
# add raspberry pi repo
|
||||
gpg --no-default-keyring --keyring /usr/share/keyrings/raspbian.gpg --keyserver keyserver.ubuntu.com --recv-keys 82B129927FA3303E
|
||||
echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bullseye main" | tee /etc/apt/sources.list.d/raspi.list
|
||||
echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bookworm main" | tee /etc/apt/sources.list.d/raspi.list
|
||||
apt-get -qq update
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y ffmpeg
|
||||
fi
|
||||
|
||||
@@ -7,33 +7,19 @@ ARG DEBIAN_FRONTEND=noninteractive
|
||||
FROM wheels as trt-wheels
|
||||
ARG DEBIAN_FRONTEND
|
||||
ARG TARGETARCH
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
|
||||
# Add TensorRT wheels to another folder
|
||||
COPY docker/tensorrt/requirements-amd64.txt /requirements-tensorrt.txt
|
||||
RUN mkdir -p /trt-wheels && pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
|
||||
|
||||
# Build CuDNN
|
||||
FROM wget AS cudnn-deps
|
||||
|
||||
ARG COMPUTE_LEVEL
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y git build-essential
|
||||
|
||||
RUN wget https://developer.download.nvidia.com/compute/cuda/repos/debian11/x86_64/cuda-keyring_1.1-1_all.deb \
|
||||
&& dpkg -i cuda-keyring_1.1-1_all.deb \
|
||||
&& apt-get update \
|
||||
&& apt-get -y install cuda-toolkit \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
FROM tensorrt-base AS frigate-tensorrt
|
||||
ENV TRT_VER=8.5.3
|
||||
ENV TRT_VER=8.6.1
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
|
||||
pip3 install -U /deps/trt-wheels/*.whl && \
|
||||
pip3 install -U /deps/trt-wheels/*.whl --break-system-packages && \
|
||||
ldconfig
|
||||
COPY --from=cudnn-deps /usr/local/cuda-12.6 /usr/local/cuda
|
||||
|
||||
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.9/dist-packages/tensorrt:/usr/local/cuda/lib64:/usr/local/lib/python3.9/dist-packages/nvidia/cufft/lib
|
||||
WORKDIR /opt/frigate/
|
||||
COPY --from=rootfs / /
|
||||
|
||||
@@ -42,8 +28,8 @@ FROM devcontainer AS devcontainer-trt
|
||||
|
||||
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
|
||||
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
|
||||
COPY --from=cudnn-deps /usr/local/cuda-12.6 /usr/local/cuda
|
||||
COPY --from=trt-deps /usr/local/cuda-12.1 /usr/local/cuda
|
||||
COPY docker/tensorrt/detector/rootfs/ /
|
||||
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
|
||||
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
|
||||
pip3 install -U /deps/trt-wheels/*.whl
|
||||
pip3 install -U /deps/trt-wheels/*.whl --break-system-packages
|
||||
|
||||
@@ -10,8 +10,8 @@ ARG DEBIAN_FRONTEND
|
||||
# Use a separate container to build wheels to prevent build dependencies in final image
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y --no-install-recommends \
|
||||
python3.9 python3.9-dev \
|
||||
wget build-essential cmake git \
|
||||
python3.9 python3.9-dev \
|
||||
wget build-essential cmake git \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Ensure python3 defaults to python3.9
|
||||
@@ -41,7 +41,11 @@ RUN --mount=type=bind,source=docker/tensorrt/detector/build_python_tensorrt.sh,t
|
||||
&& TENSORRT_VER=$(cat /etc/TENSORRT_VER) /deps/build_python_tensorrt.sh
|
||||
|
||||
COPY docker/tensorrt/requirements-arm64.txt /requirements-tensorrt.txt
|
||||
RUN pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
|
||||
ADD https://nvidia.box.com/shared/static/psl23iw3bh7hlgku0mjo1xekxpego3e3.whl /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl
|
||||
|
||||
RUN pip3 uninstall -y onnxruntime-openvino \
|
||||
&& pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt \
|
||||
&& pip3 install --no-deps /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl
|
||||
|
||||
FROM build-wheels AS trt-model-wheels
|
||||
ARG DEBIAN_FRONTEND
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG TRT_BASE=nvcr.io/nvidia/tensorrt:23.03-py3
|
||||
ARG TRT_BASE=nvcr.io/nvidia/tensorrt:23.12-py3
|
||||
|
||||
# Build TensorRT-specific library
|
||||
FROM ${TRT_BASE} AS trt-deps
|
||||
@@ -24,8 +24,9 @@ ENV S6_CMD_WAIT_FOR_SERVICES_MAXTIME=0
|
||||
|
||||
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
|
||||
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
|
||||
COPY --from=trt-deps /usr/local/cuda-12.* /usr/local/cuda
|
||||
COPY docker/tensorrt/detector/rootfs/ /
|
||||
ENV YOLO_MODELS="yolov7-320"
|
||||
ENV YOLO_MODELS=""
|
||||
|
||||
HEALTHCHECK --start-period=600s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
|
||||
CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
/usr/local/lib
|
||||
/usr/local/lib/python3.9/dist-packages/nvidia/cudnn/lib
|
||||
/usr/local/lib/python3.9/dist-packages/nvidia/cuda_runtime/lib
|
||||
/usr/local/lib/python3.9/dist-packages/nvidia/cublas/lib
|
||||
/usr/local/lib/python3.9/dist-packages/nvidia/cuda_nvrtc/lib
|
||||
/usr/local/lib/python3.9/dist-packages/tensorrt
|
||||
/usr/local/cuda/lib64
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cudnn/lib
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cuda_runtime/lib
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cublas/lib
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cuda_nvrtc/lib
|
||||
/usr/local/lib/python3.11/dist-packages/tensorrt
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cufft/lib
|
||||
@@ -11,6 +11,7 @@ set -o errexit -o nounset -o pipefail
|
||||
MODEL_CACHE_DIR=${MODEL_CACHE_DIR:-"/config/model_cache/tensorrt"}
|
||||
TRT_VER=${TRT_VER:-$(cat /etc/TENSORRT_VER)}
|
||||
OUTPUT_FOLDER="${MODEL_CACHE_DIR}/${TRT_VER}"
|
||||
YOLO_MODELS=${YOLO_MODELS:-""}
|
||||
|
||||
# Create output folder
|
||||
mkdir -p ${OUTPUT_FOLDER}
|
||||
@@ -19,6 +20,11 @@ FIRST_MODEL=true
|
||||
MODEL_DOWNLOAD=""
|
||||
MODEL_CONVERT=""
|
||||
|
||||
if [ -z "$YOLO_MODELS"]; then
|
||||
echo "tensorrt model preparation disabled"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
for model in ${YOLO_MODELS//,/ }
|
||||
do
|
||||
# Remove old link in case path/version changed
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
# NVidia TensorRT Support (amd64 only)
|
||||
--extra-index-url 'https://pypi.nvidia.com'
|
||||
numpy < 1.24; platform_machine == 'x86_64'
|
||||
tensorrt == 8.5.3.*; platform_machine == 'x86_64'
|
||||
cuda-python == 11.8; platform_machine == 'x86_64'
|
||||
cython == 0.29.*; platform_machine == 'x86_64'
|
||||
tensorrt == 8.6.1.*; platform_machine == 'x86_64'
|
||||
cuda-python == 11.8.*; platform_machine == 'x86_64'
|
||||
cython == 3.0.*; platform_machine == 'x86_64'
|
||||
nvidia-cuda-runtime-cu12 == 12.1.*; platform_machine == 'x86_64'
|
||||
nvidia-cuda-runtime-cu11 == 11.8.*; platform_machine == 'x86_64'
|
||||
nvidia-cublas-cu11 == 11.11.3.6; platform_machine == 'x86_64'
|
||||
nvidia-cudnn-cu11 == 8.6.0.*; platform_machine == 'x86_64'
|
||||
nvidia-cufft-cu11==10.*; platform_machine == 'x86_64'
|
||||
onnx==1.14.0; platform_machine == 'x86_64'
|
||||
onnxruntime-gpu==1.17.*; platform_machine == 'x86_64'
|
||||
onnx==1.16.*; platform_machine == 'x86_64'
|
||||
onnxruntime-gpu==1.18.*; platform_machine == 'x86_64'
|
||||
protobuf==3.20.3; platform_machine == 'x86_64'
|
||||
|
||||
@@ -1 +1 @@
|
||||
cuda-python == 11.7; platform_machine == 'aarch64'
|
||||
cuda-python == 11.7; platform_machine == 'aarch64'
|
||||
@@ -1,5 +1,10 @@
|
||||
# Website
|
||||
|
||||
This website is built using [Docusaurus 2](https://v2.docusaurus.io/), a modern static website generator.
|
||||
This website is built using [Docusaurus 3.5](https://docusaurus.io/docs), a modern static website generator.
|
||||
|
||||
For installation and contributing instructions, please follow the [Contributing Docs](https://docs.frigate.video/development/contributing).
|
||||
|
||||
# Development
|
||||
|
||||
1. Run `npm i` to install dependencies
|
||||
2. Run `npm run start` to start the website
|
||||
|
||||
@@ -174,7 +174,7 @@ NOTE: The folder that is set for the config needs to be the folder that contains
|
||||
|
||||
### Custom go2rtc version
|
||||
|
||||
Frigate currently includes go2rtc v1.9.4, there may be certain cases where you want to run a different version of go2rtc.
|
||||
Frigate currently includes go2rtc v1.9.2, there may be certain cases where you want to run a different version of go2rtc.
|
||||
|
||||
To do this:
|
||||
|
||||
@@ -183,7 +183,7 @@ To do this:
|
||||
3. Give `go2rtc` execute permission.
|
||||
4. Restart Frigate and the custom version will be used, you can verify by checking go2rtc logs.
|
||||
|
||||
## Validating your config.yaml file updates
|
||||
## Validating your config.yml file updates
|
||||
|
||||
When frigate starts up, it checks whether your config file is valid, and if it is not, the process exits. To minimize interruptions when updating your config, you have three options -- you can edit the config via the WebUI which has built in validation, use the config API, or you can validate on the command line using the frigate docker container.
|
||||
|
||||
@@ -211,5 +211,5 @@ docker run \
|
||||
--entrypoint python3 \
|
||||
ghcr.io/blakeblackshear/frigate:stable \
|
||||
-u -m frigate \
|
||||
--validate_config
|
||||
--validate-config
|
||||
```
|
||||
|
||||
@@ -26,7 +26,7 @@ In the event that you are locked out of your instance, you can tell Frigate to r
|
||||
|
||||
## Login failure rate limiting
|
||||
|
||||
In order to limit the risk of brute force attacks, rate limiting is available for login failures. This is implemented with Flask-Limiter, and the string notation for valid values is available in [the documentation](https://flask-limiter.readthedocs.io/en/stable/configuration.html#rate-limit-string-notation).
|
||||
In order to limit the risk of brute force attacks, rate limiting is available for login failures. This is implemented with SlowApi, and the string notation for valid values is available in [the documentation](https://limits.readthedocs.io/en/stable/quickstart.html#examples).
|
||||
|
||||
For example, `1/second;5/minute;20/hour` will rate limit the login endpoint when failures occur more than:
|
||||
|
||||
|
||||
@@ -41,6 +41,7 @@ cameras:
|
||||
...
|
||||
onvif:
|
||||
# Required: host of the camera being connected to.
|
||||
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
|
||||
host: 0.0.0.0
|
||||
# Optional: ONVIF port for device (default: shown below).
|
||||
port: 8000
|
||||
@@ -49,6 +50,8 @@ cameras:
|
||||
user: admin
|
||||
# Optional: password for login.
|
||||
password: admin
|
||||
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
|
||||
tls_insecure: False
|
||||
# Optional: PTZ camera object autotracking. Keeps a moving object in
|
||||
# the center of the frame by automatically moving the PTZ camera.
|
||||
autotracking:
|
||||
|
||||
@@ -9,6 +9,12 @@ This page makes use of presets of FFmpeg args. For more information on presets,
|
||||
|
||||
:::
|
||||
|
||||
:::note
|
||||
|
||||
Many cameras support encoding options which greatly affect the live view experience, see the [Live view](/configuration/live) page for more info.
|
||||
|
||||
:::
|
||||
|
||||
## MJPEG Cameras
|
||||
|
||||
Note that mjpeg cameras require encoding the video into h264 for recording, and restream roles. This will use significantly more CPU than if the cameras supported h264 feeds directly. It is recommended to use the restream role to create an h264 restream and then use that as the source for ffmpeg.
|
||||
@@ -61,14 +67,15 @@ ffmpeg:
|
||||
|
||||
### Annke C800
|
||||
|
||||
This camera is H.265 only. To be able to play clips on some devices (like MacOs or iPhone) the H.265 stream has to be repackaged and the audio stream has to be converted to aac. Unfortunately direct playback of in the browser is not working (yet), but the downloaded clip can be played locally.
|
||||
This camera is H.265 only. To be able to play clips on some devices (like MacOs or iPhone) the H.265 stream has to be adjusted using the `apple_compatibility` config.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
annkec800: # <------ Name the camera
|
||||
ffmpeg:
|
||||
apple_compatibility: true # <- Adds compatibility with MacOS and iPhone
|
||||
output_args:
|
||||
record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c:v copy -tag:v hvc1 -bsf:v hevc_mp4toannexb -c:a aac
|
||||
record: preset-record-generic-audio-aac
|
||||
|
||||
inputs:
|
||||
- path: rtsp://user:password@camera-ip:554/H264/ch1/main/av_stream # <----- Update for your camera
|
||||
@@ -150,7 +157,9 @@ cameras:
|
||||
|
||||
#### Reolink Doorbell
|
||||
|
||||
The reolink doorbell supports 2-way audio via go2rtc and other applications. It is important that the http-flv stream is still used for stability, a secondary rtsp stream can be added that will be using for the two way audio only.
|
||||
The reolink doorbell supports two way audio via go2rtc and other applications. It is important that the http-flv stream is still used for stability, a secondary rtsp stream can be added that will be using for the two way audio only.
|
||||
|
||||
Ensure HTTP is enabled in the camera's advanced network settings. To use two way talk with Frigate, see the [Live view documentation](/configuration/live#two-way-talk).
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
@@ -175,7 +184,7 @@ go2rtc:
|
||||
- rtspx://192.168.1.1:7441/abcdefghijk
|
||||
```
|
||||
|
||||
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-rtsp)
|
||||
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-rtsp)
|
||||
|
||||
In the Unifi 2.0 update Unifi Protect Cameras had a change in audio sample rate which causes issues for ffmpeg. The input rate needs to be set for record if used directly with unifi protect.
|
||||
|
||||
|
||||
@@ -79,29 +79,41 @@ cameras:
|
||||
|
||||
If the ONVIF connection is successful, PTZ controls will be available in the camera's WebUI.
|
||||
|
||||
:::tip
|
||||
|
||||
If your ONVIF camera does not require authentication credentials, you may still need to specify an empty string for `user` and `password`, eg: `user: ""` and `password: ""`.
|
||||
|
||||
:::
|
||||
|
||||
An ONVIF-capable camera that supports relative movement within the field of view (FOV) can also be configured to automatically track moving objects and keep them in the center of the frame. For autotracking setup, see the [autotracking](autotracking.md) docs.
|
||||
|
||||
## ONVIF PTZ camera recommendations
|
||||
|
||||
This list of working and non-working PTZ cameras is based on user feedback.
|
||||
|
||||
| Brand or specific camera | PTZ Controls | Autotracking | Notes |
|
||||
| ------------------------ | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
|
||||
| Amcrest ASH21 | ❌ | ❌ | No ONVIF support |
|
||||
| Ctronics PTZ | ✅ | ❌ | |
|
||||
| Dahua | ✅ | ✅ | |
|
||||
| Foscam R5 | ✅ | ❌ | |
|
||||
| Hanwha XNP-6550RH | ✅ | ❌ | |
|
||||
| Hikvision | ✅ | ❌ | Incomplete ONVIF support (MoveStatus won't update even on latest firmware) - reported with HWP-N4215IH-DE and DS-2DE3304W-DE, but likely others |
|
||||
| Reolink 511WA | ✅ | ❌ | Zoom only |
|
||||
| Reolink E1 Pro | ✅ | ❌ | |
|
||||
| Reolink E1 Zoom | ✅ | ❌ | |
|
||||
| Reolink RLC-823A 16x | ✅ | ❌ | |
|
||||
| Sunba 405-D20X | ✅ | ❌ | |
|
||||
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |
|
||||
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
|
||||
| Vikylin PTZ-2804X-I2 | ❌ | ❌ | Incomplete ONVIF support |
|
||||
| Brand or specific camera | PTZ Controls | Autotracking | Notes |
|
||||
| ---------------------------- | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
|
||||
| Amcrest ASH21 | ✅ | ❌ | ONVIF service port: 80 |
|
||||
| Amcrest IP4M-S2112EW-AI | ✅ | ❌ | FOV relative movement not supported. |
|
||||
| Amcrest IP5M-1190EW | ✅ | ❌ | ONVIF Port: 80. FOV relative movement not supported. |
|
||||
| Ctronics PTZ | ✅ | ❌ | |
|
||||
| Dahua | ✅ | ✅ | |
|
||||
| Dahua DH-SD2A500HB | ✅ | ❌ | |
|
||||
| Foscam R5 | ✅ | ❌ | |
|
||||
| Hanwha XNP-6550RH | ✅ | ❌ | |
|
||||
| Hikvision | ✅ | ❌ | Incomplete ONVIF support (MoveStatus won't update even on latest firmware) - reported with HWP-N4215IH-DE and DS-2DE3304W-DE, but likely others |
|
||||
| Hikvision DS-2DE3A404IWG-E/W | ✅ | ✅ | |
|
||||
| Reolink 511WA | ✅ | ❌ | Zoom only |
|
||||
| Reolink E1 Pro | ✅ | ❌ | |
|
||||
| Reolink E1 Zoom | ✅ | ❌ | |
|
||||
| Reolink RLC-823A 16x | ✅ | ❌ | |
|
||||
| Speco O8P32X | ✅ | ❌ | |
|
||||
| Sunba 405-D20X | ✅ | ❌ | Incomplete ONVIF support reported on original, and 4k models. All models are suspected incompatable. |
|
||||
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |
|
||||
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
|
||||
| Uniview IPC6612SR-X33-VG | ✅ | ✅ | Leave `calibrate_on_startup` as `False`. A user has reported that zooming with `absolute` is working. |
|
||||
| Vikylin PTZ-2804X-I2 | ❌ | ❌ | Incomplete ONVIF support |
|
||||
|
||||
## Setting up camera groups
|
||||
|
||||
|
||||
35
docs/docs/configuration/face_recognition.md
Normal file
@@ -0,0 +1,35 @@
|
||||
---
|
||||
id: face_recognition
|
||||
title: Face Recognition
|
||||
---
|
||||
|
||||
Face recognition allows people to be assigned names and when their face is recognized Frigate will assign the person's name as a sub label. This information is included in the UI, filters, as well as in notifications.
|
||||
|
||||
Frigate has support for FaceNet to create face embeddings, which runs locally. Embeddings are then saved to Frigate's database.
|
||||
|
||||
## Minimum System Requirements
|
||||
|
||||
Face recognition works by running a large AI model locally on your system. Systems without a GPU will not run Face Recognition reliably or at all.
|
||||
|
||||
## Configuration
|
||||
|
||||
Face recognition is disabled by default and requires semantic search to be enabled, face recognition must be enabled in your config file before it can be used. Semantic Search and face recognition are global configuration settings.
|
||||
|
||||
```yaml
|
||||
face_recognition:
|
||||
enabled: true
|
||||
```
|
||||
|
||||
## Dataset
|
||||
|
||||
The number of images needed for a sufficient training set for face recognition varies depending on several factors:
|
||||
|
||||
- Complexity of the task: A simple task like recognizing faces of known individuals may require fewer images than a complex task like identifying unknown individuals in a large crowd.
|
||||
- Diversity of the dataset: A dataset with diverse images, including variations in lighting, pose, and facial expressions, will require fewer images per person than a less diverse dataset.
|
||||
- Desired accuracy: The higher the desired accuracy, the more images are typically needed.
|
||||
|
||||
However, here are some general guidelines:
|
||||
|
||||
- Minimum: For basic face recognition tasks, a minimum of 10-20 images per person is often recommended.
|
||||
- Recommended: For more robust and accurate systems, 30-50 images per person is a good starting point.
|
||||
- Ideal: For optimal performance, especially in challenging conditions, 100 or more images per person can be beneficial.
|
||||
@@ -3,9 +3,15 @@ id: genai
|
||||
title: Generative AI
|
||||
---
|
||||
|
||||
Generative AI can be used to automatically generate descriptions based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate by providing detailed text descriptions as a basis of the search query.
|
||||
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
|
||||
|
||||
Semantic Search must be enabled to use Generative AI. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
|
||||
Requests for a description are sent off automatically to your AI provider at the end of the tracked object's lifecycle. Descriptions can also be regenerated manually via the Frigate UI.
|
||||
|
||||
:::info
|
||||
|
||||
Semantic Search must be enabled to use Generative AI.
|
||||
|
||||
:::
|
||||
|
||||
## Configuration
|
||||
|
||||
@@ -29,11 +35,21 @@ cameras:
|
||||
|
||||
## Ollama
|
||||
|
||||
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance. Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [docker container](https://hub.docker.com/r/ollama/ollama) available.
|
||||
:::warning
|
||||
|
||||
Using Ollama on CPU is not recommended, high inference times make using Generative AI impractical.
|
||||
|
||||
:::
|
||||
|
||||
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
|
||||
|
||||
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
|
||||
|
||||
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`.
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`. Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull llava:7b` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
|
||||
|
||||
:::note
|
||||
|
||||
@@ -48,7 +64,7 @@ genai:
|
||||
enabled: True
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: llava
|
||||
model: llava:7b
|
||||
```
|
||||
|
||||
## Google Gemini
|
||||
@@ -100,12 +116,44 @@ genai:
|
||||
model: gpt-4o
|
||||
```
|
||||
|
||||
## Azure OpenAI
|
||||
|
||||
Microsoft offers several vision models through Azure OpenAI. A subscription is required.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models). At the time of writing, this includes `gpt-4o` and `gpt-4-turbo`.
|
||||
|
||||
### Create Resource and Get API Key
|
||||
|
||||
To start using Azure OpenAI, you must first [create a resource](https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource). You'll need your API key and resource URL, which must include the `api-version` parameter (see the example below). The model field is not required in your configuration as the model is part of the deployment name you chose when deploying the resource.
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: azure_openai
|
||||
base_url: https://example-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2023-03-15-preview
|
||||
api_key: "{FRIGATE_OPENAI_API_KEY}"
|
||||
```
|
||||
|
||||
## Usage and Best Practices
|
||||
|
||||
Frigate's thumbnail search excels at identifying specific details about tracked objects – for example, using an "image caption" approach to find a "person wearing a yellow vest," "a white dog running across the lawn," or "a red car on a residential street." To enhance this further, Frigate’s default prompts are designed to ask your AI provider about the intent behind the object's actions, rather than just describing its appearance.
|
||||
|
||||
While generating simple descriptions of detected objects is useful, understanding intent provides a deeper layer of insight. Instead of just recognizing "what" is in a scene, Frigate’s default prompts aim to infer "why" it might be there or "what" it could do next. Descriptions tell you what’s happening, but intent gives context. For instance, a person walking toward a door might seem like a visitor, but if they’re moving quickly after hours, you can infer a potential break-in attempt. Detecting a person loitering near a door at night can trigger an alert sooner than simply noting "a person standing by the door," helping you respond based on the situation’s context.
|
||||
|
||||
### Using GenAI for notifications
|
||||
|
||||
Frigate provides an [MQTT topic](/integrations/mqtt), `frigate/tracked_object_update`, that is updated with a JSON payload containing `event_id` and `description` when your AI provider returns a description for a tracked object. This description could be used directly in notifications, such as sending alerts to your phone or making audio announcements. If additional details from the tracked object are needed, you can query the [HTTP API](/integrations/api/event-events-event-id-get) using the `event_id`, eg: `http://frigate_ip:5000/api/events/<event_id>`.
|
||||
|
||||
## Custom Prompts
|
||||
|
||||
Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows:
|
||||
|
||||
```
|
||||
Describe the {label} in the sequence of images with as much detail as possible. Do not describe the background.
|
||||
Analyze the sequence of images containing the {label}. Focus on the likely intent or behavior of the {label} based on its actions and movement, rather than describing its appearance or the surroundings. Consider what the {label} is doing, why, and what it might do next.
|
||||
```
|
||||
|
||||
:::tip
|
||||
@@ -122,22 +170,30 @@ genai:
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: llava
|
||||
prompt: "Describe the {label} in these images from the {camera} security camera."
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."
|
||||
object_prompts:
|
||||
person: "Describe the main person in these images (gender, age, clothing, activity, etc). Do not include where the activity is occurring (sidewalk, concrete, driveway, etc)."
|
||||
car: "Label the primary vehicle in these images with just the name of the company if it is a delivery vehicle, or the color make and model."
|
||||
person: "Examine the main person in these images. What are they doing and what might their actions suggest about their intent (e.g., approaching a door, leaving an area, standing still)? Do not describe the surroundings or static details."
|
||||
car: "Observe the primary vehicle in these images. Focus on its movement, direction, or purpose (e.g., parking, approaching, circling). If it's a delivery vehicle, mention the company."
|
||||
```
|
||||
|
||||
Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire.
|
||||
Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire. By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones.
|
||||
|
||||
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
front_door:
|
||||
genai:
|
||||
prompt: "Describe the {label} in these images from the {camera} security camera at the front door of a house, aimed outward toward the street."
|
||||
use_snapshot: True
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera at the front door. Focus on the actions and potential intent of the {label}."
|
||||
object_prompts:
|
||||
person: "Describe the main person in these images (gender, age, clothing, activity, etc). Do not include where the activity is occurring (sidewalk, concrete, driveway, etc). If delivering a package, include the company the package is from."
|
||||
cat: "Describe the cat in these images (color, size, tail). Indicate whether or not the cat is by the flower pots. If the cat is chasing a mouse, make up a name for the mouse."
|
||||
person: "Examine the person in these images. What are they doing, and how might their actions suggest their purpose (e.g., delivering something, approaching, leaving)? If they are carrying or interacting with a package, include details about its source or destination."
|
||||
cat: "Observe the cat in these images. Focus on its movement and intent (e.g., wandering, hunting, interacting with objects). If the cat is near the flower pots or engaging in any specific actions, mention it."
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
required_zones:
|
||||
- steps
|
||||
```
|
||||
|
||||
### Experiment with prompts
|
||||
|
||||
@@ -65,6 +65,8 @@ Or map in all the `/dev/video*` devices.
|
||||
|
||||
## Intel-based CPUs
|
||||
|
||||
:::info
|
||||
|
||||
**Recommended hwaccel Preset**
|
||||
|
||||
| CPU Generation | Intel Driver | Recommended Preset | Notes |
|
||||
@@ -74,11 +76,13 @@ Or map in all the `/dev/video*` devices.
|
||||
| gen13+ | iHD / Xe | preset-intel-qsv-* | |
|
||||
| Intel Arc GPU | iHD / Xe | preset-intel-qsv-* | |
|
||||
|
||||
:::
|
||||
|
||||
:::note
|
||||
|
||||
The default driver is `iHD`. You may need to change the driver to `i965` by adding the following environment variable `LIBVA_DRIVER_NAME=i965` to your docker-compose file or [in the `frigate.yaml` for HA OS users](advanced.md#environment_vars).
|
||||
|
||||
See [The Intel Docs](https://www.intel.com/content/www/us/en/support/articles/000005505/processors.html to figure out what generation your CPU is.)
|
||||
See [The Intel Docs](https://www.intel.com/content/www/us/en/support/articles/000005505/processors.html) to figure out what generation your CPU is.
|
||||
|
||||
:::
|
||||
|
||||
@@ -171,6 +175,16 @@ For more information on the various values across different distributions, see h
|
||||
|
||||
Depending on your OS and kernel configuration, you may need to change the `/proc/sys/kernel/perf_event_paranoid` kernel tunable. You can test the change by running `sudo sh -c 'echo 2 >/proc/sys/kernel/perf_event_paranoid'` which will persist until a reboot. Make it permanent by running `sudo sh -c 'echo kernel.perf_event_paranoid=2 >> /etc/sysctl.d/local.conf'`
|
||||
|
||||
#### Stats for SR-IOV devices
|
||||
|
||||
When using virtualized GPUs via SR-IOV, additional args are needed for GPU stats to function. This can be enabled with the following config:
|
||||
|
||||
```yaml
|
||||
telemetry:
|
||||
stats:
|
||||
sriov: True
|
||||
```
|
||||
|
||||
## AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver
|
||||
|
||||
VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams.
|
||||
@@ -227,28 +241,11 @@ docker run -d \
|
||||
|
||||
### Setup Decoder
|
||||
|
||||
The decoder you need to pass in the `hwaccel_args` will depend on the input video.
|
||||
|
||||
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get the ones your card supports)
|
||||
|
||||
```
|
||||
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
|
||||
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
|
||||
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
|
||||
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
|
||||
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
|
||||
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
|
||||
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
|
||||
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
|
||||
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
|
||||
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
|
||||
```
|
||||
|
||||
For example, for H264 video, you'll select `preset-nvidia-h264`.
|
||||
Using `preset-nvidia` ffmpeg will automatically select the necessary profile for the incoming video, and will log an error if the profile is not supported by your GPU.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args: preset-nvidia-h264
|
||||
hwaccel_args: preset-nvidia
|
||||
```
|
||||
|
||||
If everything is working correctly, you should see a significant improvement in performance.
|
||||
@@ -379,7 +376,7 @@ Make sure to follow the [Rockchip specific installation instructions](/frigate/i
|
||||
|
||||
### Configuration
|
||||
|
||||
Add one of the following FFmpeg presets to your `config.yaml` to enable hardware video processing:
|
||||
Add one of the following FFmpeg presets to your `config.yml` to enable hardware video processing:
|
||||
|
||||
```yaml
|
||||
# if you try to decode a h264 encoded stream
|
||||
|
||||
@@ -203,14 +203,13 @@ detectors:
|
||||
ov:
|
||||
type: openvino
|
||||
device: AUTO
|
||||
model:
|
||||
path: /openvino-model/ssdlite_mobilenet_v2.xml
|
||||
|
||||
model:
|
||||
width: 300
|
||||
height: 300
|
||||
input_tensor: nhwc
|
||||
input_pixel_format: bgr
|
||||
path: /openvino-model/ssdlite_mobilenet_v2.xml
|
||||
labelmap_path: /openvino-model/coco_91cl_bkgr.txt
|
||||
|
||||
record:
|
||||
|
||||
45
docs/docs/configuration/license_plate_recognition.md
Normal file
@@ -0,0 +1,45 @@
|
||||
---
|
||||
id: license_plate_recognition
|
||||
title: License Plate Recognition (LPR)
|
||||
---
|
||||
|
||||
Frigate can recognize license plates on vehicles and automatically add the detected characters as a `sub_label` to objects that are of type `car`. A common use case may be to read the license plates of cars pulling into a driveway or cars passing by on a street with a dedicated LPR camera.
|
||||
|
||||
Users running a Frigate+ model should ensure that `license_plate` is added to the [list of objects to track](https://docs.frigate.video/plus/#available-label-types) either globally or for a specific camera. This will improve the accuracy and performance of the LPR model.
|
||||
|
||||
LPR is most effective when the vehicle’s license plate is fully visible to the camera. For moving vehicles, Frigate will attempt to read the plate continuously, refining its detection and keeping the most confident result. LPR will not run on stationary vehicles.
|
||||
|
||||
## Minimum System Requirements
|
||||
|
||||
License plate recognition works by running AI models locally on your system. The models are relatively lightweight and run on your CPU. At least 4GB of RAM is required.
|
||||
|
||||
## Configuration
|
||||
|
||||
License plate recognition is disabled by default. Enable it in your config file:
|
||||
|
||||
```yaml
|
||||
lpr:
|
||||
enabled: true
|
||||
```
|
||||
|
||||
## Advanced Configuration
|
||||
|
||||
Several options are available to fine-tune the LPR feature. For example, you can adjust the `min_area` setting, which defines the minimum size in pixels a license plate must be before LPR runs. The default is 500 pixels.
|
||||
|
||||
Additionally, you can define `known_plates` as strings or regular expressions, allowing Frigate to label tracked vehicles with custom sub_labels when a recognized plate is detected. This information is then accessible in the UI, filters, and notifications.
|
||||
|
||||
```yaml
|
||||
lpr:
|
||||
enabled: true
|
||||
min_area: 500
|
||||
known_plates:
|
||||
Wife's Car:
|
||||
- "ABC-1234"
|
||||
- "ABC-I234"
|
||||
Johnny:
|
||||
- "J*N-*234" # Using wildcards for H/M and 1/I
|
||||
Sally:
|
||||
- "[S5]LL-1234" # Matches SLL-1234 and 5LL-1234
|
||||
```
|
||||
|
||||
In this example, "Wife's Car" will appear as the label for any vehicle matching the plate "ABC-1234." The model might occasionally interpret the digit 1 as a capital I (e.g., "ABC-I234"), so both variations are listed. Similarly, multiple possible variations are specified for Johnny and Sally.
|
||||
@@ -11,15 +11,25 @@ Frigate intelligently uses three different streaming technologies to display you
|
||||
|
||||
The jsmpeg live view will use more browser and client GPU resources. Using go2rtc is highly recommended and will provide a superior experience.
|
||||
|
||||
| Source | Latency | Frame Rate | Resolution | Audio | Requires go2rtc | Other Limitations |
|
||||
| ------ | ------- | ------------------------------------- | ---------- | ---------------------------- | --------------- | ------------------------------------------------------------------------------------ |
|
||||
| jsmpeg | low | same as `detect -> fps`, capped at 10 | 720p | no | no | resolution is configurable, but go2rtc is recommended if you want higher resolutions |
|
||||
| mse | low | native | native | yes (depends on audio codec) | yes | iPhone requires iOS 17.1+, Firefox is h.264 only |
|
||||
| webrtc | lowest | native | native | yes (depends on audio codec) | yes | requires extra config, doesn't support h.265 |
|
||||
| Source | Frame Rate | Resolution | Audio | Requires go2rtc | Notes |
|
||||
| ------ | ------------------------------------- | ---------- | ---------------------------- | --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| jsmpeg | same as `detect -> fps`, capped at 10 | 720p | no | no | Resolution is configurable, but go2rtc is recommended if you want higher resolutions and better frame rates. jsmpeg is Frigate's default without go2rtc configured. |
|
||||
| mse | native | native | yes (depends on audio codec) | yes | iPhone requires iOS 17.1+, Firefox is h.264 only. This is Frigate's default when go2rtc is configured. |
|
||||
| webrtc | native | native | yes (depends on audio codec) | yes | Requires extra configuration, doesn't support h.265. Frigate attempts to use WebRTC when MSE fails or when using a camera's two-way talk feature. |
|
||||
|
||||
### Camera Settings Recommendations
|
||||
|
||||
If you are using go2rtc, you should adjust the following settings in your camera's firmware for the best experience with Live view:
|
||||
|
||||
- Video codec: **H.264** - provides the most compatible video codec with all Live view technologies and browsers. Avoid any kind of "smart codec" or "+" codec like _H.264+_ or _H.265+_. as these non-standard codecs remove keyframes (see below).
|
||||
- Audio codec: **AAC** - provides the most compatible audio codec with all Live view technologies and browsers that support audio.
|
||||
- I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes. For many users this may not be an issue, but it should be noted that that a 1x i-frame interval will cause more storage utilization if you are using the stream for the `record` role as well.
|
||||
|
||||
The default video and audio codec on your camera may not always be compatible with your browser, which is why setting them to H.264 and AAC is recommended. See the [go2rtc docs](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#codecs-madness) for codec support information.
|
||||
|
||||
### Audio Support
|
||||
|
||||
MSE Requires AAC audio, WebRTC requires PCMU/PCMA, or opus audio. If you want to support both MSE and WebRTC then your restream config needs to make sure both are enabled.
|
||||
MSE Requires PCMA/PCMU or AAC audio, WebRTC requires PCMA/PCMU or opus audio. If you want to support both MSE and WebRTC then your restream config needs to make sure both are enabled.
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
@@ -32,6 +42,15 @@ go2rtc:
|
||||
- "ffmpeg:http_cam#audio=opus" # <- copy of the stream which transcodes audio to the missing codec (usually will be opus)
|
||||
```
|
||||
|
||||
If your camera does not have audio and you are having problems with Live view, you should have go2rtc send video only:
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
no_audio_camera:
|
||||
- ffmpeg:rtsp://192.168.1.5:554/live0#video=copy
|
||||
```
|
||||
|
||||
### Setting Stream For Live UI
|
||||
|
||||
There may be some cameras that you would prefer to use the sub stream for live view, but the main stream for recording. This can be done via `live -> stream_name`.
|
||||
@@ -119,3 +138,13 @@ services:
|
||||
:::
|
||||
|
||||
See [go2rtc WebRTC docs](https://github.com/AlexxIT/go2rtc/tree/v1.8.3#module-webrtc) for more information about this.
|
||||
|
||||
### Two way talk
|
||||
|
||||
For devices that support two way talk, Frigate can be configured to use the feature from the camera's Live view in the Web UI. You should:
|
||||
|
||||
- Set up go2rtc with [WebRTC](#webrtc-extra-configuration).
|
||||
- Ensure you access Frigate via https (may require [opening port 8971](/frigate/installation/#ports)).
|
||||
- For the Home Assistant Frigate card, [follow the docs](https://github.com/dermotduffy/frigate-hass-card?tab=readme-ov-file#using-2-way-audio) for the correct source.
|
||||
|
||||
To use the Reolink Doorbell with two way talk, you should use the [recommended Reolink configuration](/configuration/camera_specific#reolink-doorbell)
|
||||
|
||||
@@ -92,10 +92,16 @@ motion:
|
||||
lightning_threshold: 0.8
|
||||
```
|
||||
|
||||
:::tip
|
||||
:::warning
|
||||
|
||||
Some cameras like doorbell cameras may have missed detections when someone walks directly in front of the camera and the lightning_threshold causes motion detection to be re-calibrated. In this case, it may be desirable to increase the `lightning_threshold` to ensure these objects are not missed.
|
||||
|
||||
:::
|
||||
|
||||
:::note
|
||||
|
||||
Lightning threshold does not stop motion based recordings from being saved.
|
||||
|
||||
:::
|
||||
|
||||
Large changes in motion like PTZ moves and camera switches between Color and IR mode should result in no motion detection. This is done via the `lightning_threshold` configuration. It is defined as the percentage of the image used to detect lightning or other substantial changes where motion detection needs to recalibrate. Increasing this value will make motion detection more likely to consider lightning or IR mode changes as valid motion. Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching a doorbell camera.
|
||||
|
||||
@@ -5,6 +5,8 @@ title: Object Detectors
|
||||
|
||||
# Supported Hardware
|
||||
|
||||
:::info
|
||||
|
||||
Frigate supports multiple different detectors that work on different types of hardware:
|
||||
|
||||
**Most Hardware**
|
||||
@@ -20,43 +22,20 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
- [ONNX](#onnx): OpenVINO will automatically be detected and used as a detector in the default Frigate image when a supported ONNX model is configured.
|
||||
|
||||
**Nvidia**
|
||||
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs, using one of many default models.
|
||||
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` Frigate image when a supported ONNX model is configured.
|
||||
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs and Jetson devices, using one of many default models.
|
||||
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` or `-tensorrt-jp(4/5)` Frigate images when a supported ONNX model is configured.
|
||||
|
||||
**Rockchip**
|
||||
- [RKNN](#rockchip-platform): RKNN models can run on Rockchip devices with included NPUs.
|
||||
|
||||
# Officially Supported Detectors
|
||||
|
||||
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, `tensorrt`, `rknn`, and `hailo8l`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
|
||||
|
||||
## CPU Detector (not recommended)
|
||||
|
||||
The CPU detector type runs a TensorFlow Lite model utilizing the CPU without hardware acceleration. It is recommended to use a hardware accelerated detector type instead for better performance. To configure a CPU based detector, set the `"type"` attribute to `"cpu"`.
|
||||
|
||||
:::tip
|
||||
|
||||
If you do not have GPU or Edge TPU hardware, using the [OpenVINO Detector](#openvino-detector) is often more efficient than using the CPU detector.
|
||||
**For Testing**
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
|
||||
:::
|
||||
|
||||
The number of threads used by the interpreter can be specified using the `"num_threads"` attribute, and defaults to `3.`
|
||||
# Officially Supported Detectors
|
||||
|
||||
A TensorFlow Lite model is provided in the container at `/cpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
cpu1:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
model:
|
||||
path: "/custom_model.tflite"
|
||||
cpu2:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
```
|
||||
|
||||
When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.
|
||||
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `hailo8l`, `onnx`, `openvino`, `rknn`, `rocm`, and `tensorrt`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
|
||||
|
||||
## Edge TPU Detector
|
||||
|
||||
@@ -165,7 +144,9 @@ detectors:
|
||||
|
||||
#### SSDLite MobileNet v2
|
||||
|
||||
An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model. Use the model configuration shown below when using the OpenVINO detector with the default model.
|
||||
An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model.
|
||||
|
||||
Use the model configuration shown below when using the OpenVINO detector with the default OpenVINO model:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
@@ -188,7 +169,7 @@ This detector also supports YOLOX. Frigate does not come with any YOLOX models p
|
||||
|
||||
#### YOLO-NAS
|
||||
|
||||
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. You can build and download a compatible model with pre-trained weights using [this notebook](https://github.com/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb) [](https://colab.research.google.com/github/blakeblackshear/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb).
|
||||
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. You can build and download a compatible model with pre-trained weights using [this notebook](https://github.com/blakeblackshear/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb) [](https://colab.research.google.com/github/blakeblackshear/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb).
|
||||
|
||||
:::warning
|
||||
|
||||
@@ -244,7 +225,7 @@ The model used for TensorRT must be preprocessed on the same hardware platform t
|
||||
|
||||
The Frigate image will generate model files during startup if the specified model is not found. Processed models are stored in the `/config/model_cache` folder. Typically the `/config` path is mapped to a directory on the host already and the `model_cache` does not need to be mapped separately unless the user wants to store it in a different location on the host.
|
||||
|
||||
By default, the `yolov7-320` model will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. To select no model generation, set the variable to an empty string, `YOLO_MODELS=""`. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder.
|
||||
By default, no models will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder.
|
||||
|
||||
If you have a Jetson device with DLAs (Xavier or Orin), you can generate a model that will run on the DLA by appending `-dla` to your model name, e.g. specify `YOLO_MODELS=yolov7-320-dla`. The model will run on DLA0 (Frigate does not currently support DLA1). DLA-incompatible layers will fall back to running on the GPU.
|
||||
|
||||
@@ -275,6 +256,7 @@ yolov4x-mish-640
|
||||
yolov7-tiny-288
|
||||
yolov7-tiny-416
|
||||
yolov7-640
|
||||
yolov7-416
|
||||
yolov7-320
|
||||
yolov7x-640
|
||||
yolov7x-320
|
||||
@@ -285,7 +267,7 @@ An example `docker-compose.yml` fragment that converts the `yolov4-608` and `yol
|
||||
```yml
|
||||
frigate:
|
||||
environment:
|
||||
- YOLO_MODELS=yolov4-608,yolov7x-640
|
||||
- YOLO_MODELS=yolov7-320,yolov7x-640
|
||||
- USE_FP16=false
|
||||
```
|
||||
|
||||
@@ -303,6 +285,8 @@ The TensorRT detector can be selected by specifying `tensorrt` as the model type
|
||||
|
||||
The TensorRT detector uses `.trt` model files that are located in `/config/model_cache/tensorrt` by default. These model path and dimensions used will depend on which model you have generated.
|
||||
|
||||
Use the config below to work with generated TRT models:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
tensorrt:
|
||||
@@ -418,7 +402,7 @@ After placing the downloaded onnx model in your config folder, you can use the f
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
onnx:
|
||||
rocm:
|
||||
type: rocm
|
||||
|
||||
model:
|
||||
@@ -436,6 +420,24 @@ Note that the labelmap uses a subset of the complete COCO label set that has onl
|
||||
|
||||
ONNX is an open format for building machine learning models, Frigate supports running ONNX models on CPU, OpenVINO, and TensorRT. On startup Frigate will automatically try to use a GPU if one is available.
|
||||
|
||||
:::info
|
||||
|
||||
If the correct build is used for your GPU then the GPU will be detected and used automatically.
|
||||
|
||||
- **AMD**
|
||||
|
||||
- ROCm will automatically be detected and used with the ONNX detector in the `-rocm` Frigate image.
|
||||
|
||||
- **Intel**
|
||||
|
||||
- OpenVINO will automatically be detected and used with the ONNX detector in the default Frigate image.
|
||||
|
||||
- **Nvidia**
|
||||
- Nvidia GPUs will automatically be detected and used with the ONNX detector in the `-tensorrt` Frigate image.
|
||||
- Jetson devices will automatically be detected and used with the ONNX detector in the `-tensorrt-jp(4/5)` Frigate image.
|
||||
|
||||
:::
|
||||
|
||||
:::tip
|
||||
|
||||
When using many cameras one detector may not be enough to keep up. Multiple detectors can be defined assuming GPU resources are available. An example configuration would be:
|
||||
@@ -478,12 +480,42 @@ model:
|
||||
width: 320 # <--- should match whatever was set in notebook
|
||||
height: 320 # <--- should match whatever was set in notebook
|
||||
input_pixel_format: bgr
|
||||
input_tensor: nchw
|
||||
path: /config/yolo_nas_s.onnx
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
## CPU Detector (not recommended)
|
||||
|
||||
The CPU detector type runs a TensorFlow Lite model utilizing the CPU without hardware acceleration. It is recommended to use a hardware accelerated detector type instead for better performance. To configure a CPU based detector, set the `"type"` attribute to `"cpu"`.
|
||||
|
||||
:::danger
|
||||
|
||||
The CPU detector is not recommended for general use. If you do not have GPU or Edge TPU hardware, using the [OpenVINO Detector](#openvino-detector) in CPU mode is often more efficient than using the CPU detector.
|
||||
|
||||
:::
|
||||
|
||||
The number of threads used by the interpreter can be specified using the `"num_threads"` attribute, and defaults to `3.`
|
||||
|
||||
A TensorFlow Lite model is provided in the container at `/cpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
cpu1:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
cpu2:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
|
||||
model:
|
||||
path: "/custom_model.tflite"
|
||||
```
|
||||
|
||||
When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.
|
||||
|
||||
## Deepstack / CodeProject.AI Server Detector
|
||||
|
||||
The Deepstack / CodeProject.AI Server detector for Frigate allows you to integrate Deepstack and CodeProject.AI object detection capabilities into Frigate. CodeProject.AI and DeepStack are open-source AI platforms that can be run on various devices such as the Raspberry Pi, Nvidia Jetson, and other compatible hardware. It is important to note that the integration is performed over the network, so the inference times may not be as fast as native Frigate detectors, but it still provides an efficient and reliable solution for object detection and tracking.
|
||||
@@ -518,7 +550,7 @@ Hardware accelerated object detection is supported on the following SoCs:
|
||||
- RK3576
|
||||
- RK3588
|
||||
|
||||
This implementation uses the [Rockchip's RKNN-Toolkit2](https://github.com/airockchip/rknn-toolkit2/), version v2.0.0.beta0. Currently, only [Yolo-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) is supported as object detection model.
|
||||
This implementation uses the [Rockchip's RKNN-Toolkit2](https://github.com/airockchip/rknn-toolkit2/), version v2.3.0. Currently, only [Yolo-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) is supported as object detection model.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
@@ -591,7 +623,41 @@ $ cat /sys/kernel/debug/rknpu/load
|
||||
:::
|
||||
|
||||
- All models are automatically downloaded and stored in the folder `config/model_cache/rknn_cache`. After upgrading Frigate, you should remove older models to free up space.
|
||||
- You can also provide your own `.rknn` model. You should not save your own models in the `rknn_cache` folder, store them directly in the `model_cache` folder or another subfolder. To convert a model to `.rknn` format see the `rknn-toolkit2` (requires a x86 machine). Note, that there is only post-processing for the supported models.
|
||||
- You can also provide your own `.rknn` model. You should not save your own models in the `rknn_cache` folder, store them directly in the `model_cache` folder or another subfolder. To convert a model to `.rknn` format see the `rknn-toolkit2`. Note, that there is only post-processing for the supported models.
|
||||
|
||||
### Converting your own onnx model to rknn format
|
||||
|
||||
To convert a onnx model to the rknn format using the [rknn-toolkit2](https://github.com/airockchip/rknn-toolkit2/) you have to:
|
||||
|
||||
- Place one ore more models in onnx format in the directory `config/model_cache/rknn_cache/onnx` on your docker host (this might require `sudo` privileges).
|
||||
- Save the configuration file under `config/conv2rknn.yaml` (see below for details).
|
||||
- Run `docker exec <frigate_container_id> python3 /opt/conv2rknn.py`. If the conversion was successful, the rknn models will be placed in `config/model_cache/rknn_cache`.
|
||||
|
||||
This is an example configuration file that you need to adjust to your specific onnx model:
|
||||
|
||||
```yaml
|
||||
soc: ["rk3562","rk3566", "rk3568", "rk3576", "rk3588"]
|
||||
quantization: false
|
||||
|
||||
output_name: "{input_basename}"
|
||||
|
||||
config:
|
||||
mean_values: [[0, 0, 0]]
|
||||
std_values: [[255, 255, 255]]
|
||||
quant_img_rgb2bgr: true
|
||||
```
|
||||
|
||||
Explanation of the paramters:
|
||||
|
||||
- `soc`: A list of all SoCs you want to build the rknn model for. If you don't specify this parameter, the script tries to find out your SoC and builds the rknn model for this one.
|
||||
- `quantization`: true: 8 bit integer (i8) quantization, false: 16 bit float (fp16). Default: false.
|
||||
- `output_name`: The output name of the model. The following variables are available:
|
||||
- `quant`: "i8" or "fp16" depending on the config
|
||||
- `input_basename`: the basename of the input model (e.g. "my_model" if the input model is calles "my_model.onnx")
|
||||
- `soc`: the SoC this model was build for (e.g. "rk3588")
|
||||
- `tk_version`: Version of `rknn-toolkit2` (e.g. "2.3.0")
|
||||
- **example**: Specifying `output_name = "frigate-{quant}-{input_basename}-{soc}-v{tk_version}"` could result in a model called `frigate-i8-my_model-rk3588-v2.3.0.rknn`.
|
||||
- `config`: Configuration passed to `rknn-toolkit2` for model conversion. For an explanation of all available parameters have a look at section "2.2. Model configuration" of [this manual](https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.0/03_Rockchip_RKNPU_API_Reference_RKNN_Toolkit2_V2.3.0_EN.pdf).
|
||||
|
||||
## Hailo-8l
|
||||
|
||||
@@ -606,8 +672,6 @@ detectors:
|
||||
hailo8l:
|
||||
type: hailo8l
|
||||
device: PCIe
|
||||
model:
|
||||
path: /config/model_cache/h8l_cache/ssd_mobilenet_v1.hef
|
||||
|
||||
model:
|
||||
width: 300
|
||||
@@ -615,4 +679,5 @@ model:
|
||||
input_tensor: nhwc
|
||||
input_pixel_format: bgr
|
||||
model_type: ssd
|
||||
path: /config/model_cache/h8l_cache/ssd_mobilenet_v1.hef
|
||||
```
|
||||
|
||||
@@ -5,7 +5,7 @@ title: Available Objects
|
||||
|
||||
import labels from "../../../labelmap.txt";
|
||||
|
||||
Frigate includes the object models listed below from the Google Coral test data.
|
||||
Frigate includes the object labels listed below from the Google Coral test data.
|
||||
|
||||
Please note:
|
||||
|
||||
|
||||
24
docs/docs/configuration/pwa.md
Normal file
@@ -0,0 +1,24 @@
|
||||
---
|
||||
id: pwa
|
||||
title: Installing Frigate App
|
||||
---
|
||||
|
||||
Frigate supports being installed as a [Progressive Web App](https://web.dev/explore/progressive-web-apps) on Desktop, Android, and iOS.
|
||||
|
||||
This adds features including the ability to deep link directly into the app.
|
||||
|
||||
## Requirements
|
||||
|
||||
In order to install Frigate as a PWA, the following requirements must be met:
|
||||
|
||||
- Frigate must be accessed via a secure context (localhost, secure https, etc.)
|
||||
- On Android, Firefox, Chrome, Edge, Opera, and Samsung Internet Browser all support installing PWAs.
|
||||
- On iOS 16.4 and later, PWAs can be installed from the Share menu in Safari, Chrome, Edge, Firefox, and Orion.
|
||||
|
||||
## Installation
|
||||
|
||||
Installation varies slightly based on the device that is being used:
|
||||
|
||||
- Desktop: Use the install button typically found in right edge of the address bar
|
||||
- Android: Use the `Install as App` button in the more options menu
|
||||
- iOS: Use the `Add to Homescreen` button in the share menu
|
||||
@@ -154,7 +154,7 @@ Footage can be exported from Frigate by right-clicking (desktop) or long pressin
|
||||
|
||||
### Time-lapse export
|
||||
|
||||
Time lapse exporting is available only via the [HTTP API](../integrations/api.md#post-apiexportcamerastartstart-timestampendend-timestamp).
|
||||
Time lapse exporting is available only via the [HTTP API](../integrations/api/export-recording-export-camera-name-start-start-time-end-end-time-post.api.mdx).
|
||||
|
||||
When exporting a time-lapse the default speed-up is 25x with 30 FPS. This means that every 25 seconds of (real-time) recording is condensed into 1 second of time-lapse video (always without audio) with a smoothness of 30 FPS.
|
||||
|
||||
|
||||
@@ -52,7 +52,7 @@ detectors:
|
||||
# Required: name of the detector
|
||||
detector_name:
|
||||
# Required: type of the detector
|
||||
# Frigate provided types include 'cpu', 'edgetpu', 'openvino' and 'tensorrt' (default: shown below)
|
||||
# Frigate provides many types, see https://docs.frigate.video/configuration/object_detectors for more details (default: shown below)
|
||||
# Additional detector types can also be plugged in.
|
||||
# Detectors may require additional configuration.
|
||||
# Refer to the Detectors configuration page for more information.
|
||||
@@ -117,27 +117,39 @@ auth:
|
||||
hash_iterations: 600000
|
||||
|
||||
# Optional: model modifications
|
||||
# NOTE: The default values are for the EdgeTPU detector.
|
||||
# Other detectors will require the model config to be set.
|
||||
model:
|
||||
# Optional: path to the model (default: automatic based on detector)
|
||||
# Required: path to the model (default: automatic based on detector)
|
||||
path: /edgetpu_model.tflite
|
||||
# Optional: path to the labelmap (default: shown below)
|
||||
# Required: path to the labelmap (default: shown below)
|
||||
labelmap_path: /labelmap.txt
|
||||
# Required: Object detection model input width (default: shown below)
|
||||
width: 320
|
||||
# Required: Object detection model input height (default: shown below)
|
||||
height: 320
|
||||
# Optional: Object detection model input colorspace
|
||||
# Required: Object detection model input colorspace
|
||||
# Valid values are rgb, bgr, or yuv. (default: shown below)
|
||||
input_pixel_format: rgb
|
||||
# Optional: Object detection model input tensor format
|
||||
# Required: Object detection model input tensor format
|
||||
# Valid values are nhwc or nchw (default: shown below)
|
||||
input_tensor: nhwc
|
||||
# Optional: Object detection model type, currently only used with the OpenVINO detector
|
||||
# Required: Object detection model type, currently only used with the OpenVINO detector
|
||||
# Valid values are ssd, yolox, yolonas (default: shown below)
|
||||
model_type: ssd
|
||||
# Optional: Label name modifications. These are merged into the standard labelmap.
|
||||
# Required: Label name modifications. These are merged into the standard labelmap.
|
||||
labelmap:
|
||||
2: vehicle
|
||||
# Optional: Map of object labels to their attribute labels (default: depends on model)
|
||||
attributes_map:
|
||||
person:
|
||||
- amazon
|
||||
- face
|
||||
car:
|
||||
- amazon
|
||||
- fedex
|
||||
- license_plate
|
||||
- ups
|
||||
|
||||
# Optional: Audio Events Configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
@@ -232,6 +244,8 @@ ffmpeg:
|
||||
# If set too high, then if a ffmpeg crash or camera stream timeout occurs, you could potentially lose up to a maximum of retry_interval second(s) of footage
|
||||
# NOTE: this can be a useful setting for Wireless / Battery cameras to reduce how much footage is potentially lost during a connection timeout.
|
||||
retry_interval: 10
|
||||
# Optional: Set tag on HEVC (H.265) recording stream to improve compatibility with Apple players. (default: shown below)
|
||||
apple_compatibility: false
|
||||
|
||||
# Optional: Detect configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
@@ -324,6 +338,9 @@ review:
|
||||
- car
|
||||
- person
|
||||
# Optional: required zones for an object to be marked as an alert (default: none)
|
||||
# NOTE: when settings required zones globally, this zone must exist on all cameras
|
||||
# or the config will be considered invalid. In that case the required_zones
|
||||
# should be configured at the camera level.
|
||||
required_zones:
|
||||
- driveway
|
||||
# Optional: detections configuration
|
||||
@@ -333,12 +350,20 @@ review:
|
||||
- car
|
||||
- person
|
||||
# Optional: required zones for an object to be marked as a detection (default: none)
|
||||
# NOTE: when settings required zones globally, this zone must exist on all cameras
|
||||
# or the config will be considered invalid. In that case the required_zones
|
||||
# should be configured at the camera level.
|
||||
required_zones:
|
||||
- driveway
|
||||
|
||||
# Optional: Motion configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
motion:
|
||||
# Optional: enables detection for the camera (default: True)
|
||||
# NOTE: Motion detection is required for object detection,
|
||||
# setting this to False and leaving detect enabled
|
||||
# will result in an error on startup.
|
||||
enabled: False
|
||||
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
|
||||
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
|
||||
# The value should be between 1 and 255.
|
||||
@@ -497,6 +522,17 @@ semantic_search:
|
||||
enabled: False
|
||||
# Optional: Re-index embeddings database from historical tracked objects (default: shown below)
|
||||
reindex: False
|
||||
# Optional: Set the model size used for embeddings. (default: shown below)
|
||||
# NOTE: small model runs on CPU and large model runs on GPU
|
||||
model_size: "small"
|
||||
|
||||
# Optional: Configuration for face recognition capability
|
||||
face_recognition:
|
||||
# Optional: Enable semantic search (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Set the model size used for embeddings. (default: shown below)
|
||||
# NOTE: small model runs on CPU and large model runs on GPU
|
||||
model_size: "small"
|
||||
|
||||
# Optional: Configuration for AI generated tracked object descriptions
|
||||
# NOTE: Semantic Search must be enabled for this to do anything.
|
||||
@@ -524,10 +560,12 @@ genai:
|
||||
# Uses https://github.com/AlexxIT/go2rtc (v1.9.2)
|
||||
go2rtc:
|
||||
|
||||
# Optional: jsmpeg stream configuration for WebUI
|
||||
# Optional: Live stream configuration for WebUI.
|
||||
# NOTE: Can be overridden at the camera level
|
||||
live:
|
||||
# Optional: Set the name of the stream that should be used for live view
|
||||
# in frigate WebUI. (default: name of camera)
|
||||
# Optional: Set the name of the stream configured in go2rtc
|
||||
# that should be used for live view in frigate WebUI. (default: name of camera)
|
||||
# NOTE: In most cases this should be set at the camera level only.
|
||||
stream_name: camera_name
|
||||
# Optional: Set the height of the jsmpeg stream. (default: 720)
|
||||
# This must be less than or equal to the height of the detect stream. Lower resolutions
|
||||
@@ -660,6 +698,7 @@ cameras:
|
||||
# to enable PTZ controls.
|
||||
onvif:
|
||||
# Required: host of the camera being connected to.
|
||||
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
|
||||
host: 0.0.0.0
|
||||
# Optional: ONVIF port for device (default: shown below).
|
||||
port: 8000
|
||||
@@ -668,6 +707,8 @@ cameras:
|
||||
user: admin
|
||||
# Optional: password for login.
|
||||
password: admin
|
||||
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
|
||||
tls_insecure: False
|
||||
# Optional: Ignores time synchronization mismatches between the camera and the server during authentication.
|
||||
# Using NTP on both ends is recommended and this should only be set to True in a "safe" environment due to the security risk it represents.
|
||||
ignore_time_mismatch: False
|
||||
@@ -716,6 +757,8 @@ cameras:
|
||||
genai:
|
||||
# Optional: Enable AI description generation (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Use the object snapshot instead of thumbnails for description generation (default: shown below)
|
||||
use_snapshot: False
|
||||
# Optional: The default prompt for generating descriptions. Can use replacement
|
||||
# variables like "label", "sub_label", "camera" to make more dynamic. (default: shown below)
|
||||
prompt: "Describe the {label} in the sequence of images with as much detail as possible. Do not describe the background."
|
||||
@@ -723,6 +766,14 @@ cameras:
|
||||
# Format: {label}: {prompt}
|
||||
object_prompts:
|
||||
person: "My special person prompt."
|
||||
# Optional: objects to generate descriptions for (default: all objects that are tracked)
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
# Optional: Restrict generation to objects that entered any of the listed zones (default: none, all zones qualify)
|
||||
required_zones: []
|
||||
# Optional: Save thumbnails sent to generative AI for review/debugging purposes (default: shown below)
|
||||
debug_save_thumbnails: False
|
||||
|
||||
# Optional
|
||||
ui:
|
||||
@@ -764,11 +815,13 @@ telemetry:
|
||||
- lo
|
||||
# Optional: Configure system stats
|
||||
stats:
|
||||
# Enable AMD GPU stats (default: shown below)
|
||||
# Optional: Enable AMD GPU stats (default: shown below)
|
||||
amd_gpu_stats: True
|
||||
# Enable Intel GPU stats (default: shown below)
|
||||
# Optional: Enable Intel GPU stats (default: shown below)
|
||||
intel_gpu_stats: True
|
||||
# Enable network bandwidth stats monitoring for camera ffmpeg processes, go2rtc, and object detectors. (default: shown below)
|
||||
# Optional: Treat GPU as SR-IOV to fix GPU stats (default: shown below)
|
||||
sriov: False
|
||||
# Optional: Enable network bandwidth stats monitoring for camera ffmpeg processes, go2rtc, and object detectors. (default: shown below)
|
||||
# NOTE: The container must either be privileged or have cap_net_admin, cap_net_raw capabilities enabled.
|
||||
network_bandwidth: False
|
||||
# Optional: Enable the latest version outbound check (default: shown below)
|
||||
@@ -786,7 +839,7 @@ camera_groups:
|
||||
- side_cam
|
||||
- front_doorbell_cam
|
||||
# Required: icon used for group
|
||||
icon: car
|
||||
icon: LuCar
|
||||
# Required: index of this group
|
||||
order: 0
|
||||
```
|
||||
|
||||
@@ -7,7 +7,7 @@ title: Restream
|
||||
|
||||
Frigate can restream your video feed as an RTSP feed for other applications such as Home Assistant to utilize it at `rtsp://<frigate_host>:8554/<camera_name>`. Port 8554 must be open. [This allows you to use a video feed for detection in Frigate and Home Assistant live view at the same time without having to make two separate connections to the camera](#reduce-connections-to-camera). The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
|
||||
|
||||
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.4) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#configuration) for more advanced configurations and features.
|
||||
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.2) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#configuration) for more advanced configurations and features.
|
||||
|
||||
:::note
|
||||
|
||||
@@ -132,9 +132,31 @@ cameras:
|
||||
- detect
|
||||
```
|
||||
|
||||
## Handling Complex Passwords
|
||||
|
||||
go2rtc expects URL-encoded passwords in the config, [urlencoder.org](https://urlencoder.org) can be used for this purpose.
|
||||
|
||||
For example:
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
my_camera: rtsp://username:$@foo%@192.168.1.100
|
||||
```
|
||||
|
||||
becomes
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
my_camera: rtsp://username:$%40foo%25@192.168.1.100
|
||||
```
|
||||
|
||||
See [this comment(https://github.com/AlexxIT/go2rtc/issues/1217#issuecomment-2242296489) for more information.
|
||||
|
||||
## Advanced Restream Configurations
|
||||
|
||||
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
|
||||
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
|
||||
|
||||
NOTE: The output will need to be passed with two curly braces `{{output}}`
|
||||
|
||||
|
||||
@@ -41,8 +41,6 @@ review:
|
||||
|
||||
By default all detections that do not qualify as an alert qualify as a detection. However, detections can further be filtered to only include certain labels or certain zones.
|
||||
|
||||
By default a review item will only be marked as an alert if a person or car is detected. This can be configured to include any object or audio label using the following config:
|
||||
|
||||
```yaml
|
||||
# can be overridden at the camera level
|
||||
review:
|
||||
|
||||
@@ -5,13 +5,21 @@ title: Using Semantic Search
|
||||
|
||||
Semantic Search in Frigate allows you to find tracked objects within your review items using either the image itself, a user-defined text description, or an automatically generated one. This feature works by creating _embeddings_ — numerical vector representations — for both the images and text descriptions of your tracked objects. By comparing these embeddings, Frigate assesses their similarities to deliver relevant search results.
|
||||
|
||||
Frigate has support for two models to create embeddings, both of which run locally: [OpenAI CLIP](https://openai.com/research/clip) and [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). Embeddings are then saved to a local instance of [ChromaDB](https://trychroma.com).
|
||||
Frigate uses [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create and save embeddings to Frigate's database. All of this runs locally.
|
||||
|
||||
Semantic Search is accessed via the _Explore_ view in the Frigate UI.
|
||||
|
||||
## Minimum System Requirements
|
||||
|
||||
Semantic Search works by running a large AI model locally on your system. Small or underpowered systems like a Raspberry Pi will not run Semantic Search reliably or at all.
|
||||
|
||||
A minimum of 8GB of RAM is required to use Semantic Search. A GPU is not strictly required but will provide a significant performance increase over CPU-only systems.
|
||||
|
||||
For best performance, 16GB or more of RAM and a dedicated GPU are recommended.
|
||||
|
||||
## Configuration
|
||||
|
||||
Semantic search is disabled by default, and must be enabled in your config file before it can be used. Semantic Search is a global configuration setting.
|
||||
Semantic Search is disabled by default, and must be enabled in your config file or in the UI's Settings page before it can be used. Semantic Search is a global configuration setting.
|
||||
|
||||
```yaml
|
||||
semantic_search:
|
||||
@@ -21,24 +29,64 @@ semantic_search:
|
||||
|
||||
:::tip
|
||||
|
||||
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to set the config back to `False` before restarting Frigate again.
|
||||
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration or by toggling the switch on the Search Settings page in the UI and restarting Frigate. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to turn the UI's switch off or set the config back to `False` before restarting Frigate again.
|
||||
|
||||
If you are enabling the Search feature for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
|
||||
If you are enabling Semantic Search for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
|
||||
|
||||
:::
|
||||
|
||||
### OpenAI CLIP
|
||||
### Jina AI CLIP
|
||||
|
||||
This model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in Chroma. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails.
|
||||
The vision model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails.
|
||||
|
||||
### all-MiniLM-L6-v2
|
||||
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Explore page when clicking on thumbnail of a tracked object. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
|
||||
|
||||
This is a sentence embedding model that has been fine tuned on over 1 billion sentence pairs. This model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Search page when clicking on the gray tracked object chip at the top left of each review item. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
|
||||
Differently weighted versions of the Jina model are available and can be selected by setting the `model_size` config option as `small` or `large`:
|
||||
|
||||
## Usage
|
||||
```yaml
|
||||
semantic_search:
|
||||
enabled: True
|
||||
model_size: small
|
||||
```
|
||||
|
||||
1. Semantic search is used in conjunction with the other filters available on the Search page. Use a combination of traditional filtering and semantic search for the best results.
|
||||
2. The comparison between text and image embedding distances generally means that results matching `description` will appear first, even if a `thumbnail` embedding may be a better match. Play with the "Search Type" filter to help find what you are looking for.
|
||||
3. Make your search language and tone closely match your descriptions. If you are using thumbnail search, phrase your query as an image caption.
|
||||
4. Semantic search on thumbnails tends to return better results when matching large subjects that take up most of the frame. Small things like "cat" tend to not work well.
|
||||
5. Experiment! Find a tracked object you want to test and start typing keywords to see what works for you.
|
||||
- Configuring the `large` model employs the full Jina model and will automatically run on the GPU if applicable.
|
||||
- Configuring the `small` model employs a quantized version of the Jina model that uses less RAM and runs on CPU with a very negligible difference in embedding quality.
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
The CLIP models are downloaded in ONNX format, and the `large` model can be accelerated using GPU hardware, when available. This depends on the Docker build that is used.
|
||||
|
||||
```yaml
|
||||
semantic_search:
|
||||
enabled: True
|
||||
model_size: large
|
||||
```
|
||||
|
||||
:::info
|
||||
|
||||
If the correct build is used for your GPU and the `large` model is configured, then the GPU will be detected and used automatically.
|
||||
|
||||
**NOTE:** Object detection and Semantic Search are independent features. If you want to use your GPU with Semantic Search, you must choose the appropriate Frigate Docker image for your GPU.
|
||||
|
||||
- **AMD**
|
||||
|
||||
- ROCm will automatically be detected and used for Semantic Search in the `-rocm` Frigate image.
|
||||
|
||||
- **Intel**
|
||||
|
||||
- OpenVINO will automatically be detected and used for Semantic Search in the default Frigate image.
|
||||
|
||||
- **Nvidia**
|
||||
- Nvidia GPUs will automatically be detected and used for Semantic Search in the `-tensorrt` Frigate image.
|
||||
- Jetson devices will automatically be detected and used for Semantic Search in the `-tensorrt-jp(4/5)` Frigate image.
|
||||
|
||||
:::
|
||||
|
||||
## Usage and Best Practices
|
||||
|
||||
1. Semantic Search is used in conjunction with the other filters available on the Explore page. Use a combination of traditional filtering and Semantic Search for the best results.
|
||||
2. Use the thumbnail search type when searching for particular objects in the scene. Use the description search type when attempting to discern the intent of your object.
|
||||
3. Because of how the AI models Frigate uses have been trained, the comparison between text and image embedding distances generally means that with multi-modal (`thumbnail` and `description`) searches, results matching `description` will appear first, even if a `thumbnail` embedding may be a better match. Play with the "Search Type" setting to help find what you are looking for. Note that if you are generating descriptions for specific objects or zones only, this may cause search results to prioritize the objects with descriptions even if the the ones without them are more relevant.
|
||||
4. Make your search language and tone closely match exactly what you're looking for. If you are using thumbnail search, **phrase your query as an image caption**. Searching for "red car" may not work as well as "red sedan driving down a residential street on a sunny day".
|
||||
5. Semantic search on thumbnails tends to return better results when matching large subjects that take up most of the frame. Small things like "cat" tend to not work well.
|
||||
6. Experiment! Find a tracked object you want to test and start typing keywords and phrases to see what works for you.
|
||||
|
||||
@@ -3,7 +3,7 @@ id: snapshots
|
||||
title: Snapshots
|
||||
---
|
||||
|
||||
Frigate can save a snapshot image to `/media/frigate/clips` for each object that is detected named as `<camera>-<id>.jpg`. They are also accessible [via the api](../integrations/api.md#get-apieventsidsnapshotjpg)
|
||||
Frigate can save a snapshot image to `/media/frigate/clips` for each object that is detected named as `<camera>-<id>.jpg`. They are also accessible [via the api](../integrations/api/event-snapshot-events-event-id-snapshot-jpg-get.api.mdx)
|
||||
|
||||
For users with Frigate+ enabled, snapshots are accessible in the UI in the Frigate+ pane to allow for quick submission to the Frigate+ service.
|
||||
|
||||
|
||||