Compare commits

...

71 Commits

Author SHA1 Message Date
Nicolas Mowen
bcc4da7bed Include necessary cudnn deps in cuda folder 2025-01-01 07:33:28 -07:00
Nicolas Mowen
416da51302 Update to trt 10 2025-01-01 06:40:23 -07:00
Nicolas Mowen
b3072087d4 Add UI for managing face recognitions (#15757)
* Add ability to view attempts

* Improve UI

* Cleanup

* Correctly refresh ui when item is deleted

* Select correct library by default

* Add min score

* Cleanup
2024-12-31 15:56:01 -06:00
Nicolas Mowen
f84713487f Face recognition logic improvements (#15679)
* Always initialize face model on startup

* Add ability to save face images for debugging

* Implement better face recognition reasonability
2024-12-26 08:18:12 -07:00
Nicolas Mowen
fb8394bdff Change folder 2024-12-26 08:18:12 -07:00
Nicolas Mowen
3325c4f577 Set model size 2024-12-26 08:18:12 -07:00
Nicolas Mowen
c375d2776c Improve face recognition (#15670)
* Face recognition tuning

* Support face alignment

* Cleanup

* Correctly download model
2024-12-26 08:18:12 -07:00
Nicolas Mowen
3cb00ad244 Update TRT (#15646) 2024-12-26 08:18:12 -07:00
Nicolas Mowen
ec02ef50f0 Make face library scrollable 2024-12-26 08:18:12 -07:00
Nicolas Mowen
a04b146a03 Update openvino (#15634) 2024-12-26 08:18:12 -07:00
Nicolas Mowen
66842522c2 Update python deps (#15618)
* Update opencv

* Update cython

* Update scikit

* Update scipy
2024-12-26 08:18:12 -07:00
Nicolas Mowen
f718922c0c Enable temporary caching of camera images to improve responsiveness of UI (#15614) 2024-12-26 08:18:12 -07:00
Josh Hawkins
626ee19cc7 Preserve line numbers in config validation (#15584)
* use ruamel to parse and preserve line numbers for config validation

* maintain exception for non validation errors

* fix types

* include input in log messages
2024-12-26 08:18:12 -07:00
Nicolas Mowen
4fa83e781c Update base image (#15103)
* Change base image

* Update python

* Update coral library

* Fix source file

* Install correct apt packages

* Cleanup

* Fix installation of coral deps

* fix python installations

* Fix devcontainer build

* Get tensorrt build working

* Update other deps

* Filter out tflite log

* Get ROCm build working

* Get rockchip build working

* Get hailo build working

* Add note to comment
2024-12-26 08:18:12 -07:00
Nicolas Mowen
183e406da3 Face recognition fixes (#15222)
* Fix nginx max upload size

* Close upload dialog when done and add toasts

* Formatting

* fix ruff
2024-12-26 08:18:12 -07:00
Nicolas Mowen
5cf018ca72 Improve face recognition (#15205)
* Validate faces using cosine distance and SVC

* Formatting

* Use opencv instead of face embedding

* Update docs for training data

* Adjust to score system

* Set bounds

* remove face embeddings

* Update writing images

* Add face library page

* Add ability to select file

* Install opencv deps

* Cleanup

* Use different deps

* Move deps

* Cleanup

* Only show face library for desktop

* Implement deleting

* Add ability to upload image

* Add support for uploading images
2024-12-26 08:18:12 -07:00
Nicolas Mowen
9d54beab76 Remove standardization 2024-12-26 08:18:12 -07:00
Nicolas Mowen
a2b9ed0846 Fix check 2024-12-26 08:18:12 -07:00
Nicolas Mowen
bfa95c2062 Remove hardcoded face name 2024-12-26 08:18:12 -07:00
Nicolas Mowen
be856455f4 Use SVC to normalize and classify faces for recognition (#14835)
* Add margin to detected faces for embeddings

* Standardize pixel values for face input

* Use SVC to classify faces

* Clear classifier when new face is added

* Formatting

* Add dependency
2024-12-26 08:18:12 -07:00
Josh Hawkins
1ab061effd Use regular expressions for plate matching (#14727) 2024-12-26 08:18:12 -07:00
Nicolas Mowen
90916879b7 Update facenet model (#14647) 2024-12-26 08:18:12 -07:00
Josh Hawkins
cf931c474c LPR improvements (#14641) 2024-12-26 08:18:12 -07:00
Josh Hawkins
44021cbc2e Prevent division by zero in lpr confidence checks (#14615) 2024-12-26 08:18:12 -07:00
Nicolas Mowen
f98f41668e Fix label check (#14610)
* Create config for parsing object

* Use in maintainer
2024-12-26 08:18:12 -07:00
Josh Hawkins
3ed4fb87ef License plate recognition (ALPR) backend (#14564)
* Update version

* Face recognition backend (#14495)

* Add basic config and face recognition table

* Reconfigure updates processing to handle face

* Crop frame to face box

* Implement face embedding calculation

* Get matching face embeddings

* Add support face recognition based on existing faces

* Use arcface face embeddings instead of generic embeddings model

* Add apis for managing faces

* Implement face uploading API

* Build out more APIs

* Add min area config

* Handle larger images

* Add more debug logs

* fix calculation

* Reduce timeout

* Small tweaks

* Use webp images

* Use facenet model

* Improve face recognition (#14537)

* Increase requirements for face to be set

* Manage faces properly

* Add basic docs

* Simplify

* Separate out face recognition frome semantic search

* Update docs

* Formatting

* Fix access (#14540)

* Face detection (#14544)

* Add support for face detection

* Add support for detecting faces during registration

* Set body size to be larger

* Undo

* Update version

* Face recognition backend (#14495)

* Add basic config and face recognition table

* Reconfigure updates processing to handle face

* Crop frame to face box

* Implement face embedding calculation

* Get matching face embeddings

* Add support face recognition based on existing faces

* Use arcface face embeddings instead of generic embeddings model

* Add apis for managing faces

* Implement face uploading API

* Build out more APIs

* Add min area config

* Handle larger images

* Add more debug logs

* fix calculation

* Reduce timeout

* Small tweaks

* Use webp images

* Use facenet model

* Improve face recognition (#14537)

* Increase requirements for face to be set

* Manage faces properly

* Add basic docs

* Simplify

* Separate out face recognition frome semantic search

* Update docs

* Formatting

* Fix access (#14540)

* Face detection (#14544)

* Add support for face detection

* Add support for detecting faces during registration

* Set body size to be larger

* Undo

* initial foundation for alpr with paddleocr

* initial foundation for alpr with paddleocr

* initial foundation for alpr with paddleocr

* config

* config

* lpr maintainer

* clean up

* clean up

* fix processing

* don't process for stationary cars

* fix order

* fixes

* check for known plates

* improved length and character by character confidence

* model fixes and small tweaks

* docs

* placeholder for non frigate+ model lp detection

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2024-12-26 08:18:12 -07:00
Nicolas Mowen
8dc9c2c9ed Face detection (#14544)
* Add support for face detection

* Add support for detecting faces during registration

* Set body size to be larger

* Undo
2024-12-26 08:18:12 -07:00
Nicolas Mowen
66de9f6079 Fix access (#14540) 2024-12-26 08:18:12 -07:00
Nicolas Mowen
e35fb8f056 Improve face recognition (#14537)
* Increase requirements for face to be set

* Manage faces properly

* Add basic docs

* Simplify

* Separate out face recognition frome semantic search

* Update docs

* Formatting
2024-12-26 08:18:11 -07:00
Nicolas Mowen
ca5711d1ab Face recognition backend (#14495)
* Add basic config and face recognition table

* Reconfigure updates processing to handle face

* Crop frame to face box

* Implement face embedding calculation

* Get matching face embeddings

* Add support face recognition based on existing faces

* Use arcface face embeddings instead of generic embeddings model

* Add apis for managing faces

* Implement face uploading API

* Build out more APIs

* Add min area config

* Handle larger images

* Add more debug logs

* fix calculation

* Reduce timeout

* Small tweaks

* Use webp images

* Use facenet model
2024-12-26 08:18:11 -07:00
Nicolas Mowen
f16f6d3789 Update version 2024-12-26 08:18:11 -07:00
leccelecce
00371546a3 GenAI: add ability to save JPGs sent to provider (#15643)
* GenAI: add ability to save JPGs sent to provider

* Remove mention from GenAI docs

* Change config name to debug_save_thumbnails

* Change  folder structure to clips/genai-requests/{event_id}/{1.jpg}
2024-12-23 07:05:34 -07:00
Nicolas Mowen
87e7b62c85 Remove duplicated rockchip build (#15641) 2024-12-22 13:31:14 -06:00
Nicolas Mowen
15ffe5c254 Fix trt (#15640) 2024-12-22 11:56:04 -07:00
Nicolas Mowen
a767dad3a1 Simplify TensorRT image (#15638) 2024-12-22 12:13:29 -06:00
Josh Hawkins
9387246f83 Add tooltips to ptz controls (#15633) 2024-12-21 17:57:22 -06:00
Nicolas Mowen
bed20de302 Update docs deps (#15617) 2024-12-20 10:37:02 -06:00
Nicolas Mowen
70fc5393b1 Make hailo wheels support any minor version (#15616) 2024-12-20 10:36:32 -06:00
dependabot[bot]
9b80dbe014 Bump actions/setup-python from 5.1.0 to 5.3.0 (#14584)
Bumps [actions/setup-python](https://github.com/actions/setup-python) from 5.1.0 to 5.3.0.
- [Release notes](https://github.com/actions/setup-python/releases)
- [Commits](https://github.com/actions/setup-python/compare/v5.1.0...v5.3.0)

---
updated-dependencies:
- dependency-name: actions/setup-python
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-12-20 09:16:21 -07:00
Josh Hawkins
78a013d63a Add "frame" to shm frame names to avoid camera name issues (#15615) 2024-12-20 08:46:40 -06:00
Gabriel de Biasi
ddfe8f3921 Fix #7944: Adds tls_insecure to the onvif configuration (#15603)
* Adds tls_insecure to the onvif configuration

* reformat using ruff
2024-12-19 12:54:33 -07:00
Nicolas Mowen
4af752028f Bug Fixes (#15598)
* Catch onvif command error

* fix review item pre and post capture

* Include severity in query
2024-12-19 09:46:14 -06:00
Nicolas Mowen
b149828c9f Catch OS error (#15590) 2024-12-18 17:45:08 -06:00
Josh Hawkins
3dc26e78ef Genai descriptions are not generated until tracked objects end (#15561) 2024-12-17 17:33:04 -06:00
Giorgio Ughini
d9ef8fa206 Fix always the same image is sent to GenAI (#15550)
* Fix always the same image is sent to GenAI

* Fix typo for bug where identical images are sent to GenAI

* Correct formatting
2024-12-17 07:44:00 -06:00
Josh Hawkins
292499aebc Improve review message again (#15538) 2024-12-16 09:18:34 -07:00
Josh Hawkins
717493e668 Improve handling of error conditions with ollama and snapshot regeneration (#15527) 2024-12-15 20:51:23 -06:00
Josh Hawkins
d49f958d4d Don't crop by region for genai snapshot for manual events (#15525) 2024-12-15 17:03:19 -06:00
Nicolas Mowen
33ee32865f Ensure that go2rtc streams are cleaned (#15524)
* Ensure that go2rtc streams are cleaned

* Formatting

* Handle go2rtc config correctly

* Set type
2024-12-15 16:56:24 -06:00
Josh Hawkins
17f8939f97 Add FAQ to explain why streams might work in VLC but not in Frigate (#15513)
* Add faq to explain why streams might work in VLC but not in Frigate

* fix go2rtc version number

* wording

* mention udp input args and preset
2024-12-14 13:58:39 -06:00
FL42
1b7fe9523d fix: use requests.Session() for DeepStack API (#15505) 2024-12-14 07:54:13 -07:00
Josh Hawkins
0763f56047 Update iframe interval recommendation (#15501)
* Update iframe interval recommendation

* clarify

* tweaks

* wording
2024-12-13 12:52:56 -07:00
Josh Hawkins
1ea282fba8 Improve the message for missing objects in review items (#15500) 2024-12-13 12:02:41 -07:00
Blake Blackshear
869fa2631e apply zizmor recommendations (#15490) 2024-12-13 07:34:09 -06:00
Nicolas Mowen
f336a91fee Cleanup handling of first object message (#15480) 2024-12-12 21:22:47 -06:00
Nicolas Mowen
d302b6e198 Cap storage bandwidth (#15473) 2024-12-12 14:46:00 -06:00
Nicolas Mowen
ed2e1f3f72 Remove debug cleanup change (#15468) 2024-12-12 07:46:06 -07:00
Nicolas Mowen
b4d82084a9 Fixes (#15465)
* Fix single event return

* Allow customizing if search is preserved for overlay state

* Remove timeout

* Cleanup

* Cleanup naming
2024-12-12 08:22:30 -06:00
Josh Hawkins
53b96dfb89 Improve semantic search docs (#15453) 2024-12-11 20:19:08 -06:00
Nicolas Mowen
0e3fb6cbdd Standardize handling of config files (#15451)
* Standardize handling of config files

* Formatting

* Remove unused
2024-12-11 18:46:42 -06:00
Blake Blackshear
6b12a45a95 return 401 for login failures (#15432)
* return 401 for login failures

* only setup the rate limiter when configured
2024-12-10 06:42:55 -07:00
Nicolas Mowen
0b9c4c18dd Refactor event cleanup to consider review severity (#15415)
* Keep track of objects max review severity

* Refactor cleanup to split snapshots and clips

* Cleanup events based on review severity

* Cleanup review imports

* Don't catch detections
2024-12-09 08:25:45 -07:00
Nicolas Mowen
d0cc8cb64b API response cleanup (#15389)
* API response cleanup

* Remove extra field definition
2024-12-06 20:07:43 -06:00
Nicolas Mowen
bb86e71e65 fix auth remote addr access (#15378) 2024-12-06 10:25:43 -06:00
Josh Hawkins
8aa6297308 Ensure label does not overlap with box or go out of frame (#15376) 2024-12-06 08:32:16 -07:00
Nicolas Mowen
d3b631a952 Api improvements (#15327)
* Organize api files

* Add more API definitions for events

* Add export select by ID

* Typing fixes

* Update openapi spec

* Change type

* Fix test

* Fix message

* Fix tests
2024-12-06 08:04:02 -06:00
Nicolas Mowen
47d495fc01 Make note of go2rtc encoded URLs (#15348)
* Make note of go2rtc encoded URLs

* clarify
2024-12-04 16:54:57 -06:00
Nicolas Mowen
32322b23b2 Update nvidia docs to reflect preset (#15347) 2024-12-04 15:43:10 -07:00
Josh Hawkins
c0ba98e26f Explore sorting (#15342)
* backend

* add type and params

* radio group in ui

* ensure search_type is cleared on reset
2024-12-04 08:54:10 -07:00
Rui Alves
a5a7cd3107 Added more unit tests for the review controller (#15162) 2024-12-04 06:52:08 -06:00
Josh Hawkins
a729408599 preserve search query in overlay state hook (#15334) 2024-12-04 06:14:53 -06:00
120 changed files with 9917 additions and 3280 deletions

View File

@@ -2,6 +2,7 @@ aarch
absdiff
airockchip
Alloc
alpr
Amcrest
amdgpu
analyzeduration
@@ -61,6 +62,7 @@ dsize
dtype
ECONNRESET
edgetpu
facenet
fastapi
faststart
fflags
@@ -114,6 +116,8 @@ itemsize
Jellyfin
jetson
jetsons
jina
jinaai
joserfc
jsmpeg
jsonify
@@ -187,6 +191,7 @@ openai
opencv
openvino
OWASP
paddleocr
paho
passwordless
popleft
@@ -308,4 +313,4 @@ yolo
yolonas
yolox
zeep
zerolatency
zerolatency

View File

@@ -7,7 +7,7 @@ on:
- dev
- master
paths-ignore:
- 'docs/**'
- "docs/**"
# only run the latest commit to avoid cache overwrites
concurrency:
@@ -24,6 +24,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -45,6 +47,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -71,21 +75,14 @@ jobs:
rpi.tags=${{ steps.setup.outputs.image-name }}-rpi
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64,mode=max
- name: Build and push Rockchip build
uses: docker/bake-action@v3
with:
push: true
targets: rk
files: docker/rockchip/rk.hcl
set: |
rk.tags=${{ steps.setup.outputs.image-name }}-rk
*.cache-from=type=gha
jetson_jp4_build:
runs-on: ubuntu-latest
name: Jetson Jetpack 4
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -112,6 +109,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -140,6 +139,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -165,6 +166,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup
@@ -188,6 +191,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx
id: setup
uses: ./.github/actions/setup

View File

@@ -1,24 +0,0 @@
name: dependabot-auto-merge
on: pull_request
permissions:
contents: write
jobs:
dependabot-auto-merge:
runs-on: ubuntu-latest
if: github.actor == 'dependabot[bot]'
steps:
- name: Get Dependabot metadata
id: metadata
uses: dependabot/fetch-metadata@v2
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Enable auto-merge for Dependabot PRs
if: steps.metadata.outputs.dependency-type == 'direct:development' && (steps.metadata.outputs.update-type == 'version-update:semver-minor' || steps.metadata.outputs.update-type == 'version-update:semver-patch')
run: |
gh pr review --approve "$PR_URL"
gh pr merge --auto --squash "$PR_URL"
env:
PR_URL: ${{ github.event.pull_request.html_url }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -3,7 +3,7 @@ name: On pull request
on:
pull_request:
paths-ignore:
- 'docs/**'
- "docs/**"
env:
DEFAULT_PYTHON: 3.9
@@ -19,6 +19,8 @@ jobs:
DOCKER_BUILDKIT: "1"
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master
with:
node-version: 16.x
@@ -38,6 +40,8 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master
with:
node-version: 16.x
@@ -52,6 +56,8 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master
with:
node-version: 20.x
@@ -67,8 +73,10 @@ jobs:
steps:
- name: Check out the repository
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up Python ${{ env.DEFAULT_PYTHON }}
uses: actions/setup-python@v5.1.0
uses: actions/setup-python@v5.3.0
with:
python-version: ${{ env.DEFAULT_PYTHON }}
- name: Install requirements
@@ -88,6 +96,8 @@ jobs:
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master
with:
node-version: 16.x

View File

@@ -11,6 +11,8 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- id: lowercaseRepo
uses: ASzc/change-string-case-action@v6
with:
@@ -22,10 +24,13 @@ jobs:
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Create tag variables
env:
TAG: ${{ github.ref_name }}
LOWERCASE_REPO: ${{ steps.lowercaseRepo.outputs.lowercase }}
run: |
BUILD_TYPE=$([[ "${{ github.ref_name }}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
BUILD_TYPE=$([[ "${TAG}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
echo "BUILD_TYPE=${BUILD_TYPE}" >> $GITHUB_ENV
echo "BASE=ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}" >> $GITHUB_ENV
echo "BASE=ghcr.io/${LOWERCASE_REPO}" >> $GITHUB_ENV
echo "BUILD_TAG=${GITHUB_SHA::7}" >> $GITHUB_ENV
echo "CLEAN_VERSION=$(echo ${GITHUB_REF##*/} | tr '[:upper:]' '[:lower:]' | sed 's/^[v]//')" >> $GITHUB_ENV
- name: Tag and push the main image

View File

@@ -23,7 +23,9 @@ jobs:
exempt-pr-labels: "pinned,security,dependencies"
operations-per-run: 120
- name: Print outputs
run: echo ${{ join(steps.stale.outputs.*, ',') }}
env:
STALE_OUTPUT: ${{ join(steps.stale.outputs.*, ',') }}
run: echo "$STALE_OUTPUT"
# clean_ghcr:
# name: Delete outdated dev container images
@@ -38,4 +40,3 @@ jobs:
# account-type: personal
# token: ${{ secrets.GITHUB_TOKEN }}
# token-type: github-token

View File

@@ -1,7 +1,7 @@
default_target: local
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
VERSION = 0.15.0
VERSION = 0.16.0
IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate
GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD)
BOARDS= #Initialized empty

View File

@@ -5,6 +5,7 @@ ARG DEBIAN_FRONTEND=noninteractive
# Build Python wheels
FROM wheels AS h8l-wheels
RUN python3 -m pip config set global.break-system-packages true
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
COPY docker/hailo8l/requirements-wheels-h8l.txt /requirements-wheels-h8l.txt
@@ -30,6 +31,7 @@ COPY --from=hailort /hailo-wheels /deps/hailo-wheels
COPY --from=hailort /rootfs/ /
# Install the wheels
RUN python3 -m pip config set global.break-system-packages true
RUN pip3 install -U /deps/h8l-wheels/*.whl
RUN pip3 install -U /deps/hailo-wheels/*.whl

View File

@@ -15,5 +15,5 @@ wget -qO- "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_ver
mkdir -p /hailo-wheels
wget -P /hailo-wheels/ "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${hailo_version}-cp39-cp39-linux_${arch}.whl"
wget -P /hailo-wheels/ "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${hailo_version}-cp311-cp311-linux_${arch}.whl"

View File

@@ -1,12 +1,12 @@
appdirs==1.4.4
argcomplete==2.0.0
contextlib2==0.6.0.post1
distlib==0.3.6
filelock==3.8.0
future==0.18.2
importlib-metadata==5.1.0
importlib-resources==5.1.2
netaddr==0.8.0
netifaces==0.10.9
verboselogs==1.7
virtualenv==20.17.0
appdirs==1.4.*
argcomplete==2.0.*
contextlib2==0.6.*
distlib==0.3.*
filelock==3.8.*
future==0.18.*
importlib-metadata==5.1.*
importlib-resources==5.1.*
netaddr==0.8.*
netifaces==0.10.*
verboselogs==1.7.*
virtualenv==20.17.*

View File

@@ -3,12 +3,12 @@
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
ARG DEBIAN_FRONTEND=noninteractive
ARG BASE_IMAGE=debian:11
ARG SLIM_BASE=debian:11-slim
ARG BASE_IMAGE=debian:12
ARG SLIM_BASE=debian:12-slim
FROM ${BASE_IMAGE} AS base
FROM --platform=${BUILDPLATFORM} debian:11 AS base_host
FROM --platform=${BUILDPLATFORM} debian:12 AS base_host
FROM ${SLIM_BASE} AS slim-base
@@ -66,8 +66,8 @@ COPY docker/main/requirements-ov.txt /requirements-ov.txt
RUN apt-get -qq update \
&& apt-get -qq install -y wget python3 python3-dev python3-distutils gcc pkg-config libhdf5-dev \
&& wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py "pip" \
&& pip install -r /requirements-ov.txt
&& python3 get-pip.py "pip" --break-system-packages \
&& pip install --break-system-packages -r /requirements-ov.txt
# Get OpenVino Model
RUN --mount=type=bind,source=docker/main/build_ov_model.py,target=/build_ov_model.py \
@@ -139,24 +139,17 @@ ARG TARGETARCH
# Use a separate container to build wheels to prevent build dependencies in final image
RUN apt-get -qq update \
&& apt-get -qq install -y \
apt-transport-https \
gnupg \
wget \
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
apt-transport-https wget \
&& apt-get -qq update \
&& apt-get -qq install -y \
python3.9 \
python3.9-dev \
python3 \
python3-dev \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libtbbmalloc2 libtbb-dev libdc1394-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# sqlite3 dependencies
tclsh \
@@ -164,14 +157,11 @@ RUN apt-get -qq update \
gcc gfortran libopenblas-dev liblapack-dev && \
rm -rf /var/lib/apt/lists/*
# Ensure python3 defaults to python3.9
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py "pip"
&& python3 get-pip.py "pip" --break-system-packages
COPY docker/main/requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt
RUN pip3 install -r /requirements.txt --break-system-packages
# Build pysqlite3 from source
COPY docker/main/build_pysqlite3.sh /build_pysqlite3.sh
@@ -222,8 +212,8 @@ RUN --mount=type=bind,source=docker/main/install_deps.sh,target=/deps/install_de
/deps/install_deps.sh
RUN --mount=type=bind,from=wheels,source=/wheels,target=/deps/wheels \
python3 -m pip install --upgrade pip && \
pip3 install -U /deps/wheels/*.whl
python3 -m pip install --upgrade pip --break-system-packages && \
pip3 install -U /deps/wheels/*.whl --break-system-packages
COPY --from=deps-rootfs / /
@@ -270,7 +260,7 @@ RUN apt-get update \
&& rm -rf /var/lib/apt/lists/*
RUN --mount=type=bind,source=./docker/main/requirements-dev.txt,target=/workspace/frigate/requirements-dev.txt \
pip3 install -r requirements-dev.txt
pip3 install -r requirements-dev.txt --break-system-packages
HEALTHCHECK NONE

View File

@@ -8,8 +8,7 @@ SECURE_TOKEN_MODULE_VERSION="1.5"
SET_MISC_MODULE_VERSION="v0.33"
NGX_DEVEL_KIT_VERSION="v0.3.3"
cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources
apt-get update
apt-get -yqq build-dep nginx

View File

@@ -4,7 +4,7 @@ from openvino.tools import mo
ov_model = mo.convert_model(
"/models/ssdlite_mobilenet_v2_coco_2018_05_09/frozen_inference_graph.pb",
compress_to_fp16=True,
transformations_config="/usr/local/lib/python3.9/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json",
transformations_config="/usr/local/lib/python3.11/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json",
tensorflow_object_detection_api_pipeline_config="/models/ssdlite_mobilenet_v2_coco_2018_05_09/pipeline.config",
reverse_input_channels=True,
)

View File

@@ -4,8 +4,7 @@ set -euxo pipefail
SQLITE_VEC_VERSION="0.1.3"
cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources
apt-get update
apt-get -yqq build-dep sqlite3 gettext git

View File

@@ -11,33 +11,34 @@ apt-get -qq install --no-install-recommends -y \
lbzip2 \
procps vainfo \
unzip locales tzdata libxml2 xz-utils \
python3.9 \
python3 \
python3-pip \
curl \
lsof \
jq \
nethogs
# ensure python3 defaults to python3.9
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
nethogs \
libgl1 \
libglib2.0-0 \
libusb-1.0.0
mkdir -p -m 600 /root/.gnupg
# add coral repo
curl -fsSLo - https://packages.cloud.google.com/apt/doc/apt-key.gpg | \
gpg --dearmor -o /etc/apt/trusted.gpg.d/google-cloud-packages-archive-keyring.gpg
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | tee /etc/apt/sources.list.d/coral-edgetpu.list
echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections
# install coral runtime
wget -q -O /tmp/libedgetpu1-max.deb "https://github.com/feranick/libedgetpu/releases/download/16.0TF2.17.0-1/libedgetpu1-max_16.0tf2.17.0-1.bookworm_${TARGETARCH}.deb"
unset DEBIAN_FRONTEND
yes | dpkg -i /tmp/libedgetpu1-max.deb && export DEBIAN_FRONTEND=noninteractive
rm /tmp/libedgetpu1-max.deb
# enable non-free repo in Debian
if grep -q "Debian" /etc/issue; then
sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list
# install python3 & tflite runtime
if [[ "${TARGETARCH}" == "amd64" ]]; then
pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_x86_64.whl
pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_x86_64.whl
fi
# coral drivers
apt-get -qq update
apt-get -qq install --no-install-recommends --no-install-suggests -y \
libedgetpu1-max python3-tflite-runtime python3-pycoral
if [[ "${TARGETARCH}" == "arm64" ]]; then
pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_aarch64.whl
pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_aarch64.whl
fi
# btbn-ffmpeg -> amd64
if [[ "${TARGETARCH}" == "amd64" ]]; then
@@ -65,23 +66,15 @@ fi
# arch specific packages
if [[ "${TARGETARCH}" == "amd64" ]]; then
# use debian bookworm for amd / intel-i965 driver packages
echo 'deb https://deb.debian.org/debian bookworm main contrib non-free' >/etc/apt/sources.list.d/debian-bookworm.list
apt-get -qq update
# install amd / intel-i965 driver packages
apt-get -qq install --no-install-recommends --no-install-suggests -y \
i965-va-driver intel-gpu-tools onevpl-tools \
libva-drm2 \
mesa-va-drivers radeontop
# something about this dependency requires it to be installed in a separate call rather than in the line above
apt-get -qq install --no-install-recommends --no-install-suggests -y \
i965-va-driver-shaders
# intel packages use zst compression so we need to update dpkg
apt-get install -y dpkg
rm -f /etc/apt/sources.list.d/debian-bookworm.list
# use intel apt intel packages
wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list

View File

@@ -10,10 +10,10 @@ imutils == 0.5.*
joserfc == 1.0.*
pathvalidate == 3.2.*
markupsafe == 2.1.*
python-multipart == 0.0.12
# General
mypy == 1.6.1
numpy == 1.26.*
onvif_zeep == 0.2.12
opencv-python-headless == 4.9.0.*
paho-mqtt == 2.1.*
pandas == 2.2.*
peewee == 3.17.*
@@ -27,15 +27,19 @@ ruamel.yaml == 0.18.*
tzlocal == 5.2
requests == 2.32.*
types-requests == 2.32.*
scipy == 1.13.*
norfair == 2.2.*
setproctitle == 1.3.*
ws4py == 0.5.*
unidecode == 1.3.*
# Image Manipulation
numpy == 1.26.*
opencv-python-headless == 4.10.0.*
opencv-contrib-python == 4.9.0.*
scipy == 1.14.*
# OpenVino & ONNX
openvino == 2024.3.*
onnxruntime-openvino == 1.19.* ; platform_machine == 'x86_64'
onnxruntime == 1.19.* ; platform_machine == 'aarch64'
openvino == 2024.4.*
onnxruntime-openvino == 1.20.* ; platform_machine == 'x86_64'
onnxruntime == 1.20.* ; platform_machine == 'aarch64'
# Embeddings
transformers == 4.45.*
# Generative AI
@@ -45,3 +49,6 @@ openai == 1.51.*
# push notifications
py-vapid == 1.9.*
pywebpush == 2.0.*
# alpr
pyclipper == 1.3.*
shapely == 2.0.*

View File

@@ -1,2 +1,2 @@
scikit-build == 0.17.*
scikit-build == 0.18.*
nvidia-pyindex

View File

@@ -81,6 +81,9 @@ http {
open_file_cache_errors on;
aio on;
# file upload size
client_max_body_size 10M;
# https://github.com/kaltura/nginx-vod-module#vod_open_file_thread_pool
vod_open_file_thread_pool default;

View File

@@ -7,13 +7,14 @@ FROM wheels as rk-wheels
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt
RUN sed -i "/https:\/\//d" /requirements-wheels.txt
RUN python3 -m pip config set global.break-system-packages true
RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt
FROM deps AS rk-frigate
ARG TARGETARCH
RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \
pip3 install -U /deps/rk-wheels/*.whl
pip3 install -U /deps/rk-wheels/*.whl --break-system-packages
WORKDIR /opt/frigate/
COPY --from=rootfs / /

View File

@@ -1 +1 @@
rknn-toolkit-lite2 @ https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.0.0/rknn_toolkit_lite2-2.0.0b0-cp39-cp39-linux_aarch64.whl
rknn-toolkit-lite2 @ https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.0.0/rknn_toolkit_lite2-2.0.0b0-cp311-cp311-linux_aarch64.whl

View File

@@ -34,7 +34,7 @@ RUN mkdir -p /opt/rocm-dist/etc/ld.so.conf.d/
RUN echo /opt/rocm/lib|tee /opt/rocm-dist/etc/ld.so.conf.d/rocm.conf
#######################################################################
FROM --platform=linux/amd64 debian:11 as debian-base
FROM --platform=linux/amd64 debian:12 as debian-base
RUN apt-get update && apt-get -y upgrade
RUN apt-get -y install --no-install-recommends libelf1 libdrm2 libdrm-amdgpu1 libnuma1 kmod
@@ -51,7 +51,7 @@ COPY --from=rocm /opt/rocm-$ROCM /opt/rocm-$ROCM
RUN ln -s /opt/rocm-$ROCM /opt/rocm
RUN apt-get -y install g++ cmake
RUN apt-get -y install python3-pybind11 python3.9-distutils python3-dev
RUN apt-get -y install python3-pybind11 python3-distutils python3-dev
WORKDIR /opt/build
@@ -70,10 +70,11 @@ RUN apt-get -y install libnuma1
WORKDIR /opt/frigate/
COPY --from=rootfs / /
COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt
RUN python3 -m pip install --upgrade pip \
&& pip3 uninstall -y onnxruntime-openvino \
&& pip3 install -r /requirements.txt
# Temporarily disabled to see if a new wheel can be built to support py3.11
#COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt
#RUN python3 -m pip install --upgrade pip \
# && pip3 uninstall -y onnxruntime-openvino \
# && pip3 install -r /requirements.txt
#######################################################################
FROM scratch AS rocm-dist
@@ -86,12 +87,12 @@ COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*$AMDGPU* /opt/rocm-$ROCM/share
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx908* /opt/rocm-$ROCM/share/miopen/db/
COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*$AMDGPU* /opt/rocm-$ROCM/lib/rocblas/library/
COPY --from=rocm /opt/rocm-dist/ /
COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-39-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/
COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-311-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/
#######################################################################
FROM deps-prelim AS rocm-prelim-hsa-override0
ENV HSA_ENABLE_SDMA=0
\
ENV HSA_ENABLE_SDMA=0
COPY --from=rocm-dist / /

View File

@@ -24,7 +24,7 @@ sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list
if [[ "${TARGETARCH}" == "arm64" ]]; then
# add raspberry pi repo
gpg --no-default-keyring --keyring /usr/share/keyrings/raspbian.gpg --keyserver keyserver.ubuntu.com --recv-keys 82B129927FA3303E
echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bullseye main" | tee /etc/apt/sources.list.d/raspi.list
echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bookworm main" | tee /etc/apt/sources.list.d/raspi.list
apt-get -qq update
apt-get -qq install --no-install-recommends --no-install-suggests -y ffmpeg
fi

View File

@@ -7,33 +7,19 @@ ARG DEBIAN_FRONTEND=noninteractive
FROM wheels as trt-wheels
ARG DEBIAN_FRONTEND
ARG TARGETARCH
RUN python3 -m pip config set global.break-system-packages true
# Add TensorRT wheels to another folder
COPY docker/tensorrt/requirements-amd64.txt /requirements-tensorrt.txt
RUN mkdir -p /trt-wheels && pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
# Build CuDNN
FROM wget AS cudnn-deps
ARG COMPUTE_LEVEL
RUN apt-get update \
&& apt-get install -y git build-essential
RUN wget https://developer.download.nvidia.com/compute/cuda/repos/debian11/x86_64/cuda-keyring_1.1-1_all.deb \
&& dpkg -i cuda-keyring_1.1-1_all.deb \
&& apt-get update \
&& apt-get -y install cuda-toolkit \
&& rm -rf /var/lib/apt/lists/*
FROM tensorrt-base AS frigate-tensorrt
ENV TRT_VER=8.5.3
ENV TRT_VER=8.6.1
RUN python3 -m pip config set global.break-system-packages true
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
pip3 install -U /deps/trt-wheels/*.whl && \
pip3 install -U /deps/trt-wheels/*.whl --break-system-packages && \
ldconfig
COPY --from=cudnn-deps /usr/local/cuda-12.6 /usr/local/cuda
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.9/dist-packages/tensorrt:/usr/local/cuda/lib64:/usr/local/lib/python3.9/dist-packages/nvidia/cufft/lib
WORKDIR /opt/frigate/
COPY --from=rootfs / /
@@ -42,8 +28,8 @@ FROM devcontainer AS devcontainer-trt
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
COPY --from=cudnn-deps /usr/local/cuda-12.6 /usr/local/cuda
COPY --from=trt-deps /usr/local/cuda-12.1 /usr/local/cuda
COPY docker/tensorrt/detector/rootfs/ /
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
pip3 install -U /deps/trt-wheels/*.whl
pip3 install -U /deps/trt-wheels/*.whl --break-system-packages

View File

@@ -41,11 +41,11 @@ RUN --mount=type=bind,source=docker/tensorrt/detector/build_python_tensorrt.sh,t
&& TENSORRT_VER=$(cat /etc/TENSORRT_VER) /deps/build_python_tensorrt.sh
COPY docker/tensorrt/requirements-arm64.txt /requirements-tensorrt.txt
ADD https://nvidia.box.com/shared/static/9aemm4grzbbkfaesg5l7fplgjtmswhj8.whl /tmp/onnxruntime_gpu-1.15.1-cp39-cp39-linux_aarch64.whl
ADD https://nvidia.box.com/shared/static/psl23iw3bh7hlgku0mjo1xekxpego3e3.whl /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl
RUN pip3 uninstall -y onnxruntime-openvino \
&& pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt \
&& pip3 install --no-deps /tmp/onnxruntime_gpu-1.15.1-cp39-cp39-linux_aarch64.whl
&& pip3 install --no-deps /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl
FROM build-wheels AS trt-model-wheels
ARG DEBIAN_FRONTEND

View File

@@ -3,18 +3,19 @@
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
ARG DEBIAN_FRONTEND=noninteractive
ARG TRT_BASE=nvcr.io/nvidia/tensorrt:23.03-py3
ARG TRT_BASE=nvcr.io/nvidia/tensorrt:24.10-py3
# Build TensorRT-specific library
FROM ${TRT_BASE} AS trt-deps
ARG COMPUTE_LEVEL
RUN apt-get update \
&& apt-get install -y git build-essential cuda-nvcc-* cuda-nvtx-* libnvinfer-dev libnvinfer-plugin-dev libnvparsers-dev libnvonnxparsers-dev \
&& rm -rf /var/lib/apt/lists/*
RUN --mount=type=bind,source=docker/tensorrt/detector/tensorrt_libyolo.sh,target=/tensorrt_libyolo.sh \
/tensorrt_libyolo.sh
# Need to wait for script to be adapted to newer version of tensorrt or perhaps decide that we want to remove the TRT detector in favor of using onnx runtime directly
#RUN apt-get update \
# && apt-get install -y git build-essential cuda-nvcc-* cuda-nvtx-* libnvinfer-dev libnvinfer-plugin-dev libnvparsers-dev libnvonnxparsers-dev \
# && rm -rf /var/lib/apt/lists/*
#RUN --mount=type=bind,source=docker/tensorrt/detector/tensorrt_libyolo.sh,target=/tensorrt_libyolo.sh \
# /tensorrt_libyolo.sh
# Frigate w/ TensorRT Support as separate image
FROM deps AS tensorrt-base
@@ -22,8 +23,12 @@ FROM deps AS tensorrt-base
#Disable S6 Global timeout
ENV S6_CMD_WAIT_FOR_SERVICES_MAXTIME=0
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
#COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
#COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
COPY --from=trt-deps /usr/lib/x86_64-linux-gnu/libcudnn* /usr/local/cuda/lib64/
COPY --from=trt-deps /usr/lib/x86_64-linux-gnu/libnv* /usr/local/cuda/lib64/
COPY docker/tensorrt/detector/rootfs/ /
ENV YOLO_MODELS=""

View File

@@ -1,6 +1,8 @@
/usr/local/lib
/usr/local/lib/python3.9/dist-packages/nvidia/cudnn/lib
/usr/local/lib/python3.9/dist-packages/nvidia/cuda_runtime/lib
/usr/local/lib/python3.9/dist-packages/nvidia/cublas/lib
/usr/local/lib/python3.9/dist-packages/nvidia/cuda_nvrtc/lib
/usr/local/lib/python3.9/dist-packages/tensorrt
/usr/local/cuda/lib64
/usr/local/lib/python3.11/dist-packages/nvidia/cudnn/lib
/usr/local/lib/python3.11/dist-packages/nvidia/cuda_runtime/lib
/usr/local/lib/python3.11/dist-packages/nvidia/cublas/lib
/usr/local/lib/python3.11/dist-packages/nvidia/cuda_nvrtc/lib
/usr/local/lib/python3.11/dist-packages/tensorrt
/usr/local/lib/python3.11/dist-packages/nvidia/cufft/lib

View File

@@ -1,14 +1,10 @@
# NVidia TensorRT Support (amd64 only)
--extra-index-url 'https://pypi.nvidia.com'
numpy < 1.24; platform_machine == 'x86_64'
tensorrt == 8.5.3.*; platform_machine == 'x86_64'
cuda-python == 11.8; platform_machine == 'x86_64'
cython == 0.29.*; platform_machine == 'x86_64'
tensorrt == 10.5.0; platform_machine == 'x86_64'
cuda-python == 12.6.*; platform_machine == 'x86_64'
cython == 3.0.*; platform_machine == 'x86_64'
nvidia-cuda-runtime-cu12 == 12.1.*; platform_machine == 'x86_64'
nvidia-cuda-runtime-cu11 == 11.8.*; platform_machine == 'x86_64'
nvidia-cublas-cu11 == 11.11.3.6; platform_machine == 'x86_64'
nvidia-cudnn-cu11 == 8.6.0.*; platform_machine == 'x86_64'
nvidia-cufft-cu11==10.*; platform_machine == 'x86_64'
onnx==1.16.*; platform_machine == 'x86_64'
onnxruntime-gpu==1.18.*; platform_machine == 'x86_64'
onnxruntime-gpu==1.20.*; platform_machine == 'x86_64'
protobuf==3.20.3; platform_machine == 'x86_64'

View File

@@ -174,7 +174,7 @@ NOTE: The folder that is set for the config needs to be the folder that contains
### Custom go2rtc version
Frigate currently includes go2rtc v1.9.4, there may be certain cases where you want to run a different version of go2rtc.
Frigate currently includes go2rtc v1.9.2, there may be certain cases where you want to run a different version of go2rtc.
To do this:

View File

@@ -41,6 +41,7 @@ cameras:
...
onvif:
# Required: host of the camera being connected to.
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
host: 0.0.0.0
# Optional: ONVIF port for device (default: shown below).
port: 8000
@@ -49,6 +50,8 @@ cameras:
user: admin
# Optional: password for login.
password: admin
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
tls_insecure: False
# Optional: PTZ camera object autotracking. Keeps a moving object in
# the center of the frame by automatically moving the PTZ camera.
autotracking:

View File

@@ -0,0 +1,35 @@
---
id: face_recognition
title: Face Recognition
---
Face recognition allows people to be assigned names and when their face is recognized Frigate will assign the person's name as a sub label. This information is included in the UI, filters, as well as in notifications.
Frigate has support for FaceNet to create face embeddings, which runs locally. Embeddings are then saved to Frigate's database.
## Minimum System Requirements
Face recognition works by running a large AI model locally on your system. Systems without a GPU will not run Face Recognition reliably or at all.
## Configuration
Face recognition is disabled by default and requires semantic search to be enabled, face recognition must be enabled in your config file before it can be used. Semantic Search and face recognition are global configuration settings.
```yaml
face_recognition:
enabled: true
```
## Dataset
The number of images needed for a sufficient training set for face recognition varies depending on several factors:
- Complexity of the task: A simple task like recognizing faces of known individuals may require fewer images than a complex task like identifying unknown individuals in a large crowd.
- Diversity of the dataset: A dataset with diverse images, including variations in lighting, pose, and facial expressions, will require fewer images per person than a less diverse dataset.
- Desired accuracy: The higher the desired accuracy, the more images are typically needed.
However, here are some general guidelines:
- Minimum: For basic face recognition tasks, a minimum of 10-20 images per person is often recommended.
- Recommended: For more robust and accurate systems, 30-50 images per person is a good starting point.
- Ideal: For optimal performance, especially in challenging conditions, 100 or more images per person can be beneficial.

View File

@@ -5,6 +5,8 @@ title: Generative AI
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
Requests for a description are sent off automatically to your AI provider at the end of the tracked object's lifecycle. Descriptions can also be regenerated manually via the Frigate UI.
:::info
Semantic Search must be enabled to use Generative AI.

View File

@@ -231,28 +231,11 @@ docker run -d \
### Setup Decoder
The decoder you need to pass in the `hwaccel_args` will depend on the input video.
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get the ones your card supports)
```
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
```
For example, for H264 video, you'll select `preset-nvidia-h264`.
Using `preset-nvidia` ffmpeg will automatically select the necessary profile for the incoming video, and will log an error if the profile is not supported by your GPU.
```yaml
ffmpeg:
hwaccel_args: preset-nvidia-h264
hwaccel_args: preset-nvidia
```
If everything is working correctly, you should see a significant improvement in performance.

View File

@@ -0,0 +1,45 @@
---
id: license_plate_recognition
title: License Plate Recognition (LPR)
---
Frigate can recognize license plates on vehicles and automatically add the detected characters as a `sub_label` to objects that are of type `car`. A common use case may be to read the license plates of cars pulling into a driveway or cars passing by on a street with a dedicated LPR camera.
Users running a Frigate+ model should ensure that `license_plate` is added to the [list of objects to track](https://docs.frigate.video/plus/#available-label-types) either globally or for a specific camera. This will improve the accuracy and performance of the LPR model.
LPR is most effective when the vehicles license plate is fully visible to the camera. For moving vehicles, Frigate will attempt to read the plate continuously, refining its detection and keeping the most confident result. LPR will not run on stationary vehicles.
## Minimum System Requirements
License plate recognition works by running AI models locally on your system. The models are relatively lightweight and run on your CPU. At least 4GB of RAM is required.
## Configuration
License plate recognition is disabled by default. Enable it in your config file:
```yaml
lpr:
enabled: true
```
## Advanced Configuration
Several options are available to fine-tune the LPR feature. For example, you can adjust the `min_area` setting, which defines the minimum size in pixels a license plate must be before LPR runs. The default is 500 pixels.
Additionally, you can define `known_plates` as strings or regular expressions, allowing Frigate to label tracked vehicles with custom sub_labels when a recognized plate is detected. This information is then accessible in the UI, filters, and notifications.
```yaml
lpr:
enabled: true
min_area: 500
known_plates:
Wife's Car:
- "ABC-1234"
- "ABC-I234"
Johnny:
- "J*N-*234" # Using wildcards for H/M and 1/I
Sally:
- "[S5]LL-1234" # Matches SLL-1234 and 5LL-1234
```
In this example, "Wife's Car" will appear as the label for any vehicle matching the plate "ABC-1234." The model might occasionally interpret the digit 1 as a capital I (e.g., "ABC-I234"), so both variations are listed. Similarly, multiple possible variations are specified for Johnny and Sally.

View File

@@ -23,7 +23,7 @@ If you are using go2rtc, you should adjust the following settings in your camera
- Video codec: **H.264** - provides the most compatible video codec with all Live view technologies and browsers. Avoid any kind of "smart codec" or "+" codec like _H.264+_ or _H.265+_. as these non-standard codecs remove keyframes (see below).
- Audio codec: **AAC** - provides the most compatible audio codec with all Live view technologies and browsers that support audio.
- I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes.
- I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes. For many users this may not be an issue, but it should be noted that that a 1x i-frame interval will cause more storage utilization if you are using the stream for the `record` role as well.
The default video and audio codec on your camera may not always be compatible with your browser, which is why setting them to H.264 and AAC is recommended. See the [go2rtc docs](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#codecs-madness) for codec support information.

View File

@@ -522,6 +522,14 @@ semantic_search:
# NOTE: small model runs on CPU and large model runs on GPU
model_size: "small"
# Optional: Configuration for face recognition capability
face_recognition:
# Optional: Enable semantic search (default: shown below)
enabled: False
# Optional: Set the model size used for embeddings. (default: shown below)
# NOTE: small model runs on CPU and large model runs on GPU
model_size: "small"
# Optional: Configuration for AI generated tracked object descriptions
# NOTE: Semantic Search must be enabled for this to do anything.
# WARNING: Depending on the provider, this will send thumbnails over the internet
@@ -686,6 +694,7 @@ cameras:
# to enable PTZ controls.
onvif:
# Required: host of the camera being connected to.
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
host: 0.0.0.0
# Optional: ONVIF port for device (default: shown below).
port: 8000
@@ -694,6 +703,8 @@ cameras:
user: admin
# Optional: password for login.
password: admin
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
tls_insecure: False
# Optional: Ignores time synchronization mismatches between the camera and the server during authentication.
# Using NTP on both ends is recommended and this should only be set to True in a "safe" environment due to the security risk it represents.
ignore_time_mismatch: False
@@ -757,6 +768,8 @@ cameras:
- cat
# Optional: Restrict generation to objects that entered any of the listed zones (default: none, all zones qualify)
required_zones: []
# Optional: Save thumbnails sent to generative AI for review/debugging purposes (default: shown below)
debug_save_thumbnails: False
# Optional
ui:

View File

@@ -132,6 +132,28 @@ cameras:
- detect
```
## Handling Complex Passwords
go2rtc expects URL-encoded passwords in the config, [urlencoder.org](https://urlencoder.org) can be used for this purpose.
For example:
```yaml
go2rtc:
streams:
my_camera: rtsp://username:$@foo%@192.168.1.100
```
becomes
```yaml
go2rtc:
streams:
my_camera: rtsp://username:$%40foo%25@192.168.1.100
```
See [this comment(https://github.com/AlexxIT/go2rtc/issues/1217#issuecomment-2242296489) for more information.
## Advanced Restream Configurations
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:

View File

@@ -5,7 +5,7 @@ title: Using Semantic Search
Semantic Search in Frigate allows you to find tracked objects within your review items using either the image itself, a user-defined text description, or an automatically generated one. This feature works by creating _embeddings_ — numerical vector representations — for both the images and text descriptions of your tracked objects. By comparing these embeddings, Frigate assesses their similarities to deliver relevant search results.
Frigate has support for [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create embeddings, which runs locally. Embeddings are then saved to Frigate's database.
Frigate uses [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create and save embeddings to Frigate's database. All of this runs locally.
Semantic Search is accessed via the _Explore_ view in the Frigate UI.
@@ -19,7 +19,7 @@ For best performance, 16GB or more of RAM and a dedicated GPU are recommended.
## Configuration
Semantic Search is disabled by default, and must be enabled in your config file before it can be used. Semantic Search is a global configuration setting.
Semantic Search is disabled by default, and must be enabled in your config file or in the UI's Settings page before it can be used. Semantic Search is a global configuration setting.
```yaml
semantic_search:
@@ -29,9 +29,9 @@ semantic_search:
:::tip
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to set the config back to `False` before restarting Frigate again.
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration or by toggling the switch on the Search Settings page in the UI and restarting Frigate. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to turn the UI's switch off or set the config back to `False` before restarting Frigate again.
If you are enabling the Search feature for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
If you are enabling Semantic Search for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
:::
@@ -39,9 +39,9 @@ If you are enabling the Search feature for the first time, be advised that Friga
The vision model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails.
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Search page when clicking on the gray tracked object chip at the top left of each review item. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Explore page when clicking on thumbnail of a tracked object. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
Differently weighted CLIP models are available and can be selected by setting the `model_size` config option as `small` or `large`:
Differently weighted versions of the Jina model are available and can be selected by setting the `model_size` config option as `small` or `large`:
```yaml
semantic_search:
@@ -50,7 +50,7 @@ semantic_search:
```
- Configuring the `large` model employs the full Jina model and will automatically run on the GPU if applicable.
- Configuring the `small` model employs a quantized version of the model that uses less RAM and runs on CPU with a very negligible difference in embedding quality.
- Configuring the `small` model employs a quantized version of the Jina model that uses less RAM and runs on CPU with a very negligible difference in embedding quality.
### GPU Acceleration
@@ -84,7 +84,7 @@ If the correct build is used for your GPU and the `large` model is configured, t
## Usage and Best Practices
1. Semantic Search is used in conjunction with the other filters available on the Search page. Use a combination of traditional filtering and Semantic Search for the best results.
1. Semantic Search is used in conjunction with the other filters available on the Explore page. Use a combination of traditional filtering and Semantic Search for the best results.
2. Use the thumbnail search type when searching for particular objects in the scene. Use the description search type when attempting to discern the intent of your object.
3. Because of how the AI models Frigate uses have been trained, the comparison between text and image embedding distances generally means that with multi-modal (`thumbnail` and `description`) searches, results matching `description` will appear first, even if a `thumbnail` embedding may be a better match. Play with the "Search Type" setting to help find what you are looking for. Note that if you are generating descriptions for specific objects or zones only, this may cause search results to prioritize the objects with descriptions even if the the ones without them are more relevant.
4. Make your search language and tone closely match exactly what you're looking for. If you are using thumbnail search, **phrase your query as an image caption**. Searching for "red car" may not work as well as "red sedan driving down a residential street on a sunny day".

View File

@@ -28,7 +28,7 @@ For the Dahua/Loryta 5442 camera, I use the following settings:
- Encode Mode: H.264
- Resolution: 2688\*1520
- Frame Rate(FPS): 15
- I Frame Interval: 30
- I Frame Interval: 30 (15 can also be used to prioritize streaming performance - see the [camera settings recommendations](../configuration/live) for more info)
**Sub Stream (Detection)**

View File

@@ -98,3 +98,11 @@ docker run -d \
-p 8555:8555/udp \
ghcr.io/blakeblackshear/frigate:stable
```
### My RTSP stream works fine in VLC, but it does not work when I put the same URL in my Frigate config. Is this a bug?
No. Frigate uses the TCP protocol to connect to your camera's RTSP URL. VLC automatically switches between UDP and TCP depending on network conditions and stream availability. So a stream that works in VLC but not in Frigate is likely due to VLC selecting UDP as the transfer protocol.
TCP ensures that all data packets arrive in the correct order. This is crucial for video recording, decoding, and stream processing, which is why Frigate enforces a TCP connection. UDP is faster but less reliable, as it does not guarantee packet delivery or order, and VLC does not have the same requirements as Frigate.
You can still configure Frigate to use UDP by using ffmpeg input args or the preset `preset-rtsp-udp`. See the [ffmpeg presets](/configuration/ffmpeg_presets) documentation.

7069
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -17,15 +17,15 @@
"write-heading-ids": "docusaurus write-heading-ids"
},
"dependencies": {
"@docusaurus/core": "^3.5.2",
"@docusaurus/preset-classic": "^3.5.2",
"@docusaurus/theme-mermaid": "^3.5.2",
"@docusaurus/plugin-content-docs": "^3.5.2",
"@mdx-js/react": "^3.0.1",
"@docusaurus/core": "^3.6.3",
"@docusaurus/preset-classic": "^3.6.3",
"@docusaurus/theme-mermaid": "^3.6.3",
"@docusaurus/plugin-content-docs": "^3.6.3",
"@mdx-js/react": "^3.1.0",
"clsx": "^2.1.1",
"docusaurus-plugin-openapi-docs": "^4.1.0",
"docusaurus-theme-openapi-docs": "^4.1.0",
"prism-react-renderer": "^2.4.0",
"docusaurus-plugin-openapi-docs": "^4.3.1",
"docusaurus-theme-openapi-docs": "^4.3.1",
"prism-react-renderer": "^2.4.1",
"raw-loader": "^4.0.2",
"react": "^18.3.1",
"react-dom": "^18.3.1"

View File

@@ -36,6 +36,8 @@ const sidebars: SidebarsConfig = {
'Semantic Search': [
'configuration/semantic_search',
'configuration/genai',
'configuration/face_recognition',
'configuration/license_plate_recognition',
],
Cameras: [
'configuration/cameras',

File diff suppressed because it is too large Load Diff

View File

@@ -3,12 +3,15 @@ import faulthandler
import signal
import sys
import threading
from typing import Union
import ruamel.yaml
from pydantic import ValidationError
from frigate.app import FrigateApp
from frigate.config import FrigateConfig
from frigate.log import setup_logging
from frigate.util.config import find_config_file
def main() -> None:
@@ -42,10 +45,50 @@ def main() -> None:
print("*************************************************************")
print("*************************************************************")
print("*** Config Validation Errors ***")
print("*************************************************************")
print("*************************************************************\n")
# Attempt to get the original config file for line number tracking
config_path = find_config_file()
with open(config_path, "r") as f:
yaml_config = ruamel.yaml.YAML()
yaml_config.preserve_quotes = True
full_config = yaml_config.load(f)
for error in e.errors():
location = ".".join(str(item) for item in error["loc"])
print(f"{location}: {error['msg']}")
error_path = error["loc"]
current = full_config
line_number = "Unknown"
last_line_number = "Unknown"
try:
for i, part in enumerate(error_path):
key: Union[int, str] = (
int(part) if isinstance(part, str) and part.isdigit() else part
)
if isinstance(current, ruamel.yaml.comments.CommentedMap):
current = current[key]
elif isinstance(current, list):
if isinstance(key, int):
current = current[key]
if hasattr(current, "lc"):
last_line_number = current.lc.line
if i == len(error_path) - 1:
if hasattr(current, "lc"):
line_number = current.lc.line
else:
line_number = last_line_number
except Exception as traverse_error:
print(f"Could not determine exact line number: {traverse_error}")
print(f"Line # : {line_number}")
print(f"Key : {' -> '.join(map(str, error_path))}")
print(f"Value : {error.get('input','-')}")
print(f"Message : {error.get('msg', error.get('type', 'Unknown'))}\n")
print("*************************************************************")
print("*** End Config Validation Errors ***")
print("*************************************************************")

View File

@@ -7,27 +7,30 @@ import os
import traceback
from datetime import datetime, timedelta
from functools import reduce
from io import StringIO
from typing import Any, Optional
import requests
import ruamel.yaml
from fastapi import APIRouter, Body, Path, Request, Response
from fastapi.encoders import jsonable_encoder
from fastapi.params import Depends
from fastapi.responses import JSONResponse, PlainTextResponse
from markupsafe import escape
from peewee import operator
from pydantic import ValidationError
from frigate.api.defs.app_body import AppConfigSetBody
from frigate.api.defs.app_query_parameters import AppTimelineHourlyQueryParameters
from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryParameters
from frigate.api.defs.request.app_body import AppConfigSetBody
from frigate.api.defs.tags import Tags
from frigate.config import FrigateConfig
from frigate.const import CONFIG_DIR
from frigate.models import Event, Timeline
from frigate.util.builtin import (
clean_camera_user_pass,
get_tz_modifiers,
update_yaml_from_url,
)
from frigate.util.config import find_config_file
from frigate.util.services import (
ffprobe_stream,
get_nvidia_driver_info,
@@ -134,9 +137,25 @@ def config(request: Request):
for zone_name, zone in config_obj.cameras[camera_name].zones.items():
camera_dict["zones"][zone_name]["color"] = zone.color
# remove go2rtc stream passwords
go2rtc: dict[str, any] = config_obj.go2rtc.model_dump(
mode="json", warnings="none", exclude_none=True
)
for stream_name, stream in go2rtc.get("streams", {}).items():
if isinstance(stream, str):
cleaned = clean_camera_user_pass(stream)
else:
cleaned = []
for item in stream:
cleaned.append(clean_camera_user_pass(item))
config["go2rtc"]["streams"][stream_name] = cleaned
config["plus"] = {"enabled": request.app.frigate_config.plus_api.is_active()}
config["model"]["colormap"] = config_obj.model.colormap
# use merged labelamp
for detector_config in config["detectors"].values():
detector_config["model"]["labelmap"] = (
request.app.frigate_config.model.merged_labelmap
@@ -147,13 +166,7 @@ def config(request: Request):
@router.get("/config/raw")
def config_raw():
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
config_file = find_config_file()
if not os.path.isfile(config_file):
return JSONResponse(
@@ -173,7 +186,6 @@ def config_raw():
@router.post("/config/save")
def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
new_config = body.decode()
if not new_config:
return JSONResponse(
content=(
@@ -184,13 +196,64 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
# Validate the config schema
try:
# Use ruamel to parse and preserve line numbers
yaml_config = ruamel.yaml.YAML()
yaml_config.preserve_quotes = True
full_config = yaml_config.load(StringIO(new_config))
FrigateConfig.parse_yaml(new_config)
except ValidationError as e:
error_message = []
for error in e.errors():
error_path = error["loc"]
current = full_config
line_number = "Unknown"
last_line_number = "Unknown"
try:
for i, part in enumerate(error_path):
key = int(part) if part.isdigit() else part
if isinstance(current, ruamel.yaml.comments.CommentedMap):
current = current[key]
elif isinstance(current, list):
current = current[key]
if hasattr(current, "lc"):
last_line_number = current.lc.line
if i == len(error_path) - 1:
if hasattr(current, "lc"):
line_number = current.lc.line
else:
line_number = last_line_number
except Exception:
line_number = "Unable to determine"
error_message.append(
f"Line {line_number}: {' -> '.join(map(str, error_path))} - {error.get('msg', error.get('type', 'Unknown'))}"
)
return JSONResponse(
content=(
{
"success": False,
"message": "Your configuration is invalid.\nSee the official documentation at docs.frigate.video.\n\n"
+ "\n".join(error_message),
}
),
status_code=400,
)
except Exception:
return JSONResponse(
content=(
{
"success": False,
"message": f"\nConfig Error:\n\n{escape(str(traceback.format_exc()))}",
"message": f"\nYour configuration is invalid.\nSee the official documentation at docs.frigate.video.\n\n{escape(str(traceback.format_exc()))}",
}
),
status_code=400,
@@ -198,13 +261,7 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
# Save the config to file
try:
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
config_file = find_config_file()
with open(config_file, "w") as f:
f.write(new_config)
@@ -253,13 +310,7 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
@router.put("/config/set")
def config_set(request: Request, body: AppConfigSetBody):
config_file = os.environ.get("CONFIG_FILE", f"{CONFIG_DIR}/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
config_file = find_config_file()
with open(config_file, "r") as f:
old_raw_config = f.read()

View File

@@ -18,7 +18,7 @@ from joserfc import jwt
from peewee import DoesNotExist
from slowapi import Limiter
from frigate.api.defs.app_body import (
from frigate.api.defs.request.app_body import (
AppPostLoginBody,
AppPostUsersBody,
AppPutPasswordBody,
@@ -85,7 +85,12 @@ def get_remote_addr(request: Request):
return str(ip)
# if there wasn't anything in the route, just return the default
return request.remote_addr or "127.0.0.1"
remote_addr = None
if hasattr(request, "remote_addr"):
remote_addr = request.remote_addr
return remote_addr or "127.0.0.1"
def get_jwt_secret() -> str:
@@ -324,7 +329,7 @@ def login(request: Request, body: AppPostLoginBody):
try:
db_user: User = User.get_by_id(user)
except DoesNotExist:
return JSONResponse(content={"message": "Login failed"}, status_code=400)
return JSONResponse(content={"message": "Login failed"}, status_code=401)
password_hash = db_user.password_hash
if verify_password(password, password_hash):
@@ -335,7 +340,7 @@ def login(request: Request, body: AppPostLoginBody):
response, JWT_COOKIE_NAME, encoded_jwt, expiration, JWT_COOKIE_SECURE
)
return response
return JSONResponse(content={"message": "Login failed"}, status_code=400)
return JSONResponse(content={"message": "Login failed"}, status_code=401)
@router.get("/users")

View File

@@ -0,0 +1,59 @@
"""Object classification APIs."""
import logging
import os
from fastapi import APIRouter, Request, UploadFile
from fastapi.responses import JSONResponse
from pathvalidate import sanitize_filename
from frigate.api.defs.tags import Tags
from frigate.const import FACE_DIR
from frigate.embeddings import EmbeddingsContext
logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.events])
@router.get("/faces")
def get_faces():
face_dict: dict[str, list[str]] = {}
for name in os.listdir(FACE_DIR):
face_dict[name] = []
for file in os.listdir(os.path.join(FACE_DIR, name)):
face_dict[name].append(file)
return JSONResponse(status_code=200, content=face_dict)
@router.post("/faces/{name}")
async def register_face(request: Request, name: str, file: UploadFile):
context: EmbeddingsContext = request.app.embeddings
context.register_face(name, await file.read())
return JSONResponse(
status_code=200,
content={"success": True, "message": "Successfully registered face."},
)
@router.post("/faces/{name}/delete")
def deregister_faces(request: Request, name: str, body: dict = None):
json: dict[str, any] = body or {}
list_of_ids = json.get("ids", "")
if not list_of_ids or len(list_of_ids) == 0:
return JSONResponse(
content=({"success": False, "message": "Not a valid list of ids"}),
status_code=404,
)
context: EmbeddingsContext = request.app.embeddings
context.delete_face_ids(
name, map(lambda file: sanitize_filename(file), list_of_ids)
)
return JSONResponse(
content=({"success": True, "message": "Successfully deleted faces."}),
status_code=200,
)

View File

@@ -20,6 +20,7 @@ class MediaLatestFrameQueryParams(BaseModel):
regions: Optional[int] = None
quality: Optional[int] = 70
height: Optional[int] = None
store: Optional[int] = None
class MediaEventsSnapshotQueryParams(BaseModel):

View File

@@ -3,7 +3,7 @@ from typing import Union
from pydantic import BaseModel
from pydantic.json_schema import SkipJsonSchema
from frigate.review.maintainer import SeverityEnum
from frigate.review.types import SeverityEnum
class ReviewQueryParams(BaseModel):

View File

@@ -8,6 +8,9 @@ class EventsSubLabelBody(BaseModel):
subLabelScore: Optional[float] = Field(
title="Score for sub label", default=None, gt=0.0, le=1.0
)
camera: Optional[str] = Field(
title="Camera this object is detected on.", default=None
)
class EventsDescriptionBody(BaseModel):

View File

@@ -0,0 +1,42 @@
from typing import Any, Optional
from pydantic import BaseModel, ConfigDict
class EventResponse(BaseModel):
id: str
label: str
sub_label: Optional[str]
camera: str
start_time: float
end_time: Optional[float]
false_positive: Optional[bool]
zones: list[str]
thumbnail: str
has_clip: bool
has_snapshot: bool
retain_indefinitely: bool
plus_id: Optional[str]
model_hash: Optional[str]
detector_type: Optional[str]
model_type: Optional[str]
data: dict[str, Any]
model_config = ConfigDict(protected_namespaces=())
class EventCreateResponse(BaseModel):
success: bool
message: str
event_id: str
class EventMultiDeleteResponse(BaseModel):
success: bool
deleted_events: list[str]
not_found_events: list[str]
class EventUploadPlusResponse(BaseModel):
success: bool
plus_id: str

View File

@@ -3,7 +3,7 @@ from typing import Dict
from pydantic import BaseModel, Json
from frigate.review.maintainer import SeverityEnum
from frigate.review.types import SeverityEnum
class ReviewSegmentResponse(BaseModel):

View File

@@ -10,4 +10,5 @@ class Tags(Enum):
review = "Review"
export = "Export"
events = "Events"
classification = "classification"
auth = "Auth"

View File

@@ -14,7 +14,16 @@ from fastapi.responses import JSONResponse
from peewee import JOIN, DoesNotExist, fn, operator
from playhouse.shortcuts import model_to_dict
from frigate.api.defs.events_body import (
from frigate.api.defs.query.events_query_parameters import (
DEFAULT_TIME_RANGE,
EventsQueryParams,
EventsSearchQueryParams,
EventsSummaryQueryParams,
)
from frigate.api.defs.query.regenerate_query_parameters import (
RegenerateQueryParameters,
)
from frigate.api.defs.request.events_body import (
EventsCreateBody,
EventsDeleteBody,
EventsDescriptionBody,
@@ -22,19 +31,15 @@ from frigate.api.defs.events_body import (
EventsSubLabelBody,
SubmitPlusBody,
)
from frigate.api.defs.events_query_parameters import (
DEFAULT_TIME_RANGE,
EventsQueryParams,
EventsSearchQueryParams,
EventsSummaryQueryParams,
)
from frigate.api.defs.regenerate_query_parameters import (
RegenerateQueryParameters,
from frigate.api.defs.response.event_response import (
EventCreateResponse,
EventMultiDeleteResponse,
EventResponse,
EventUploadPlusResponse,
)
from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.tags import Tags
from frigate.const import (
CLIPS_DIR,
)
from frigate.const import CLIPS_DIR
from frigate.embeddings import EmbeddingsContext
from frigate.events.external import ExternalEventProcessor
from frigate.models import Event, ReviewSegment, Timeline
@@ -46,7 +51,7 @@ logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.events])
@router.get("/events")
@router.get("/events", response_model=list[EventResponse])
def events(params: EventsQueryParams = Depends()):
camera = params.camera
cameras = params.cameras
@@ -248,6 +253,8 @@ def events(params: EventsQueryParams = Depends()):
order_by = Event.start_time.asc()
elif sort == "date_desc":
order_by = Event.start_time.desc()
else:
order_by = Event.start_time.desc()
else:
order_by = Event.start_time.desc()
@@ -263,7 +270,7 @@ def events(params: EventsQueryParams = Depends()):
return JSONResponse(content=list(events))
@router.get("/events/explore")
@router.get("/events/explore", response_model=list[EventResponse])
def events_explore(limit: int = 10):
# get distinct labels for all events
distinct_labels = Event.select(Event.label).distinct().order_by(Event.label)
@@ -308,7 +315,8 @@ def events_explore(limit: int = 10):
"data": {
k: v
for k, v in event.data.items()
if k in ["type", "score", "top_score", "description"]
if k
in ["type", "score", "top_score", "description", "sub_label_score"]
},
"event_count": label_counts[event.label],
}
@@ -324,7 +332,7 @@ def events_explore(limit: int = 10):
return JSONResponse(content=processed_events)
@router.get("/event_ids")
@router.get("/event_ids", response_model=list[EventResponse])
def event_ids(ids: str):
ids = ids.split(",")
@@ -582,19 +590,17 @@ def events_search(request: Request, params: EventsSearchQueryParams = Depends())
processed_events.append(processed_event)
# Sort by search distance if search_results are available, otherwise by start_time as default
if search_results:
if (sort is None or sort == "relevance") and search_results:
processed_events.sort(key=lambda x: x.get("search_distance", float("inf")))
elif min_score is not None and max_score is not None and sort == "score_asc":
processed_events.sort(key=lambda x: x["score"])
elif min_score is not None and max_score is not None and sort == "score_desc":
processed_events.sort(key=lambda x: x["score"], reverse=True)
elif sort == "date_asc":
processed_events.sort(key=lambda x: x["start_time"])
else:
if sort == "score_asc":
processed_events.sort(key=lambda x: x["score"])
elif sort == "score_desc":
processed_events.sort(key=lambda x: x["score"], reverse=True)
elif sort == "date_asc":
processed_events.sort(key=lambda x: x["start_time"])
else:
# "date_desc" default
processed_events.sort(key=lambda x: x["start_time"], reverse=True)
# "date_desc" default
processed_events.sort(key=lambda x: x["start_time"], reverse=True)
# Limit the number of events returned
processed_events = processed_events[:limit]
@@ -647,7 +653,7 @@ def events_summary(params: EventsSummaryQueryParams = Depends()):
return JSONResponse(content=[e for e in groups.dicts()])
@router.get("/events/{event_id}")
@router.get("/events/{event_id}", response_model=EventResponse)
def event(event_id: str):
try:
return model_to_dict(Event.get(Event.id == event_id))
@@ -655,7 +661,7 @@ def event(event_id: str):
return JSONResponse(content="Event not found", status_code=404)
@router.post("/events/{event_id}/retain")
@router.post("/events/{event_id}/retain", response_model=GenericResponse)
def set_retain(event_id: str):
try:
event = Event.get(Event.id == event_id)
@@ -674,7 +680,7 @@ def set_retain(event_id: str):
)
@router.post("/events/{event_id}/plus")
@router.post("/events/{event_id}/plus", response_model=EventUploadPlusResponse)
def send_to_plus(request: Request, event_id: str, body: SubmitPlusBody = None):
if not request.app.frigate_config.plus_api.is_active():
message = "PLUS_API_KEY environment variable is not set"
@@ -786,7 +792,7 @@ def send_to_plus(request: Request, event_id: str, body: SubmitPlusBody = None):
)
@router.put("/events/{event_id}/false_positive")
@router.put("/events/{event_id}/false_positive", response_model=EventUploadPlusResponse)
def false_positive(request: Request, event_id: str):
if not request.app.frigate_config.plus_api.is_active():
message = "PLUS_API_KEY environment variable is not set"
@@ -875,7 +881,7 @@ def false_positive(request: Request, event_id: str):
)
@router.delete("/events/{event_id}/retain")
@router.delete("/events/{event_id}/retain", response_model=GenericResponse)
def delete_retain(event_id: str):
try:
event = Event.get(Event.id == event_id)
@@ -894,7 +900,7 @@ def delete_retain(event_id: str):
)
@router.post("/events/{event_id}/sub_label")
@router.post("/events/{event_id}/sub_label", response_model=GenericResponse)
def set_sub_label(
request: Request,
event_id: str,
@@ -903,38 +909,59 @@ def set_sub_label(
try:
event: Event = Event.get(Event.id == event_id)
except DoesNotExist:
if not body.camera:
return JSONResponse(
content=(
{
"success": False,
"message": "Event "
+ event_id
+ " not found and camera is not provided.",
}
),
status_code=404,
)
event = None
if request.app.detected_frames_processor:
tracked_obj: TrackedObject = (
request.app.detected_frames_processor.camera_states[
event.camera if event else body.camera
].tracked_objects.get(event_id)
)
else:
tracked_obj = None
if not event and not tracked_obj:
return JSONResponse(
content=({"success": False, "message": "Event " + event_id + " not found"}),
content=(
{"success": False, "message": "Event " + event_id + " not found."}
),
status_code=404,
)
new_sub_label = body.subLabel
new_score = body.subLabelScore
if not event.end_time:
# update tracked object
tracked_obj: TrackedObject = (
request.app.detected_frames_processor.camera_states[
event.camera
].tracked_objects.get(event.id)
)
if tracked_obj:
tracked_obj.obj_data["sub_label"] = (new_sub_label, new_score)
if tracked_obj:
tracked_obj.obj_data["sub_label"] = (new_sub_label, new_score)
# update timeline items
Timeline.update(
data=Timeline.data.update({"sub_label": (new_sub_label, new_score)})
).where(Timeline.source_id == event_id).execute()
event.sub_label = new_sub_label
if event:
event.sub_label = new_sub_label
if new_score:
data = event.data
data["sub_label_score"] = new_score
event.data = data
if new_score:
data = event.data
data["sub_label_score"] = new_score
event.data = data
event.save()
event.save()
return JSONResponse(
content=(
{
@@ -946,7 +973,7 @@ def set_sub_label(
)
@router.post("/events/{event_id}/description")
@router.post("/events/{event_id}/description", response_model=GenericResponse)
def set_description(
request: Request,
event_id: str,
@@ -993,7 +1020,7 @@ def set_description(
)
@router.put("/events/{event_id}/description/regenerate")
@router.put("/events/{event_id}/description/regenerate", response_model=GenericResponse)
def regenerate_description(
request: Request, event_id: str, params: RegenerateQueryParameters = Depends()
):
@@ -1064,14 +1091,14 @@ def delete_single_event(event_id: str, request: Request) -> dict:
return {"success": True, "message": f"Event {event_id} deleted"}
@router.delete("/events/{event_id}")
@router.delete("/events/{event_id}", response_model=GenericResponse)
def delete_event(request: Request, event_id: str):
result = delete_single_event(event_id, request)
status_code = 200 if result["success"] else 404
return JSONResponse(content=result, status_code=status_code)
@router.delete("/events/")
@router.delete("/events/", response_model=EventMultiDeleteResponse)
def delete_events(request: Request, body: EventsDeleteBody):
if not body.event_ids:
return JSONResponse(
@@ -1097,7 +1124,7 @@ def delete_events(request: Request, body: EventsDeleteBody):
return JSONResponse(content=response, status_code=200)
@router.post("/events/{camera_name}/{label}/create")
@router.post("/events/{camera_name}/{label}/create", response_model=EventCreateResponse)
def create_event(
request: Request,
camera_name: str,
@@ -1153,7 +1180,7 @@ def create_event(
)
@router.put("/events/{event_id}/end")
@router.put("/events/{event_id}/end", response_model=GenericResponse)
def end_event(request: Request, event_id: str, body: EventsEndBody):
try:
end_time = body.end_time or datetime.datetime.now().timestamp()

View File

@@ -9,6 +9,7 @@ import psutil
from fastapi import APIRouter, Request
from fastapi.responses import JSONResponse
from peewee import DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.api.defs.request.export_recordings_body import ExportRecordingsBody
from frigate.api.defs.tags import Tags
@@ -207,3 +208,14 @@ def export_delete(event_id: str):
),
status_code=200,
)
@router.get("/exports/{export_id}")
def get_export(export_id: str):
try:
return JSONResponse(content=model_to_dict(Export.get(Export.id == export_id)))
except DoesNotExist:
return JSONResponse(
content={"success": False, "message": "Export not found"},
status_code=404,
)

View File

@@ -11,7 +11,16 @@ from starlette_context import middleware, plugins
from starlette_context.plugins import Plugin
from frigate.api import app as main_app
from frigate.api import auth, event, export, media, notification, preview, review
from frigate.api import (
auth,
classification,
event,
export,
media,
notification,
preview,
review,
)
from frigate.api.auth import get_jwt_secret, limiter
from frigate.comms.event_metadata_updater import (
EventMetadataPublisher,
@@ -87,7 +96,11 @@ def create_fastapi_app(
logger.info("FastAPI started")
# Rate limiter (used for login endpoint)
auth.rateLimiter.set_limit(frigate_config.auth.failed_login_rate_limit or "")
if frigate_config.auth.failed_login_rate_limit is None:
limiter.enabled = False
else:
auth.rateLimiter.set_limit(frigate_config.auth.failed_login_rate_limit)
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)
app.add_middleware(SlowAPIMiddleware)
@@ -95,6 +108,7 @@ def create_fastapi_app(
# Routes
# Order of include_router matters: https://fastapi.tiangolo.com/tutorial/path-params/#order-matters
app.include_router(auth.router)
app.include_router(classification.router)
app.include_router(review.router)
app.include_router(main_app.router)
app.include_router(preview.router)

View File

@@ -20,7 +20,7 @@ from pathvalidate import sanitize_filename
from peewee import DoesNotExist, fn
from tzlocal import get_localzone_name
from frigate.api.defs.media_query_parameters import (
from frigate.api.defs.query.media_query_parameters import (
Extension,
MediaEventsSnapshotQueryParams,
MediaLatestFrameQueryParams,
@@ -179,7 +179,12 @@ def latest_frame(
return Response(
content=img.tobytes(),
media_type=f"image/{extension}",
headers={"Content-Type": f"image/{extension}", "Cache-Control": "no-store"},
headers={
"Content-Type": f"image/{extension}",
"Cache-Control": "no-store"
if not params.store
else "private, max-age=60",
},
)
elif camera_name == "birdseye" and request.app.frigate_config.birdseye.restream:
frame = cv2.cvtColor(
@@ -198,7 +203,12 @@ def latest_frame(
return Response(
content=img.tobytes(),
media_type=f"image/{extension}",
headers={"Content-Type": f"image/{extension}", "Cache-Control": "no-store"},
headers={
"Content-Type": f"image/{extension}",
"Cache-Control": "no-store"
if not params.store
else "private, max-age=60",
},
)
else:
return JSONResponse(

View File

@@ -12,20 +12,21 @@ from fastapi.responses import JSONResponse
from peewee import Case, DoesNotExist, fn, operator
from playhouse.shortcuts import model_to_dict
from frigate.api.defs.generic_response import GenericResponse
from frigate.api.defs.review_body import ReviewModifyMultipleBody
from frigate.api.defs.review_query_parameters import (
from frigate.api.defs.query.review_query_parameters import (
ReviewActivityMotionQueryParams,
ReviewQueryParams,
ReviewSummaryQueryParams,
)
from frigate.api.defs.review_responses import (
from frigate.api.defs.request.review_body import ReviewModifyMultipleBody
from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.response.review_response import (
ReviewActivityMotionResponse,
ReviewSegmentResponse,
ReviewSummaryResponse,
)
from frigate.api.defs.tags import Tags
from frigate.models import Recordings, ReviewSegment
from frigate.review.types import SeverityEnum
from frigate.util.builtin import get_tz_modifiers
logger = logging.getLogger(__name__)
@@ -161,7 +162,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "alert"),
(ReviewSegment.severity == SeverityEnum.alert),
ReviewSegment.has_been_reviewed,
)
],
@@ -173,7 +174,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "detection"),
(ReviewSegment.severity == SeverityEnum.detection),
ReviewSegment.has_been_reviewed,
)
],
@@ -185,7 +186,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "alert"),
(ReviewSegment.severity == SeverityEnum.alert),
1,
)
],
@@ -197,7 +198,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "detection"),
(ReviewSegment.severity == SeverityEnum.detection),
1,
)
],
@@ -230,6 +231,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
label_clause = reduce(operator.or_, label_clauses)
clauses.append((label_clause))
day_in_seconds = 60 * 60 * 24
last_month = (
ReviewSegment.select(
fn.strftime(
@@ -246,7 +248,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "alert"),
(ReviewSegment.severity == SeverityEnum.alert),
ReviewSegment.has_been_reviewed,
)
],
@@ -258,7 +260,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "detection"),
(ReviewSegment.severity == SeverityEnum.detection),
ReviewSegment.has_been_reviewed,
)
],
@@ -270,7 +272,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "alert"),
(ReviewSegment.severity == SeverityEnum.alert),
1,
)
],
@@ -282,7 +284,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
None,
[
(
(ReviewSegment.severity == "detection"),
(ReviewSegment.severity == SeverityEnum.detection),
1,
)
],
@@ -292,7 +294,7 @@ def review_summary(params: ReviewSummaryQueryParams = Depends()):
)
.where(reduce(operator.and_, clauses))
.group_by(
(ReviewSegment.start_time + seconds_offset).cast("int") / (3600 * 24),
(ReviewSegment.start_time + seconds_offset).cast("int") / day_in_seconds,
)
.order_by(ReviewSegment.start_time.desc())
)
@@ -362,7 +364,7 @@ def delete_reviews(body: ReviewModifyMultipleBody):
ReviewSegment.delete().where(ReviewSegment.id << list_of_ids).execute()
return JSONResponse(
content=({"success": True, "message": "Delete reviews"}), status_code=200
content=({"success": True, "message": "Deleted review items."}), status_code=200
)

View File

@@ -437,7 +437,7 @@ class FrigateApp:
# pre-create shms
for i in range(shm_frame_count):
frame_size = config.frame_shape_yuv[0] * config.frame_shape_yuv[1]
self.frame_manager.create(f"{config.name}_{i}", frame_size)
self.frame_manager.create(f"{config.name}_frame{i}", frame_size)
capture_process = util.Process(
target=capture_camera,

View File

@@ -12,6 +12,7 @@ class EmbeddingsRequestEnum(Enum):
embed_description = "embed_description"
embed_thumbnail = "embed_thumbnail"
generate_search = "generate_search"
register_face = "register_face"
class EmbeddingsResponder:
@@ -22,7 +23,7 @@ class EmbeddingsResponder:
def check_for_request(self, process: Callable) -> None:
while True: # load all messages that are queued
has_message, _, _ = zmq.select([self.socket], [], [], 0.1)
has_message, _, _ = zmq.select([self.socket], [], [], 0.01)
if not has_message:
break

View File

@@ -38,6 +38,10 @@ class GenAICameraConfig(BaseModel):
default_factory=list,
title="List of required zones to be entered in order to run generative AI.",
)
debug_save_thumbnails: bool = Field(
default=False,
title="Save thumbnails sent to generative AI for debugging purposes.",
)
@field_validator("required_zones", mode="before")
@classmethod

View File

@@ -1,6 +1,6 @@
from typing import Any, Optional, Union
from pydantic import Field, field_serializer
from pydantic import Field, PrivateAttr, field_serializer
from ..base import FrigateBaseModel
@@ -53,3 +53,20 @@ class ObjectConfig(FrigateBaseModel):
default_factory=dict, title="Object filters."
)
mask: Union[str, list[str]] = Field(default="", title="Object mask.")
_all_objects: list[str] = PrivateAttr()
@property
def all_objects(self) -> list[str]:
return self._all_objects
def parse_all_objects(self, cameras):
if "_all_objects" in self:
return
# get list of unique enabled labels for tracking
enabled_labels = set(self.track)
for camera in cameras.values():
enabled_labels.update(camera.objects.track)
self._all_objects = list(enabled_labels)

View File

@@ -74,6 +74,7 @@ class OnvifConfig(FrigateBaseModel):
port: int = Field(default=8000, title="Onvif Port")
user: Optional[EnvString] = Field(default=None, title="Onvif Username")
password: Optional[EnvString] = Field(default=None, title="Onvif Password")
tls_insecure: bool = Field(default=False, title="Onvif Disable TLS verification")
autotracking: PtzAutotrackConfig = Field(
default_factory=PtzAutotrackConfig,
title="PTZ auto tracking config.",

View File

@@ -4,6 +4,7 @@ from typing import Optional
from pydantic import Field
from frigate.const import MAX_PRE_CAPTURE
from frigate.review.types import SeverityEnum
from ..base import FrigateBaseModel
@@ -101,3 +102,15 @@ class RecordConfig(FrigateBaseModel):
self.alerts.pre_capture,
self.detections.pre_capture,
)
def get_review_pre_capture(self, severity: SeverityEnum) -> int:
if severity == SeverityEnum.alert:
return self.alerts.pre_capture
else:
return self.detections.pre_capture
def get_review_post_capture(self, severity: SeverityEnum) -> int:
if severity == SeverityEnum.alert:
return self.alerts.post_capture
else:
return self.detections.post_capture

View File

@@ -29,6 +29,7 @@ from frigate.util.builtin import (
)
from frigate.util.config import (
StreamInfoRetriever,
find_config_file,
get_relative_coordinates,
migrate_frigate_config,
)
@@ -56,7 +57,11 @@ from .logger import LoggerConfig
from .mqtt import MqttConfig
from .notification import NotificationConfig
from .proxy import ProxyConfig
from .semantic_search import SemanticSearchConfig
from .semantic_search import (
FaceRecognitionConfig,
LicensePlateRecognitionConfig,
SemanticSearchConfig,
)
from .telemetry import TelemetryConfig
from .tls import TlsConfig
from .ui import UIConfig
@@ -67,7 +72,6 @@ logger = logging.getLogger(__name__)
yaml = YAML()
DEFAULT_CONFIG_FILE = "/config/config.yml"
DEFAULT_CONFIG = """
mqtt:
enabled: False
@@ -159,6 +163,16 @@ class RestreamConfig(BaseModel):
model_config = ConfigDict(extra="allow")
def verify_semantic_search_dependent_configs(config: FrigateConfig) -> None:
"""Verify that semantic search is enabled if required features are enabled."""
if not config.semantic_search.enabled:
if config.genai.enabled:
raise ValueError("Genai requires semantic search to be enabled.")
if config.face_recognition.enabled:
raise ValueError("Face recognition requires semantic to be enabled.")
def verify_config_roles(camera_config: CameraConfig) -> None:
"""Verify that roles are setup in the config correctly."""
assigned_roles = list(
@@ -320,6 +334,13 @@ class FrigateConfig(FrigateBaseModel):
semantic_search: SemanticSearchConfig = Field(
default_factory=SemanticSearchConfig, title="Semantic search configuration."
)
face_recognition: FaceRecognitionConfig = Field(
default_factory=FaceRecognitionConfig, title="Face recognition config."
)
lpr: LicensePlateRecognitionConfig = Field(
default_factory=LicensePlateRecognitionConfig,
title="License Plate recognition config.",
)
ui: UIConfig = Field(default_factory=UIConfig, title="UI configuration.")
# Detector config
@@ -578,13 +599,8 @@ class FrigateConfig(FrigateBaseModel):
verify_autotrack_zones(camera_config)
verify_motion_and_detect(camera_config)
# get list of unique enabled labels for tracking
enabled_labels = set(self.objects.track)
for camera in self.cameras.values():
enabled_labels.update(camera.objects.track)
self.model.create_colormap(sorted(enabled_labels))
self.objects.parse_all_objects(self.cameras)
self.model.create_colormap(sorted(self.objects.all_objects))
self.model.check_and_load_plus_model(self.plus_api)
for key, detector in self.detectors.items():
@@ -625,6 +641,7 @@ class FrigateConfig(FrigateBaseModel):
detector_config.model.compute_model_hash()
self.detectors[key] = detector_config
verify_semantic_search_dependent_configs(self)
return self
@field_validator("cameras")
@@ -638,16 +655,13 @@ class FrigateConfig(FrigateBaseModel):
@classmethod
def load(cls, **kwargs):
config_path = os.environ.get("CONFIG_FILE", DEFAULT_CONFIG_FILE)
if not os.path.isfile(config_path):
config_path = config_path.replace("yml", "yaml")
config_path = find_config_file()
# No configuration file found, create one.
new_config = False
if not os.path.isfile(config_path):
logger.info("No config file found, saving default config")
config_path = DEFAULT_CONFIG_FILE
config_path = config_path
new_config = True
else:
# Check if the config file needs to be migrated.

View File

@@ -1,10 +1,14 @@
from typing import Optional
from typing import Dict, List, Optional
from pydantic import Field
from .base import FrigateBaseModel
__all__ = ["SemanticSearchConfig"]
__all__ = [
"FaceRecognitionConfig",
"SemanticSearchConfig",
"LicensePlateRecognitionConfig",
]
class SemanticSearchConfig(FrigateBaseModel):
@@ -15,3 +19,40 @@ class SemanticSearchConfig(FrigateBaseModel):
model_size: str = Field(
default="small", title="The size of the embeddings model used."
)
class FaceRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable face recognition.")
min_score: float = Field(
title="Minimum face distance score required to save the attempt.",
default=0.8,
gt=0.0,
le=1.0,
)
threshold: float = Field(
default=0.9,
title="Minimum face distance score required to be considered a match.",
gt=0.0,
le=1.0,
)
min_area: int = Field(
default=500, title="Min area of face box to consider running face recognition."
)
save_attempts: bool = Field(
default=True, title="Save images of face detections for training."
)
class LicensePlateRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable license plate recognition.")
threshold: float = Field(
default=0.9,
title="License plate confidence score required to be added to the object as a sub label.",
)
min_area: int = Field(
default=500,
title="Min area of license plate to consider running license plate recognition.",
)
known_plates: Optional[Dict[str, List[str]]] = Field(
default={}, title="Known plates to track."
)

View File

@@ -5,8 +5,9 @@ DEFAULT_DB_PATH = f"{CONFIG_DIR}/frigate.db"
MODEL_CACHE_DIR = f"{CONFIG_DIR}/model_cache"
BASE_DIR = "/media/frigate"
CLIPS_DIR = f"{BASE_DIR}/clips"
RECORD_DIR = f"{BASE_DIR}/recordings"
EXPORT_DIR = f"{BASE_DIR}/exports"
FACE_DIR = f"{CLIPS_DIR}/faces"
RECORD_DIR = f"{BASE_DIR}/recordings"
BIRDSEYE_PIPE = "/tmp/cache/birdseye"
CACHE_DIR = "/tmp/cache"
FRIGATE_LOCALHOST = "http://127.0.0.1:5000"

View File

@@ -32,6 +32,7 @@ class DeepStack(DetectionApi):
self.api_timeout = detector_config.api_timeout
self.api_key = detector_config.api_key
self.labels = detector_config.model.merged_labelmap
self.session = requests.Session()
def get_label_index(self, label_value):
if label_value.lower() == "truck":
@@ -51,7 +52,7 @@ class DeepStack(DetectionApi):
data = {"api_key": self.api_key}
try:
response = requests.post(
response = self.session.post(
self.api_url,
data=data,
files={"image": image_bytes},

View File

@@ -136,17 +136,17 @@ class Rknn(DetectionApi):
def check_config(self, config):
if (config.model.width != 320) or (config.model.height != 320):
raise Exception(
"Make sure to set the model width and height to 320 in your config.yml."
"Make sure to set the model width and height to 320 in your config."
)
if config.model.input_pixel_format != "bgr":
raise Exception(
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
'Make sure to set the model input_pixel_format to "bgr" in your config.'
)
if config.model.input_tensor != "nhwc":
raise Exception(
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
'Make sure to set the model input_tensor to "nhwc" in your config.'
)
def detect_raw(self, tensor_input):

View File

@@ -1,5 +1,6 @@
"""SQLite-vec embeddings database."""
import base64
import json
import logging
import multiprocessing as mp
@@ -13,7 +14,7 @@ from setproctitle import setproctitle
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum, EmbeddingsRequestor
from frigate.config import FrigateConfig
from frigate.const import CONFIG_DIR
from frigate.const import CONFIG_DIR, FACE_DIR
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.models import Event
from frigate.util.builtin import serialize
@@ -189,6 +190,33 @@ class EmbeddingsContext:
return results
def register_face(self, face_name: str, image_data: bytes) -> None:
self.requestor.send_data(
EmbeddingsRequestEnum.register_face.value,
{
"face_name": face_name,
"image": base64.b64encode(image_data).decode("ASCII"),
},
)
def get_face_ids(self, name: str) -> list[str]:
sql_query = f"""
SELECT
id
FROM vec_descriptions
WHERE id LIKE '%{name}%'
"""
return self.db.execute_sql(sql_query).fetchall()
def delete_face_ids(self, face: str, ids: list[str]) -> None:
folder = os.path.join(FACE_DIR, face)
for id in ids:
file_path = os.path.join(folder, id)
if os.path.isfile(file_path):
os.unlink(file_path)
def update_description(self, event_id: str, description: str) -> None:
self.requestor.send_data(
EmbeddingsRequestEnum.embed_description.value,

View File

@@ -9,7 +9,7 @@ from numpy import ndarray
from playhouse.shortcuts import model_to_dict
from frigate.comms.inter_process import InterProcessRequestor
from frigate.config.semantic_search import SemanticSearchConfig
from frigate.config import FrigateConfig
from frigate.const import (
CONFIG_DIR,
UPDATE_EMBEDDINGS_REINDEX_PROGRESS,
@@ -59,9 +59,7 @@ def get_metadata(event: Event) -> dict:
class Embeddings:
"""SQLite-vec embeddings database."""
def __init__(
self, config: SemanticSearchConfig, db: SqliteVecQueueDatabase
) -> None:
def __init__(self, config: FrigateConfig, db: SqliteVecQueueDatabase) -> None:
self.config = config
self.db = db
self.requestor = InterProcessRequestor()
@@ -73,9 +71,13 @@ class Embeddings:
"jinaai/jina-clip-v1-text_model_fp16.onnx",
"jinaai/jina-clip-v1-tokenizer",
"jinaai/jina-clip-v1-vision_model_fp16.onnx"
if config.model_size == "large"
if config.semantic_search.model_size == "large"
else "jinaai/jina-clip-v1-vision_model_quantized.onnx",
"jinaai/jina-clip-v1-preprocessor_config.json",
"facenet-facenet.onnx",
"paddleocr-onnx-detection.onnx",
"paddleocr-onnx-classification.onnx",
"paddleocr-onnx-recognition.onnx",
]
for model in models:
@@ -94,7 +96,7 @@ class Embeddings:
download_urls={
"text_model_fp16.onnx": "https://huggingface.co/jinaai/jina-clip-v1/resolve/main/onnx/text_model_fp16.onnx",
},
model_size=config.model_size,
model_size=config.semantic_search.model_size,
model_type=ModelTypeEnum.text,
requestor=self.requestor,
device="CPU",
@@ -102,7 +104,7 @@ class Embeddings:
model_file = (
"vision_model_fp16.onnx"
if self.config.model_size == "large"
if self.config.semantic_search.model_size == "large"
else "vision_model_quantized.onnx"
)
@@ -115,12 +117,66 @@ class Embeddings:
model_name="jinaai/jina-clip-v1",
model_file=model_file,
download_urls=download_urls,
model_size=config.model_size,
model_size=config.semantic_search.model_size,
model_type=ModelTypeEnum.vision,
requestor=self.requestor,
device="GPU" if config.model_size == "large" else "CPU",
device="GPU" if config.semantic_search.model_size == "large" else "CPU",
)
if self.config.face_recognition.enabled:
self.face_embedding = GenericONNXEmbedding(
model_name="facedet",
model_file="facedet.onnx",
download_urls={
"facedet.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facedet.onnx",
"landmarkdet.yaml": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/landmarkdet.yaml",
},
model_size="small",
model_type=ModelTypeEnum.face,
requestor=self.requestor,
)
self.lpr_detection_model = None
self.lpr_classification_model = None
self.lpr_recognition_model = None
if self.config.lpr.enabled:
self.lpr_detection_model = GenericONNXEmbedding(
model_name="paddleocr-onnx",
model_file="detection.onnx",
download_urls={
"detection.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/detection.onnx"
},
model_size="large",
model_type=ModelTypeEnum.lpr_detect,
requestor=self.requestor,
device="CPU",
)
self.lpr_classification_model = GenericONNXEmbedding(
model_name="paddleocr-onnx",
model_file="classification.onnx",
download_urls={
"classification.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/classification.onnx"
},
model_size="large",
model_type=ModelTypeEnum.lpr_classify,
requestor=self.requestor,
device="CPU",
)
self.lpr_recognition_model = GenericONNXEmbedding(
model_name="paddleocr-onnx",
model_file="recognition.onnx",
download_urls={
"recognition.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/recognition.onnx"
},
model_size="large",
model_type=ModelTypeEnum.lpr_recognize,
requestor=self.requestor,
device="CPU",
)
def embed_thumbnail(
self, event_id: str, thumbnail: bytes, upsert: bool = True
) -> ndarray:

View File

@@ -31,11 +31,16 @@ warnings.filterwarnings(
disable_progress_bar()
logger = logging.getLogger(__name__)
FACE_EMBEDDING_SIZE = 160
class ModelTypeEnum(str, Enum):
face = "face"
vision = "vision"
text = "text"
lpr_detect = "lpr_detect"
lpr_classify = "lpr_classify"
lpr_recognize = "lpr_recognize"
class GenericONNXEmbedding:
@@ -47,7 +52,7 @@ class GenericONNXEmbedding:
model_file: str,
download_urls: Dict[str, str],
model_size: str,
model_type: str,
model_type: ModelTypeEnum,
requestor: InterProcessRequestor,
tokenizer_file: Optional[str] = None,
device: str = "AUTO",
@@ -57,7 +62,7 @@ class GenericONNXEmbedding:
self.tokenizer_file = tokenizer_file
self.requestor = requestor
self.download_urls = download_urls
self.model_type = model_type # 'text' or 'vision'
self.model_type = model_type
self.model_size = model_size
self.device = device
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
@@ -87,12 +92,13 @@ class GenericONNXEmbedding:
files_names,
ModelStatusTypesEnum.downloaded,
)
self._load_model_and_tokenizer()
self._load_model_and_utils()
logger.debug(f"models are already downloaded for {self.model_name}")
def _download_model(self, path: str):
try:
file_name = os.path.basename(path)
if file_name in self.download_urls:
ModelDownloader.download_from_url(self.download_urls[file_name], path)
elif (
@@ -101,6 +107,7 @@ class GenericONNXEmbedding:
):
if not os.path.exists(path + "/" + self.model_name):
logger.info(f"Downloading {self.model_name} tokenizer")
tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
@@ -125,14 +132,23 @@ class GenericONNXEmbedding:
},
)
def _load_model_and_tokenizer(self):
def _load_model_and_utils(self):
if self.runner is None:
if self.downloader:
self.downloader.wait_for_download()
if self.model_type == ModelTypeEnum.text:
self.tokenizer = self._load_tokenizer()
else:
elif self.model_type == ModelTypeEnum.vision:
self.feature_extractor = self._load_feature_extractor()
elif self.model_type == ModelTypeEnum.face:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.lpr_detect:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.lpr_classify:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.lpr_recognize:
self.feature_extractor = []
self.runner = ONNXModelRunner(
os.path.join(self.download_path, self.model_file),
self.device,
@@ -172,23 +188,72 @@ class GenericONNXEmbedding:
self.feature_extractor(images=image, return_tensors="np")
for image in processed_images
]
elif self.model_type == ModelTypeEnum.face:
if isinstance(raw_inputs, list):
raise ValueError("Face embedding does not support batch inputs.")
pil = self._process_image(raw_inputs)
# handle images larger than input size
width, height = pil.size
if width != FACE_EMBEDDING_SIZE or height != FACE_EMBEDDING_SIZE:
if width > height:
new_height = int(((height / width) * FACE_EMBEDDING_SIZE) // 4 * 4)
pil = pil.resize((FACE_EMBEDDING_SIZE, new_height))
else:
new_width = int(((width / height) * FACE_EMBEDDING_SIZE) // 4 * 4)
pil = pil.resize((new_width, FACE_EMBEDDING_SIZE))
og = np.array(pil).astype(np.float32)
# Image must be FACE_EMBEDDING_SIZExFACE_EMBEDDING_SIZE
og_h, og_w, channels = og.shape
frame = np.full(
(FACE_EMBEDDING_SIZE, FACE_EMBEDDING_SIZE, channels),
(0, 0, 0),
dtype=np.float32,
)
# compute center offset
x_center = (FACE_EMBEDDING_SIZE - og_w) // 2
y_center = (FACE_EMBEDDING_SIZE - og_h) // 2
# copy img image into center of result image
frame[y_center : y_center + og_h, x_center : x_center + og_w] = og
frame = np.expand_dims(frame, axis=0)
return [{"input_2": frame}]
elif self.model_type == ModelTypeEnum.lpr_detect:
preprocessed = []
for x in raw_inputs:
preprocessed.append(x)
return [{"x": preprocessed[0]}]
elif self.model_type == ModelTypeEnum.lpr_classify:
processed = []
for img in raw_inputs:
processed.append({"x": img})
return processed
elif self.model_type == ModelTypeEnum.lpr_recognize:
processed = []
for img in raw_inputs:
processed.append({"x": img})
return processed
else:
raise ValueError(f"Unable to preprocess inputs for {self.model_type}")
def _process_image(self, image):
def _process_image(self, image, output: str = "RGB") -> Image.Image:
if isinstance(image, str):
if image.startswith("http"):
response = requests.get(image)
image = Image.open(BytesIO(response.content)).convert("RGB")
image = Image.open(BytesIO(response.content)).convert(output)
elif isinstance(image, bytes):
image = Image.open(BytesIO(image)).convert("RGB")
image = Image.open(BytesIO(image)).convert(output)
return image
def __call__(
self, inputs: Union[List[str], List[Image.Image], List[str]]
) -> List[np.ndarray]:
self._load_model_and_tokenizer()
self._load_model_and_utils()
if self.runner is None or (
self.tokenizer is None and self.feature_extractor is None
):

View File

@@ -0,0 +1,808 @@
import logging
import math
from typing import List, Tuple
import cv2
import numpy as np
from pyclipper import ET_CLOSEDPOLYGON, JT_ROUND, PyclipperOffset
from shapely.geometry import Polygon
from frigate.comms.inter_process import InterProcessRequestor
from frigate.config.semantic_search import LicensePlateRecognitionConfig
from frigate.embeddings.embeddings import Embeddings
logger = logging.getLogger(__name__)
MIN_PLATE_LENGTH = 3
class LicensePlateRecognition:
def __init__(
self,
config: LicensePlateRecognitionConfig,
requestor: InterProcessRequestor,
embeddings: Embeddings,
):
self.lpr_config = config
self.requestor = requestor
self.embeddings = embeddings
self.detection_model = self.embeddings.lpr_detection_model
self.classification_model = self.embeddings.lpr_classification_model
self.recognition_model = self.embeddings.lpr_recognition_model
self.ctc_decoder = CTCDecoder()
self.batch_size = 6
# Detection specific parameters
self.min_size = 3
self.max_size = 960
self.box_thresh = 0.8
self.mask_thresh = 0.8
if self.lpr_config.enabled:
# all models need to be loaded to run LPR
self.detection_model._load_model_and_utils()
self.classification_model._load_model_and_utils()
self.recognition_model._load_model_and_utils()
def detect(self, image: np.ndarray) -> List[np.ndarray]:
"""
Detect possible license plates in the input image by first resizing and normalizing it,
running a detection model, and filtering out low-probability regions.
Args:
image (np.ndarray): The input image in which license plates will be detected.
Returns:
List[np.ndarray]: A list of bounding box coordinates representing detected license plates.
"""
h, w = image.shape[:2]
if sum([h, w]) < 64:
image = self.zero_pad(image)
resized_image = self.resize_image(image)
normalized_image = self.normalize_image(resized_image)
outputs = self.detection_model([normalized_image])[0]
outputs = outputs[0, :, :]
boxes, _ = self.boxes_from_bitmap(outputs, outputs > self.mask_thresh, w, h)
return self.filter_polygon(boxes, (h, w))
def classify(
self, images: List[np.ndarray]
) -> Tuple[List[np.ndarray], List[Tuple[str, float]]]:
"""
Classify the orientation or category of each detected license plate.
Args:
images (List[np.ndarray]): A list of images of detected license plates.
Returns:
Tuple[List[np.ndarray], List[Tuple[str, float]]]: A tuple of rotated/normalized plate images
and classification results with confidence scores.
"""
num_images = len(images)
indices = np.argsort([x.shape[1] / x.shape[0] for x in images])
for i in range(0, num_images, self.batch_size):
norm_images = []
for j in range(i, min(num_images, i + self.batch_size)):
norm_img = self._preprocess_classification_image(images[indices[j]])
norm_img = norm_img[np.newaxis, :]
norm_images.append(norm_img)
outputs = self.classification_model(norm_images)
return self._process_classification_output(images, outputs)
def recognize(
self, images: List[np.ndarray]
) -> Tuple[List[str], List[List[float]]]:
"""
Recognize the characters on the detected license plates using the recognition model.
Args:
images (List[np.ndarray]): A list of images of license plates to recognize.
Returns:
Tuple[List[str], List[List[float]]]: A tuple of recognized license plate texts and confidence scores.
"""
input_shape = [3, 48, 320]
num_images = len(images)
# sort images by aspect ratio for processing
indices = np.argsort(np.array([x.shape[1] / x.shape[0] for x in images]))
for index in range(0, num_images, self.batch_size):
input_h, input_w = input_shape[1], input_shape[2]
max_wh_ratio = input_w / input_h
norm_images = []
# calculate the maximum aspect ratio in the current batch
for i in range(index, min(num_images, index + self.batch_size)):
h, w = images[indices[i]].shape[0:2]
max_wh_ratio = max(max_wh_ratio, w * 1.0 / h)
# preprocess the images based on the max aspect ratio
for i in range(index, min(num_images, index + self.batch_size)):
norm_image = self._preprocess_recognition_image(
images[indices[i]], max_wh_ratio
)
norm_image = norm_image[np.newaxis, :]
norm_images.append(norm_image)
outputs = self.recognition_model(norm_images)
return self.ctc_decoder(outputs)
def process_license_plate(
self, image: np.ndarray
) -> Tuple[List[str], List[float], List[int]]:
"""
Complete pipeline for detecting, classifying, and recognizing license plates in the input image.
Args:
image (np.ndarray): The input image in which to detect, classify, and recognize license plates.
Returns:
Tuple[List[str], List[float], List[int]]: Detected license plate texts, confidence scores, and areas of the plates.
"""
if (
self.detection_model.runner is None
or self.classification_model.runner is None
or self.recognition_model.runner is None
):
# we might still be downloading the models
logger.debug("Model runners not loaded")
return [], [], []
plate_points = self.detect(image)
if len(plate_points) == 0:
return [], [], []
plate_points = self.sort_polygon(list(plate_points))
plate_images = [self._crop_license_plate(image, x) for x in plate_points]
rotated_images, _ = self.classify(plate_images)
# keep track of the index of each image for correct area calc later
sorted_indices = np.argsort([x.shape[1] / x.shape[0] for x in rotated_images])
reverse_mapping = {
idx: original_idx for original_idx, idx in enumerate(sorted_indices)
}
results, confidences = self.recognize(rotated_images)
if results:
license_plates = [""] * len(rotated_images)
average_confidences = [[0.0]] * len(rotated_images)
areas = [0] * len(rotated_images)
# map results back to original image order
for i, (plate, conf) in enumerate(zip(results, confidences)):
original_idx = reverse_mapping[i]
height, width = rotated_images[original_idx].shape[:2]
area = height * width
average_confidence = conf
# set to True to write each cropped image for debugging
if False:
save_image = cv2.cvtColor(
rotated_images[original_idx], cv2.COLOR_RGB2BGR
)
filename = f"/config/plate_{original_idx}_{plate}_{area}.jpg"
cv2.imwrite(filename, save_image)
license_plates[original_idx] = plate
average_confidences[original_idx] = average_confidence
areas[original_idx] = area
# Filter out plates that have a length of less than 3 characters
# Sort by area, then by plate length, then by confidence all desc
sorted_data = sorted(
[
(plate, conf, area)
for plate, conf, area in zip(
license_plates, average_confidences, areas
)
if len(plate) >= MIN_PLATE_LENGTH
],
key=lambda x: (x[2], len(x[0]), x[1]),
reverse=True,
)
if sorted_data:
return map(list, zip(*sorted_data))
return [], [], []
def resize_image(self, image: np.ndarray) -> np.ndarray:
"""
Resize the input image while maintaining the aspect ratio, ensuring dimensions are multiples of 32.
Args:
image (np.ndarray): The input image to resize.
Returns:
np.ndarray: The resized image.
"""
h, w = image.shape[:2]
ratio = min(self.max_size / max(h, w), 1.0)
resize_h = max(int(round(int(h * ratio) / 32) * 32), 32)
resize_w = max(int(round(int(w * ratio) / 32) * 32), 32)
return cv2.resize(image, (resize_w, resize_h))
def normalize_image(self, image: np.ndarray) -> np.ndarray:
"""
Normalize the input image by subtracting the mean and multiplying by the standard deviation.
Args:
image (np.ndarray): The input image to normalize.
Returns:
np.ndarray: The normalized image, transposed to match the model's expected input format.
"""
mean = np.array([123.675, 116.28, 103.53]).reshape(1, -1).astype("float64")
std = 1 / np.array([58.395, 57.12, 57.375]).reshape(1, -1).astype("float64")
image = image.astype("float32")
cv2.subtract(image, mean, image)
cv2.multiply(image, std, image)
return image.transpose((2, 0, 1))[np.newaxis, ...]
def boxes_from_bitmap(
self, output: np.ndarray, mask: np.ndarray, dest_width: int, dest_height: int
) -> Tuple[np.ndarray, List[float]]:
"""
Process the binary mask to extract bounding boxes and associated confidence scores.
Args:
output (np.ndarray): Output confidence map from the model.
mask (np.ndarray): Binary mask of detected regions.
dest_width (int): Target width for scaling the box coordinates.
dest_height (int): Target height for scaling the box coordinates.
Returns:
Tuple[np.ndarray, List[float]]: Array of bounding boxes and list of corresponding scores.
"""
mask = (mask * 255).astype(np.uint8)
height, width = mask.shape
outs = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# handle different return values of findContours between OpenCV versions
contours = outs[0] if len(outs) == 2 else outs[1]
boxes = []
scores = []
for index in range(len(contours)):
contour = contours[index]
# get minimum bounding box (rotated rectangle) around the contour and the smallest side length.
points, min_side = self.get_min_boxes(contour)
if min_side < self.min_size:
continue
points = np.array(points)
score = self.box_score(output, contour)
if self.box_thresh > score:
continue
polygon = Polygon(points)
distance = polygon.area / polygon.length
# Use pyclipper to shrink the polygon slightly based on the computed distance.
offset = PyclipperOffset()
offset.AddPath(points, JT_ROUND, ET_CLOSEDPOLYGON)
points = np.array(offset.Execute(distance * 1.5)).reshape((-1, 1, 2))
# get the minimum bounding box around the shrunken polygon.
box, min_side = self.get_min_boxes(points)
if min_side < self.min_size + 2:
continue
box = np.array(box)
# normalize and clip box coordinates to fit within the destination image size.
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height
)
boxes.append(box.astype("int32"))
scores.append(score)
return np.array(boxes, dtype="int32"), scores
@staticmethod
def get_min_boxes(contour: np.ndarray) -> Tuple[List[Tuple[float, float]], float]:
"""
Calculate the minimum bounding box (rotated rectangle) for a given contour.
Args:
contour (np.ndarray): The contour points of the detected shape.
Returns:
Tuple[List[Tuple[float, float]], float]: A list of four points representing the
corners of the bounding box, and the length of the shortest side.
"""
bounding_box = cv2.minAreaRect(contour)
points = sorted(cv2.boxPoints(bounding_box), key=lambda x: x[0])
index_1, index_4 = (0, 1) if points[1][1] > points[0][1] else (1, 0)
index_2, index_3 = (2, 3) if points[3][1] > points[2][1] else (3, 2)
box = [points[index_1], points[index_2], points[index_3], points[index_4]]
return box, min(bounding_box[1])
@staticmethod
def box_score(bitmap: np.ndarray, contour: np.ndarray) -> float:
"""
Calculate the average score within the bounding box of a contour.
Args:
bitmap (np.ndarray): The output confidence map from the model.
contour (np.ndarray): The contour of the detected shape.
Returns:
float: The average score of the pixels inside the contour region.
"""
h, w = bitmap.shape[:2]
contour = contour.reshape(-1, 2)
x1, y1 = np.clip(contour.min(axis=0), 0, [w - 1, h - 1])
x2, y2 = np.clip(contour.max(axis=0), 0, [w - 1, h - 1])
mask = np.zeros((y2 - y1 + 1, x2 - x1 + 1), dtype=np.uint8)
cv2.fillPoly(mask, [contour - [x1, y1]], 1)
return cv2.mean(bitmap[y1 : y2 + 1, x1 : x2 + 1], mask)[0]
@staticmethod
def expand_box(points: List[Tuple[float, float]]) -> np.ndarray:
"""
Expand a polygonal shape slightly by a factor determined by the area-to-perimeter ratio.
Args:
points (List[Tuple[float, float]]): Points of the polygon to expand.
Returns:
np.ndarray: Expanded polygon points.
"""
polygon = Polygon(points)
distance = polygon.area / polygon.length
offset = PyclipperOffset()
offset.AddPath(points, JT_ROUND, ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance * 1.5)).reshape((-1, 2))
return expanded
def filter_polygon(
self, points: List[np.ndarray], shape: Tuple[int, int]
) -> np.ndarray:
"""
Filter a set of polygons to include only valid ones that fit within an image shape
and meet size constraints.
Args:
points (List[np.ndarray]): List of polygons to filter.
shape (Tuple[int, int]): Shape of the image (height, width).
Returns:
np.ndarray: List of filtered polygons.
"""
height, width = shape
return np.array(
[
self.clockwise_order(point)
for point in points
if self.is_valid_polygon(point, width, height)
]
)
@staticmethod
def is_valid_polygon(point: np.ndarray, width: int, height: int) -> bool:
"""
Check if a polygon is valid, meaning it fits within the image bounds
and has sides of a minimum length.
Args:
point (np.ndarray): The polygon to validate.
width (int): Image width.
height (int): Image height.
Returns:
bool: Whether the polygon is valid or not.
"""
return (
point[:, 0].min() >= 0
and point[:, 0].max() < width
and point[:, 1].min() >= 0
and point[:, 1].max() < height
and np.linalg.norm(point[0] - point[1]) > 3
and np.linalg.norm(point[0] - point[3]) > 3
)
@staticmethod
def clockwise_order(point: np.ndarray) -> np.ndarray:
"""
Arrange the points of a polygon in clockwise order based on their angular positions
around the polygon's center.
Args:
point (np.ndarray): Array of points of the polygon.
Returns:
np.ndarray: Points ordered in clockwise direction.
"""
center = point.mean(axis=0)
return point[
np.argsort(np.arctan2(point[:, 1] - center[1], point[:, 0] - center[0]))
]
@staticmethod
def sort_polygon(points):
"""
Sort polygons based on their position in the image. If polygons are close in vertical
position (within 10 pixels), sort them by horizontal position.
Args:
points: List of polygons to sort.
Returns:
List: Sorted list of polygons.
"""
points.sort(key=lambda x: (x[0][1], x[0][0]))
for i in range(len(points) - 1):
for j in range(i, -1, -1):
if abs(points[j + 1][0][1] - points[j][0][1]) < 10 and (
points[j + 1][0][0] < points[j][0][0]
):
temp = points[j]
points[j] = points[j + 1]
points[j + 1] = temp
else:
break
return points
@staticmethod
def zero_pad(image: np.ndarray) -> np.ndarray:
"""
Apply zero-padding to an image, ensuring its dimensions are at least 32x32.
The padding is added only if needed.
Args:
image (np.ndarray): Input image.
Returns:
np.ndarray: Zero-padded image.
"""
h, w, c = image.shape
pad = np.zeros((max(32, h), max(32, w), c), np.uint8)
pad[:h, :w, :] = image
return pad
@staticmethod
def _preprocess_classification_image(image: np.ndarray) -> np.ndarray:
"""
Preprocess a single image for classification by resizing, normalizing, and padding.
This method resizes the input image to a fixed height of 48 pixels while adjusting
the width dynamically up to a maximum of 192 pixels. The image is then normalized and
padded to fit the required input dimensions for classification.
Args:
image (np.ndarray): Input image to preprocess.
Returns:
np.ndarray: Preprocessed and padded image.
"""
# fixed height of 48, dynamic width up to 192
input_shape = (3, 48, 192)
input_c, input_h, input_w = input_shape
h, w = image.shape[:2]
ratio = w / h
resized_w = min(input_w, math.ceil(input_h * ratio))
resized_image = cv2.resize(image, (resized_w, input_h))
# handle single-channel images (grayscale) if needed
if input_c == 1 and resized_image.ndim == 2:
resized_image = resized_image[np.newaxis, :, :]
else:
resized_image = resized_image.transpose((2, 0, 1))
# normalize
resized_image = (resized_image.astype("float32") / 255.0 - 0.5) / 0.5
padded_image = np.zeros((input_c, input_h, input_w), dtype=np.float32)
padded_image[:, :, :resized_w] = resized_image
return padded_image
def _process_classification_output(
self, images: List[np.ndarray], outputs: List[np.ndarray]
) -> Tuple[List[np.ndarray], List[Tuple[str, float]]]:
"""
Process the classification model output by matching labels with confidence scores.
This method processes the outputs from the classification model and rotates images
with high confidence of being labeled "180". It ensures that results are mapped to
the original image order.
Args:
images (List[np.ndarray]): List of input images.
outputs (List[np.ndarray]): Corresponding model outputs.
Returns:
Tuple[List[np.ndarray], List[Tuple[str, float]]]: A tuple of processed images and
classification results (label and confidence score).
"""
labels = ["0", "180"]
results = [["", 0.0]] * len(images)
indices = np.argsort(np.array([x.shape[1] / x.shape[0] for x in images]))
outputs = np.stack(outputs)
outputs = [
(labels[idx], outputs[i, idx])
for i, idx in enumerate(outputs.argmax(axis=1))
]
for i in range(0, len(images), self.batch_size):
for j in range(len(outputs)):
label, score = outputs[j]
results[indices[i + j]] = [label, score]
if "180" in label and score >= self.lpr_config.threshold:
images[indices[i + j]] = cv2.rotate(images[indices[i + j]], 1)
return images, results
def _preprocess_recognition_image(
self, image: np.ndarray, max_wh_ratio: float
) -> np.ndarray:
"""
Preprocess an image for recognition by dynamically adjusting its width.
This method adjusts the width of the image based on the maximum width-to-height ratio
while keeping the height fixed at 48 pixels. The image is then normalized and padded
to fit the required input dimensions for recognition.
Args:
image (np.ndarray): Input image to preprocess.
max_wh_ratio (float): Maximum width-to-height ratio for resizing.
Returns:
np.ndarray: Preprocessed and padded image.
"""
# fixed height of 48, dynamic width based on ratio
input_shape = [3, 48, 320]
input_h, input_w = input_shape[1], input_shape[2]
assert image.shape[2] == input_shape[0], "Unexpected number of image channels."
# dynamically adjust input width based on max_wh_ratio
input_w = int(input_h * max_wh_ratio)
# check for model-specific input width
model_input_w = self.recognition_model.runner.ort.get_inputs()[0].shape[3]
if isinstance(model_input_w, int) and model_input_w > 0:
input_w = model_input_w
h, w = image.shape[:2]
aspect_ratio = w / h
resized_w = min(input_w, math.ceil(input_h * aspect_ratio))
resized_image = cv2.resize(image, (resized_w, input_h))
resized_image = resized_image.transpose((2, 0, 1))
resized_image = (resized_image.astype("float32") / 255.0 - 0.5) / 0.5
padded_image = np.zeros((input_shape[0], input_h, input_w), dtype=np.float32)
padded_image[:, :, :resized_w] = resized_image
return padded_image
@staticmethod
def _crop_license_plate(image: np.ndarray, points: np.ndarray) -> np.ndarray:
"""
Crop the license plate from the image using four corner points.
This method crops the region containing the license plate by using the perspective
transformation based on four corner points. If the resulting image is significantly
taller than wide, the image is rotated to the correct orientation.
Args:
image (np.ndarray): Input image containing the license plate.
points (np.ndarray): Four corner points defining the plate's position.
Returns:
np.ndarray: Cropped and potentially rotated license plate image.
"""
assert len(points) == 4, "shape of points must be 4*2"
points = points.astype(np.float32)
crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3]),
)
)
crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2]),
)
)
pts_std = np.float32(
[[0, 0], [crop_width, 0], [crop_width, crop_height], [0, crop_height]]
)
matrix = cv2.getPerspectiveTransform(points, pts_std)
image = cv2.warpPerspective(
image,
matrix,
(crop_width, crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC,
)
height, width = image.shape[0:2]
if height * 1.0 / width >= 1.5:
image = np.rot90(image, k=3)
return image
class CTCDecoder:
"""
A decoder for interpreting the output of a CTC (Connectionist Temporal Classification) model.
This decoder converts the model's output probabilities into readable sequences of characters
while removing duplicates and handling blank tokens. It also calculates the confidence scores
for each decoded character sequence.
"""
def __init__(self):
"""
Initialize the CTCDecoder with a list of characters and a character map.
The character set includes digits, letters, special characters, and a "blank" token
(used by the CTC model for decoding purposes). A character map is created to map
indices to characters.
"""
self.characters = [
"blank",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
":",
";",
"<",
"=",
">",
"?",
"@",
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
"I",
"J",
"K",
"L",
"M",
"N",
"O",
"P",
"Q",
"R",
"S",
"T",
"U",
"V",
"W",
"X",
"Y",
"Z",
"[",
"\\",
"]",
"^",
"_",
"`",
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q",
"r",
"s",
"t",
"u",
"v",
"w",
"x",
"y",
"z",
"{",
"|",
"}",
"~",
"!",
'"',
"#",
"$",
"%",
"&",
"'",
"(",
")",
"*",
"+",
",",
"-",
".",
"/",
" ",
" ",
]
self.char_map = {i: char for i, char in enumerate(self.characters)}
def __call__(
self, outputs: List[np.ndarray]
) -> Tuple[List[str], List[List[float]]]:
"""
Decode a batch of model outputs into character sequences and their confidence scores.
The method takes the output probability distributions for each time step and uses
the best path decoding strategy. It then merges repeating characters and ignores
blank tokens. Confidence scores for each decoded character are also calculated.
Args:
outputs (List[np.ndarray]): A list of model outputs, where each element is
a probability distribution for each time step.
Returns:
Tuple[List[str], List[List[float]]]: A tuple of decoded character sequences
and confidence scores for each sequence.
"""
results = []
confidences = []
for output in outputs:
seq_log_probs = np.log(output + 1e-8)
best_path = np.argmax(seq_log_probs, axis=1)
merged_path = []
merged_probs = []
for t, char_index in enumerate(best_path):
if char_index != 0 and (t == 0 or char_index != best_path[t - 1]):
merged_path.append(char_index)
merged_probs.append(seq_log_probs[t, char_index])
result = "".join(self.char_map[idx] for idx in merged_path)
results.append(result)
confidence = np.exp(merged_probs).tolist()
confidences.append(confidence)
return results, confidences

View File

@@ -3,12 +3,17 @@
import base64
import logging
import os
import random
import re
import string
import threading
from multiprocessing.synchronize import Event as MpEvent
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import requests
from peewee import DoesNotExist
from playhouse.sqliteq import SqliteQueueDatabase
@@ -20,13 +25,20 @@ from frigate.comms.event_metadata_updater import (
from frigate.comms.events_updater import EventEndSubscriber, EventUpdateSubscriber
from frigate.comms.inter_process import InterProcessRequestor
from frigate.config import FrigateConfig
from frigate.const import CLIPS_DIR, UPDATE_EVENT_DESCRIPTION
from frigate.const import (
CLIPS_DIR,
FACE_DIR,
FRIGATE_LOCALHOST,
UPDATE_EVENT_DESCRIPTION,
)
from frigate.embeddings.lpr.lpr import LicensePlateRecognition
from frigate.events.types import EventTypeEnum
from frigate.genai import get_genai_client
from frigate.models import Event
from frigate.types import TrackedObjectUpdateTypesEnum
from frigate.util.builtin import serialize
from frigate.util.image import SharedMemoryFrameManager, calculate_region
from frigate.util.image import SharedMemoryFrameManager, area, calculate_region
from frigate.util.model import FaceClassificationModel
from .embeddings import Embeddings
@@ -46,7 +58,7 @@ class EmbeddingMaintainer(threading.Thread):
) -> None:
super().__init__(name="embeddings_maintainer")
self.config = config
self.embeddings = Embeddings(config.semantic_search, db)
self.embeddings = Embeddings(config, db)
# Check if we need to re-index events
if config.semantic_search.reindex:
@@ -59,12 +71,48 @@ class EmbeddingMaintainer(threading.Thread):
)
self.embeddings_responder = EmbeddingsResponder()
self.frame_manager = SharedMemoryFrameManager()
# set face recognition conditions
self.face_recognition_enabled = self.config.face_recognition.enabled
self.requires_face_detection = "face" not in self.config.objects.all_objects
self.detected_faces: dict[str, float] = {}
self.face_classifier = (
FaceClassificationModel(self.config.face_recognition, db)
if self.face_recognition_enabled
else None
)
# create communication for updating event descriptions
self.requestor = InterProcessRequestor()
self.stop_event = stop_event
self.tracked_events = {}
self.tracked_events: dict[str, list[any]] = {}
self.genai_client = get_genai_client(config)
# set license plate recognition conditions
self.lpr_config = self.config.lpr
self.requires_license_plate_detection = (
"license_plate" not in self.config.objects.all_objects
)
self.detected_license_plates: dict[str, dict[str, any]] = {}
if self.lpr_config.enabled:
self.license_plate_recognition = LicensePlateRecognition(
self.lpr_config, self.requestor, self.embeddings
)
@property
def face_detector(self) -> cv2.FaceDetectorYN:
# Lazily create the classifier.
if "face_detector" not in self.__dict__:
self.__dict__["face_detector"] = cv2.FaceDetectorYN.create(
"/config/model_cache/facedet/facedet.onnx",
config="",
input_size=(320, 320),
score_threshold=0.8,
nms_threshold=0.3,
)
return self.__dict__["face_detector"]
def run(self) -> None:
"""Maintain a SQLite-vec database for semantic search."""
while not self.stop_event.is_set():
@@ -83,7 +131,7 @@ class EmbeddingMaintainer(threading.Thread):
def _process_requests(self) -> None:
"""Process embeddings requests"""
def _handle_request(topic: str, data: str) -> str:
def _handle_request(topic: str, data: dict[str, any]) -> str:
try:
if topic == EmbeddingsRequestEnum.embed_description.value:
return serialize(
@@ -102,6 +150,46 @@ class EmbeddingMaintainer(threading.Thread):
return serialize(
self.embeddings.text_embedding([data])[0], pack=False
)
elif topic == EmbeddingsRequestEnum.register_face.value:
if not self.face_recognition_enabled:
return False
rand_id = "".join(
random.choices(string.ascii_lowercase + string.digits, k=6)
)
label = data["face_name"]
id = f"{label}-{rand_id}"
if data.get("cropped"):
pass
else:
img = cv2.imdecode(
np.frombuffer(
base64.b64decode(data["image"]), dtype=np.uint8
),
cv2.IMREAD_COLOR,
)
face_box = self._detect_face(img)
if not face_box:
return False
face = img[face_box[1] : face_box[3], face_box[0] : face_box[2]]
ret, thumbnail = cv2.imencode(
".webp", face, [int(cv2.IMWRITE_WEBP_QUALITY), 100]
)
# write face to library
folder = os.path.join(FACE_DIR, label)
file = os.path.join(folder, f"{id}.webp")
os.makedirs(folder, exist_ok=True)
# save face image
with open(file, "wb") as output:
output.write(thumbnail.tobytes())
self.face_classifier.clear_classifier()
return True
except Exception as e:
logger.error(f"Unable to handle embeddings request {e}")
@@ -109,7 +197,7 @@ class EmbeddingMaintainer(threading.Thread):
def _process_updates(self) -> None:
"""Process event updates"""
update = self.event_subscriber.check_for_update(timeout=0.1)
update = self.event_subscriber.check_for_update(timeout=0.01)
if update is None:
return
@@ -120,42 +208,56 @@ class EmbeddingMaintainer(threading.Thread):
return
camera_config = self.config.cameras[camera]
# no need to save our own thumbnails if genai is not enabled
# or if the object has become stationary
# no need to process updated objects if face recognition, lpr, genai are disabled
if (
not camera_config.genai.enabled
or self.genai_client is None
or data["stationary"]
and not self.face_recognition_enabled
and not self.lpr_config.enabled
):
return
if data["id"] not in self.tracked_events:
self.tracked_events[data["id"]] = []
# Create our own thumbnail based on the bounding box and the frame time
try:
yuv_frame = self.frame_manager.get(
frame_name, camera_config.frame_shape_yuv
)
if yuv_frame is not None:
data["thumbnail"] = self._create_thumbnail(yuv_frame, data["box"])
# Limit the number of thumbnails saved
if len(self.tracked_events[data["id"]]) >= MAX_THUMBNAILS:
# Always keep the first thumbnail for the event
self.tracked_events[data["id"]].pop(1)
self.tracked_events[data["id"]].append(data)
self.frame_manager.close(frame_name)
except FileNotFoundError:
pass
if yuv_frame is None:
logger.debug(
"Unable to process object update because frame is unavailable."
)
return
if self.face_recognition_enabled:
self._process_face(data, yuv_frame)
if self.lpr_config.enabled:
self._process_license_plate(data, yuv_frame)
# no need to save our own thumbnails if genai is not enabled
# or if the object has become stationary
if self.genai_client is not None and not data["stationary"]:
if data["id"] not in self.tracked_events:
self.tracked_events[data["id"]] = []
data["thumbnail"] = self._create_thumbnail(yuv_frame, data["box"])
# Limit the number of thumbnails saved
if len(self.tracked_events[data["id"]]) >= MAX_THUMBNAILS:
# Always keep the first thumbnail for the event
self.tracked_events[data["id"]].pop(1)
self.tracked_events[data["id"]].append(data)
self.frame_manager.close(frame_name)
def _process_finalized(self) -> None:
"""Process the end of an event."""
while True:
ended = self.event_end_subscriber.check_for_update(timeout=0.1)
ended = self.event_end_subscriber.check_for_update(timeout=0.01)
if ended == None:
break
@@ -163,6 +265,12 @@ class EmbeddingMaintainer(threading.Thread):
event_id, camera, updated_db = ended
camera_config = self.config.cameras[camera]
if event_id in self.detected_faces:
self.detected_faces.pop(event_id)
if event_id in self.detected_license_plates:
self.detected_license_plates.pop(event_id)
if updated_db:
try:
event: Event = Event.get(Event.id == event_id)
@@ -217,16 +325,47 @@ class EmbeddingMaintainer(threading.Thread):
_, buffer = cv2.imencode(".jpg", cropped_image)
snapshot_image = buffer.tobytes()
num_thumbnails = len(self.tracked_events.get(event_id, []))
embed_image = (
[snapshot_image]
if event.has_snapshot and camera_config.genai.use_snapshot
else (
[thumbnail for data in self.tracked_events[event_id]]
if len(self.tracked_events.get(event_id, [])) > 0
[
data["thumbnail"]
for data in self.tracked_events[event_id]
]
if num_thumbnails > 0
else [thumbnail]
)
)
if camera_config.genai.debug_save_thumbnails and num_thumbnails > 0:
logger.debug(
f"Saving {num_thumbnails} thumbnails for event {event.id}"
)
Path(
os.path.join(CLIPS_DIR, f"genai-requests/{event.id}")
).mkdir(parents=True, exist_ok=True)
for idx, data in enumerate(self.tracked_events[event_id], 1):
jpg_bytes: bytes = data["thumbnail"]
if jpg_bytes is None:
logger.warning(
f"Unable to save thumbnail {idx} for {event.id}."
)
else:
with open(
os.path.join(
CLIPS_DIR,
f"genai-requests/{event.id}/{idx}.jpg",
),
"wb",
) as j:
j.write(jpg_bytes)
# Generate the description. Call happens in a thread since it is network bound.
threading.Thread(
target=self._embed_description,
@@ -245,7 +384,7 @@ class EmbeddingMaintainer(threading.Thread):
def _process_event_metadata(self):
# Check for regenerate description requests
(topic, event_id, source) = self.event_metadata_subscriber.check_for_update(
timeout=0.1
timeout=0.01
)
if topic is None:
@@ -254,6 +393,350 @@ class EmbeddingMaintainer(threading.Thread):
if event_id:
self.handle_regenerate_description(event_id, source)
def _detect_face(self, input: np.ndarray) -> tuple[int, int, int, int]:
"""Detect faces in input image."""
self.face_detector.setInputSize((input.shape[1], input.shape[0]))
faces = self.face_detector.detect(input)
if faces[1] is None:
return None
face = None
for _, potential_face in enumerate(faces[1]):
raw_bbox = potential_face[0:4].astype(np.uint16)
x: int = max(raw_bbox[0], 0)
y: int = max(raw_bbox[1], 0)
w: int = raw_bbox[2]
h: int = raw_bbox[3]
bbox = (x, y, x + w, y + h)
if face is None or area(bbox) > area(face):
face = bbox
return face
def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> None:
"""Look for faces in image."""
id = obj_data["id"]
# don't run for non person objects
if obj_data.get("label") != "person":
logger.debug("Not a processing face for non person object.")
return
# don't overwrite sub label for objects that have a sub label
# that is not a face
if obj_data.get("sub_label") and id not in self.detected_faces:
logger.debug(
f"Not processing face due to existing sub label: {obj_data.get('sub_label')}."
)
return
face: Optional[dict[str, any]] = None
if self.requires_face_detection:
logger.debug("Running manual face detection.")
person_box = obj_data.get("box")
if not person_box:
return None
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
left, top, right, bottom = person_box
person = rgb[top:bottom, left:right]
face_box = self._detect_face(person)
if not face_box:
logger.debug("Detected no faces for person object.")
return
margin = int((face_box[2] - face_box[0]) * 0.25)
face_frame = person[
max(0, face_box[1] - margin) : min(
frame.shape[0], face_box[3] + margin
),
max(0, face_box[0] - margin) : min(
frame.shape[1], face_box[2] + margin
),
]
face_frame = cv2.cvtColor(face_frame, cv2.COLOR_RGB2BGR)
else:
# don't run for object without attributes
if not obj_data.get("current_attributes"):
logger.debug("No attributes to parse.")
return
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
for attr in attributes:
if attr.get("label") != "face":
continue
if face is None or attr.get("score", 0.0) > face.get("score", 0.0):
face = attr
# no faces detected in this frame
if not face:
return
face_box = face.get("box")
# check that face is valid
if not face_box or area(face_box) < self.config.face_recognition.min_area:
logger.debug(f"Invalid face box {face}")
return
face_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
margin = int((face_box[2] - face_box[0]) * 0.25)
face_frame = face_frame[
max(0, face_box[1] - margin) : min(
frame.shape[0], face_box[3] + margin
),
max(0, face_box[0] - margin) : min(
frame.shape[1], face_box[2] + margin
),
]
res = self.face_classifier.classify_face(face_frame)
if not res:
return
sub_label, score = res
# calculate the overall face score as the probability * area of face
# this will help to reduce false positives from small side-angle faces
# if a large front-on face image may have scored slightly lower but
# is more likely to be accurate due to the larger face area
face_score = round(score * face_frame.shape[0] * face_frame.shape[1], 2)
logger.debug(
f"Detected best face for person as: {sub_label} with probability {score} and overall face score {face_score}"
)
if self.config.face_recognition.save_attempts:
# write face to library
folder = os.path.join(FACE_DIR, "debug")
file = os.path.join(folder, f"{id}-{sub_label}-{score}-{face_score}.webp")
os.makedirs(folder, exist_ok=True)
cv2.imwrite(file, face_frame)
if score < self.config.face_recognition.threshold:
logger.debug(
f"Recognized face distance {score} is less than threshold {self.config.face_recognition.threshold}"
)
return
if id in self.detected_faces and face_score <= self.detected_faces[id]:
logger.debug(
f"Recognized face distance {score} and overall score {face_score} is less than previous overall face score ({self.detected_faces.get(id)})."
)
return
resp = requests.post(
f"{FRIGATE_LOCALHOST}/api/events/{id}/sub_label",
json={
"camera": obj_data.get("camera"),
"subLabel": sub_label,
"subLabelScore": score,
},
)
if resp.status_code == 200:
self.detected_faces[id] = face_score
def _detect_license_plate(self, input: np.ndarray) -> tuple[int, int, int, int]:
"""Return the dimensions of the input image as [x, y, width, height]."""
height, width = input.shape[:2]
return (0, 0, width, height)
def _process_license_plate(
self, obj_data: dict[str, any], frame: np.ndarray
) -> None:
"""Look for license plates in image."""
id = obj_data["id"]
# don't run for non car objects
if obj_data.get("label") != "car":
logger.debug("Not a processing license plate for non car object.")
return
# don't run for stationary car objects
if obj_data.get("stationary") == True:
logger.debug("Not a processing license plate for a stationary car object.")
return
# don't overwrite sub label for objects that have a sub label
# that is not a license plate
if obj_data.get("sub_label") and id not in self.detected_license_plates:
logger.debug(
f"Not processing license plate due to existing sub label: {obj_data.get('sub_label')}."
)
return
license_plate: Optional[dict[str, any]] = None
if self.requires_license_plate_detection:
logger.debug("Running manual license_plate detection.")
car_box = obj_data.get("box")
if not car_box:
return None
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
left, top, right, bottom = car_box
car = rgb[top:bottom, left:right]
license_plate = self._detect_license_plate(car)
if not license_plate:
logger.debug("Detected no license plates for car object.")
return
license_plate_frame = car[
license_plate[1] : license_plate[3], license_plate[0] : license_plate[2]
]
license_plate_frame = cv2.cvtColor(license_plate_frame, cv2.COLOR_RGB2BGR)
else:
# don't run for object without attributes
if not obj_data.get("current_attributes"):
logger.debug("No attributes to parse.")
return
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
for attr in attributes:
if attr.get("label") != "license_plate":
continue
if license_plate is None or attr.get("score", 0.0) > license_plate.get(
"score", 0.0
):
license_plate = attr
# no license plates detected in this frame
if not license_plate:
return
license_plate_box = license_plate.get("box")
# check that license plate is valid
if (
not license_plate_box
or area(license_plate_box) < self.config.lpr.min_area
):
logger.debug(f"Invalid license plate box {license_plate}")
return
license_plate_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
license_plate_frame = license_plate_frame[
license_plate_box[1] : license_plate_box[3],
license_plate_box[0] : license_plate_box[2],
]
# run detection, returns results sorted by confidence, best first
license_plates, confidences, areas = (
self.license_plate_recognition.process_license_plate(license_plate_frame)
)
logger.debug(f"Text boxes: {license_plates}")
logger.debug(f"Confidences: {confidences}")
logger.debug(f"Areas: {areas}")
if license_plates:
for plate, confidence, text_area in zip(license_plates, confidences, areas):
avg_confidence = (
(sum(confidence) / len(confidence)) if confidence else 0
)
logger.debug(
f"Detected text: {plate} (average confidence: {avg_confidence:.2f}, area: {text_area} pixels)"
)
else:
# no plates found
logger.debug("No text detected")
return
top_plate, top_char_confidences, top_area = (
license_plates[0],
confidences[0],
areas[0],
)
avg_confidence = (
(sum(top_char_confidences) / len(top_char_confidences))
if top_char_confidences
else 0
)
# Check if we have a previously detected plate for this ID
if id in self.detected_license_plates:
prev_plate = self.detected_license_plates[id]["plate"]
prev_char_confidences = self.detected_license_plates[id]["char_confidences"]
prev_area = self.detected_license_plates[id]["area"]
prev_avg_confidence = (
(sum(prev_char_confidences) / len(prev_char_confidences))
if prev_char_confidences
else 0
)
# Define conditions for keeping the previous plate
shorter_than_previous = len(top_plate) < len(prev_plate)
lower_avg_confidence = avg_confidence <= prev_avg_confidence
smaller_area = top_area < prev_area
# Compare character-by-character confidence where possible
min_length = min(len(top_plate), len(prev_plate))
char_confidence_comparison = sum(
1
for i in range(min_length)
if top_char_confidences[i] <= prev_char_confidences[i]
)
worse_char_confidences = char_confidence_comparison >= min_length / 2
if (shorter_than_previous or smaller_area) and (
lower_avg_confidence and worse_char_confidences
):
logger.debug(
f"Keeping previous plate. New plate stats: "
f"length={len(top_plate)}, avg_conf={avg_confidence:.2f}, area={top_area} "
f"vs Previous: length={len(prev_plate)}, avg_conf={prev_avg_confidence:.2f}, area={prev_area}"
)
return
# Check against minimum confidence threshold
if avg_confidence < self.lpr_config.threshold:
logger.debug(
f"Average confidence {avg_confidence} is less than threshold ({self.lpr_config.threshold})"
)
return
# Determine subLabel based on known plates, use regex matching
# Default to the detected plate, use label name if there's a match
sub_label = next(
(
label
for label, plates in self.lpr_config.known_plates.items()
if any(re.match(f"^{plate}$", top_plate) for plate in plates)
),
top_plate,
)
# Send the result to the API
resp = requests.post(
f"{FRIGATE_LOCALHOST}/api/events/{id}/sub_label",
json={
"camera": obj_data.get("camera"),
"subLabel": sub_label,
"subLabelScore": avg_confidence,
},
)
if resp.status_code == 200:
self.detected_license_plates[id] = {
"plate": top_plate,
"char_confidences": top_char_confidences,
"area": top_area,
}
def _create_thumbnail(self, yuv_frame, box, height=500) -> Optional[bytes]:
"""Return jpg thumbnail of a region of the frame."""
frame = cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR_I420)
@@ -325,18 +808,25 @@ class EmbeddingMaintainer(threading.Thread):
)
if event.has_snapshot and source == "snapshot":
with open(
os.path.join(CLIPS_DIR, f"{event.camera}-{event.id}.jpg"),
"rb",
) as image_file:
snapshot_file = os.path.join(CLIPS_DIR, f"{event.camera}-{event.id}.jpg")
if not os.path.isfile(snapshot_file):
logger.error(
f"Cannot regenerate description for {event.id}, snapshot file not found: {snapshot_file}"
)
return
with open(snapshot_file, "rb") as image_file:
snapshot_image = image_file.read()
img = cv2.imdecode(
np.frombuffer(snapshot_image, dtype=np.int8), cv2.IMREAD_COLOR
)
# crop snapshot based on region before sending off to genai
# provide full image if region doesn't exist (manual events)
region = event.data.get("region", [0, 0, 1, 1])
height, width = img.shape[:2]
x1_rel, y1_rel, width_rel, height_rel = event.data["region"]
x1_rel, y1_rel, width_rel, height_rel = region
x1, y1 = int(x1_rel * width), int(y1_rel * height)
cropped_image = img[
@@ -350,7 +840,7 @@ class EmbeddingMaintainer(threading.Thread):
[snapshot_image]
if event.has_snapshot and source == "snapshot"
else (
[thumbnail for data in self.tracked_events[event_id]]
[data["thumbnail"] for data in self.tracked_events[event_id]]
if len(self.tracked_events.get(event_id, [])) > 0
else [thumbnail]
)

View File

@@ -4,7 +4,6 @@ import datetime
import logging
import os
import threading
from enum import Enum
from multiprocessing.synchronize import Event as MpEvent
from pathlib import Path
@@ -16,11 +15,6 @@ from frigate.models import Event, Timeline
logger = logging.getLogger(__name__)
class EventCleanupType(str, Enum):
clips = "clips"
snapshots = "snapshots"
CHUNK_SIZE = 50
@@ -67,19 +61,11 @@ class EventCleanup(threading.Thread):
return self.camera_labels[camera]["labels"]
def expire(self, media_type: EventCleanupType) -> list[str]:
def expire_snapshots(self) -> list[str]:
## Expire events from unlisted cameras based on the global config
if media_type == EventCleanupType.clips:
expire_days = max(
self.config.record.alerts.retain.days,
self.config.record.detections.retain.days,
)
file_extension = None # mp4 clips are no longer stored in /clips
update_params = {"has_clip": False}
else:
retain_config = self.config.snapshots.retain
file_extension = "jpg"
update_params = {"has_snapshot": False}
retain_config = self.config.snapshots.retain
file_extension = "jpg"
update_params = {"has_snapshot": False}
distinct_labels = self.get_removed_camera_labels()
@@ -87,10 +73,7 @@ class EventCleanup(threading.Thread):
# loop over object types in db
for event in distinct_labels:
# get expiration time for this label
if media_type == EventCleanupType.snapshots:
expire_days = retain_config.objects.get(
event.label, retain_config.default
)
expire_days = retain_config.objects.get(event.label, retain_config.default)
expire_after = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
@@ -162,13 +145,7 @@ class EventCleanup(threading.Thread):
## Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
if media_type == EventCleanupType.clips:
expire_days = max(
camera.record.alerts.retain.days,
camera.record.detections.retain.days,
)
else:
retain_config = camera.snapshots.retain
retain_config = camera.snapshots.retain
# get distinct objects in database for this camera
distinct_labels = self.get_camera_labels(name)
@@ -176,10 +153,9 @@ class EventCleanup(threading.Thread):
# loop over object types in db
for event in distinct_labels:
# get expiration time for this label
if media_type == EventCleanupType.snapshots:
expire_days = retain_config.objects.get(
event.label, retain_config.default
)
expire_days = retain_config.objects.get(
event.label, retain_config.default
)
expire_after = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
@@ -206,19 +182,144 @@ class EventCleanup(threading.Thread):
for event in expired_events:
events_to_update.append(event.id)
if media_type == EventCleanupType.snapshots:
try:
media_name = f"{event.camera}-{event.id}"
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}"
)
media_path.unlink(missing_ok=True)
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"
)
media_path.unlink(missing_ok=True)
except OSError as e:
logger.warning(f"Unable to delete event images: {e}")
try:
media_name = f"{event.camera}-{event.id}"
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}"
)
media_path.unlink(missing_ok=True)
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"
)
media_path.unlink(missing_ok=True)
except OSError as e:
logger.warning(f"Unable to delete event images: {e}")
# update the clips attribute for the db entry
for i in range(0, len(events_to_update), CHUNK_SIZE):
batch = events_to_update[i : i + CHUNK_SIZE]
logger.debug(f"Updating {update_params} for {len(batch)} events")
Event.update(update_params).where(Event.id << batch).execute()
return events_to_update
def expire_clips(self) -> list[str]:
## Expire events from unlisted cameras based on the global config
expire_days = max(
self.config.record.alerts.retain.days,
self.config.record.detections.retain.days,
)
file_extension = None # mp4 clips are no longer stored in /clips
update_params = {"has_clip": False}
# get expiration time for this label
expire_after = (
datetime.datetime.now() - datetime.timedelta(days=expire_days)
).timestamp()
# grab all events after specific time
expired_events: list[Event] = (
Event.select(
Event.id,
Event.camera,
)
.where(
Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.retain_indefinitely == False,
)
.namedtuples()
.iterator()
)
logger.debug(f"{len(list(expired_events))} events can be expired")
# delete the media from disk
for expired in expired_events:
media_name = f"{expired.camera}-{expired.id}"
media_path = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
try:
media_path.unlink(missing_ok=True)
if file_extension == "jpg":
media_path = Path(
f"{os.path.join(CLIPS_DIR, media_name)}-clean.png"
)
media_path.unlink(missing_ok=True)
except OSError as e:
logger.warning(f"Unable to delete event images: {e}")
# update the clips attribute for the db entry
query = Event.select(Event.id).where(
Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.retain_indefinitely == False,
)
events_to_update = []
for event in query.iterator():
events_to_update.append(event)
if len(events_to_update) >= CHUNK_SIZE:
logger.debug(
f"Updating {update_params} for {len(events_to_update)} events"
)
Event.update(update_params).where(
Event.id << events_to_update
).execute()
events_to_update = []
# Update any remaining events
if events_to_update:
logger.debug(
f"Updating clips/snapshots attribute for {len(events_to_update)} events"
)
Event.update(update_params).where(Event.id << events_to_update).execute()
events_to_update = []
now = datetime.datetime.now()
## Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
expire_days = max(
camera.record.alerts.retain.days,
camera.record.detections.retain.days,
)
alert_expire_date = (
now - datetime.timedelta(days=camera.record.alerts.retain.days)
).timestamp()
detection_expire_date = (
now - datetime.timedelta(days=camera.record.detections.retain.days)
).timestamp()
# grab all events after specific time
expired_events = (
Event.select(
Event.id,
Event.camera,
)
.where(
Event.camera == name,
Event.retain_indefinitely == False,
(
(
(Event.data["max_severity"] != "detection")
| (Event.data["max_severity"].is_null())
)
& (Event.end_time < alert_expire_date)
)
| (
(Event.data["max_severity"] == "detection")
& (Event.end_time < detection_expire_date)
),
)
.namedtuples()
.iterator()
)
# delete the grabbed clips from disk
# only snapshots are stored in /clips
# so no need to delete mp4 files
for event in expired_events:
events_to_update.append(event.id)
# update the clips attribute for the db entry
for i in range(0, len(events_to_update), CHUNK_SIZE):
@@ -231,7 +332,7 @@ class EventCleanup(threading.Thread):
def run(self) -> None:
# only expire events every 5 minutes
while not self.stop_event.wait(300):
events_with_expired_clips = self.expire(EventCleanupType.clips)
events_with_expired_clips = self.expire_clips()
# delete timeline entries for events that have expired recordings
# delete up to 100,000 at a time
@@ -242,7 +343,7 @@ class EventCleanup(threading.Thread):
Timeline.source_id << deleted_events_list[i : i + max_deletes]
).execute()
self.expire(EventCleanupType.snapshots)
self.expire_snapshots()
# drop events from db where has_clip and has_snapshot are false
events = (

View File

@@ -82,18 +82,23 @@ class EventProcessor(threading.Thread):
)
if source_type == EventTypeEnum.tracked_object:
id = event_data["id"]
self.timeline_queue.put(
(
camera,
source_type,
event_type,
self.events_in_process.get(event_data["id"]),
self.events_in_process.get(id),
event_data,
)
)
if event_type == EventStateEnum.start:
self.events_in_process[event_data["id"]] = event_data
# if this is the first message, just store it and continue, its not time to insert it in the db
if (
event_type == EventStateEnum.start
or id not in self.events_in_process
):
self.events_in_process[id] = event_data
continue
self.handle_object_detection(event_type, camera, event_data)
@@ -123,10 +128,6 @@ class EventProcessor(threading.Thread):
"""handle tracked object event updates."""
updated_db = False
# if this is the first message, just store it and continue, its not time to insert it in the db
if event_type == EventStateEnum.start:
self.events_in_process[event_data["id"]] = event_data
if should_update_db(self.events_in_process[event_data["id"]], event_data):
updated_db = True
camera_config = self.config.cameras[camera]
@@ -210,6 +211,7 @@ class EventProcessor(threading.Thread):
"top_score": event_data["top_score"],
"attributes": attributes,
"type": "object",
"max_severity": event_data.get("max_severity"),
},
}

View File

@@ -38,6 +38,11 @@ class OllamaClient(GenAIClient):
def _send(self, prompt: str, images: list[bytes]) -> Optional[str]:
"""Submit a request to Ollama"""
if self.provider is None:
logger.warning(
"Ollama provider has not been initialized, a description will not be generated. Check your Ollama configuration."
)
return None
try:
result = self.provider.generate(
self.genai_config.model,

View File

@@ -18,12 +18,19 @@ LOG_HANDLER.setFormatter(
)
)
# filter out norfair warning
LOG_HANDLER.addFilter(
lambda record: not record.getMessage().startswith(
"You are using a scalar distance function"
)
)
# filter out tflite logging
LOG_HANDLER.addFilter(
lambda record: "Created TensorFlow Lite XNNPACK delegate for CPU."
not in record.getMessage()
)
log_listener: Optional[QueueListener] = None

View File

@@ -702,30 +702,7 @@ class TrackedObjectProcessor(threading.Thread):
return False
# If the object is not considered an alert or detection
review_config = self.config.cameras[camera].review
if not (
(
obj.obj_data["label"] in review_config.alerts.labels
and (
not review_config.alerts.required_zones
or set(obj.entered_zones) & set(review_config.alerts.required_zones)
)
)
or (
(
not review_config.detections.labels
or obj.obj_data["label"] in review_config.detections.labels
)
and (
not review_config.detections.required_zones
or set(obj.entered_zones)
& set(review_config.detections.required_zones)
)
)
):
logger.debug(
f"Not creating clip for {obj.obj_data['id']} because it did not qualify as an alert or detection"
)
if obj.max_severity is None:
return False
return True

View File

@@ -2,7 +2,6 @@
import copy
import logging
import os
import queue
import threading
import time
@@ -29,11 +28,11 @@ from frigate.const import (
AUTOTRACKING_ZOOM_EDGE_THRESHOLD,
AUTOTRACKING_ZOOM_IN_HYSTERESIS,
AUTOTRACKING_ZOOM_OUT_HYSTERESIS,
CONFIG_DIR,
)
from frigate.ptz.onvif import OnvifController
from frigate.track.tracked_object import TrackedObject
from frigate.util.builtin import update_yaml_file
from frigate.util.config import find_config_file
from frigate.util.image import SharedMemoryFrameManager, intersection_over_union
logger = logging.getLogger(__name__)
@@ -328,13 +327,7 @@ class PtzAutoTracker:
self.autotracker_init[camera] = True
def _write_config(self, camera):
config_file = os.environ.get("CONFIG_FILE", f"{CONFIG_DIR}/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
config_file = find_config_file()
logger.debug(
f"{camera}: Writing new config with autotracker motion coefficients: {self.config.cameras[camera].onvif.autotracking.movement_weights}"

View File

@@ -6,6 +6,7 @@ from importlib.util import find_spec
from pathlib import Path
import numpy
import requests
from onvif import ONVIFCamera, ONVIFError
from zeep.exceptions import Fault, TransportError
from zeep.transports import Transport
@@ -48,7 +49,11 @@ class OnvifController:
if cam.onvif.host:
try:
transport = Transport(timeout=10, operation_timeout=10)
session = requests.Session()
session.verify = not cam.onvif.tls_insecure
transport = Transport(
timeout=10, operation_timeout=10, session=session
)
self.cams[cam_name] = {
"onvif": ONVIFCamera(
cam.onvif.host,
@@ -558,22 +563,26 @@ class OnvifController:
if not self._init_onvif(camera_name):
return
if command == OnvifCommandEnum.init:
# already init
return
elif command == OnvifCommandEnum.stop:
self._stop(camera_name)
elif command == OnvifCommandEnum.preset:
self._move_to_preset(camera_name, param)
elif command == OnvifCommandEnum.move_relative:
_, pan, tilt = param.split("_")
self._move_relative(camera_name, float(pan), float(tilt), 0, 1)
elif (
command == OnvifCommandEnum.zoom_in or command == OnvifCommandEnum.zoom_out
):
self._zoom(camera_name, command)
else:
self._move(camera_name, command)
try:
if command == OnvifCommandEnum.init:
# already init
return
elif command == OnvifCommandEnum.stop:
self._stop(camera_name)
elif command == OnvifCommandEnum.preset:
self._move_to_preset(camera_name, param)
elif command == OnvifCommandEnum.move_relative:
_, pan, tilt = param.split("_")
self._move_relative(camera_name, float(pan), float(tilt), 0, 1)
elif (
command == OnvifCommandEnum.zoom_in
or command == OnvifCommandEnum.zoom_out
):
self._zoom(camera_name, command)
else:
self._move(camera_name, command)
except ONVIFError as e:
logger.error(f"Unable to handle onvif command: {e}")
def get_camera_info(self, camera_name: str) -> dict[str, any]:
if camera_name not in self.cams.keys():

View File

@@ -29,6 +29,7 @@ from frigate.const import (
RECORD_DIR,
)
from frigate.models import Recordings, ReviewSegment
from frigate.review.types import SeverityEnum
from frigate.util.services import get_video_properties
logger = logging.getLogger(__name__)
@@ -194,6 +195,7 @@ class RecordingMaintainer(threading.Thread):
ReviewSegment.select(
ReviewSegment.start_time,
ReviewSegment.end_time,
ReviewSegment.severity,
ReviewSegment.data,
)
.where(
@@ -219,11 +221,15 @@ class RecordingMaintainer(threading.Thread):
[r for r in recordings_to_insert if r is not None],
)
def drop_segment(self, cache_path: str) -> None:
Path(cache_path).unlink(missing_ok=True)
self.end_time_cache.pop(cache_path, None)
async def validate_and_move_segment(
self, camera: str, reviews: list[ReviewSegment], recording: dict[str, any]
) -> None:
cache_path = recording["cache_path"]
start_time = recording["start_time"]
cache_path: str = recording["cache_path"]
start_time: datetime.datetime = recording["start_time"]
record_config = self.config.cameras[camera].record
# Just delete files if recordings are turned off
@@ -231,8 +237,7 @@ class RecordingMaintainer(threading.Thread):
camera not in self.config.cameras
or not self.config.cameras[camera].record.enabled
):
Path(cache_path).unlink(missing_ok=True)
self.end_time_cache.pop(cache_path, None)
self.drop_segment(cache_path)
return
if cache_path in self.end_time_cache:
@@ -260,24 +265,34 @@ class RecordingMaintainer(threading.Thread):
return
# if cached file's start_time is earlier than the retain days for the camera
# meaning continuous recording is not enabled
if start_time <= (
datetime.datetime.now().astimezone(datetime.timezone.utc)
- datetime.timedelta(days=self.config.cameras[camera].record.retain.days)
):
# if the cached segment overlaps with the events:
# if the cached segment overlaps with the review items:
overlaps = False
for review in reviews:
# if the event starts in the future, stop checking events
severity = SeverityEnum[review.severity]
# if the review item starts in the future, stop checking review items
# and remove this segment
if review.start_time > end_time.timestamp():
if (
review.start_time - record_config.get_review_pre_capture(severity)
) > end_time.timestamp():
overlaps = False
Path(cache_path).unlink(missing_ok=True)
self.end_time_cache.pop(cache_path, None)
break
# if the event is in progress or ends after the recording starts, keep it
# and stop looking at events
if review.end_time is None or review.end_time >= start_time.timestamp():
# if the review item is in progress or ends after the recording starts, keep it
# and stop looking at review items
if (
review.end_time is None
or (
review.end_time
+ record_config.get_review_post_capture(severity)
)
>= start_time.timestamp()
):
overlaps = True
break
@@ -296,7 +311,7 @@ class RecordingMaintainer(threading.Thread):
cache_path,
record_mode,
)
# if it doesn't overlap with an event, go ahead and drop the segment
# if it doesn't overlap with an review item, go ahead and drop the segment
# if it ends more than the configured pre_capture for the camera
else:
camera_info = self.object_recordings_info[camera]
@@ -307,9 +322,9 @@ class RecordingMaintainer(threading.Thread):
most_recently_processed_frame_time - record_config.event_pre_capture
).astimezone(datetime.timezone.utc)
if end_time < retain_cutoff:
Path(cache_path).unlink(missing_ok=True)
self.end_time_cache.pop(cache_path, None)
self.drop_segment(cache_path)
# else retain days includes this segment
# meaning continuous recording is enabled
else:
# assume that empty means the relevant recording info has not been received yet
camera_info = self.object_recordings_info[camera]
@@ -390,8 +405,7 @@ class RecordingMaintainer(threading.Thread):
# check if the segment shouldn't be stored
if segment_info.should_discard_segment(store_mode):
Path(cache_path).unlink(missing_ok=True)
self.end_time_cache.pop(cache_path, None)
self.drop_segment(cache_path)
return
# directory will be in utc due to start_time being in utc

View File

@@ -7,7 +7,6 @@ import random
import string
import sys
import threading
from enum import Enum
from multiprocessing.synchronize import Event as MpEvent
from pathlib import Path
from typing import Optional
@@ -27,6 +26,7 @@ from frigate.const import (
from frigate.events.external import ManualEventState
from frigate.models import ReviewSegment
from frigate.object_processing import TrackedObject
from frigate.review.types import SeverityEnum
from frigate.util.image import SharedMemoryFrameManager, calculate_16_9_crop
logger = logging.getLogger(__name__)
@@ -39,11 +39,6 @@ THRESHOLD_ALERT_ACTIVITY = 120
THRESHOLD_DETECTION_ACTIVITY = 30
class SeverityEnum(str, Enum):
alert = "alert"
detection = "detection"
class PendingReviewSegment:
def __init__(
self,

6
frigate/review/types.py Normal file
View File

@@ -0,0 +1,6 @@
from enum import Enum
class SeverityEnum(str, Enum):
alert = "alert"
detection = "detection"

View File

@@ -293,7 +293,7 @@ def stats_snapshot(
for path in [RECORD_DIR, CLIPS_DIR, CACHE_DIR, "/dev/shm"]:
try:
storage_stats = shutil.disk_usage(path)
except FileNotFoundError:
except (FileNotFoundError, OSError):
stats["service"]["storage"][path] = {}
continue

View File

@@ -17,6 +17,8 @@ bandwidth_equation = Recordings.segment_size / (
Recordings.end_time - Recordings.start_time
)
MAX_CALCULATED_BANDWIDTH = 10000 # 10Gb/hr
class StorageMaintainer(threading.Thread):
"""Maintain frigates recording storage."""
@@ -52,6 +54,12 @@ class StorageMaintainer(threading.Thread):
* 3600,
2,
)
if bandwidth > MAX_CALCULATED_BANDWIDTH:
logger.warning(
f"{camera} has a bandwidth of {bandwidth} MB/hr which exceeds the expected maximum. This typically indicates an issue with the cameras recordings."
)
bandwidth = MAX_CALCULATED_BANDWIDTH
except TypeError:
bandwidth = 0

View File

@@ -9,8 +9,8 @@ from playhouse.sqliteq import SqliteQueueDatabase
from frigate.api.fastapi_app import create_fastapi_app
from frigate.config import FrigateConfig
from frigate.models import Event, ReviewSegment
from frigate.review.maintainer import SeverityEnum
from frigate.models import Event, Recordings, ReviewSegment
from frigate.review.types import SeverityEnum
from frigate.test.const import TEST_DB, TEST_DB_CLEANUPS
@@ -146,17 +146,35 @@ class BaseTestHttp(unittest.TestCase):
def insert_mock_review_segment(
self,
id: str,
start_time: datetime.datetime = datetime.datetime.now().timestamp(),
end_time: datetime.datetime = datetime.datetime.now().timestamp() + 20,
start_time: float = datetime.datetime.now().timestamp(),
end_time: float = datetime.datetime.now().timestamp() + 20,
severity: SeverityEnum = SeverityEnum.alert,
has_been_reviewed: bool = False,
) -> Event:
"""Inserts a basic event model with a given id."""
"""Inserts a review segment model with a given id."""
return ReviewSegment.insert(
id=id,
camera="front_door",
start_time=start_time,
end_time=end_time,
has_been_reviewed=False,
severity=SeverityEnum.alert,
has_been_reviewed=has_been_reviewed,
severity=severity,
thumb_path=False,
data={},
).execute()
def insert_mock_recording(
self,
id: str,
start_time: float = datetime.datetime.now().timestamp(),
end_time: float = datetime.datetime.now().timestamp() + 20,
) -> Event:
"""Inserts a recording model with a given id."""
return Recordings.insert(
id=id,
path=id,
camera="front_door",
start_time=start_time,
end_time=end_time,
duration=end_time - start_time,
).execute()

View File

@@ -1,76 +1,89 @@
import datetime
from datetime import datetime, timedelta
from fastapi.testclient import TestClient
from frigate.models import Event, ReviewSegment
from frigate.models import Event, Recordings, ReviewSegment
from frigate.review.types import SeverityEnum
from frigate.test.http_api.base_http_test import BaseTestHttp
class TestHttpReview(BaseTestHttp):
def setUp(self):
super().setUp([Event, ReviewSegment])
super().setUp([Event, Recordings, ReviewSegment])
self.app = super().create_app()
def _get_reviews(self, ids: list[str]):
return list(
ReviewSegment.select(ReviewSegment.id)
.where(ReviewSegment.id.in_(ids))
.execute()
)
def _get_recordings(self, ids: list[str]):
return list(
Recordings.select(Recordings.id).where(Recordings.id.in_(ids)).execute()
)
####################################################################################################################
################################### GET /review Endpoint ########################################################
####################################################################################################################
# Does not return any data point since the end time (before parameter) is not passed and the review segment end_time is 2 seconds from now
def test_get_review_no_filters_no_matches(self):
app = super().create_app()
now = datetime.datetime.now().timestamp()
now = datetime.now().timestamp()
with TestClient(app) as client:
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random", now, now + 2)
reviews_response = client.get("/review")
assert reviews_response.status_code == 200
reviews_in_response = reviews_response.json()
assert len(reviews_in_response) == 0
response = client.get("/review")
assert response.status_code == 200
response_json = response.json()
assert len(response_json) == 0
def test_get_review_no_filters(self):
app = super().create_app()
now = datetime.datetime.now().timestamp()
now = datetime.now().timestamp()
with TestClient(app) as client:
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random", now - 2, now - 1)
reviews_response = client.get("/review")
assert reviews_response.status_code == 200
reviews_in_response = reviews_response.json()
assert len(reviews_in_response) == 1
response = client.get("/review")
assert response.status_code == 200
response_json = response.json()
assert len(response_json) == 1
def test_get_review_with_time_filter_no_matches(self):
app = super().create_app()
now = datetime.datetime.now().timestamp()
now = datetime.now().timestamp()
with TestClient(app) as client:
with TestClient(self.app) as client:
id = "123456.random"
super().insert_mock_review_segment(id, now, now + 2)
params = {
"after": now,
"before": now + 3,
}
reviews_response = client.get("/review", params=params)
assert reviews_response.status_code == 200
reviews_in_response = reviews_response.json()
assert len(reviews_in_response) == 0
response = client.get("/review", params=params)
assert response.status_code == 200
response_json = response.json()
assert len(response_json) == 0
def test_get_review_with_time_filter(self):
app = super().create_app()
now = datetime.datetime.now().timestamp()
now = datetime.now().timestamp()
with TestClient(app) as client:
with TestClient(self.app) as client:
id = "123456.random"
super().insert_mock_review_segment(id, now, now + 2)
params = {
"after": now - 1,
"before": now + 3,
}
reviews_response = client.get("/review", params=params)
assert reviews_response.status_code == 200
reviews_in_response = reviews_response.json()
assert len(reviews_in_response) == 1
assert reviews_in_response[0]["id"] == id
response = client.get("/review", params=params)
assert response.status_code == 200
response_json = response.json()
assert len(response_json) == 1
assert response_json[0]["id"] == id
def test_get_review_with_limit_filter(self):
app = super().create_app()
now = datetime.datetime.now().timestamp()
now = datetime.now().timestamp()
with TestClient(app) as client:
with TestClient(self.app) as client:
id = "123456.random"
id2 = "654321.random"
super().insert_mock_review_segment(id, now, now + 2)
@@ -80,17 +93,49 @@ class TestHttpReview(BaseTestHttp):
"after": now,
"before": now + 3,
}
reviews_response = client.get("/review", params=params)
assert reviews_response.status_code == 200
reviews_in_response = reviews_response.json()
assert len(reviews_in_response) == 1
assert reviews_in_response[0]["id"] == id2
response = client.get("/review", params=params)
assert response.status_code == 200
response_json = response.json()
assert len(response_json) == 1
assert response_json[0]["id"] == id2
def test_get_review_with_severity_filters_no_matches(self):
now = datetime.now().timestamp()
with TestClient(self.app) as client:
id = "123456.random"
super().insert_mock_review_segment(id, now, now + 2, SeverityEnum.detection)
params = {
"severity": "detection",
"after": now - 1,
"before": now + 3,
}
response = client.get("/review", params=params)
assert response.status_code == 200
response_json = response.json()
assert len(response_json) == 1
assert response_json[0]["id"] == id
def test_get_review_with_severity_filters(self):
now = datetime.now().timestamp()
with TestClient(self.app) as client:
id = "123456.random"
super().insert_mock_review_segment(id, now, now + 2, SeverityEnum.detection)
params = {
"severity": "alert",
"after": now - 1,
"before": now + 3,
}
response = client.get("/review", params=params)
assert response.status_code == 200
response_json = response.json()
assert len(response_json) == 0
def test_get_review_with_all_filters(self):
app = super().create_app()
now = datetime.datetime.now().timestamp()
now = datetime.now().timestamp()
with TestClient(app) as client:
with TestClient(self.app) as client:
id = "123456.random"
super().insert_mock_review_segment(id, now, now + 2)
params = {
@@ -103,8 +148,424 @@ class TestHttpReview(BaseTestHttp):
"after": now - 1,
"before": now + 3,
}
reviews_response = client.get("/review", params=params)
assert reviews_response.status_code == 200
reviews_in_response = reviews_response.json()
assert len(reviews_in_response) == 1
assert reviews_in_response[0]["id"] == id
response = client.get("/review", params=params)
assert response.status_code == 200
response_json = response.json()
assert len(response_json) == 1
assert response_json[0]["id"] == id
####################################################################################################################
################################### GET /review/summary Endpoint #################################################
####################################################################################################################
def test_get_review_summary_all_filters(self):
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random")
params = {
"cameras": "front_door",
"labels": "all",
"zones": "all",
"timezone": "utc",
}
response = client.get("/review/summary", params=params)
assert response.status_code == 200
response_json = response.json()
# e.g. '2024-11-24'
today_formatted = datetime.today().strftime("%Y-%m-%d")
expected_response = {
"last24Hours": {
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
today_formatted: {
"day": today_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
}
self.assertEqual(response_json, expected_response)
def test_get_review_summary_no_filters(self):
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random")
response = client.get("/review/summary")
assert response.status_code == 200
response_json = response.json()
# e.g. '2024-11-24'
today_formatted = datetime.today().strftime("%Y-%m-%d")
expected_response = {
"last24Hours": {
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
today_formatted: {
"day": today_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
}
self.assertEqual(response_json, expected_response)
def test_get_review_summary_multiple_days(self):
now = datetime.now()
five_days_ago = datetime.today() - timedelta(days=5)
with TestClient(self.app) as client:
super().insert_mock_review_segment(
"123456.random", now.timestamp() - 2, now.timestamp() - 1
)
super().insert_mock_review_segment(
"654321.random",
five_days_ago.timestamp(),
five_days_ago.timestamp() + 1,
)
response = client.get("/review/summary")
assert response.status_code == 200
response_json = response.json()
# e.g. '2024-11-24'
today_formatted = now.strftime("%Y-%m-%d")
# e.g. '2024-11-19'
five_days_ago_formatted = five_days_ago.strftime("%Y-%m-%d")
expected_response = {
"last24Hours": {
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
today_formatted: {
"day": today_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
five_days_ago_formatted: {
"day": five_days_ago_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
}
self.assertEqual(response_json, expected_response)
def test_get_review_summary_multiple_days_edge_cases(self):
now = datetime.now()
five_days_ago = datetime.today() - timedelta(days=5)
twenty_days_ago = datetime.today() - timedelta(days=20)
one_month_ago = datetime.today() - timedelta(days=30)
one_month_ago_ts = one_month_ago.timestamp()
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random", now.timestamp())
super().insert_mock_review_segment(
"123457.random", five_days_ago.timestamp()
)
super().insert_mock_review_segment(
"123458.random",
twenty_days_ago.timestamp(),
None,
SeverityEnum.detection,
)
# One month ago plus 5 seconds fits within the condition (review.start_time > month_ago). Assuming that the endpoint does not take more than 5 seconds to be invoked
super().insert_mock_review_segment(
"123459.random",
one_month_ago_ts + 5,
None,
SeverityEnum.detection,
)
# This won't appear in the output since it's not within last month start_time clause (review.start_time > month_ago)
super().insert_mock_review_segment("123450.random", one_month_ago_ts)
response = client.get("/review/summary")
assert response.status_code == 200
response_json = response.json()
# e.g. '2024-11-24'
today_formatted = now.strftime("%Y-%m-%d")
# e.g. '2024-11-19'
five_days_ago_formatted = five_days_ago.strftime("%Y-%m-%d")
# e.g. '2024-11-04'
twenty_days_ago_formatted = twenty_days_ago.strftime("%Y-%m-%d")
# e.g. '2024-10-24'
one_month_ago_formatted = one_month_ago.strftime("%Y-%m-%d")
expected_response = {
"last24Hours": {
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
today_formatted: {
"day": today_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
five_days_ago_formatted: {
"day": five_days_ago_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
twenty_days_ago_formatted: {
"day": twenty_days_ago_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 0,
"total_detection": 1,
},
one_month_ago_formatted: {
"day": one_month_ago_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 0,
"total_detection": 1,
},
}
self.assertEqual(response_json, expected_response)
def test_get_review_summary_multiple_in_same_day(self):
now = datetime.now()
five_days_ago = datetime.today() - timedelta(days=5)
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random", now.timestamp())
five_days_ago_ts = five_days_ago.timestamp()
for i in range(20):
super().insert_mock_review_segment(
f"123456_{i}.random_alert",
five_days_ago_ts,
five_days_ago_ts,
SeverityEnum.alert,
)
for i in range(15):
super().insert_mock_review_segment(
f"123456_{i}.random_detection",
five_days_ago_ts,
five_days_ago_ts,
SeverityEnum.detection,
)
response = client.get("/review/summary")
assert response.status_code == 200
response_json = response.json()
# e.g. '2024-11-24'
today_formatted = now.strftime("%Y-%m-%d")
# e.g. '2024-11-19'
five_days_ago_formatted = five_days_ago.strftime("%Y-%m-%d")
expected_response = {
"last24Hours": {
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
today_formatted: {
"day": today_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 1,
"total_detection": 0,
},
five_days_ago_formatted: {
"day": five_days_ago_formatted,
"reviewed_alert": 0,
"reviewed_detection": 0,
"total_alert": 20,
"total_detection": 15,
},
}
self.assertEqual(response_json, expected_response)
def test_get_review_summary_multiple_in_same_day_with_reviewed(self):
five_days_ago = datetime.today() - timedelta(days=5)
with TestClient(self.app) as client:
five_days_ago_ts = five_days_ago.timestamp()
for i in range(10):
super().insert_mock_review_segment(
f"123456_{i}.random_alert_not_reviewed",
five_days_ago_ts,
five_days_ago_ts,
SeverityEnum.alert,
False,
)
for i in range(10):
super().insert_mock_review_segment(
f"123456_{i}.random_alert_reviewed",
five_days_ago_ts,
five_days_ago_ts,
SeverityEnum.alert,
True,
)
for i in range(10):
super().insert_mock_review_segment(
f"123456_{i}.random_detection_not_reviewed",
five_days_ago_ts,
five_days_ago_ts,
SeverityEnum.detection,
False,
)
for i in range(5):
super().insert_mock_review_segment(
f"123456_{i}.random_detection_reviewed",
five_days_ago_ts,
five_days_ago_ts,
SeverityEnum.detection,
True,
)
response = client.get("/review/summary")
assert response.status_code == 200
response_json = response.json()
# e.g. '2024-11-19'
five_days_ago_formatted = five_days_ago.strftime("%Y-%m-%d")
expected_response = {
"last24Hours": {
"reviewed_alert": None,
"reviewed_detection": None,
"total_alert": None,
"total_detection": None,
},
five_days_ago_formatted: {
"day": five_days_ago_formatted,
"reviewed_alert": 10,
"reviewed_detection": 5,
"total_alert": 20,
"total_detection": 15,
},
}
self.assertEqual(response_json, expected_response)
####################################################################################################################
################################### POST reviews/viewed Endpoint ################################################
####################################################################################################################
def test_post_reviews_viewed_no_body(self):
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random")
response = client.post("/reviews/viewed")
# Missing ids
assert response.status_code == 422
def test_post_reviews_viewed_no_body_ids(self):
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random")
body = {"ids": [""]}
response = client.post("/reviews/viewed", json=body)
# Missing ids
assert response.status_code == 422
def test_post_reviews_viewed_non_existent_id(self):
with TestClient(self.app) as client:
id = "123456.random"
super().insert_mock_review_segment(id)
body = {"ids": ["1"]}
response = client.post("/reviews/viewed", json=body)
assert response.status_code == 200
response = response.json()
assert response["success"] == True
assert response["message"] == "Reviewed multiple items"
# Verify that in DB the review segment was not changed
review_segment_in_db = (
ReviewSegment.select(ReviewSegment.has_been_reviewed)
.where(ReviewSegment.id == id)
.get()
)
assert review_segment_in_db.has_been_reviewed == False
def test_post_reviews_viewed(self):
with TestClient(self.app) as client:
id = "123456.random"
super().insert_mock_review_segment(id)
body = {"ids": [id]}
response = client.post("/reviews/viewed", json=body)
assert response.status_code == 200
response = response.json()
assert response["success"] == True
assert response["message"] == "Reviewed multiple items"
# Verify that in DB the review segment was changed
review_segment_in_db = (
ReviewSegment.select(ReviewSegment.has_been_reviewed)
.where(ReviewSegment.id == id)
.get()
)
assert review_segment_in_db.has_been_reviewed == True
####################################################################################################################
################################### POST reviews/delete Endpoint ################################################
####################################################################################################################
def test_post_reviews_delete_no_body(self):
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random")
response = client.post("/reviews/delete")
# Missing ids
assert response.status_code == 422
def test_post_reviews_delete_no_body_ids(self):
with TestClient(self.app) as client:
super().insert_mock_review_segment("123456.random")
body = {"ids": [""]}
response = client.post("/reviews/delete", json=body)
# Missing ids
assert response.status_code == 422
def test_post_reviews_delete_non_existent_id(self):
with TestClient(self.app) as client:
id = "123456.random"
super().insert_mock_review_segment(id)
body = {"ids": ["1"]}
response = client.post("/reviews/delete", json=body)
assert response.status_code == 200
response_json = response.json()
assert response_json["success"] == True
assert response_json["message"] == "Deleted review items."
# Verify that in DB the review segment was not deleted
review_ids_in_db_after = self._get_reviews([id])
assert len(review_ids_in_db_after) == 1
assert review_ids_in_db_after[0].id == id
def test_post_reviews_delete(self):
with TestClient(self.app) as client:
id = "123456.random"
super().insert_mock_review_segment(id)
body = {"ids": [id]}
response = client.post("/reviews/delete", json=body)
assert response.status_code == 200
response_json = response.json()
assert response_json["success"] == True
assert response_json["message"] == "Deleted review items."
# Verify that in DB the review segment was deleted
review_ids_in_db_after = self._get_reviews([id])
assert len(review_ids_in_db_after) == 0
def test_post_reviews_delete_many(self):
with TestClient(self.app) as client:
ids = ["123456.random", "654321.random"]
for id in ids:
super().insert_mock_review_segment(id)
super().insert_mock_recording(id)
review_ids_in_db_before = self._get_reviews(ids)
recordings_ids_in_db_before = self._get_recordings(ids)
assert len(review_ids_in_db_before) == 2
assert len(recordings_ids_in_db_before) == 2
body = {"ids": ids}
response = client.post("/reviews/delete", json=body)
assert response.status_code == 200
response_json = response.json()
assert response_json["success"] == True
assert response_json["message"] == "Deleted review items."
# Verify that in DB all review segments and recordings that were passed were deleted
review_ids_in_db_after = self._get_reviews(ids)
recording_ids_in_db_after = self._get_recordings(ids)
assert len(review_ids_in_db_after) == 0
assert len(recording_ids_in_db_after) == 0

View File

@@ -168,7 +168,7 @@ class TestHttp(unittest.TestCase):
assert event
assert event["id"] == id
assert event == model_to_dict(Event.get(Event.id == id))
assert event["id"] == model_to_dict(Event.get(Event.id == id))["id"]
def test_get_bad_event(self):
app = create_fastapi_app(

View File

@@ -13,6 +13,7 @@ from frigate.config import (
CameraConfig,
ModelConfig,
)
from frigate.review.types import SeverityEnum
from frigate.util.image import (
area,
calculate_region,
@@ -59,6 +60,27 @@ class TrackedObject:
self.pending_loitering = False
self.previous = self.to_dict()
@property
def max_severity(self) -> Optional[str]:
review_config = self.camera_config.review
if self.obj_data["label"] in review_config.alerts.labels and (
not review_config.alerts.required_zones
or set(self.entered_zones) & set(review_config.alerts.required_zones)
):
return SeverityEnum.alert
if (
not review_config.detections.labels
or self.obj_data["label"] in review_config.detections.labels
) and (
not review_config.detections.required_zones
or set(self.entered_zones) & set(review_config.detections.required_zones)
):
return SeverityEnum.detection
return None
def _is_false_positive(self):
# once a true positive, always a true positive
if not self.false_positive:
@@ -232,6 +254,7 @@ class TrackedObject:
"attributes": self.attributes,
"current_attributes": self.obj_data["attributes"],
"pending_loitering": self.pending_loitering,
"max_severity": self.max_severity,
}
if include_thumbnail:

View File

@@ -14,6 +14,16 @@ from frigate.util.services import get_video_properties
logger = logging.getLogger(__name__)
CURRENT_CONFIG_VERSION = "0.15-0"
DEFAULT_CONFIG_FILE = "/config/config.yml"
def find_config_file() -> str:
config_path = os.environ.get("CONFIG_FILE", DEFAULT_CONFIG_FILE)
if not os.path.isfile(config_path):
config_path = config_path.replace("yml", "yaml")
return config_path
def migrate_frigate_config(config_file: str):

View File

@@ -101,7 +101,7 @@ class ModelDownloader:
self.download_complete.set()
@staticmethod
def download_from_url(url: str, save_path: str, silent: bool = False):
def download_from_url(url: str, save_path: str, silent: bool = False) -> Path:
temporary_filename = Path(save_path).with_name(
os.path.basename(save_path) + ".part"
)
@@ -125,6 +125,8 @@ class ModelDownloader:
if not silent:
logger.info(f"Downloading complete: {url}")
return Path(save_path)
@staticmethod
def mark_files_state(
requestor: InterProcessRequestor,

View File

@@ -219,6 +219,8 @@ def draw_box_with_label(
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
# get frame height
frame_height = frame.shape[0]
# set the text start position
if position == "ul":
text_offset_x = x_min
@@ -228,18 +230,23 @@ def draw_box_with_label(
text_offset_y = max(0, y_min - (line_height + 8))
elif position == "bl":
text_offset_x = x_min
text_offset_y = y_max
text_offset_y = min(frame_height - line_height, y_max)
elif position == "br":
text_offset_x = max(0, x_max - (text_width + 8))
text_offset_y = y_max
# Adjust position if it overlaps with the box
if position in {"ul", "ur"} and text_offset_y < y_min + thickness:
# Move the text below the box
text_offset_y = y_max
elif position in {"bl", "br"} and text_offset_y + line_height > y_max:
# Move the text above the box
text_offset_y = max(0, y_min - (line_height + 8))
text_offset_y = min(frame_height - line_height, y_max)
# Adjust position if it overlaps with the box or goes out of frame
if position in {"ul", "ur"}:
if text_offset_y < y_min + thickness: # Label overlaps with the box
if y_min - (line_height + 8) < 0 and y_max + line_height <= frame_height:
# Not enough space above, and there is space below
text_offset_y = y_max
elif y_min - (line_height + 8) >= 0:
# Enough space above, keep the label at the top
text_offset_y = max(0, y_min - (line_height + 8))
elif position in {"bl", "br"}:
if text_offset_y + line_height > frame_height:
# If there's not enough space below, try above the box
text_offset_y = max(0, y_min - (line_height + 8))
# make the coords of the box with a small padding of two pixels
textbox_coords = (

View File

@@ -2,9 +2,14 @@
import logging
import os
from typing import Any
from typing import Any, Optional
import cv2
import numpy as np
import onnxruntime as ort
from playhouse.sqliteq import SqliteQueueDatabase
from frigate.config.semantic_search import FaceRecognitionConfig
try:
import openvino as ov
@@ -15,6 +20,9 @@ except ImportError:
logger = logging.getLogger(__name__)
MIN_MATCHING_FACES = 2
def get_ort_providers(
force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False
) -> tuple[list[str], list[dict[str, any]]]:
@@ -148,3 +156,114 @@ class ONNXModelRunner:
return [infer_request.get_output_tensor().data]
elif self.type == "ort":
return self.ort.run(None, input)
class FaceClassificationModel:
def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase):
self.config = config
self.db = db
self.landmark_detector = cv2.face.createFacemarkLBF()
self.landmark_detector.loadModel("/config/model_cache/facedet/landmarkdet.yaml")
self.recognizer: cv2.face.LBPHFaceRecognizer = (
cv2.face.LBPHFaceRecognizer_create(
radius=2, threshold=(1 - config.min_score) * 1000
)
)
self.label_map: dict[int, str] = {}
self.__build_classifier()
def __build_classifier(self) -> None:
labels = []
faces = []
dir = "/media/frigate/clips/faces"
for idx, name in enumerate(os.listdir(dir)):
if name == "debug":
continue
self.label_map[idx] = name
face_folder = os.path.join(dir, name)
for image in os.listdir(face_folder):
img = cv2.imread(os.path.join(face_folder, image))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = self.__align_face(img, img.shape[1], img.shape[0])
faces.append(img)
labels.append(idx)
self.recognizer.train(faces, np.array(labels))
def __align_face(
self,
image: np.ndarray,
output_width: int,
output_height: int,
) -> np.ndarray:
_, lands = self.landmark_detector.fit(
image, np.array([(0, 0, image.shape[1], image.shape[0])])
)
landmarks = lands[0][0]
# get landmarks for eyes
leftEyePts = landmarks[42:48]
rightEyePts = landmarks[36:42]
# compute the center of mass for each eye
leftEyeCenter = leftEyePts.mean(axis=0).astype("int")
rightEyeCenter = rightEyePts.mean(axis=0).astype("int")
# compute the angle between the eye centroids
dY = rightEyeCenter[1] - leftEyeCenter[1]
dX = rightEyeCenter[0] - leftEyeCenter[0]
angle = np.degrees(np.arctan2(dY, dX)) - 180
# compute the desired right eye x-coordinate based on the
# desired x-coordinate of the left eye
desiredRightEyeX = 1.0 - 0.35
# determine the scale of the new resulting image by taking
# the ratio of the distance between eyes in the *current*
# image to the ratio of distance between eyes in the
# *desired* image
dist = np.sqrt((dX**2) + (dY**2))
desiredDist = desiredRightEyeX - 0.35
desiredDist *= output_width
scale = desiredDist / dist
# compute center (x, y)-coordinates (i.e., the median point)
# between the two eyes in the input image
# grab the rotation matrix for rotating and scaling the face
eyesCenter = (
int((leftEyeCenter[0] + rightEyeCenter[0]) // 2),
int((leftEyeCenter[1] + rightEyeCenter[1]) // 2),
)
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)
# update the translation component of the matrix
tX = output_width * 0.5
tY = output_height * 0.35
M[0, 2] += tX - eyesCenter[0]
M[1, 2] += tY - eyesCenter[1]
# apply the affine transformation
return cv2.warpAffine(
image, M, (output_width, output_height), flags=cv2.INTER_CUBIC
)
def clear_classifier(self) -> None:
self.classifier = None
self.labeler = None
self.label_map = {}
def classify_face(self, face_image: np.ndarray) -> Optional[tuple[str, float]]:
if not self.label_map:
self.__build_classifier()
img = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)
img = self.__align_face(img, img.shape[1], img.shape[0])
index, distance = self.recognizer.predict(img)
if index == -1:
return None
score = 1.0 - (distance / 1000)
return self.label_map[index], round(score, 2)

Some files were not shown because too many files have changed in this diff Show More