forked from Github/frigate
YOLOX support for OpenVINO Detector (#5285)
* Initial commit to enable Yolox models with OpenVINO in Frigate * Fix ModelEnumtType import error in openvino.py * Initial edit of the docs to include verbage about yolox * Initial edit of the docs to include verbage about yolox * Elaborate configuration and limitations in docs. * Add capability to dynamically determine number of classes in yolox model * Further refinements * Removed unnecesarry comments, improved documentation, addressed PR items * Fixed lint formatting issues
This commit is contained in:
@@ -3,7 +3,7 @@ import numpy as np
|
||||
import openvino.runtime as ov
|
||||
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||
from typing import Literal
|
||||
from pydantic import Extra, Field
|
||||
|
||||
@@ -24,12 +24,18 @@ class OvDetector(DetectionApi):
|
||||
def __init__(self, detector_config: OvDetectorConfig):
|
||||
self.ov_core = ov.Core()
|
||||
self.ov_model = self.ov_core.read_model(detector_config.model.path)
|
||||
self.ov_model_type = detector_config.model.model_type
|
||||
|
||||
self.h = detector_config.model.height
|
||||
self.w = detector_config.model.width
|
||||
|
||||
self.interpreter = self.ov_core.compile_model(
|
||||
model=self.ov_model, device_name=detector_config.device
|
||||
)
|
||||
|
||||
logger.info(f"Model Input Shape: {self.interpreter.input(0).shape}")
|
||||
self.output_indexes = 0
|
||||
|
||||
while True:
|
||||
try:
|
||||
tensor_shape = self.interpreter.output(self.output_indexes).shape
|
||||
@@ -38,29 +44,92 @@ class OvDetector(DetectionApi):
|
||||
except:
|
||||
logger.info(f"Model has {self.output_indexes} Output Tensors")
|
||||
break
|
||||
if self.ov_model_type == ModelTypeEnum.yolox:
|
||||
self.num_classes = tensor_shape[2] - 5
|
||||
logger.info(f"YOLOX model has {self.num_classes} classes")
|
||||
self.set_strides_grids()
|
||||
|
||||
def set_strides_grids(self):
|
||||
grids = []
|
||||
expanded_strides = []
|
||||
|
||||
strides = [8, 16, 32]
|
||||
|
||||
hsizes = [self.h // stride for stride in strides]
|
||||
wsizes = [self.w // stride for stride in strides]
|
||||
|
||||
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
||||
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
||||
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
||||
grids.append(grid)
|
||||
shape = grid.shape[:2]
|
||||
expanded_strides.append(np.full((*shape, 1), stride))
|
||||
self.grids = np.concatenate(grids, 1)
|
||||
self.expanded_strides = np.concatenate(expanded_strides, 1)
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
|
||||
infer_request = self.interpreter.create_infer_request()
|
||||
infer_request.infer([tensor_input])
|
||||
|
||||
results = infer_request.get_output_tensor()
|
||||
if self.ov_model_type == ModelTypeEnum.ssd:
|
||||
results = infer_request.get_output_tensor()
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
i = 0
|
||||
for object_detected in results.data[0, 0, :]:
|
||||
if object_detected[0] != -1:
|
||||
logger.debug(object_detected)
|
||||
if object_detected[2] < 0.1 or i == 20:
|
||||
break
|
||||
detections[i] = [
|
||||
object_detected[1], # Label ID
|
||||
float(object_detected[2]), # Confidence
|
||||
object_detected[4], # y_min
|
||||
object_detected[3], # x_min
|
||||
object_detected[6], # y_max
|
||||
object_detected[5], # x_max
|
||||
]
|
||||
i += 1
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
i = 0
|
||||
for object_detected in results.data[0, 0, :]:
|
||||
if object_detected[0] != -1:
|
||||
logger.debug(object_detected)
|
||||
if object_detected[2] < 0.1 or i == 20:
|
||||
break
|
||||
detections[i] = [
|
||||
object_detected[1], # Label ID
|
||||
float(object_detected[2]), # Confidence
|
||||
object_detected[4], # y_min
|
||||
object_detected[3], # x_min
|
||||
object_detected[6], # y_max
|
||||
object_detected[5], # x_max
|
||||
]
|
||||
i += 1
|
||||
return detections
|
||||
elif self.ov_model_type == ModelTypeEnum.yolox:
|
||||
out_tensor = infer_request.get_output_tensor()
|
||||
# [x, y, h, w, box_score, class_no_1, ..., class_no_80],
|
||||
results = out_tensor.data
|
||||
results[..., :2] = (results[..., :2] + self.grids) * self.expanded_strides
|
||||
results[..., 2:4] = np.exp(results[..., 2:4]) * self.expanded_strides
|
||||
image_pred = results[0, ...]
|
||||
|
||||
return detections
|
||||
class_conf = np.max(
|
||||
image_pred[:, 5 : 5 + self.num_classes], axis=1, keepdims=True
|
||||
)
|
||||
class_pred = np.argmax(image_pred[:, 5 : 5 + self.num_classes], axis=1)
|
||||
class_pred = np.expand_dims(class_pred, axis=1)
|
||||
|
||||
conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= 0.3).squeeze()
|
||||
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
|
||||
dets = np.concatenate((image_pred[:, :5], class_conf, class_pred), axis=1)
|
||||
dets = dets[conf_mask]
|
||||
|
||||
ordered = dets[dets[:, 5].argsort()[::-1]][:20]
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
i = 0
|
||||
|
||||
for object_detected in ordered:
|
||||
if i < 20:
|
||||
detections[i] = [
|
||||
object_detected[6], # Label ID
|
||||
object_detected[5], # Confidence
|
||||
(object_detected[1] - (object_detected[3] / 2))
|
||||
/ self.h, # y_min
|
||||
(object_detected[0] - (object_detected[2] / 2))
|
||||
/ self.w, # x_min
|
||||
(object_detected[1] + (object_detected[3] / 2))
|
||||
/ self.h, # y_max
|
||||
(object_detected[0] + (object_detected[2] / 2))
|
||||
/ self.w, # x_max
|
||||
]
|
||||
i += 1
|
||||
else:
|
||||
break
|
||||
return detections
|
||||
|
||||
Reference in New Issue
Block a user