Compare commits

..

133 Commits

Author SHA1 Message Date
kluszczyn
2bc8736fd9 Recordings - fix expire_file 2020-12-22 09:58:26 -05:00
Blake Blackshear
e9b3b09cc2 add clips endpoint to readme 2020-12-22 09:58:26 -05:00
Blake Blackshear
ca337c32b4 better mask error handling 2020-12-22 09:58:26 -05:00
Blake Blackshear
24b8bd7c85 fix tmpfs 2020-12-22 09:58:26 -05:00
Blake Blackshear
3ad75a441d remove redundant error output 2020-12-20 08:04:54 -06:00
Blake Blackshear
f006e9be8d use CACHE_DIR constant 2020-12-20 08:04:54 -06:00
Blake Blackshear
03f3ba8008 enable mounting tmpfs volume on start 2020-12-20 08:04:54 -06:00
Blake Blackshear
96a44eb7bf docs and issue template 2020-12-20 07:37:44 -06:00
Blake Blackshear
006782fe3d update process clip for latest changes 2020-12-20 07:37:44 -06:00
Blake Blackshear
ff3e95bbf7 publish event updates on zone change 2020-12-20 07:37:44 -06:00
Blake Blackshear
4b95a37e65 readme updates 2020-12-20 07:37:44 -06:00
Blake Blackshear
38c661b3a8 handle scenario with empty cache 2020-12-20 07:37:44 -06:00
Blake Blackshear
0d6e4f6a66 add qsv support to amd64 image 2020-12-20 07:37:44 -06:00
Blake Blackshear
1ad2219f1c add num_threads fixes #322 2020-12-20 07:37:44 -06:00
Blake Blackshear
dfcdd289c3 optimize clips fixes #299 2020-12-20 07:37:44 -06:00
Blake Blackshear
32f5f2cca9 add post_capture option 2020-12-20 07:37:44 -06:00
Blake Blackshear
24bfe9f3e8 re-crop to the object rather than the region 2020-12-20 07:37:44 -06:00
Blake Blackshear
004667dc99 allow runtime drawing settings for mjpeg and latest 2020-12-20 07:37:44 -06:00
Blake Blackshear
9d785dc781 allow the mask to be a list of masks 2020-12-20 07:37:44 -06:00
Blake Blackshear
cbba5a7af0 adding version endpoint 2020-12-20 07:37:44 -06:00
Blake Blackshear
29b29ee349 configurable motion and detect settings 2020-12-20 07:37:44 -06:00
Blake Blackshear
9ad53e09af update gitignore 2020-12-20 07:37:44 -06:00
Blake Blackshear
c9278991c9 fix test 2020-12-20 07:37:44 -06:00
Blake Blackshear
729de48934 switch default threshold to .7 2020-12-20 07:37:44 -06:00
Blake Blackshear
7476bff5fb allow process clips to output a csv of scores 2020-12-20 07:37:44 -06:00
Blake Blackshear
1e9eae8d9a allow db path to be customized 2020-12-20 07:37:44 -06:00
Blake Blackshear
8113a53381 add telegram example 2020-12-20 07:37:44 -06:00
Blake Blackshear
72833686f1 fix process clip 2020-12-20 07:37:44 -06:00
Blake Blackshear
096c21f105 handle empty string args 2020-12-20 07:37:44 -06:00
Blake Blackshear
181f66357b allow region to extend beyond the frame 2020-12-20 07:37:44 -06:00
tubalainen
a54fbc483c Updated file
ref: https://github.com/blakeblackshear/frigate/issues/373
2020-12-12 10:38:02 -06:00
Blake Blackshear
92d5a002d3 swap width and height to reduce confusion 2020-12-10 19:22:03 -06:00
Blake Blackshear
f9184903d7 updating compose example to reduce confusion 2020-12-10 19:02:08 -06:00
Blake Blackshear
91cde6ce7b allow defining model shape and switch to mobiledet as default model 2020-12-09 07:22:26 -06:00
Blake Blackshear
186a4587c7 add model dimensions to config 2020-12-09 07:22:26 -06:00
Patrick Decat
6049acb1f3 Document beta addon host 2020-12-08 07:25:13 -06:00
Blake Blackshear
2d2ebf313c make shm consistent with compose 2020-12-08 07:24:37 -06:00
tubalainen
3d329dcb52 Updated docker command line...
...to correspond with 0.8.0 feature set.
2020-12-08 07:24:37 -06:00
Blake Blackshear
06854fc34f readme cleanup fixes #332 2020-12-07 18:00:12 -06:00
Blake Blackshear
e01e14d866 handle and warn if roles dont match enabled features 2020-12-07 08:07:35 -06:00
Blake Blackshear
3dfd251ebb camera recommendations 2020-12-07 07:36:29 -06:00
Blake Blackshear
dcea807f77 catch all psutil errors 2020-12-07 07:16:48 -06:00
Blake Blackshear
87d83ff33a clarify height width and fps 2020-12-07 07:16:28 -06:00
Blake Blackshear
1d31cbdf0d readme updates 2020-12-06 14:25:28 -06:00
Blake Blackshear
e05b27b8dc tweak screenshots 2020-12-06 08:27:03 -06:00
Blake Blackshear
7111bd208e readme updates 2020-12-06 08:25:25 -06:00
Blake Blackshear
04a80280da set ffmpeg image versions 2020-12-06 07:09:14 -06:00
Blake Blackshear
3bda092140 comment you zeroconf 2020-12-06 07:05:45 -06:00
Blake Blackshear
9086820479 fix flask logger config 2020-12-05 19:05:03 -06:00
Blake Blackshear
d1da57aedc fix graceful exits 2020-12-05 12:06:07 -06:00
Blake Blackshear
6ded12c566 better exception handling 2020-12-05 12:06:07 -06:00
Blake Blackshear
70352566a7 fix default args 2020-12-05 12:06:07 -06:00
Blake Blackshear
cf5cc86588 fix fontconfig issue 2020-12-05 08:48:46 -06:00
Blake Blackshear
e41db49ab8 doc updates 2020-12-05 08:48:46 -06:00
Blake Blackshear
1b7effafee update some default config values 2020-12-05 08:48:46 -06:00
Blake Blackshear
69e9e0b0bf log level configuration 2020-12-05 08:48:46 -06:00
Blake Blackshear
89624df411 no need to write jpg disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1a7405211 dont delete the recordings directory 2020-12-05 08:48:46 -06:00
Blake Blackshear
040f8c7c20 default save_clips objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
6d7acabf4c add logging for directory creation 2020-12-05 08:48:46 -06:00
Blake Blackshear
45a8b42157 exit on config errors 2020-12-05 08:48:46 -06:00
Blake Blackshear
8785be24b7 add zeroconf discovery 2020-12-05 08:48:46 -06:00
Blake Blackshear
cc0812540c optional android notification aspect ratio 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cf38ca4f7 reduce min timestamp size 2020-12-05 08:48:46 -06:00
Blake Blackshear
7e4395c30e publish object counts rather than on/off 2020-12-05 08:48:46 -06:00
Blake Blackshear
598d3aeda2 make directories constants 2020-12-05 08:48:46 -06:00
Blake Blackshear
012dbf81f7 cleanup empty directories 2020-12-05 08:48:46 -06:00
Blake Blackshear
f869def12e serve up recordings with nginx 2020-12-05 08:48:46 -06:00
Blake Blackshear
31f7666337 add recording maintenance 2020-12-05 08:48:46 -06:00
Blake Blackshear
9e339acbca add record settings to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
8f8054a299 fix log timeout 2020-12-05 08:48:46 -06:00
Blake Blackshear
f7021eec4c ensure zones dont have the same name as a camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
c124153da4 graceful exit of subprocesses 2020-12-05 08:48:46 -06:00
Blake Blackshear
706c2f921e add multiple streams per camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
de1d66bcb9 fix fontconfig error 2020-12-05 08:48:46 -06:00
Blake Blackshear
4502ca8e80 add support for rebroadcasting as rtmp 2020-12-05 08:48:46 -06:00
Blake Blackshear
32a66fe5e8 avoid null error 2020-12-05 08:48:46 -06:00
Blake Blackshear
e1251aafdb minimize logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
587494068c oops 2020-12-05 08:48:46 -06:00
Blake Blackshear
7a4d90a47a only publish end events for true positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
d06b587d33 ensure all events are cleaned up 2020-12-05 08:48:46 -06:00
Blake Blackshear
eef70e434b publish events like a change feed 2020-12-05 08:48:46 -06:00
Blake Blackshear
b39da3ee01 pull from memory if event in progress 2020-12-05 08:48:46 -06:00
Blake Blackshear
e07c4e0d8c add endpoint for event thumbnail 2020-12-05 08:48:46 -06:00
Blake Blackshear
2f41ba6f77 add service to get by id 2020-12-05 08:48:46 -06:00
Blake Blackshear
bf95af0f22 add zones to summary data 2020-12-05 08:48:46 -06:00
Blake Blackshear
2e15847f86 sleep in the right place 2020-12-05 08:48:46 -06:00
Blake Blackshear
5992e85dc8 manage events for unlisted cameras 2020-12-05 08:48:46 -06:00
Blake Blackshear
24d416b869 add event cleanup thread 2020-12-05 08:48:46 -06:00
Blake Blackshear
5dbf368c4b add clip retention to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
7d56fe105f use localtime in group by 2020-12-05 08:48:46 -06:00
Blake Blackshear
e9327aa18c new http endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
df56e079de add parameters to event query 2020-12-05 08:48:46 -06:00
Blake Blackshear
8c5bfbd187 only save events when a clip is created 2020-12-05 08:48:46 -06:00
Blake Blackshear
2613e74f97 add bas64 encoded thumbnail to the database 2020-12-05 08:48:46 -06:00
Blake Blackshear
9a7fb96357 check for None value thumbnail_data 2020-12-05 08:48:46 -06:00
Blake Blackshear
37f9dfed92 only set thumbnail data if object is a true positive 2020-12-05 08:48:46 -06:00
Blake Blackshear
68c1544808 add some debug logging to frame cache 2020-12-05 08:48:46 -06:00
Blake Blackshear
2b3d3c5824 dont use a property 2020-12-05 08:48:46 -06:00
Blake Blackshear
efea87a3ea attempt to fix missing thumbs 2020-12-05 08:48:46 -06:00
Blake Blackshear
977785fb10 better frame handling for best images 2020-12-05 08:48:46 -06:00
Blake Blackshear
4e113e62c0 cleanup false_positive attribute 2020-12-05 08:48:46 -06:00
Blake Blackshear
5080b2d781 ensure some valid thumbnail is available 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cfd6d1edb don't save thumbnails for false positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
27ae4d8ab0 cleanup 2020-12-05 08:48:46 -06:00
Blake Blackshear
3db33302ec reduce logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
f2910d48e0 fixes 2020-12-05 08:48:46 -06:00
Blake Blackshear
cf0f8892e2 update nginx config 2020-12-05 08:48:46 -06:00
Blake Blackshear
4d22e172ff stop writing json file to disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
8874a55b0f create tracked object class and save thumbnails 2020-12-05 08:48:46 -06:00
Blake Blackshear
24b703a875 maintain thumbnail frames for tracked objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
8b8f5b5c40 sort imports 2020-12-05 08:48:46 -06:00
Blake Blackshear
eac81136d2 naming threads and processes for logs 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1e27b43ea use a queue for logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
105dcb7094 create typed config classes 2020-12-05 08:48:46 -06:00
Blake Blackshear
c0a16efdc1 add nginx and change default file locations 2020-12-05 08:48:46 -06:00
Blake Blackshear
2800c54743 config setup 2020-12-05 08:48:46 -06:00
Blake Blackshear
2a24e8abcb add watchdog 2020-12-05 08:48:46 -06:00
Blake Blackshear
37ee746ebb add back all endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
7ee6bfe855 add event processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
40f57a8754 add capture processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
e0da462223 add camera processors 2020-12-05 08:48:46 -06:00
Blake Blackshear
47a9fc4292 add detected_frames_processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
03fe5158db add detector processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
72be6b480d init db/http/mqtt 2020-12-05 08:48:46 -06:00
Blake Blackshear
a8964dcc1f app container and config schema 2020-12-05 08:48:46 -06:00
Blake Blackshear
732e91ee42 move primary script into the module 2020-12-05 08:48:46 -06:00
Blake Blackshear
27da080ce6 saving events and simple endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
075d06b108 basic database model and api endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
95dc17ffcd store events in tinydb 2020-12-05 08:48:46 -06:00
Blake Blackshear
408b53f8b4 update events model 2020-12-05 08:48:46 -06:00
Marc Seeger
3ef68a297a Add support for AMD Ryzen iGPU (fixes #311)
This package will add support for the iGPU of AMD Ryzen and presumably a few more AMD cards.
See details of the package here: https://packages.ubuntu.com/focal/mesa-va-drivers
It also adds support for the open source Nvidia Nouveau driver according to https://wiki.debian.org/HardwareVideoAcceleration
2020-12-05 07:00:07 -06:00
Michael Wei
3e9b3711dc Use cv2.bitwise_and instead of numpy.where 2020-12-05 06:59:28 -06:00
111 changed files with 1654 additions and 27091 deletions

View File

@@ -1,28 +0,0 @@
name: On push
on:
push:
branches:
- master
- release-0.8.0
jobs:
deploy-docs:
name: Deploy docs
runs-on: ubuntu-latest
defaults:
run:
working-directory: ./docs
steps:
- uses: actions/checkout@master
- uses: actions/setup-node@master
with:
node-version: 12.x
- run: npm install
- name: Build docs
run: npm run build
- name: Deploy documentation
uses: peaceiris/actions-gh-pages@v3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./docs/build

7
.gitignore vendored
View File

@@ -1,11 +1,8 @@
.DS_Store
*.pyc
*.pyc
debug
.vscode
config/config.yml
models
*.mp4
*.db
frigate/version.py
web/build
web/node_modules
frigate/version.py

View File

@@ -1,59 +1,54 @@
default_target: amd64_frigate
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h")
version:
echo "VERSION='0.8.1-$(COMMIT_HASH)'" > frigate/version.py
web:
docker build --tag frigate-web --file docker/Dockerfile.web web/
echo "VERSION='0.8.0-$(COMMIT_HASH)'" > frigate/version.py
amd64_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64 --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:amd64 --file docker/Dockerfile.wheels .
amd64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.1.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
amd64_frigate: version web
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
amd64_frigate: version
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64 .
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
amd64nvidia_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.1-amd64nvidia --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:amd64nvidia --file docker/Dockerfile.wheels .
amd64nvidia_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
amd64nvidia_frigate: version web
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
amd64nvidia_frigate: version
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64nvidia .
amd64nvidia_all: amd64nvidia_wheels amd64nvidia_ffmpeg amd64nvidia_frigate
aarch64_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.1-aarch64 --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:aarch64 --file docker/Dockerfile.wheels.aarch64 .
aarch64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
aarch64_frigate: version web
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
aarch64_frigate: version
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.aarch64 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
armv7_wheels:
docker build --tag blakeblackshear/frigate-wheels:1.0.1-armv7 --file docker/Dockerfile.wheels .
docker build --tag blakeblackshear/frigate-wheels:armv7 --file docker/Dockerfile.wheels .
armv7_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
armv7_frigate: version web
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --build-arg WHEELS_VERSION=1.0.1 --file docker/Dockerfile.base .
armv7_frigate: version
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.armv7 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
.PHONY: web

1019
README.md

File diff suppressed because it is too large Load Diff

View File

@@ -1,9 +1,7 @@
ARG ARCH=amd64
ARG WHEELS_VERSION
ARG FFMPEG_VERSION
FROM blakeblackshear/frigate-wheels:${WHEELS_VERSION}-${ARCH} as wheels
FROM blakeblackshear/frigate-wheels:${ARCH} as wheels
FROM blakeblackshear/frigate-ffmpeg:${FFMPEG_VERSION}-${ARCH} as ffmpeg
FROM frigate-web as web
FROM ubuntu:20.04
LABEL maintainer "blakeb@blakeshome.com"
@@ -32,7 +30,7 @@ RUN apt-get -qq update \
&& (apt-get autoremove -y; apt-get autoclean -y)
RUN pip3 install \
peewee_migrate \
peewee \
zeroconf \
voluptuous
@@ -45,9 +43,6 @@ RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiled
WORKDIR /opt/frigate/
ADD frigate frigate/
ADD migrations migrations/
COPY --from=web /opt/frigate/build web/
COPY run.sh /run.sh
RUN chmod +x /run.sh

View File

@@ -1,9 +0,0 @@
ARG NODE_VERSION=14.0
FROM node:${NODE_VERSION}
WORKDIR /opt/frigate
COPY . .
RUN npm install && npm run build

View File

@@ -18,14 +18,13 @@ RUN apt-get -qq update \
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py "pip==20.2.4"
&& python3 get-pip.py
RUN pip3 install scikit-build
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
# pinning due to issue in 1.19.5 https://github.com/numpy/numpy/issues/18131
numpy==1.19.4 \
numpy \
imutils \
scipy \
psutil \
@@ -33,9 +32,7 @@ RUN pip3 wheel --wheel-dir=/wheels \
paho-mqtt \
PyYAML \
matplotlib \
click \
setproctitle \
peewee
click
FROM scratch

View File

@@ -0,0 +1,49 @@
FROM ubuntu:20.04 as build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
&& apt-get -qq install -y \
python3 \
python3-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# scipy dependencies
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py
# need to build cmake from source because binary distribution is broken for arm64
# https://github.com/scikit-build/cmake-python-distributions/issues/115
# https://github.com/skvark/opencv-python/issues/366
# https://github.com/scikit-build/cmake-python-distributions/issues/96#issuecomment-663062358
RUN pip3 install scikit-build
RUN git clone https://github.com/scikit-build/cmake-python-distributions.git \
&& cd cmake-python-distributions/ \
&& python3 setup.py bdist_wheel
RUN pip3 install cmake-python-distributions/dist/*.whl
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
imutils \
scipy \
psutil \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
click
FROM scratch
COPY --from=build /wheels /wheels

20
docs/.gitignore vendored
View File

@@ -1,20 +0,0 @@
# Dependencies
/node_modules
# Production
/build
# Generated files
.docusaurus
.cache-loader
# Misc
.DS_Store
.env.local
.env.development.local
.env.test.local
.env.production.local
npm-debug.log*
yarn-debug.log*
yarn-error.log*

View File

@@ -1,33 +0,0 @@
# Website
This website is built using [Docusaurus 2](https://v2.docusaurus.io/), a modern static website generator.
## Installation
```console
yarn install
```
## Local Development
```console
yarn start
```
This command starts a local development server and open up a browser window. Most changes are reflected live without having to restart the server.
## Build
```console
yarn build
```
This command generates static content into the `build` directory and can be served using any static contents hosting service.
## Deployment
```console
GIT_USER=<Your GitHub username> USE_SSH=true yarn deploy
```
If you are using GitHub pages for hosting, this command is a convenient way to build the website and push to the `gh-pages` branch.

View File

@@ -1,3 +0,0 @@
module.exports = {
presets: [require.resolve('@docusaurus/core/lib/babel/preset')],
};

21
docs/cameras.md Normal file
View File

@@ -0,0 +1,21 @@
# Camera Specific Configuration
Frigate should work with most RTSP cameras and h264 feeds such as Dahua.
## RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- '1'
```

View File

Before

Width:  |  Height:  |  Size: 132 KiB

After

Width:  |  Height:  |  Size: 132 KiB

View File

@@ -1,139 +0,0 @@
---
id: advanced
title: Advanced
sidebar_label: Advanced
---
## Advanced configuration
### `motion`
Global motion detection config. These may also be defined at the camera level.
```yaml
motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 25
# Optional: Minimum size in pixels in the resized motion image that counts as motion
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
# moving objects.
contour_area: 100
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
# Too low and a fast moving person wont be detected as motion.
delta_alpha: 0.2
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.2
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
# Lower values result in less CPU, but small changes may not register as motion.
frame_height: 180
```
### `detect`
Global object detection settings. These may also be defined at the camera level.
```yaml
detect:
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: double the frame rate)
max_disappeared: 10
```
### `logger`
Change the default log level for troubleshooting purposes.
```yaml
logger:
# Optional: default log level (default: shown below)
default: info
# Optional: module by module log level configuration
logs:
frigate.mqtt: error
```
Available log levels are: `debug`, `info`, `warning`, `error`, `critical`
Examples of available modules are:
- `frigate.app`
- `frigate.mqtt`
- `frigate.edgetpu`
- `frigate.zeroconf`
- `detector.<detector_name>`
- `watchdog.<camera_name>`
- `ffmpeg.<camera_name>.<sorted_roles>` NOTE: All FFmpeg logs are sent as `error` level.
### `environment_vars`
This section can be used to set environment variables for those unable to modify the environment of the container (ie. within Hass.io)
```yaml
environment_vars:
EXAMPLE_VAR: value
```
### `database`
Event and clip information is managed in a sqlite database at `/media/frigate/clips/frigate.db`. If that database is deleted, clips will be orphaned and will need to be cleaned up manually. They also won't show up in the Media Browser within HomeAssistant.
If you are storing your clips on a network share (SMB, NFS, etc), you may get a `database is locked` error message on startup. You can customize the location of the database in the config if necessary.
This may need to be in a custom location if network storage is used for clips.
```yaml
database:
path: /media/frigate/clips/frigate.db
```
### `detectors`
```yaml
detectors:
# Required: name of the detector
coral:
# Required: type of the detector
# Valid values are 'edgetpu' (requires device property below) and 'cpu'. type: edgetpu
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
device: usb
# Optional: num_threads value passed to the tflite.Interpreter (default: shown below)
# This value is only used for CPU types
num_threads: 3
```
### `model`
```yaml
model:
# Required: height of the trained model
height: 320
# Required: width of the trained model
width: 320
```
## Custom Models
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
You also need to update the model width/height in the config if they differ from the defaults.
### Customizing the Labelmap
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
- Download the [COCO labelmap](https://dl.google.com/coral/canned_models/coco_labels.txt)
- Modify the label names as desired. For example, change `7 truck` to `7 car`
- Mount the new file at `/labelmap.txt` in the container with an additional volume
```
-v ./config/labelmap.txt:/labelmap.txt
```

View File

@@ -1,433 +0,0 @@
---
id: cameras
title: Cameras
---
## Setting Up Camera Inputs
Up to 4 inputs can be configured for each camera and the role of each input can be mixed and matched based on your needs. This allows you to use a lower resolution stream for object detection, but create clips from a higher resolution stream, or vice versa.
Each role can only be assigned to one input per camera. The options for roles are as follows:
| Role | Description |
| -------- | ------------------------------------------------------------------------------------ |
| `detect` | Main feed for object detection |
| `clips` | Clips of events from objects detected in the `detect` feed. [docs](#recording-clips) |
| `record` | Saves 60 second segments of the video feed. [docs](#247-recordings) |
| `rtmp` | Broadcast as an RTMP feed for other services to consume. [docs](#rtmp-streams) |
### Example
```yaml
mqtt:
host: mqtt.server.com
cameras:
back:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/live
roles:
- clips
- record
width: 1280
height: 720
fps: 5
```
## Masks & Zones
### Masks
Masks are used to ignore initial detection in areas of your camera's field of view.
There are two types of masks available:
- **Motion masks**: Motion masks are used to prevent unwanted types of motion from triggering detection. Try watching the video feed with `Motion Boxes` enabled to see what may be regularly detected as motion. For example, you want to mask out your timestamp, the sky, rooftops, etc. Keep in mind that this mask only prevents motion from being detected and does not prevent objects from being detected if object detection was started due to motion in unmasked areas. Motion is also used during object tracking to refine the object detection area in the next frame. Over masking will make it more difficult for objects to be tracked. To see this effect, create a mask, and then watch the video feed with `Motion Boxes` enabled again.
- **Object filter masks**: Object filter masks are used to filter out false positives for a given object type. These should be used to filter any areas where it is not possible for an object of that type to be. The bottom center of the detected object's bounding box is evaluated against the mask. If it is in a masked area, it is assumed to be a false positive. For example, you may want to mask out rooftops, walls, the sky, treetops for people. For cars, masking locations other than the street or your driveway will tell frigate that anything in your yard is a false positive.
To create a poly mask:
1. Visit the [web UI](/usage/web)
1. Click the camera you wish to create a mask for
1. Click "Mask & Zone creator"
1. Click "Add" on the type of mask or zone you would like to create
1. Click on the camera's latest image to create a masked area. The yaml representation will be updated in real-time
1. When you've finished creating your mask, click "Copy" and paste the contents into your `config.yaml` file and restart Frigate
Example of a finished row corresponding to the below example image:
```yaml
motion:
mask: '0,461,3,0,1919,0,1919,843,1699,492,1344,458,1346,336,973,317,869,375,866,432'
```
![poly](/img/example-mask-poly.png)
```yaml
# Optional: camera level motion config
motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
```
### Zones
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area by configuring zones with the same name for each camera.
During testing, `draw_zones` should be set in the config to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
To create a zone, follow the same steps above for a "Motion mask", but use the section of the web UI for creating a zone instead.
```yaml
# Optional: zones for this camera
zones:
# Required: name of the zone
# NOTE: This must be different than any camera names, but can match with another zone on another
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: Zone level object filters.
# NOTE: The global and camera filters are applied upstream.
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.7
```
## Objects
```yaml
# Optional: Camera level object filters config.
objects:
track:
- person
- car
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.7
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object
mask: 0,0,1000,0,1000,200,0,200
```
## Clips
Frigate can save video clips without any CPU overhead for encoding by simply copying the stream directly with FFmpeg. It leverages FFmpeg's segment functionality to maintain a cache of video for each camera. The cache files are written to disk at `/tmp/cache` and do not introduce memory overhead. When an object is being tracked, it will extend the cache to ensure it can assemble a clip when the event ends. Once the event ends, it again uses FFmpeg to assemble a clip by combining the video clips without any encoding by the CPU. Assembled clips are are saved to `/media/frigate/clips`. Clips are retained according to the retention settings defined on the config for each object type.
:::caution
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
:::
```yaml
clips:
# Required: enables clips for the camera (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: Number of seconds before the event to include in the clips (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include in the clips (default: shown below)
post_capture: 5
# Optional: Objects to save clips for. (default: all tracked objects)
objects:
- person
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
## Snapshots
Frigate can save a snapshot image to `/media/frigate/clips` for each event named as `<camera>-<id>.jpg`.
```yaml
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
snapshots:
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: False
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: False
# Optional: crop the snapshot (default: shown below)
crop: False
# Optional: height to resize the snapshot to (default: original size)
height: 175
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
## 24/7 Recordings
24/7 recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM/DD/HH/<camera_name>/MM.SS.mp4`. These recordings are written directly from your camera stream without re-encoding and are available in HomeAssistant's media browser. Each camera supports a configurable retention policy in the config.
:::caution
Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
:::
```yaml
# Optional: 24/7 recording configuration
record:
# Optional: Enable recording (default: global setting)
enabled: False
# Optional: Number of days to retain (default: global setting)
retain_days: 30
```
## RTMP streams
Frigate can re-stream your video feed as a RTMP feed for other applications such as HomeAssistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and HomeAssistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.
## Full example
The following is a full example of all of the options together for a camera configuration
```yaml
cameras:
# Required: name of the camera
back:
# Required: ffmpeg settings for the camera
ffmpeg:
# Required: A list of input streams for the camera. See documentation for more information.
inputs:
# Required: the path to the stream
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
# Required: list of roles for this stream. valid values are: detect,record,clips,rtmp
# NOTICE: In addition to assigning the record, clips, and rtmp roles,
# they must also be enabled in the camera config.
roles:
- detect
- rtmp
# Optional: stream specific global args (default: inherit)
global_args:
# Optional: stream specific hwaccel args (default: inherit)
hwaccel_args:
# Optional: stream specific input args (default: inherit)
input_args:
# Optional: camera specific global args (default: inherit)
global_args:
# Optional: camera specific hwaccel args (default: inherit)
hwaccel_args:
# Optional: camera specific input args (default: inherit)
input_args:
# Optional: camera specific output args (default: inherit)
output_args:
# Required: width of the frame for the input with the detect role
width: 1280
# Required: height of the frame for the input with the detect role
height: 720
# Optional: desired fps for your camera for the input with the detect role
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
# Frigate will attempt to autodetect if not specified.
fps: 5
# Optional: camera level motion config
motion:
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920
# Optional: timeout for highest scoring image before allowing it
# to be replaced by a newer image. (default: shown below)
best_image_timeout: 60
# Optional: zones for this camera
zones:
# Required: name of the zone
# NOTE: This must be different than any camera names, but can match with another zone on another
# camera.
front_steps:
# Required: List of x,y coordinates to define the polygon of the zone.
# NOTE: Coordinates can be generated at https://www.image-map.net/
coordinates: 545,1077,747,939,788,805
# Optional: Zone level object filters.
# NOTE: The global and camera filters are applied upstream.
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.7
# Optional: Camera level detect settings
detect:
# Optional: enables detection for the camera (default: True)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: True
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: double the frame rate)
max_disappeared: 10
# Optional: save clips configuration
clips:
# Required: enables clips for the camera (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: Number of seconds before the event to include in the clips (default: shown below)
pre_capture: 5
# Optional: Number of seconds after the event to include in the clips (default: shown below)
post_capture: 5
# Optional: Objects to save clips for. (default: all tracked objects)
objects:
- person
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: 24/7 recording configuration
record:
# Optional: Enable recording (default: global setting)
enabled: False
# Optional: Number of days to retain (default: global setting)
retain_days: 30
# Optional: RTMP re-stream configuration
rtmp:
# Required: Enable the live stream (default: True)
enabled: True
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
snapshots:
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
# This value can be set via MQTT and will be updated in startup based on retained value
enabled: False
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: False
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: False
# Optional: crop the snapshot (default: shown below)
crop: False
# Optional: height to resize the snapshot to (default: original size)
height: 175
# Optional: Camera override for retention settings (default: global values)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
# Optional: Configuration for the jpg snapshots published via MQTT
mqtt:
# Optional: Enable publishing snapshot via mqtt for camera (default: shown below)
# NOTE: Only applies to publishing image data to MQTT via 'frigate/<camera_name>/<object_name>/snapshot'.
# All other messages will still be published.
enabled: True
# Optional: print a timestamp on the snapshots (default: shown below)
timestamp: True
# Optional: draw bounding box on the snapshots (default: shown below)
bounding_box: True
# Optional: crop the snapshot (default: shown below)
crop: True
# Optional: height to resize the snapshot to (default: shown below)
height: 270
# Optional: Camera level object filters config.
objects:
track:
- person
- car
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.7
# Optional: mask to prevent this object type from being detected in certain areas (default: no mask)
# Checks based on the bottom center of the bounding box of the object
mask: 0,0,1000,0,1000,200,0,200
```
## Camera specific configuration
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- '1'
```
### Reolink 410/520 (possibly others)
Several users have reported success with the rtmp video from Reolink cameras.
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rw_timeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
```
### Blue Iris RTSP Cameras
You will need to remove `nobuffer` flag for Blue Iris RTSP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -rtsp_transport
- tcp
- -stimeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
```

View File

@@ -1,53 +0,0 @@
---
id: detectors
title: Detectors
---
The default config will look for a USB Coral device. If you do not have a Coral, you will need to configure a CPU detector. If you have PCI or multiple Coral devices, you need to configure your detector devices in the config file. When using multiple detectors, they run in dedicated processes, but pull from a common queue of requested detections across all cameras.
Frigate supports `edgetpu` and `cpu` as detector types. The device value should be specified according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api).
**Note**: There is no support for Nvidia GPUs to perform object detection with tensorflow. It can be used for ffmpeg decoding, but not object detection.
Single USB Coral:
```yaml
detectors:
coral:
type: edgetpu
device: usb
```
Multiple USB Corals:
```yaml
detectors:
coral1:
type: edgetpu
device: usb:0
coral2:
type: edgetpu
device: usb:1
```
Mixing Corals:
```yaml
detectors:
coral_usb:
type: edgetpu
device: usb
coral_pci:
type: edgetpu
device: pci
```
CPU Detectors (not recommended):
```yaml
detectors:
cpu1:
type: cpu
cpu2:
type: cpu
```

View File

@@ -1,19 +0,0 @@
---
id: false_positives
title: Reducing false positives
---
Tune your object filters to adjust false positives: `min_area`, `max_area`, `min_score`, `threshold`.
For object filters in your configuration, any single detection below `min_score` will be ignored as a false positive. `threshold` is based on the median of the history of scores (padded to 3 values) for a tracked object. Consider the following frames when `min_score` is set to 0.6 and threshold is set to 0.85:
| Frame | Current Score | Score History | Computed Score | Detected Object |
| ----- | ------------- | --------------------------------- | -------------- | --------------- |
| 1 | 0.7 | 0.0, 0, 0.7 | 0.0 | No |
| 2 | 0.55 | 0.0, 0.7, 0.0 | 0.0 | No |
| 3 | 0.85 | 0.7, 0.0, 0.85 | 0.7 | No |
| 4 | 0.90 | 0.7, 0.85, 0.95, 0.90 | 0.875 | Yes |
| 5 | 0.88 | 0.7, 0.85, 0.95, 0.90, 0.88 | 0.88 | Yes |
| 6 | 0.95 | 0.7, 0.85, 0.95, 0.90, 0.88, 0.95 | 0.89 | Yes |
In frame 2, the score is below the `min_score` value, so frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.

View File

@@ -1,138 +0,0 @@
---
id: index
title: Configuration
---
HassOS users can manage their configuration directly in the addon Configuration tab. For other installations, the default location for the config file is `/config/config.yml`. This can be overridden with the `CONFIG_FILE` environment variable. Camera specific ffmpeg parameters are documented [here](cameras.md).
It is recommended to start with a minimal configuration and add to it:
```yaml
mqtt:
host: mqtt.server.com
cameras:
back:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
width: 1280
height: 720
fps: 5
```
## Required
## `mqtt`
```yaml
mqtt:
# Required: host name
host: mqtt.server.com
# Optional: port (default: shown below)
port: 1883
# Optional: topic prefix (default: shown below)
# WARNING: must be unique if you are running multiple instances
topic_prefix: frigate
# Optional: client id (default: shown below)
# WARNING: must be unique if you are running multiple instances
client_id: frigate
# Optional: user
user: mqtt_user
# Optional: password
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}.
# eg. password: '{FRIGATE_MQTT_PASSWORD}'
password: password
# Optional: interval in seconds for publishing stats (default: shown below)
stats_interval: 60
```
## `cameras`
Each of your cameras must be configured. The following is the minimum required to register a camera in Frigate. Check the [camera configuration page](cameras.md) for a complete list of options.
```yaml
cameras:
# Name of your camera
front_door:
ffmpeg:
inputs:
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
roles:
- detect
- rtmp
width: 1280
height: 720
fps: 5
```
## Optional
### `clips`
```yaml
clips:
# Optional: Maximum length of time to retain video during long events. (default: shown below)
# NOTE: If an object is being tracked for longer than this amount of time, the cache
# will begin to expire and the resulting clip will be the last x seconds of the event.
max_seconds: 300
# Optional: size of tmpfs mount to create for cache files (default: not set)
# mount -t tmpfs -o size={tmpfs_cache_size} tmpfs /tmp/cache
# NOTICE: Addon users must have Protection mode disabled for the addon when using this setting.
# Also, if you have mounted a tmpfs volume through docker, this value should not be set in your config.
tmpfs_cache_size: 256m
# Optional: Retention settings for clips (default: shown below)
retain:
# Required: Default retention days (default: shown below)
default: 10
# Optional: Per object retention days
objects:
person: 15
```
### `ffmpeg`
```yaml
ffmpeg:
# Optional: global ffmpeg args (default: shown below)
global_args: -hide_banner -loglevel warning
# Optional: global hwaccel args (default: shown below)
# NOTE: See hardware acceleration docs for your specific device
hwaccel_args: []
# Optional: global input args (default: shown below)
input_args: -avoid_negative_ts make_zero -fflags +genpts+discardcorrupt -rtsp_transport tcp -stimeout 5000000 -use_wallclock_as_timestamps 1
# Optional: global output args
output_args:
# Optional: output args for detect streams (default: shown below)
detect: -f rawvideo -pix_fmt yuv420p
# Optional: output args for record streams (default: shown below)
record: -f segment -segment_time 60 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
# Optional: output args for clips streams (default: shown below)
clips: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c copy -an
# Optional: output args for rtmp streams (default: shown below)
rtmp: -c copy -f flv
```
### `objects`
Can be overridden at the camera level
```yaml
objects:
# Optional: list of objects to track from labelmap.txt (default: shown below)
track:
- person
# Optional: filters to reduce false positives for specific object types
filters:
person:
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
min_area: 5000
# Optional: maximum width*height of the bounding box for the detected object (default: 24000000)
max_area: 100000
# Optional: minimum score for the object to initiate tracking (default: shown below)
min_score: 0.5
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
threshold: 0.7
```

View File

@@ -1,72 +0,0 @@
---
id: optimizing
title: Optimizing performance
---
- **Google Coral**: It is strongly recommended to use a Google Coral, but Frigate will fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU. Frigate should work with any supported Coral device from https://coral.ai
- **Resolution**: For the `detect` input, choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
- **FPS**: 5 frames per second should be adequate. Higher frame rates will require more CPU usage without improving detections or accuracy. Reducing the frame rate on your camera will have the greatest improvement on system resources.
- **Hardware Acceleration**: Make sure you configure the `hwaccel_args` for your hardware. They provide a significant reduction in CPU usage if they are available.
- **Masks**: Masks can be used to ignore motion and reduce your idle CPU load. If you have areas with regular motion such as timestamps or trees blowing in the wind, frigate will constantly try to determine if that motion is from a person or other object you are tracking. Those detections not only increase your average CPU usage, but also clog the pipeline for detecting objects elsewhere. If you are experiencing high values for `detection_fps` when no objects of interest are in the cameras, you should use masks to tell frigate to ignore movement from trees, bushes, timestamps, or any part of the image where detections should not be wasted looking for objects.
### FFmpeg Hardware Acceleration
Frigate works on Raspberry Pi 3b/4 and x86 machines. It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible.
Raspberry Pi 3/4 (32-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_mmal
```
Raspberry Pi 3/4 (64-bit OS)
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_v4l2m2m
```
Intel-based CPUs (<10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```
Intel-based CPUs (>=10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- qsv
- -qsv_device
- /dev/dri/renderD128
```
AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
**Note:** You also need to set `LIBVA_DRIVER_NAME=radeonsi` as an environment variable on the container.
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
```
Nvidia GPU based decoding via NVDEC is supported, but requires special configuration. See the [nvidia NVDEC documentation](/configuration/nvdec) for more details.

View File

@@ -1,20 +0,0 @@
---
id: hardware
title: Recommended hardware
---
## Cameras
Cameras that output H.264 video and AAC audio will offer the most compatibility with all features of Frigate and HomeAssistant. It is also helpful if your camera supports multiple substreams to allow different resolutions to be used for detection, streaming, clips, and recordings without re-encoding.
## Computer
| Name | Inference Speed | Notes |
| ----------------------- | --------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| Atomic Pi | 16ms | Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding. |
| Intel NUC NUC7i3BNK | 8-10ms | Great performance. Can handle many cameras at 5fps depending on typical amounts of motion. |
| BMAX B2 Plus | 10-12ms | Good balance of performance and cost. Also capable of running many other services at the same time as frigate. |
| Minisforum GK41 | 9-10ms | Great alternative to a NUC with dual Gigabit NICs. Easily handles several 1080p cameras. |
| Raspberry Pi 3B (32bit) | 60ms | Can handle a small number of cameras, but the detection speeds are slow due to USB 2.0. |
| Raspberry Pi 4 (32bit) | 15-20ms | Can handle a small number of cameras. The 2GB version runs fine. |
| Raspberry Pi 4 (64bit) | 10-15ms | Can handle a small number of cameras. The 2GB version runs fine. |

View File

@@ -1,13 +0,0 @@
---
id: how-it-works
title: How Frigate Works
sidebar_label: How it works
---
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
![Diagram](/img/diagram.png)
1. Look for Motion
2. Calculate Detection Regions
3. Run Object Detection

View File

@@ -1,25 +0,0 @@
---
id: index
title: Frigate
sidebar_label: Features
slug: /
---
A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
- Tight integration with HomeAssistant via a [custom component](https://github.com/blakeblackshear/frigate-hass-integration)
- Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
- Object detection with TensorFlow runs in separate processes for maximum FPS
- Communicates over MQTT for easy integration into other systems
- 24/7 recording
- Re-streaming via RTMP to reduce the number of connections to your camera
## Screenshots
![Media Browser](/img/media_browser.png)
![Notification](/img/notification.png)

View File

@@ -1,122 +0,0 @@
---
id: installation
title: Installation
---
Frigate is a Docker container that can be run on any Docker host including as a [HassOS Addon](https://www.home-assistant.io/addons/). See instructions below for installing the HassOS addon.
For HomeAssistant users, there is also a [custom component (aka integration)](https://github.com/blakeblackshear/frigate-hass-integration). This custom component adds tighter integration with HomeAssistant by automatically setting up camera entities, sensors, media browser for clips and recordings, and a public API to simplify notifications.
Note that HassOS Addons and custom components are different things. If you are already running Frigate with Docker directly, you do not need the Addon since the Addon would run another instance of Frigate.
## HassOS Addon
HassOS users can install via the addon repository. Frigate requires an MQTT server.
1. Navigate to Supervisor > Add-on Store > Repositories
1. Add https://github.com/blakeblackshear/frigate-hass-addons
1. Setup your configuration in the `Configuration` tab
1. Start the addon container
1. If you are using hardware acceleration for ffmpeg, you will need to disable "Protection mode"
## Docker
Make sure you choose the right image for your architecture:
|Arch|Image Name|
|-|-|
|amd64|blakeblackshear/frigate:stable-amd64|
|amd64nvidia|blakeblackshear/frigate:stable-amd64nvidia|
|armv7|blakeblackshear/frigate:stable-armv7|
|aarch64|blakeblackshear/frigate:stable-aarch64|
It is recommended to run with docker-compose:
```yaml
version: '3.6'
services:
frigate:
container_name: frigate
restart: unless-stopped
privileged: true
image: blakeblackshear/frigate:0.8.0-beta2-amd64
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
- <path_to_config>:/config
- <path_to_directory_for_clips>:/media/frigate/clips
- <path_to_directory_for_recordings>:/media/frigate/recordings
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
target: /tmp/cache
tmpfs:
size: 1000000000
ports:
- '5000:5000'
- '1935:1935' # RTMP feeds
environment:
FRIGATE_RTSP_PASSWORD: 'password'
```
If you can't use docker compose, you can run the container with something similar to this:
```bash
docker run --rm \
--name frigate \
--privileged \
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
-v /dev/bus/usb:/dev/bus/usb \
-v <path_to_directory_for_clips>:/media/frigate/clips \
-v <path_to_directory_for_recordings>:/media/frigate/recordings \
-v <path_to_config>:/config:ro \
-v /etc/localtime:/etc/localtime:ro \
-e FRIGATE_RTSP_PASSWORD='password' \
-p 5000:5000 \
-p 1935:1935 \
blakeblackshear/frigate:0.8.0-beta2-amd64
```
### Calculating shm-size
The default shm-size of 64m is fine for setups with 3 or less 1080p cameras. If frigate is exiting with "Bus error" messages, it could be because you have too many high resolution cameras and you need to specify a higher shm size.
You can calculate the necessary shm-size for each camera with the following formula:
```
(width * height * 1.5 * 7 + 270480)/1048576 = <shm size in mb>
```
The shm size cannot be set per container for HomeAssistant Addons. You must set `default-shm-size` in `/etc/docker/daemon.json` to increase the default shm size. This will increase the shm size for all of your docker containers. This may or may not cause issues with your setup. https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
## Kubernetes
Use the [helm chart](https://github.com/blakeblackshear/blakeshome-charts/tree/master/charts/frigate).
## Virtualization
For ideal performance, Frigate needs access to underlying hardware for the Coral and GPU devices for ffmpeg decoding. Running Frigate in a VM on top of Proxmox, ESXi, Virtualbox, etc. is not recommended. The virtualization layer typically introduces a sizable amount of overhead for communication with Coral devices.
### Proxmox
Some people have had success running Frigate in LXC directly with the following config:
```
arch: amd64
cores: 2
features: nesting=1
hostname: FrigateLXC
memory: 4096
net0: name=eth0,bridge=vmbr0,firewall=1,hwaddr=2E:76:AE:5A:58:48,ip=dhcp,ip6=auto,type=veth
ostype: debian
rootfs: local-lvm:vm-115-disk-0,size=12G
swap: 512
lxc.cgroup.devices.allow: c 189:385 rwm
lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file
lxc.mount.entry: /dev/bus/usb/004/002 dev/bus/usb/004/002 none bind,optional,create=file
lxc.apparmor.profile: unconfined
lxc.cgroup.devices.allow: a
lxc.cap.drop:
```
### ESX
For details on running Frigate under ESX, see details [here](https://github.com/blakeblackshear/frigate/issues/305).

View File

@@ -1,17 +0,0 @@
---
id: mdx
title: Powered by MDX
---
You can write JSX and use React components within your Markdown thanks to [MDX](https://mdxjs.com/).
export const Highlight = ({children, color}) => ( <span style={{
backgroundColor: color,
borderRadius: '2px',
color: '#fff',
padding: '0.2rem',
}}>{children}</span> );
<Highlight color="#25c2a0">Docusaurus green</Highlight> and <Highlight color="#1877F2">Facebook blue</Highlight> are my favorite colors.
I can write **Markdown** alongside my _JSX_!

View File

@@ -1,20 +0,0 @@
---
id: troubleshooting
title: Troubleshooting and FAQ
---
### How can I get sound or audio in my clips and recordings?
By default, Frigate removes audio from clips and recordings to reduce the likelihood of failing for invalid data. If you would like to include audio, you need to override the output args to remove `-an` for where you want to include audio. The default ffmpeg args are shown [here](configuration/index#ffmpeg).
### My mjpeg stream or snapshots look green and crazy
This almost always means that the width/height defined for your camera are not correct. Double check the resolution with vlc or another player. Also make sure you don't have the width and height values backwards.
![mismatched-resolution](/img/mismatched-resolution.jpg)
## "[mov,mp4,m4a,3gp,3g2,mj2 @ 0x5639eeb6e140] moov atom not found"
These messages in the logs are expected in certain situations. Frigate checks the integrity of the video cache before assembling clips. Occasionally these cached files will be invalid and cleaned up automatically.
## "On connect called"
If you see repeated "On connect called" messages in your config, check for another instance of frigate. This happens when multiple frigate containers are trying to connect to mqtt with the same client_id.

View File

@@ -1,181 +0,0 @@
---
id: api
title: HTTP API
---
A web server is available on port 5000 with the following endpoints.
### `/api/<camera_name>`
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
Accepts the following query string parameters:
| param | Type | Description |
| ----------- | ---- | ------------------------------------------------------------------ |
| `fps` | int | Frame rate |
| `h` | int | Height in pixels |
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
| `zones` | int | Draw the zones on the image (0 or 1) |
| `mask` | int | Overlay the mask on the image (0 or 1) |
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`.
### `/api/<camera_name>/<object_name>/best.jpg[?h=300&crop=1]`
The best snapshot for any object type. It is a full resolution image by default.
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
- `crop=1`: crops the image to the region of the detection rather than returning the entire image
### `/api/<camera_name>/latest.jpg[?h=300]`
The most recent frame that frigate has finished processing. It is a full resolution image by default.
Accepts the following query string parameters:
| param | Type | Description |
| ----------- | ---- | ------------------------------------------------------------------ |
| `h` | int | Height in pixels |
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
| `zones` | int | Draw the zones on the image (0 or 1) |
| `mask` | int | Overlay the mask on the image (0 or 1) |
| `motion` | int | Draw blue boxes for areas with detected motion (0 or 1) |
| `regions` | int | Draw green boxes for areas where object detection was run (0 or 1) |
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
### `/api/stats`
Contains some granular debug info that can be used for sensors in HomeAssistant.
Sample response:
```json
{
/* Per Camera Stats */
"back": {
/***************
* Frames per second being consumed from your camera. If this is higher
* than it is supposed to be, you should set -r FPS in your input_args.
* camera_fps = process_fps + skipped_fps
***************/
"camera_fps": 5.0,
/***************
* Number of times detection is run per second. This can be higher than
* your camera FPS because frigate often looks at the same frame multiple times
* or in multiple locations
***************/
"detection_fps": 1.5,
/***************
* PID for the ffmpeg process that consumes this camera
***************/
"capture_pid": 27,
/***************
* PID for the process that runs detection for this camera
***************/
"pid": 34,
/***************
* Frames per second being processed by frigate.
***************/
"process_fps": 5.1,
/***************
* Frames per second skip for processing by frigate.
***************/
"skipped_fps": 0.0
},
/***************
* Sum of detection_fps across all cameras and detectors.
* This should be the sum of all detection_fps values from cameras.
***************/
"detection_fps": 5.0,
/* Detectors Stats */
"detectors": {
"coral": {
/***************
* Timestamp when object detection started. If this value stays non-zero and constant
* for a long time, that means the detection process is stuck.
***************/
"detection_start": 0.0,
/***************
* Time spent running object detection in milliseconds.
***************/
"inference_speed": 10.48,
/***************
* PID for the shared process that runs object detection on the Coral.
***************/
"pid": 25321
}
},
"service": {
/* Uptime in seconds */
"uptime": 10,
"version": "0.8.0-8883709"
}
}
```
### `/api/config`
A json representation of your configuration
### `/api/version`
Version info
### `/api/events`
Events from the database. Accepts the following query string parameters:
| param | Type | Description |
| -------------------- | ---- | --------------------------------------------- |
| `before` | int | Epoch time |
| `after` | int | Epoch time |
| `camera` | str | Camera name |
| `label` | str | Label name |
| `zone` | str | Zone name |
| `limit` | int | Limit the number of events returned |
| `has_snapshot` | int | Filter to events that have snapshots (0 or 1) |
| `has_clip` | int | Filter to events that have clips (0 or 1) |
| `include_thumbnails` | int | Include thumbnails in the response (0 or 1) |
### `/api/events/summary`
Returns summary data for events in the database. Used by the HomeAssistant integration.
### `/api/events/<id>`
Returns data for a single event.
### `/api/events/<id>/thumbnail.jpg`
Returns a thumbnail for the event id optimized for notifications. Works while the event is in progress and after completion. Passing `?format=android` will convert the thumbnail to 2:1 aspect ratio.
### `/api/events/<id>/snapshot.jpg`
Returns the snapshot image for the event id. Works while the event is in progress and after completion.
Accepts the following query string parameters, but they are only applied when an event is in progress. After the event is completed, the saved snapshot is returned from disk without modification:
| param | Type | Description |
| ----------- | ---- | ------------------------------------------------- |
| `h` | int | Height in pixels |
| `bbox` | int | Show bounding boxes for detected objects (0 or 1) |
| `timestamp` | int | Print the timestamp in the upper left (0 or 1) |
| `crop` | int | Crop the snapshot to the (0 or 1) |
### `/clips/<camera>-<id>.mp4`
Video clip for the given camera and event id.
### `/clips/<camera>-<id>.jpg`
JPG snapshot for the given camera and event id.

View File

@@ -1,120 +0,0 @@
---
id: home-assistant
title: Integration with Home Assistant
sidebar_label: Home Assistant
---
The best way to integrate with HomeAssistant is to use the [official integration](https://github.com/blakeblackshear/frigate-hass-integration). When configuring the integration, you will be asked for the `Host` of your frigate instance. This value should be the url you use to access Frigate in the browser and will look like `http://<host>:5000/`. If you are using HassOS with the addon, the host should be `http://ccab4aaf-frigate:5000` (or `http://ccab4aaf-frigate-beta:5000` if your are using the beta version of the addon). HomeAssistant needs access to port 5000 (api) and 1935 (rtmp) for all features. The integration will setup the following entities within HomeAssistant:
## Sensors:
- Stats to monitor frigate performance
- Object counts for all zones and cameras
## Cameras:
- Cameras for image of the last detected object for each camera
- Camera entities with stream support (requires RTMP)
## Media Browser:
- Rich UI with thumbnails for browsing event clips
- Rich UI for browsing 24/7 recordings by month, day, camera, time
## API:
- Notification API with public facing endpoints for images in notifications
### Notifications
Frigate publishes event information in the form of a change feed via MQTT. This allows lots of customization for notifications to meet your needs. Event changes are published with `before` and `after` information as shown [here](#frigateevents).
Here is a simple example of a notification automation of events which will update the existing notification for each change. This means the image you see in the notification will update as frigate finds a "better" image.
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
image: 'https://your.public.hass.address.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg?format=android'
tag: '{{trigger.payload_json["after"]["id"]}}'
```
```yaml
automation:
- alias: When a person enters a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
```yaml
- alias: When a person leaves a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
```yaml
- alias: Notify for dogs in the front with a high top score
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'High confidence dog detection.'
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}/thumbnail.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
If you are using telegram, you can fetch the image directly from Frigate:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.telegram_full
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
# this url should work for addon users
- url: 'http://ccab4aaf-frigate:5000/api/events/{{trigger.payload_json["after"]["id"]}}/thumbnail.jpg'
caption: 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
```

View File

@@ -1,99 +0,0 @@
---
id: mqtt
title: MQTT
---
These are the MQTT messages generated by Frigate. The default topic_prefix is `frigate`, but can be changed in the config file.
### `frigate/available`
Designed to be used as an availability topic with HomeAssistant. Possible message are:
"online": published when frigate is running (on startup)
"offline": published right before frigate stops
### `frigate/<camera_name>/<object_name>`
Publishes the count of objects for the camera for use as a sensor in HomeAssistant.
### `frigate/<zone_name>/<object_name>`
Publishes the count of objects for the zone for use as a sensor in HomeAssistant.
### `frigate/<camera_name>/<object_name>/snapshot`
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
is published again.
The height and crop of snapshots can be configured in the config.
### `frigate/events`
Message published for each changed event. The first message is published when the tracked object is no longer marked as a false_positive. When frigate finds a better snapshot of the tracked object or when a zone change occurs, it will publish a message with the same id. When the event ends, a final message is published with `end_time` set.
```json
{
"type": "update", // new, update, or end
"before": {
"id": "1607123955.475377-mxklsc",
"camera": "front_door",
"frame_time": 1607123961.837752,
"label": "person",
"top_score": 0.958984375,
"false_positive": false,
"start_time": 1607123955.475377,
"end_time": null,
"score": 0.7890625,
"box": [424, 500, 536, 712],
"area": 23744,
"region": [264, 450, 667, 853],
"current_zones": ["driveway"],
"entered_zones": ["yard", "driveway"],
"thumbnail": null
},
"after": {
"id": "1607123955.475377-mxklsc",
"camera": "front_door",
"frame_time": 1607123962.082975,
"label": "person",
"top_score": 0.958984375,
"false_positive": false,
"start_time": 1607123955.475377,
"end_time": null,
"score": 0.87890625,
"box": [432, 496, 544, 854],
"area": 40096,
"region": [218, 440, 693, 915],
"current_zones": ["yard", "driveway"],
"entered_zones": ["yard", "driveway"],
"thumbnail": null
}
}
```
### `frigate/stats`
Same data available at `/api/stats` published at a configurable interval.
### `frigate/<camera_name>/detect/set`
Topic to turn detection for a camera on and off. Expected values are `ON` and `OFF`.
### `frigate/<camera_name>/detect/state`
Topic with current state of detection for a camera. Published values are `ON` and `OFF`.
### `frigate/<camera_name>/clips/set`
Topic to turn clips for a camera on and off. Expected values are `ON` and `OFF`.
### `frigate/<camera_name>/clips/state`
Topic with current state of clips for a camera. Published values are `ON` and `OFF`.
### `frigate/<camera_name>/snapshots/set`
Topic to turn snapshots for a camera on and off. Expected values are `ON` and `OFF`.
### `frigate/<camera_name>/snapshots/state`
Topic with current state of snapshots for a camera. Published values are `ON` and `OFF`.

View File

@@ -1,10 +0,0 @@
---
id: web
title: Web Interface
---
Frigate comes bundled with a simple web ui that supports the following:
- Show cameras
- Browse events
- Mask helper

View File

@@ -1,76 +0,0 @@
module.exports = {
title: 'Frigate',
tagline: 'NVR With Realtime Object Detection for IP Cameras',
url: 'https://blakeblackshear.github.io',
baseUrl: '/frigate/',
onBrokenLinks: 'throw',
onBrokenMarkdownLinks: 'warn',
favicon: 'img/favicon.ico',
organizationName: 'blakeblackshear',
projectName: 'frigate',
themeConfig: {
algolia: {
apiKey: '81ec882db78f7fed05c51daf973f0362',
indexName: 'frigate'
},
navbar: {
title: 'Frigate',
logo: {
alt: 'Frigate',
src: 'img/logo.svg',
srcDark: 'img/logo-dark.svg',
},
items: [
{
to: '/',
activeBasePath: 'docs',
label: 'Docs',
position: 'left',
},
{
href: 'https://github.com/blakeblackshear/frigate',
label: 'GitHub',
position: 'right',
},
],
},
sidebarCollapsible: false,
hideableSidebar: true,
footer: {
style: 'dark',
links: [
{
title: 'Community',
items: [
{
label: 'GitHub',
href: 'https://github.com/blakeblackshear/frigate',
},
{
label: 'Discussions',
href: 'https://github.com/blakeblackshear/frigate/discussions',
},
],
},
],
copyright: `Copyright © ${new Date().getFullYear()} Blake Blackshear`,
},
},
presets: [
[
'@docusaurus/preset-classic',
{
docs: {
routeBasePath: '/',
sidebarPath: require.resolve('./sidebars.js'),
// Please change this to your repo.
editUrl: 'https://github.com/blakeblackshear/frigate/edit/master/docs/',
},
theme: {
customCss: require.resolve('./src/css/custom.css'),
},
},
],
],
};

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

BIN
docs/example-mask-poly.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

BIN
docs/example-mask.bmp Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 MiB

View File

Before

Width:  |  Height:  |  Size: 12 KiB

After

Width:  |  Height:  |  Size: 12 KiB

10
docs/how-frigate-works.md Normal file
View File

@@ -0,0 +1,10 @@
# How Frigate Works
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
![Diagram](diagram.png)
## 1. Look for Motion
## 2. Calculate Detection Regions
## 3. Run Object Detection

View File

Before

Width:  |  Height:  |  Size: 781 KiB

After

Width:  |  Height:  |  Size: 781 KiB

View File

@@ -0,0 +1,71 @@
# Notification examples
Here are some examples of notifications for the HomeAssistant android companion app:
```yaml
automation:
- alias: When a person enters a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: When a person leaves a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: Notify for dogs in the front with a high top score
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'High confidence dog detection.'
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
If you are using telegram, you can fetch the image directly from Frigate:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.telegram_full
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
# this url should work for addon users
- url: 'http://ccab4aaf-frigate:5000/events/{{trigger.payload_json["after"]["id"]}}/snapshot.jpg'
caption : 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
```

View File

Before

Width:  |  Height:  |  Size: 1.5 MiB

After

Width:  |  Height:  |  Size: 1.5 MiB

View File

@@ -1,18 +1,14 @@
---
id: nvdec
title: nVidia hardware decoder
---
# nVidia hardware decoder (NVDEC)
Certain nvidia cards include a hardware decoder, which can greatly improve the
performance of video decoding. In order to use NVDEC, a special build of
performance of video decoding. In order to use NVDEC, a special build of
ffmpeg with NVDEC support is required. The special docker architecture 'amd64nvidia'
includes this support for amd64 platforms. An aarch64 for the Jetson, which
includes this support for amd64 platforms. An aarch64 for the Jetson, which
also includes NVDEC may be added in the future.
## Docker setup
### Requirements
[nVidia closed source driver](https://www.nvidia.com/en-us/drivers/unix/) required to access NVDEC.
[nvidia-docker](https://github.com/NVIDIA/nvidia-docker) required to pass NVDEC to docker.
@@ -22,7 +18,6 @@ In order to pass NVDEC, the docker engine must be set to `nvidia` and the enviro
`NVIDIA_VISIBLE_DEVICES=all` and `NVIDIA_DRIVER_CAPABILITIES=compute,utility,video` must be set.
In a docker compose file, these lines need to be set:
```
services:
frigate:
@@ -31,16 +26,15 @@ services:
runtime: nvidia
environment:
- NVIDIA_VISIBLE_DEVICES=all
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
```
### Setting up the configuration file
In your frigate config.yml, you'll need to set ffmpeg to use the hardware decoder.
The decoder you choose will depend on the input video.
In your frigate config.yml, you'll need to set ffmpeg to use the hardware decoder.
The decoder you choose will depend on the input video.
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get a list)
```
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
@@ -52,7 +46,7 @@ A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the c
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
```
```
For example, for H265 video (hevc), you'll select `hevc_cuvid`. Add
`-c:v hevc_covid` to your ffmpeg input arguments:
@@ -61,7 +55,7 @@ For example, for H265 video (hevc), you'll select `hevc_cuvid`. Add
ffmpeg:
input_args:
...
- -c:v
- -c:v
- hevc_cuvid
```
@@ -81,7 +75,7 @@ processes:
| 38% 41C P2 36W / 125W | 2082MiB / 5942MiB | 5% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
@@ -102,9 +96,10 @@ using the fps filter:
```
output_args:
- -filter:v
- -filter:v
- fps=fps=5
```
This setting, for example, allows Frigate to consume my 10-15fps camera streams on
my relatively low powered Haswell machine with relatively low cpu usage.

14035
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,34 +0,0 @@
{
"name": "docs",
"version": "0.0.0",
"private": true,
"scripts": {
"docusaurus": "docusaurus",
"start": "docusaurus start",
"build": "docusaurus build",
"swizzle": "docusaurus swizzle",
"deploy": "docusaurus deploy",
"serve": "docusaurus serve",
"clear": "docusaurus clear"
},
"dependencies": {
"@docusaurus/core": "2.0.0-alpha.70",
"@docusaurus/preset-classic": "2.0.0-alpha.70",
"@mdx-js/react": "^1.6.21",
"clsx": "^1.1.1",
"react": "^16.8.4",
"react-dom": "^16.8.4"
},
"browserslist": {
"production": [
">0.5%",
"not dead",
"not op_mini all"
],
"development": [
"last 1 chrome version",
"last 1 firefox version",
"last 1 safari version"
]
}
}

View File

@@ -1,14 +0,0 @@
module.exports = {
docs: {
Frigate: ['index', 'how-it-works', 'hardware', 'installation', 'troubleshooting'],
Configuration: [
'configuration/index',
'configuration/cameras',
'configuration/optimizing',
'configuration/detectors',
'configuration/false_positives',
'configuration/advanced',
],
Usage: ['usage/home-assistant', 'usage/web', 'usage/api', 'usage/mqtt'],
},
};

View File

@@ -1,25 +0,0 @@
/* stylelint-disable docusaurus/copyright-header */
/**
* Any CSS included here will be global. The classic template
* bundles Infima by default. Infima is a CSS framework designed to
* work well for content-centric websites.
*/
/* You can override the default Infima variables here. */
:root {
--ifm-color-primary: #3b82f7;
--ifm-color-primary-dark: #1d4ed8;
--ifm-color-primary-darker: #1e40af;
--ifm-color-primary-darkest: #1e3a8a;
--ifm-color-primary-light: #60a5fa;
--ifm-color-primary-lighter: #93c5fd;
--ifm-color-primary-lightest: #dbeafe;
--ifm-code-font-size: 95%;
}
.docusaurus-highlight-code-line {
background-color: rgb(72, 77, 91);
display: block;
margin: 0 calc(-1 * var(--ifm-pre-padding));
padding: 0 var(--ifm-pre-padding);
}

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 944 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.2 MiB

View File

@@ -1,3 +0,0 @@
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.4999 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="white"/>
</svg>

Before

Width:  |  Height:  |  Size: 936 B

View File

@@ -1,3 +0,0 @@
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M130 446.5C131.6 459.3 145 468 137 470C129 472 94 406.5 86 378.5C78 350.5 73.5 319 75.5 301C77.4999 283 181 255 181 247.5C181 240 147.5 247 146 241C144.5 235 171.3 238.6 178.5 229C189.75 214 204 216.5 213 208.5C222 200.5 233 170 235 157C237 144 215 129 209 119C203 109 222 102 268 83C314 64 460 22 462 27C464 32 414 53 379 66C344 79 287 104 287 111C287 118 290 123.5 288 139.5C286 155.5 285.76 162.971 282 173.5C279.5 180.5 277 197 282 212C286 224 299 233 305 235C310 235.333 323.8 235.8 339 235C358 234 385 236 385 241C385 246 344 243 344 250C344 257 386 249 385 256C384 263 350 260 332 260C317.6 260 296.333 259.333 287 256L285 263C281.667 263 274.7 265 267.5 265C258.5 265 258 268 241.5 268C225 268 230 267 215 266C200 265 144 308 134 322C124 336 130 370 130 385.5C130 399.428 128 430.5 130 446.5Z" fill="black"/>
</svg>

Before

Width:  |  Height:  |  Size: 933 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

BIN
docs/zone_example.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

View File

@@ -8,9 +8,7 @@ import sys
import signal
import yaml
from peewee_migrate import Router
from playhouse.sqlite_ext import SqliteExtDatabase
from playhouse.sqliteq import SqliteQueueDatabase
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
@@ -22,7 +20,6 @@ from frigate.models import Event
from frigate.mqtt import create_mqtt_client
from frigate.object_processing import TrackedObjectProcessor
from frigate.record import RecordingMaintainer
from frigate.stats import StatsEmitter, stats_init
from frigate.video import capture_camera, track_camera
from frigate.watchdog import FrigateWatchdog
from frigate.zeroconf import broadcast_zeroconf
@@ -40,10 +37,6 @@ class FrigateApp():
self.log_queue = mp.Queue()
self.camera_metrics = {}
def set_environment_vars(self):
for key, value in self.config.environment_vars.items():
os.environ[key] = value
def ensure_dirs(self):
for d in [RECORD_DIR, CLIPS_DIR, CACHE_DIR]:
if not os.path.exists(d) and not os.path.islink(d):
@@ -52,7 +45,7 @@ class FrigateApp():
else:
logger.debug(f"Skipping directory: {d}")
tmpfs_size = self.config.clips.tmpfs_cache_size
tmpfs_size = self.config.save_clips.tmpfs_cache_size
if tmpfs_size:
logger.info(f"Creating tmpfs of size {tmpfs_size}")
rc = os.system(f"mount -t tmpfs -o size={tmpfs_size} tmpfs {CACHE_DIR}")
@@ -75,21 +68,20 @@ class FrigateApp():
'camera_fps': mp.Value('d', 0.0),
'skipped_fps': mp.Value('d', 0.0),
'process_fps': mp.Value('d', 0.0),
'detection_enabled': mp.Value('i', self.config.cameras[camera_name].detect.enabled),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0),
'frame_queue': mp.Queue(maxsize=2),
'frame_queue': mp.Queue(maxsize=2)
}
def check_config(self):
for name, camera in self.config.cameras.items():
assigned_roles = list(set([r for i in camera.ffmpeg.inputs for r in i.roles]))
if not camera.clips.enabled and 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips assigned to an input, but clips is not enabled.")
elif camera.clips.enabled and not 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips enabled, but clips is not assigned to an input.")
if not camera.save_clips.enabled and 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips assigned to an input, but save_clips is not enabled.")
elif camera.save_clips.enabled and not 'clips' in assigned_roles:
logger.warning(f"Camera {name} has save_clips enabled, but clips is not assigned to an input.")
if not camera.record.enabled and 'record' in assigned_roles:
logger.warning(f"Camera {name} has record assigned to an input, but record is not enabled.")
@@ -118,27 +110,16 @@ class FrigateApp():
self.detected_frames_queue = mp.Queue(maxsize=len(self.config.cameras.keys())*2)
def init_database(self):
migrate_db = SqliteExtDatabase(self.config.database.path)
# Run migrations
del(logging.getLogger('peewee_migrate').handlers[:])
router = Router(migrate_db)
router.run()
migrate_db.close()
self.db = SqliteQueueDatabase(self.config.database.path)
self.db = SqliteExtDatabase(self.config.database.path)
models = [Event]
self.db.bind(models)
def init_stats(self):
self.stats_tracking = stats_init(self.camera_metrics, self.detectors)
self.db.create_tables(models, safe=True)
def init_web_server(self):
self.flask_app = create_app(self.config, self.db, self.stats_tracking, self.detected_frames_processor)
self.flask_app = create_app(self.config, self.db, self.camera_metrics, self.detectors, self.detected_frames_processor)
def init_mqtt(self):
self.mqtt_client = create_mqtt_client(self.config, self.camera_metrics)
self.mqtt_client = create_mqtt_client(self.config.mqtt)
def start_detectors(self):
model_shape = (self.config.model.height, self.config.model.width)
@@ -192,10 +173,6 @@ class FrigateApp():
self.recording_maintainer = RecordingMaintainer(self.config, self.stop_event)
self.recording_maintainer.start()
def start_stats_emitter(self):
self.stats_emitter = StatsEmitter(self.config, self.stats_tracking, self.mqtt_client, self.config.mqtt.topic_prefix, self.stop_event)
self.stats_emitter.start()
def start_watchdog(self):
self.frigate_watchdog = FrigateWatchdog(self.detectors, self.stop_event)
self.frigate_watchdog.start()
@@ -206,10 +183,9 @@ class FrigateApp():
try:
self.init_config()
except Exception as e:
print(f"Error parsing config: {e}")
logger.error(f"Error parsing config: {e}")
self.log_process.terminate()
sys.exit(1)
self.set_environment_vars()
self.ensure_dirs()
self.check_config()
self.set_log_levels()
@@ -224,12 +200,10 @@ class FrigateApp():
self.start_detected_frames_processor()
self.start_camera_processors()
self.start_camera_capture_processes()
self.init_stats()
self.init_web_server()
self.start_event_processor()
self.start_event_cleanup()
self.start_recording_maintainer()
self.start_stats_emitter()
self.start_watchdog()
# self.zeroconf = broadcast_zeroconf(self.config.mqtt.client_id)
@@ -250,7 +224,6 @@ class FrigateApp():
self.event_processor.join()
self.event_cleanup.join()
self.recording_maintainer.join()
self.stats_emitter.join()
self.frigate_watchdog.join()
for detector in self.detectors.values():

File diff suppressed because it is too large Load Diff

View File

@@ -8,7 +8,6 @@ import threading
import signal
from abc import ABC, abstractmethod
from multiprocessing.connection import Connection
from setproctitle import setproctitle
from typing import Dict
import numpy as np
@@ -62,15 +61,16 @@ class LocalObjectDetector(ObjectDetector):
logger.info(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
logger.info("TPU found")
self.interpreter = tflite.Interpreter(
model_path='/edgetpu_model.tflite',
experimental_delegates=[edge_tpu_delegate])
except ValueError:
logger.info("No EdgeTPU detected.")
raise
else:
logger.info("No EdgeTPU detected. Falling back to CPU.")
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
model_path='/cpu_model.tflite', num_threads=num_threads)
else:
self.interpreter = tflite.Interpreter(
model_path='/edgetpu_model.tflite',
experimental_delegates=[edge_tpu_delegate])
self.interpreter.allocate_tensors()
@@ -110,7 +110,6 @@ def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.
threading.current_thread().name = f"detector:{name}"
logger = logging.getLogger(f"detector.{name}")
logger.info(f"Starting detection process: {os.getpid()}")
setproctitle(f"frigate.detector.{name}")
listen()
stop_event = mp.Event()

View File

@@ -88,32 +88,24 @@ class EventProcessor(threading.Thread):
earliest_event = datetime.datetime.now().timestamp()
# if the earliest event exceeds the max seconds, cap it
max_seconds = self.config.clips.max_seconds
max_seconds = self.config.save_clips.max_seconds
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
earliest_event = datetime.datetime.now().timestamp()-max_seconds
for f, data in list(self.cached_clips.items()):
if earliest_event-90 > data['start_time']+data['duration']:
del self.cached_clips[f]
logger.debug(f"Cleaning up cached file {f}")
os.remove(os.path.join(CACHE_DIR,f))
def create_clip(self, camera, event_data, pre_capture, post_capture):
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
# if there are no clips in the cache or we are still waiting on a needed file check every 5 seconds
wait_count = 0
while len(sorted_clips) == 0 or sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']+post_capture:
if wait_count > 4:
logger.warning(f"Unable to create clip for {camera} and event {event_data['id']}. There were no cache files for this event.")
return False
logger.debug(f"No cache clips for {camera}. Waiting...")
time.sleep(5)
self.refresh_cache()
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
wait_count += 1
playlist_start = event_data['start_time']-pre_capture
playlist_end = event_data['end_time']+post_capture
@@ -155,8 +147,7 @@ class EventProcessor(threading.Thread):
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
if p.returncode != 0:
logger.error(p.stderr)
return False
return True
return
def run(self):
while True:
@@ -171,20 +162,28 @@ class EventProcessor(threading.Thread):
self.refresh_cache()
continue
logger.debug(f"Event received: {event_type} {camera} {event_data['id']}")
self.refresh_cache()
save_clips_config = self.config.cameras[camera].save_clips
# if save clips is not enabled for this camera, just continue
if not save_clips_config.enabled:
if event_type == 'end':
self.event_processed_queue.put((event_data['id'], camera))
continue
# if specific objects are listed for this camera, only save clips for them
if not event_data['label'] in save_clips_config.objects:
if event_type == 'end':
self.event_processed_queue.put((event_data['id'], camera))
continue
if event_type == 'start':
self.events_in_process[event_data['id']] = event_data
if event_type == 'end':
clips_config = self.config.cameras[camera].clips
if not event_data['false_positive']:
clip_created = False
if clips_config.enabled and (clips_config.objects is None or event_data['label'] in clips_config.objects):
clip_created = self.create_clip(camera, event_data, clips_config.pre_capture, clips_config.post_capture)
if len(self.cached_clips) > 0 and not event_data['false_positive']:
self.create_clip(camera, event_data, save_clips_config.pre_capture, save_clips_config.post_capture)
Event.create(
id=event_data['id'],
label=event_data['label'],
@@ -194,9 +193,7 @@ class EventProcessor(threading.Thread):
top_score=event_data['top_score'],
false_positive=event_data['false_positive'],
zones=list(event_data['entered_zones']),
thumbnail=event_data['thumbnail'],
has_clip=clip_created,
has_snapshot=event_data['has_snapshot'],
thumbnail=event_data['thumbnail']
)
del self.events_in_process[event_data['id']]
self.event_processed_queue.put((event_data['id'], camera))
@@ -207,86 +204,7 @@ class EventCleanup(threading.Thread):
self.name = 'event_cleanup'
self.config = config
self.stop_event = stop_event
self.camera_keys = list(self.config.cameras.keys())
def expire(self, media):
## Expire events from unlisted cameras based on the global config
if media == 'clips':
retain_config = self.config.clips.retain
file_extension = 'mp4'
update_params = {'has_clip': False}
else:
retain_config = self.config.snapshots.retain
file_extension = 'jpg'
update_params = {'has_snapshot': False}
distinct_labels = (Event.select(Event.label)
.where(Event.camera.not_in(self.camera_keys))
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the media from disk
for event in expired_events:
media_name = f"{event.camera}-{event.id}"
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
media.unlink(missing_ok=True)
# update the clips attribute for the db entry
update_query = (
Event.update(update_params)
.where(Event.camera.not_in(self.camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
update_query.execute()
## Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
if media == 'clips':
retain_config = camera.clips.retain
else:
retain_config = camera.snapshots.retain
# get distinct objects in database for this camera
distinct_labels = (Event.select(Event.label)
.where(Event.camera == name)
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
media_name = f"{event.camera}-{event.id}"
media = Path(f"{os.path.join(CLIPS_DIR, media_name)}.{file_extension}")
media.unlink(missing_ok=True)
# update the clips attribute for the db entry
update_query = (
Event.update(update_params)
.where( Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
update_query.execute()
def run(self):
counter = 0
while(True):
@@ -301,13 +219,71 @@ class EventCleanup(threading.Thread):
continue
counter = 0
self.expire('clips')
self.expire('snapshots')
camera_keys = list(self.config.cameras.keys())
# drop events from db where has_clip and has_snapshot are false
delete_query = (
Event.delete()
.where( Event.has_clip == False,
Event.has_snapshot == False)
)
delete_query.execute()
# Expire events from unlisted cameras based on the global config
retain_config = self.config.save_clips.retain
distinct_labels = (Event.select(Event.label)
.where(Event.camera.not_in(camera_keys))
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera.not_in(camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
clip_name = f"{event.camera}-{event.id}"
clip = Path(f"{os.path.join(CLIPS_DIR, clip_name)}.mp4")
clip.unlink(missing_ok=True)
# delete the event for this type from the db
delete_query = (
Event.delete()
.where(Event.camera.not_in(camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
delete_query.execute()
# Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
retain_config = camera.save_clips.retain
# get distinct objects in database for this camera
distinct_labels = (Event.select(Event.label)
.where(Event.camera == name)
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
clip_name = f"{event.camera}-{event.id}"
clip = Path(f"{os.path.join(CLIPS_DIR, clip_name)}.mp4")
clip.unlink(missing_ok=True)
# delete the event for this type from the db
delete_query = (
Event.delete()
.where( Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
delete_query.execute()

View File

@@ -12,9 +12,7 @@ from flask import (Blueprint, Flask, Response, current_app, jsonify,
from peewee import SqliteDatabase, operator, fn, DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.const import CLIPS_DIR
from frigate.models import Event
from frigate.stats import stats_snapshot
from frigate.util import calculate_region
from frigate.version import VERSION
@@ -22,7 +20,7 @@ logger = logging.getLogger(__name__)
bp = Blueprint('frigate', __name__)
def create_app(frigate_config, database: SqliteDatabase, stats_tracking, detected_frames_processor):
def create_app(frigate_config, database: SqliteDatabase, camera_metrics, detectors, detected_frames_processor):
app = Flask(__name__)
@app.before_request
@@ -35,9 +33,10 @@ def create_app(frigate_config, database: SqliteDatabase, stats_tracking, detecte
database.close()
app.frigate_config = frigate_config
app.stats_tracking = stats_tracking
app.camera_metrics = camera_metrics
app.detectors = detectors
app.detected_frames_processor = detected_frames_processor
app.register_blueprint(bp)
return app
@@ -48,33 +47,18 @@ def is_healthy():
@bp.route('/events/summary')
def events_summary():
has_clip = request.args.get('has_clip', type=int)
has_snapshot = request.args.get('has_snapshot', type=int)
clauses = []
if not has_clip is None:
clauses.append((Event.has_clip == has_clip))
if not has_snapshot is None:
clauses.append((Event.has_snapshot == has_snapshot))
if len(clauses) == 0:
clauses.append((1 == 1))
groups = (
Event
.select(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'),
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'),
Event.zones,
fn.COUNT(Event.id).alias('count')
)
.where(reduce(operator.and_, clauses))
.group_by(
Event.camera,
Event.label,
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')),
Event.zones
)
@@ -89,8 +73,8 @@ def event(id):
except DoesNotExist:
return "Event not found", 404
@bp.route('/events/<id>/thumbnail.jpg')
def event_thumbnail(id):
@bp.route('/events/<id>/snapshot.jpg')
def event_snapshot(id):
format = request.args.get('format', 'ios')
thumbnail_bytes = None
try:
@@ -103,96 +87,51 @@ def event_thumbnail(id):
if id in camera_state.tracked_objects:
tracked_obj = camera_state.tracked_objects.get(id)
if not tracked_obj is None:
thumbnail_bytes = tracked_obj.get_thumbnail()
thumbnail_bytes = tracked_obj.get_jpg_bytes()
except:
return "Event not found", 404
if thumbnail_bytes is None:
return "Event not found", 404
# android notifications prefer a 2:1 ratio
if format == 'android':
jpg_as_np = np.frombuffer(thumbnail_bytes, dtype=np.uint8)
img = cv2.imdecode(jpg_as_np, flags=1)
thumbnail = cv2.copyMakeBorder(img, 0, 0, int(img.shape[1]*0.5), int(img.shape[1]*0.5), cv2.BORDER_CONSTANT, (0,0,0))
ret, jpg = cv2.imencode('.jpg', thumbnail)
ret, jpg = cv2.imencode('.jpg', thumbnail)
thumbnail_bytes = jpg.tobytes()
response = make_response(thumbnail_bytes)
response.headers['Content-Type'] = 'image/jpg'
return response
@bp.route('/events/<id>/snapshot.jpg')
def event_snapshot(id):
jpg_bytes = None
try:
event = Event.get(Event.id == id)
if not event.has_snapshot:
return "Snapshot not available", 404
# read snapshot from disk
with open(os.path.join(CLIPS_DIR, f"{event.camera}-{id}.jpg"), 'rb') as image_file:
jpg_bytes = image_file.read()
except DoesNotExist:
# see if the object is currently being tracked
try:
for camera_state in current_app.detected_frames_processor.camera_states.values():
if id in camera_state.tracked_objects:
tracked_obj = camera_state.tracked_objects.get(id)
if not tracked_obj is None:
jpg_bytes = tracked_obj.get_jpg_bytes(
timestamp=request.args.get('timestamp', type=int),
bounding_box=request.args.get('bbox', type=int),
crop=request.args.get('crop', type=int),
height=request.args.get('h', type=int)
)
except:
return "Event not found", 404
except:
return "Event not found", 404
response = make_response(jpg_bytes)
response.headers['Content-Type'] = 'image/jpg'
return response
@bp.route('/events')
def events():
limit = request.args.get('limit', 100)
camera = request.args.get('camera')
label = request.args.get('label')
zone = request.args.get('zone')
after = request.args.get('after', type=float)
before = request.args.get('before', type=float)
has_clip = request.args.get('has_clip', type=int)
has_snapshot = request.args.get('has_snapshot', type=int)
include_thumbnails = request.args.get('include_thumbnails', default=1, type=int)
after = request.args.get('after', type=int)
before = request.args.get('before', type=int)
clauses = []
excluded_fields = []
if camera:
clauses.append((Event.camera == camera))
if label:
clauses.append((Event.label == label))
if zone:
clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*"))
if after:
clauses.append((Event.start_time >= after))
if before:
clauses.append((Event.start_time <= before))
if not has_clip is None:
clauses.append((Event.has_clip == has_clip))
if not has_snapshot is None:
clauses.append((Event.has_snapshot == has_snapshot))
if not include_thumbnails:
excluded_fields.append(Event.thumbnail)
if len(clauses) == 0:
clauses.append((1 == 1))
@@ -201,7 +140,7 @@ def events():
.order_by(Event.start_time.desc())
.limit(limit))
return jsonify([model_to_dict(e, exclude=excluded_fields) for e in events])
return jsonify([model_to_dict(e) for e in events])
@bp.route('/config')
def config():
@@ -213,7 +152,31 @@ def version():
@bp.route('/stats')
def stats():
stats = stats_snapshot(current_app.stats_tracking)
camera_metrics = current_app.camera_metrics
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_metrics.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'camera_fps': round(camera_stats['camera_fps'].value, 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'pid': camera_stats['process'].pid,
'capture_pid': camera_stats['capture_process'].pid
}
stats['detectors'] = {}
for name, detector in current_app.detectors.items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
return jsonify(stats)
@bp.route('/<camera_name>/<label>/best.jpg')
@@ -225,13 +188,13 @@ def best(camera_name, label):
best_frame = np.zeros((720,1280,3), np.uint8)
else:
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int))
if crop:
box = best_object.get('box', (0,0,300,300))
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
@@ -289,7 +252,7 @@ def latest_frame(camera_name):
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
while True:
# max out at specified FPS

View File

@@ -6,8 +6,6 @@ import signal
import queue
import multiprocessing as mp
from logging import handlers
from setproctitle import setproctitle
from collections import deque
def listener_configurer():
@@ -33,7 +31,6 @@ def log_process(log_queue):
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"logger"
setproctitle("frigate.logger")
listener_configurer()
while True:
if stop_event.is_set() and log_queue.empty():
@@ -55,7 +52,6 @@ class LogPipe(threading.Thread):
self.daemon = False
self.logger = logging.getLogger(log_name)
self.level = level
self.deque = deque(maxlen=100)
self.fdRead, self.fdWrite = os.pipe()
self.pipeReader = os.fdopen(self.fdRead)
self.start()
@@ -69,15 +65,11 @@ class LogPipe(threading.Thread):
"""Run the thread, logging everything.
"""
for line in iter(self.pipeReader.readline, ''):
self.deque.append(line.strip('\n'))
self.logger.log(self.level, line.strip('\n'))
self.pipeReader.close()
def dump(self):
while len(self.deque) > 0:
self.logger.log(self.level, self.deque.popleft())
def close(self):
"""Close the write end of the pipe.
"""
os.close(self.fdWrite)
os.close(self.fdWrite)

View File

@@ -12,5 +12,3 @@ class Event(Model):
false_positive = BooleanField()
zones = JSONField()
thumbnail = TextField()
has_clip = BooleanField(default=True)
has_snapshot = BooleanField(default=True)

View File

@@ -5,7 +5,7 @@ from frigate.config import MotionConfig
class MotionDetector():
def __init__(self, frame_shape, config: MotionConfig):
def __init__(self, frame_shape, mask, config: MotionConfig):
self.config = config
self.frame_shape = frame_shape
self.resize_factor = frame_shape[0]/config.frame_height
@@ -14,7 +14,7 @@ class MotionDetector():
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
self.motion_frame_count = 0
self.frame_counter = 0
resized_mask = cv2.resize(config.mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
self.mask = np.where(resized_mask==[0])
def detect(self, frame):

View File

@@ -3,81 +3,12 @@ import threading
import paho.mqtt.client as mqtt
from frigate.config import FrigateConfig
from frigate.config import MqttConfig
logger = logging.getLogger(__name__)
def create_mqtt_client(config: FrigateConfig, camera_metrics):
mqtt_config = config.mqtt
def on_clips_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_clips_toggle: {message.topic} {payload}")
camera_name = message.topic.split('/')[-3]
clips_settings = config.cameras[camera_name].clips
if payload == 'ON':
if not clips_settings.enabled:
logger.info(f"Turning on clips for {camera_name} via mqtt")
clips_settings._enabled = True
elif payload == 'OFF':
if clips_settings.enabled:
logger.info(f"Turning off clips for {camera_name} via mqtt")
clips_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_snapshots_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_snapshots_toggle: {message.topic} {payload}")
camera_name = message.topic.split('/')[-3]
snapshots_settings = config.cameras[camera_name].snapshots
if payload == 'ON':
if not snapshots_settings.enabled:
logger.info(f"Turning on snapshots for {camera_name} via mqtt")
snapshots_settings._enabled = True
elif payload == 'OFF':
if snapshots_settings.enabled:
logger.info(f"Turning off snapshots for {camera_name} via mqtt")
snapshots_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def on_detect_command(client, userdata, message):
payload = message.payload.decode()
logger.debug(f"on_detect_toggle: {message.topic} {payload}")
camera_name = message.topic.split('/')[-3]
detect_settings = config.cameras[camera_name].detect
if payload == 'ON':
if not camera_metrics[camera_name]["detection_enabled"].value:
logger.info(f"Turning on detection for {camera_name} via mqtt")
camera_metrics[camera_name]["detection_enabled"].value = True
detect_settings._enabled = True
elif payload == 'OFF':
if camera_metrics[camera_name]["detection_enabled"].value:
logger.info(f"Turning off detection for {camera_name} via mqtt")
camera_metrics[camera_name]["detection_enabled"].value = False
detect_settings._enabled = False
else:
logger.warning(f"Received unsupported value at {message.topic}: {payload}")
state_topic = f"{message.topic[:-4]}/state"
client.publish(state_topic, payload, retain=True)
def create_mqtt_client(config: MqttConfig):
client = mqtt.Client(client_id=config.client_id)
def on_connect(client, userdata, flags, rc):
threading.current_thread().name = "mqtt"
if rc != 0:
@@ -91,35 +22,15 @@ def create_mqtt_client(config: FrigateConfig, camera_metrics):
logger.error("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
logger.info("MQTT connected")
client.publish(mqtt_config.topic_prefix+'/available', 'online', retain=True)
client = mqtt.Client(client_id=mqtt_config.client_id)
client.publish(config.topic_prefix+'/available', 'online', retain=True)
client.on_connect = on_connect
client.will_set(mqtt_config.topic_prefix+'/available', payload='offline', qos=1, retain=True)
# register callbacks
for name in config.cameras.keys():
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/clips/set", on_clips_command)
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/snapshots/set", on_snapshots_command)
client.message_callback_add(f"{mqtt_config.topic_prefix}/{name}/detect/set", on_detect_command)
if not mqtt_config.user is None:
client.username_pw_set(mqtt_config.user, password=mqtt_config.password)
client.will_set(config.topic_prefix+'/available', payload='offline', qos=1, retain=True)
if not config.user is None:
client.username_pw_set(config.user, password=config.password)
try:
client.connect(mqtt_config.host, mqtt_config.port, 60)
client.connect(config.host, config.port, 60)
except Exception as e:
logger.error(f"Unable to connect to MQTT server: {e}")
raise
client.loop_start()
for name in config.cameras.keys():
client.publish(f"{mqtt_config.topic_prefix}/{name}/clips/state", 'ON' if config.cameras[name].clips.enabled else 'OFF', retain=True)
client.publish(f"{mqtt_config.topic_prefix}/{name}/snapshots/state", 'ON' if config.cameras[name].snapshots.enabled else 'OFF', retain=True)
client.publish(f"{mqtt_config.topic_prefix}/{name}/detect/state", 'ON' if config.cameras[name].detect.enabled else 'OFF', retain=True)
client.subscribe(f"{mqtt_config.topic_prefix}/+/clips/set")
client.subscribe(f"{mqtt_config.topic_prefix}/+/snapshots/set")
client.subscribe(f"{mqtt_config.topic_prefix}/+/detect/set")
return client

View File

@@ -54,11 +54,11 @@ def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
# if the score is better by more than 5%
if new_obj['score'] > current_thumb['score']+.05:
return True
# if the area is 10% larger
if new_obj['area'] > current_thumb['area']*1.1:
return True
return False
class TrackedObject():
@@ -72,10 +72,11 @@ class TrackedObject():
self.false_positive = True
self.top_score = self.computed_score = 0.0
self.thumbnail_data = None
self.last_updated = 0
self.last_published = 0
self.frame = None
self.previous = self.to_dict()
self._snapshot_jpg_time = 0
ret, jpg = cv2.imencode('.jpg', np.zeros((300,300,3), np.uint8))
self._snapshot_jpg = jpg.tobytes()
# start the score history
self.score_history = [self.obj_data['score']]
@@ -96,7 +97,7 @@ class TrackedObject():
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def update(self, current_frame_time, obj_data):
significant_update = False
self.obj_data.update(obj_data)
@@ -118,7 +119,7 @@ class TrackedObject():
if not self.false_positive:
# determine if this frame is a better thumbnail
if (
self.thumbnail_data is None
self.thumbnail_data is None
or is_better_thumbnail(self.thumbnail_data, self.obj_data, self.camera_config.frame_shape)
):
self.thumbnail_data = {
@@ -129,7 +130,7 @@ class TrackedObject():
'score': self.obj_data['score']
}
significant_update = True
# check zones
current_zones = []
bottom_center = (self.obj_data['centroid'][0], self.obj_data['box'][3])
@@ -142,14 +143,14 @@ class TrackedObject():
if name in self.current_zones or not zone_filtered(self, zone.filters):
current_zones.append(name)
self.entered_zones.add(name)
# if the zones changed, signal an update
if not self.false_positive and set(self.current_zones) != set(current_zones):
significant_update = True
self.current_zones = current_zones
return significant_update
def to_dict(self, include_thumbnail: bool = False):
return {
'id': self.obj_data['id'],
@@ -166,62 +167,54 @@ class TrackedObject():
'region': self.obj_data['region'],
'current_zones': self.current_zones.copy(),
'entered_zones': list(self.entered_zones).copy(),
'thumbnail': base64.b64encode(self.get_thumbnail()).decode('utf-8') if include_thumbnail else None
'thumbnail': base64.b64encode(self.get_jpg_bytes()).decode('utf-8') if include_thumbnail else None
}
def get_thumbnail(self):
if self.thumbnail_data is None or not self.thumbnail_data['frame_time'] in self.frame_cache:
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
jpg_bytes = self.get_jpg_bytes(timestamp=False, bounding_box=False, crop=True, height=175)
if jpg_bytes:
return jpg_bytes
else:
ret, jpg = cv2.imencode('.jpg', np.zeros((175,175,3), np.uint8))
return jpg.tobytes()
def get_jpg_bytes(self, timestamp=False, bounding_box=False, crop=False, height=None):
if self.thumbnail_data is None:
return None
try:
best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
except KeyError:
logger.warning(f"Unable to create jpg because frame {self.thumbnail_data['frame_time']} is not in the cache")
return None
if bounding_box:
def get_jpg_bytes(self):
if self.thumbnail_data is None or self._snapshot_jpg_time == self.thumbnail_data['frame_time']:
return self._snapshot_jpg
if not self.thumbnail_data['frame_time'] in self.frame_cache:
logger.error(f"Unable to create thumbnail for {self.obj_data['id']}")
logger.error(f"Looking for frame_time of {self.thumbnail_data['frame_time']}")
logger.error(f"Thumbnail frames: {','.join([str(k) for k in self.frame_cache.keys()])}")
return self._snapshot_jpg
# TODO: crop first to avoid converting the entire frame?
snapshot_config = self.camera_config.snapshots
best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
if snapshot_config.draw_bounding_boxes:
thickness = 2
color = COLOR_MAP[self.obj_data['label']]
# draw the bounding boxes on the frame
box = self.thumbnail_data['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'], f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
if crop:
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'],
f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
if snapshot_config.crop_to_region:
box = self.thumbnail_data['box']
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if height:
if snapshot_config.height:
height = snapshot_config.height
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
if timestamp:
if snapshot_config.show_timestamp:
time_to_show = datetime.datetime.fromtimestamp(self.thumbnail_data['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
desired_size = max(150, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale, color=(255, 255, 255), thickness=2)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
return jpg.tobytes()
else:
return None
self._snapshot_jpg = jpg.tobytes()
return self._snapshot_jpg
def zone_filtered(obj: TrackedObject, object_config):
object_name = obj.obj_data['label']
@@ -233,7 +226,7 @@ def zone_filtered(obj: TrackedObject, object_config):
# detected object, don't add it to detected objects
if obj_settings.min_area > obj.obj_data['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj.obj_data['area']:
@@ -242,7 +235,7 @@ def zone_filtered(obj: TrackedObject, object_config):
# if the score is lower than the threshold, skip
if obj_settings.threshold > obj.computed_score:
return True
return False
# Maintains the state of a camera
@@ -260,8 +253,6 @@ class CameraState():
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.motion_boxes = []
self.regions = []
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
@@ -272,7 +263,7 @@ class CameraState():
tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
motion_boxes = self.motion_boxes.copy()
regions = self.regions.copy()
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw_options.get('bounding_boxes'):
@@ -280,7 +271,7 @@ class CameraState():
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
@@ -288,28 +279,28 @@ class CameraState():
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
if draw_options.get('regions'):
for region in regions:
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
if draw_options.get('timestamp'):
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if draw_options.get('zones'):
for name, zone in self.camera_config.zones.items():
thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
if draw_options.get('mask'):
mask_overlay = np.where(self.camera_config.motion.mask==[0])
mask_overlay = np.where(self.camera_config.mask==[0])
frame_copy[mask_overlay] = [0,0,0]
if draw_options.get('motion_boxes'):
for m_box in motion_boxes:
cv2.rectangle(frame_copy, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0,0,255), 2)
if draw_options.get('timestamp'):
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
return frame_copy
def finished(self, obj_id):
@@ -338,7 +329,7 @@ class CameraState():
# call event handlers
for c in self.callbacks['start']:
c(self.name, new_obj, frame_time)
for id in updated_ids:
updated_obj = self.tracked_objects[id]
significant_update = updated_obj.update(frame_time, current_detections[id])
@@ -347,17 +338,11 @@ class CameraState():
# ensure this frame is stored in the cache
if updated_obj.thumbnail_data['frame_time'] == frame_time and frame_time not in self.frame_cache:
self.frame_cache[frame_time] = np.copy(current_frame)
updated_obj.last_updated = frame_time
# if it has been more than 5 seconds since the last publish
# and the last update is greater than the last publish
if frame_time - updated_obj.last_published > 5 and updated_obj.last_updated > updated_obj.last_published:
# call event handlers
for c in self.callbacks['update']:
c(self.name, updated_obj, frame_time)
updated_obj.last_published = frame_time
for id in removed_ids:
# publish events to mqtt
removed_obj = self.tracked_objects[id]
@@ -376,9 +361,9 @@ class CameraState():
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
or (now - current_best.thumbnail_data['frame_time']) > self.camera_config.best_image_timeout):
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
@@ -387,13 +372,13 @@ class CameraState():
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type], frame_time)
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
if count != self.object_counts[obj_name]:
@@ -409,14 +394,14 @@ class CameraState():
c(self.name, obj_name, 0)
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[obj_name], frame_time)
# cleanup thumbnail frame cache
current_thumb_frames = set([obj.thumbnail_data['frame_time'] for obj in self.tracked_objects.values() if not obj.false_positive])
current_best_frames = set([obj.thumbnail_data['frame_time'] for obj in self.best_objects.values()])
thumb_frames_to_delete = [t for t in self.frame_cache.keys() if not t in current_thumb_frames and not t in current_best_frames]
for t in thumb_frames_to_delete:
del self.frame_cache[t]
with self.current_frame_lock:
self._current_frame = current_frame
if not self.previous_frame_id is None:
@@ -442,40 +427,18 @@ class TrackedObjectProcessor(threading.Thread):
def update(camera, obj: TrackedObject, current_frame_time):
after = obj.to_dict()
message = { 'before': obj.previous, 'after': after, 'type': 'new' if obj.previous['false_positive'] else 'update' }
message = { 'before': obj.previous, 'after': after }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
obj.previous = after
def end(camera, obj: TrackedObject, current_frame_time):
snapshot_config = self.config.cameras[camera].snapshots
event_data = obj.to_dict(include_thumbnail=True)
event_data['has_snapshot'] = False
if not obj.false_positive:
message = { 'before': obj.previous, 'after': obj.to_dict(), 'type': 'end' }
message = { 'before': obj.previous, 'after': obj.to_dict() }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
# write snapshot to disk if enabled
if snapshot_config.enabled:
jpg_bytes = obj.get_jpg_bytes(
timestamp=snapshot_config.timestamp,
bounding_box=snapshot_config.bounding_box,
crop=snapshot_config.crop,
height=snapshot_config.height
)
with open(os.path.join(CLIPS_DIR, f"{camera}-{obj.obj_data['id']}.jpg"), 'wb') as j:
j.write(jpg_bytes)
event_data['has_snapshot'] = True
self.event_queue.put(('end', camera, event_data))
self.event_queue.put(('end', camera, obj.to_dict(include_thumbnail=True)))
def snapshot(camera, obj: TrackedObject, current_frame_time):
mqtt_config = self.config.cameras[camera].mqtt
if mqtt_config.enabled:
jpg_bytes = obj.get_jpg_bytes(
timestamp=mqtt_config.timestamp,
bounding_box=mqtt_config.bounding_box,
crop=mqtt_config.crop,
height=mqtt_config.height
)
self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", jpg_bytes, retain=True)
self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", obj.get_jpg_bytes(), retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
@@ -498,7 +461,7 @@ class TrackedObjectProcessor(threading.Thread):
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: {}))
def get_best(self, camera, label):
# TODO: need a lock here
camera_state = self.camera_states[camera]
@@ -509,7 +472,7 @@ class TrackedObjectProcessor(threading.Thread):
return best
else:
return {}
def get_current_frame(self, camera, draw_options={}):
return self.camera_states[camera].get_current_frame(draw_options)
@@ -536,7 +499,7 @@ class TrackedObjectProcessor(threading.Thread):
for obj in camera_state.tracked_objects.values():
if zone in obj.current_zones and not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# update counts and publish status
for label in set(list(self.zone_data[zone].keys()) + list(obj_counter.keys())):
# if we have previously published a count for this zone/label

View File

@@ -45,9 +45,9 @@ class RecordingMaintainer(threading.Thread):
files_in_use = []
for process in psutil.process_iter():
if process.name() != 'ffmpeg':
continue
try:
if process.name() != 'ffmpeg':
continue
flist = process.open_files()
if flist:
for nt in flist:

View File

@@ -1,70 +0,0 @@
import json
import logging
import threading
import time
from frigate.config import FrigateConfig
from frigate.version import VERSION
logger = logging.getLogger(__name__)
def stats_init(camera_metrics, detectors):
stats_tracking = {
'camera_metrics': camera_metrics,
'detectors': detectors,
'started': int(time.time())
}
return stats_tracking
def stats_snapshot(stats_tracking):
camera_metrics = stats_tracking['camera_metrics']
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_metrics.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'camera_fps': round(camera_stats['camera_fps'].value, 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'pid': camera_stats['process'].pid,
'capture_pid': camera_stats['capture_process'].pid
}
stats['detectors'] = {}
for name, detector in stats_tracking["detectors"].items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value * 1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
stats['service'] = {
'uptime': (int(time.time()) - stats_tracking['started']),
'version': VERSION
}
return stats
class StatsEmitter(threading.Thread):
def __init__(self, config: FrigateConfig, stats_tracking, mqtt_client, topic_prefix, stop_event):
threading.Thread.__init__(self)
self.name = 'frigate_stats_emitter'
self.config = config
self.stats_tracking = stats_tracking
self.mqtt_client = mqtt_client
self.topic_prefix = topic_prefix
self.stop_event = stop_event
def run(self):
time.sleep(10)
while True:
if self.stop_event.is_set():
logger.info(f"Exiting watchdog...")
break
stats = stats_snapshot(self.stats_tracking)
self.mqtt_client.publish(f"{self.topic_prefix}/stats", json.dumps(stats), retain=False)
time.sleep(self.config.mqtt.stats_interval)

View File

@@ -191,12 +191,12 @@ class TestConfig(TestCase):
frigate_config = FrigateConfig(config=config)
assert('-re' in frigate_config.cameras['back'].ffmpeg_cmds[0]['cmd'])
def test_inherit_clips_retention(self):
def test_inherit_save_clips_retention(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'save_clips': {
'retain': {
'default': 20,
'objects': {
@@ -217,14 +217,14 @@ class TestConfig(TestCase):
}
}
frigate_config = FrigateConfig(config=config)
assert(frigate_config.cameras['back'].clips.retain.objects['person'] == 30)
assert(frigate_config.cameras['back'].save_clips.retain.objects['person'] == 30)
def test_roles_listed_twice_throws_error(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'save_clips': {
'retain': {
'default': 20,
'objects': {
@@ -252,7 +252,7 @@ class TestConfig(TestCase):
'mqtt': {
'host': 'mqtt'
},
'clips': {
'save_clips': {
'retain': {
'default': 20,
'objects': {
@@ -279,12 +279,12 @@ class TestConfig(TestCase):
}
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
def test_clips_should_default_to_global_objects(self):
def test_save_clips_should_default_to_global_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'clips': {
'save_clips': {
'retain': {
'default': 20,
'objects': {
@@ -304,14 +304,16 @@ class TestConfig(TestCase):
},
'height': 1080,
'width': 1920,
'clips': {
'save_clips': {
'enabled': True
}
}
}
}
config = FrigateConfig(config=config)
assert(config.cameras['back'].clips.objects is None)
assert(len(config.cameras['back'].save_clips.objects) == 2)
assert('dog' in config.cameras['back'].save_clips.objects)
assert('person' in config.cameras['back'].save_clips.objects)
def test_role_assigned_but_not_enabled(self):
json_config = {
@@ -323,7 +325,7 @@ class TestConfig(TestCase):
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect', 'rtmp'] },
{ 'path': 'rtsp://10.0.0.1:554/record', 'roles': ['record'] }
{ 'path': 'rtsp://10.0.0.1:554/clips', 'roles': ['clips'] }
]
},
'height': 1080,

View File

@@ -2,7 +2,6 @@ import collections
import datetime
import hashlib
import json
import logging
import signal
import subprocess as sp
import threading
@@ -16,8 +15,6 @@ import cv2
import matplotlib.pyplot as plt
import numpy as np
logger = logging.getLogger(__name__)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
@@ -291,24 +288,6 @@ def print_stack(sig, frame):
def listen():
signal.signal(signal.SIGUSR1, print_stack)
def create_mask(frame_shape, mask):
mask_img = np.zeros(frame_shape, np.uint8)
mask_img[:] = 255
if isinstance(mask, list):
for m in mask:
add_mask(m, mask_img)
elif isinstance(mask, str):
add_mask(mask, mask_img)
return mask_img
def add_mask(mask, mask_img):
points = mask.split(',')
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
cv2.fillPoly(mask_img, pts=[contour], color=(0))
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:

View File

@@ -13,7 +13,6 @@ import signal
import threading
import time
from collections import defaultdict
from setproctitle import setproctitle
from typing import Dict, List
import cv2
@@ -31,7 +30,7 @@ from frigate.util import (EventsPerSecond, FrameManager,
logger = logging.getLogger(__name__)
def filtered(obj, objects_to_track, object_filters):
def filtered(obj, objects_to_track, object_filters, mask=None):
object_name = obj[0]
if not object_name in objects_to_track:
@@ -54,15 +53,14 @@ def filtered(obj, objects_to_track, object_filters):
if obj_settings.min_score > obj[1]:
return True
if not obj_settings.mask is None:
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(obj_settings.mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(obj_settings.mask[0])-1)
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if obj_settings.mask[y_location][x_location] == 0:
return True
# if the object is in a masked location, don't add it to detected objects
if (not mask is None) and (mask[y_location][x_location] == 0):
return True
return False
@@ -181,7 +179,6 @@ class CameraWatchdog(threading.Thread):
now = datetime.datetime.now().timestamp()
if not self.capture_thread.is_alive():
self.logpipe.dump()
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
@@ -198,7 +195,6 @@ class CameraWatchdog(threading.Thread):
poll = p['process'].poll()
if poll == None:
continue
p['logpipe'].dump()
p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
# wait a bit before checking again
@@ -253,17 +249,16 @@ def track_camera(name, config: CameraConfig, model_shape, detection_queue, resul
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"process:{name}"
setproctitle(f"frigate.process:{name}")
listen()
frame_queue = process_info['frame_queue']
detection_enabled = process_info['detection_enabled']
frame_shape = config.frame_shape
objects_to_track = config.objects.track
object_filters = config.objects.filters
mask = config.mask
motion_detector = MotionDetector(frame_shape, config.motion)
motion_detector = MotionDetector(frame_shape, mask, config.motion)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
object_tracker = ObjectTracker(config.detect)
@@ -271,7 +266,7 @@ def track_camera(name, config: CameraConfig, model_shape, detection_queue, resul
frame_manager = SharedMemoryFrameManager()
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, detection_enabled, stop_event)
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, mask, stop_event)
logger.info(f"{name}: exiting subprocess")
@@ -281,7 +276,7 @@ def reduce_boxes(boxes):
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
return [tuple(b) for b in reduced_boxes]
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters):
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask):
tensor_input = create_tensor_input(frame, model_shape, region)
detections = []
@@ -299,7 +294,7 @@ def detect(object_detector, frame, model_shape, region, objects_to_track, object
(x_max-x_min)*(y_max-y_min),
region)
# apply object filters
if filtered(det, objects_to_track, object_filters):
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
return detections
@@ -308,7 +303,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
frame_manager: FrameManager, motion_detector: MotionDetector,
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue, process_info: Dict,
objects_to_track: List[str], object_filters, detection_enabled: mp.Value, stop_event,
objects_to_track: List[str], object_filters, mask, stop_event,
exit_on_empty: bool = False):
fps = process_info['process_fps']
@@ -339,14 +334,6 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
if not detection_enabled.value:
fps.value = fps_tracker.eps()
object_tracker.match_and_update(frame_time, [])
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, [], []))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
continue
# look for motion
motion_boxes = motion_detector.detect(frame)
@@ -369,7 +356,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
# resize regions and detect
detections = []
for region in regions:
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
#########
# merge objects, check for clipped objects and look again up to 4 times
@@ -404,7 +391,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
regions.append(region)
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
refining = True
else:
@@ -421,11 +408,11 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
# add to the queue if not full
if(detected_objects_queue.full()):
frame_manager.delete(f"{camera_name}{frame_time}")
continue
frame_manager.delete(f"{camera_name}{frame_time}")
continue
else:
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")

View File

@@ -2,8 +2,6 @@ import datetime
import logging
import threading
import time
import os
import signal
logger = logging.getLogger(__name__)
@@ -34,5 +32,5 @@ class FrigateWatchdog(threading.Thread):
logger.info("Detection appears to be stuck. Restarting detection process")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
logger.info("Detection appears to have stopped. Restarting frigate")
os.kill(os.getpid(), signal.SIGTERM)
logger.info("Detection appears to have stopped. Restarting detection process")
detector.start_or_restart()

View File

@@ -1,41 +0,0 @@
"""Peewee migrations -- 001_create_events_table.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import datetime as dt
import peewee as pw
from decimal import ROUND_HALF_EVEN
try:
import playhouse.postgres_ext as pw_pext
except ImportError:
pass
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.sql('CREATE TABLE IF NOT EXISTS "event" ("id" VARCHAR(30) NOT NULL PRIMARY KEY, "label" VARCHAR(20) NOT NULL, "camera" VARCHAR(20) NOT NULL, "start_time" DATETIME NOT NULL, "end_time" DATETIME NOT NULL, "top_score" REAL NOT NULL, "false_positive" INTEGER NOT NULL, "zones" JSON NOT NULL, "thumbnail" TEXT NOT NULL)')
migrator.sql('CREATE INDEX IF NOT EXISTS "event_label" ON "event" ("label")')
migrator.sql('CREATE INDEX IF NOT EXISTS "event_camera" ON "event" ("camera")')
def rollback(migrator, database, fake=False, **kwargs):
pass

View File

@@ -1,41 +0,0 @@
"""Peewee migrations -- 002_add_clip_snapshot.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import datetime as dt
import peewee as pw
from decimal import ROUND_HALF_EVEN
from frigate.models import Event
try:
import playhouse.postgres_ext as pw_pext
except ImportError:
pass
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.add_fields(Event, has_clip=pw.BooleanField(default=True), has_snapshot=pw.BooleanField(default=True))
def rollback(migrator, database, fake=False, **kwargs):
migrator.remove_fields(Event, ['has_clip', 'has_snapshot'])

View File

@@ -23,12 +23,6 @@ http {
keepalive_timeout 65;
gzip on;
gzip_comp_level 6;
gzip_types text/plain text/css application/json application/x-javascript application/javascript text/javascript image/svg+xml image/x-icon image/bmp image/png image/gif image/jpeg image/jpg;
gzip_proxied no-cache no-store private expired auth;
gzip_vary on;
upstream frigate_api {
server localhost:5001;
keepalive 1024;
@@ -102,36 +96,13 @@ http {
root /media/frigate;
}
location /api/ {
add_header 'Access-Control-Allow-Origin' '*';
add_header Cache-Control "no-store";
location / {
proxy_pass http://frigate_api/;
proxy_pass_request_headers on;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
}
location / {
add_header Cache-Control "no-cache";
location ~* \.(?:js|css|svg|ico|png)$ {
access_log off;
expires 1y;
add_header Cache-Control "public";
}
sub_filter 'href="/' 'href="$http_x_ingress_path/';
sub_filter 'url(/' 'url($http_x_ingress_path/';
sub_filter '"/js/' '"$http_x_ingress_path/js/';
sub_filter '<body>' '<body><script>window.baseUrl="$http_x_ingress_path";</script>';
sub_filter_types text/css application/javascript;
sub_filter_once off;
root /opt/frigate/web;
try_files $uri $uri/ /index.html;
}
}
}
@@ -148,4 +119,4 @@ rtmp {
meta copy;
}
}
}
}

View File

@@ -1 +0,0 @@
node_modules

View File

@@ -1,8 +0,0 @@
# Frigate Web UI
## Development
1. Build the docker images in the root of the repository `make amd64_all` (or appropriate for your system)
2. Create a config file in `config/`
3. Run the container: `docker run --rm --name frigate --privileged -v $PWD/config:/config:ro -v /etc/localtime:/etc/localtime:ro -p 5000:5000 frigate`
4. Run the dev ui: `cd web && npm run start`

8342
web/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,24 +0,0 @@
{
"name": "frigate",
"private": true,
"scripts": {
"start": "cross-env SNOWPACK_PUBLIC_API_HOST=http://localhost:5000 snowpack dev",
"prebuild": "rimraf build",
"build": "snowpack build"
},
"dependencies": {
"@prefresh/snowpack": "^3.0.1",
"@snowpack/plugin-postcss": "^1.1.0",
"@snowpack/plugin-webpack": "^2.3.0",
"autoprefixer": "^10.2.1",
"cross-env": "^7.0.3",
"immer": "^8.0.1",
"postcss": "^8.2.2",
"postcss-cli": "^8.3.1",
"preact": "^10.5.9",
"preact-router": "^3.2.1",
"rimraf": "^3.0.2",
"snowpack": "^3.0.11",
"tailwindcss": "^2.0.2"
}
}

View File

@@ -1,8 +0,0 @@
'use strict';
module.exports = {
plugins: [
require('tailwindcss'),
require('autoprefixer'),
],
};

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 558 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 800 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

View File

@@ -1,21 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="icon" href="/favicon.ico" />
<title>Frigate</title>
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png" />
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png" />
<link rel="manifest" href="/site.webmanifest" />
<link rel="mask-icon" href="/safari-pinned-tab.svg" color="#3b82f7" />
<meta name="msapplication-TileColor" content="#3b82f7" />
<meta name="theme-color" content="#ff0000" />
</head>
<body>
<div id="root"></div>
<noscript>You need to enable JavaScript to run this app.</noscript>
<script type="module" src="/dist/index.js"></script>
</body>
</html>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -1,46 +0,0 @@
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg version="1.0" xmlns="http://www.w3.org/2000/svg"
width="888.000000pt" height="888.000000pt" viewBox="0 0 888.000000 888.000000"
preserveAspectRatio="xMidYMid meet">
<metadata>
Created by potrace 1.11, written by Peter Selinger 2001-2013
</metadata>
<g transform="translate(0.000000,888.000000) scale(0.100000,-0.100000)"
fill="#000000" stroke="none">
<path d="M8228 8865 c-2 -2 -25 -6 -53 -9 -38 -5 -278 -56 -425 -91 -33 -7
-381 -98 -465 -121 -49 -14 -124 -34 -165 -45 -67 -18 -485 -138 -615 -176
-50 -14 -106 -30 -135 -37 -8 -2 -35 -11 -60 -19 -25 -8 -85 -27 -135 -42 -49
-14 -101 -31 -115 -36 -14 -5 -34 -11 -45 -13 -11 -3 -65 -19 -120 -36 -55
-18 -127 -40 -160 -50 -175 -53 -247 -77 -550 -178 -364 -121 -578 -200 -820
-299 -88 -36 -214 -88 -280 -115 -66 -27 -129 -53 -140 -58 -11 -5 -67 -29
-125 -54 -342 -144 -535 -259 -579 -343 -34 -66 7 -145 156 -299 229 -238 293
-316 340 -413 38 -80 41 -152 10 -281 -57 -234 -175 -543 -281 -732 -98 -174
-172 -239 -341 -297 -116 -40 -147 -52 -210 -80 -107 -49 -179 -107 -290 -236
-51 -59 -179 -105 -365 -131 -19 -2 -48 -7 -65 -9 -16 -3 -50 -8 -75 -11 -69
-9 -130 -39 -130 -63 0 -24 31 -46 78 -56 18 -4 139 -8 270 -10 250 -4 302
-11 335 -44 19 -18 19 -23 7 -46 -19 -36 -198 -121 -490 -233 -850 -328 -914
-354 -1159 -473 -185 -90 -337 -186 -395 -249 -60 -65 -67 -107 -62 -350 3
-113 7 -216 10 -230 3 -14 7 -52 10 -85 7 -70 14 -128 21 -170 2 -16 7 -48 10
-70 3 -22 11 -64 16 -94 6 -30 12 -64 14 -75 1 -12 5 -34 9 -51 3 -16 8 -39
10 -50 12 -57 58 -258 71 -310 9 -33 18 -69 20 -79 25 -110 138 -416 216 -582
21 -47 39 -87 39 -90 0 -7 217 -438 261 -521 109 -201 293 -501 347 -564 11
-13 37 -44 56 -68 69 -82 126 -109 160 -75 26 25 14 65 -48 164 -138 218 -142
245 -138 800 2 206 4 488 5 625 1 138 -1 293 -6 345 -28 345 -28 594 -1 760
12 69 54 187 86 235 33 52 188 212 293 302 98 84 108 93 144 121 19 15 52 42
75 61 78 64 302 229 426 313 248 169 483 297 600 326 53 14 205 6 365 -17 33
-5 155 -8 270 -6 179 3 226 7 316 28 58 13 140 25 182 26 82 2 120 6 217 22
73 12 97 16 122 18 12 1 23 21 38 70 l20 68 74 -17 c81 -20 155 -30 331 -45
69 -6 132 -8 715 -20 484 -11 620 -8 729 16 85 19 131 63 98 96 -25 26 -104
34 -302 32 -373 -2 -408 -1 -471 26 -90 37 2 102 171 120 33 3 76 8 95 10 19
2 71 7 115 10 243 17 267 20 338 37 145 36 47 102 -203 137 -136 19 -262 25
-490 22 -124 -2 -362 -4 -530 -4 l-305 -1 -56 26 c-65 31 -171 109 -238 176
-52 51 -141 173 -141 191 0 6 -6 22 -14 34 -18 27 -54 165 -64 244 -12 98 -6
322 12 414 9 47 29 127 45 176 26 80 58 218 66 278 1 11 6 47 10 80 3 33 8 70
10 83 2 13 7 53 11 90 3 37 8 74 9 83 22 118 22 279 -1 464 -20 172 -20 172
70 238 108 79 426 248 666 355 25 11 77 34 115 52 92 42 443 191 570 242 55
22 109 44 120 48 24 11 130 52 390 150 199 75 449 173 500 195 17 7 118 50
225 95 237 100 333 143 490 220 229 113 348 191 337 223 -3 10 -70 20 -79 12z"/>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 2.9 KiB

View File

@@ -1,19 +0,0 @@
{
"name": "",
"short_name": "",
"icons": [
{
"src": "/android-chrome-192x192.png",
"sizes": "192x192",
"type": "image/png"
},
{
"src": "/android-chrome-512x512.png",
"sizes": "512x512",
"type": "image/png"
}
],
"theme_color": "#ff0000",
"background_color": "#ff0000",
"display": "standalone"
}

View File

@@ -1,25 +0,0 @@
'use strict';
module.exports = {
mount: {
public: { url: '/', static: true },
src: { url: '/dist' },
},
plugins: [
'@snowpack/plugin-postcss',
'@prefresh/snowpack',
[
'@snowpack/plugin-webpack',
{
sourceMap: true,
},
],
],
routes: [{ match: 'routes', src: '.*', dest: '/index.html' }],
packageOptions: {
sourcemap: false,
},
buildOptions: {
sourcemap: true,
},
};

View File

@@ -1,34 +0,0 @@
import { h } from 'preact';
import ActivityIndicator from './components/ActivityIndicator';
import Camera from './Camera';
import CameraMap from './CameraMap';
import Cameras from './Cameras';
import Debug from './Debug';
import Event from './Event';
import Events from './Events';
import { Router } from 'preact-router';
import Sidebar from './Sidebar';
import Api, { FetchStatus, useConfig } from './api';
export default function App() {
const { data, status } = useConfig();
return status !== FetchStatus.LOADED ? (
<div className="flex flex-grow-1 min-h-screen justify-center items-center">
<ActivityIndicator />
</div>
) : (
<div className="md:flex flex-col md:flex-row md:min-h-screen w-full bg-gray-100 dark:bg-gray-800 text-gray-900 dark:text-white">
<Sidebar />
<div className="flex-auto p-2 md:p-4 lg:pl-8 lg:pr-8 min-w-0">
<Router>
<CameraMap path="/cameras/:camera/editor" />
<Camera path="/cameras/:camera" />
<Event path="/events/:eventId" />
<Events path="/events" />
<Debug path="/debug" />
<Cameras default path="/" />
</Router>
</div>
</div>
);
}

View File

@@ -1,68 +0,0 @@
import { h } from 'preact';
import AutoUpdatingCameraImage from './components/AutoUpdatingCameraImage';
import Box from './components/Box';
import Heading from './components/Heading';
import Link from './components/Link';
import Switch from './components/Switch';
import { route } from 'preact-router';
import { useCallback, useContext } from 'preact/hooks';
import { useApiHost, useConfig } from './api';
export default function Camera({ camera, url }) {
const { data: config } = useConfig();
const apiHost = useApiHost();
if (!config) {
return <div>{`No camera named ${camera}`}</div>;
}
const cameraConfig = config.cameras[camera];
const { pathname, searchParams } = new URL(`${window.location.protocol}//${window.location.host}${url}`);
const searchParamsString = searchParams.toString();
const handleSetOption = useCallback(
(id, value) => {
searchParams.set(id, value ? 1 : 0);
route(`${pathname}?${searchParams.toString()}`, true);
},
[searchParams]
);
function getBoolean(id) {
return Boolean(parseInt(searchParams.get(id), 10));
}
return (
<div className="space-y-4">
<Heading size="2xl">{camera}</Heading>
<Box>
<AutoUpdatingCameraImage camera={camera} searchParams={searchParamsString} />
</Box>
<Box className="grid grid-cols-2 md:grid-cols-3 lg:grid-cols-4 gap-4 p-4">
<Switch checked={getBoolean('bbox')} id="bbox" label="Bounding box" onChange={handleSetOption} />
<Switch checked={getBoolean('timestamp')} id="timestamp" label="Timestamp" onChange={handleSetOption} />
<Switch checked={getBoolean('zones')} id="zones" label="Zones" onChange={handleSetOption} />
<Switch checked={getBoolean('mask')} id="mask" label="Masks" onChange={handleSetOption} />
<Switch checked={getBoolean('motion')} id="motion" label="Motion boxes" onChange={handleSetOption} />
<Switch checked={getBoolean('regions')} id="regions" label="Regions" onChange={handleSetOption} />
<Link href={`/cameras/${camera}/editor`}>Mask & Zone creator</Link>
</Box>
<div className="space-y-4">
<Heading size="sm">Tracked objects</Heading>
<div className="grid grid-cols-3 md:grid-cols-4 gap-4">
{cameraConfig.objects.track.map((objectType) => {
return (
<Box key={objectType} hover href={`/events?camera=${camera}&label=${objectType}`}>
<Heading size="sm">{objectType}</Heading>
<img src={`${apiHost}/api/${camera}/${objectType}/best.jpg?crop=1&h=150`} />
</Box>
);
})}
</div>
</div>
</div>
);
}

View File

@@ -1,640 +0,0 @@
import { h } from 'preact';
import Box from './components/Box';
import Button from './components/Button';
import Heading from './components/Heading';
import Switch from './components/Switch';
import { route } from 'preact-router';
import { useCallback, useContext, useEffect, useMemo, useRef, useState } from 'preact/hooks';
import { useApiHost, useConfig } from './api';
export default function CameraMasks({ camera, url }) {
const { data: config } = useConfig();
const apiHost = useApiHost();
const imageRef = useRef(null);
const [imageScale, setImageScale] = useState(1);
const [snap, setSnap] = useState(true);
if (!(camera in config.cameras)) {
return <div>{`No camera named ${camera}`}</div>;
}
const cameraConfig = config.cameras[camera];
const {
width,
height,
motion: { mask: motionMask },
objects: { filters: objectFilters },
zones,
} = cameraConfig;
const resizeObserver = useMemo(
() =>
new ResizeObserver((entries) => {
window.requestAnimationFrame(() => {
if (Array.isArray(entries) && entries.length) {
const scaledWidth = entries[0].contentRect.width;
const scale = scaledWidth / width;
setImageScale(scale);
}
});
}),
[camera, width, setImageScale]
);
useEffect(() => {
if (!imageRef.current) {
return;
}
resizeObserver.observe(imageRef.current);
}, [resizeObserver, imageRef.current]);
const [motionMaskPoints, setMotionMaskPoints] = useState(
Array.isArray(motionMask)
? motionMask.map((mask) => getPolylinePoints(mask))
: motionMask
? [getPolylinePoints(motionMask)]
: []
);
const [zonePoints, setZonePoints] = useState(
Object.keys(zones).reduce((memo, zone) => ({ ...memo, [zone]: getPolylinePoints(zones[zone].coordinates) }), {})
);
const [objectMaskPoints, setObjectMaskPoints] = useState(
Object.keys(objectFilters).reduce(
(memo, name) => ({
...memo,
[name]: Array.isArray(objectFilters[name].mask)
? objectFilters[name].mask.map((mask) => getPolylinePoints(mask))
: objectFilters[name].mask
? [getPolylinePoints(objectFilters[name].mask)]
: [],
}),
{}
)
);
const [editing, setEditing] = useState({ set: motionMaskPoints, key: 0, fn: setMotionMaskPoints });
const handleUpdateEditable = useCallback(
(newPoints) => {
let newSet;
if (Array.isArray(editing.set)) {
newSet = [...editing.set];
newSet[editing.key] = newPoints;
} else if (editing.subkey !== undefined) {
newSet = { ...editing.set };
newSet[editing.key][editing.subkey] = newPoints;
} else {
newSet = { ...editing.set, [editing.key]: newPoints };
}
editing.set = newSet;
editing.fn(newSet);
},
[editing]
);
const handleSelectEditable = useCallback(
(name) => {
setEditing(name);
},
[setEditing]
);
const handleRemoveEditable = useCallback(
(name) => {
const filteredZonePoints = Object.keys(zonePoints)
.filter((zoneName) => zoneName !== name)
.reduce((memo, name) => {
memo[name] = zonePoints[name];
return memo;
}, {});
setZonePoints(filteredZonePoints);
},
[zonePoints, setZonePoints]
);
// Motion mask methods
const handleAddMask = useCallback(() => {
const newMotionMaskPoints = [...motionMaskPoints, []];
setMotionMaskPoints(newMotionMaskPoints);
setEditing({ set: newMotionMaskPoints, key: newMotionMaskPoints.length - 1, fn: setMotionMaskPoints });
}, [motionMaskPoints, setMotionMaskPoints]);
const handleEditMask = useCallback(
(key) => {
setEditing({ set: motionMaskPoints, key, fn: setMotionMaskPoints });
},
[setEditing, motionMaskPoints, setMotionMaskPoints]
);
const handleRemoveMask = useCallback(
(key) => {
const newMotionMaskPoints = [...motionMaskPoints];
newMotionMaskPoints.splice(key, 1);
setMotionMaskPoints(newMotionMaskPoints);
},
[motionMaskPoints, setMotionMaskPoints]
);
const handleCopyMotionMasks = useCallback(async () => {
await window.navigator.clipboard.writeText(` motion:
mask:
${motionMaskPoints.map((mask, i) => ` - ${polylinePointsToPolyline(mask)}`).join('\n')}`);
}, [motionMaskPoints]);
// Zone methods
const handleEditZone = useCallback(
(key) => {
setEditing({ set: zonePoints, key, fn: setZonePoints });
},
[setEditing, zonePoints, setZonePoints]
);
const handleAddZone = useCallback(() => {
const n = Object.keys(zonePoints).filter((name) => name.startsWith('zone_')).length;
const zoneName = `zone_${n}`;
const newZonePoints = { ...zonePoints, [zoneName]: [] };
setZonePoints(newZonePoints);
setEditing({ set: newZonePoints, key: zoneName, fn: setZonePoints });
}, [zonePoints, setZonePoints]);
const handleRemoveZone = useCallback(
(key) => {
const newZonePoints = { ...zonePoints };
delete newZonePoints[key];
setZonePoints(newZonePoints);
},
[zonePoints, setZonePoints]
);
const handleCopyZones = useCallback(async () => {
await window.navigator.clipboard.writeText(` zones:
${Object.keys(zonePoints)
.map(
(zoneName) => ` ${zoneName}:
coordinates: ${polylinePointsToPolyline(zonePoints[zoneName])}`
)
.join('\n')}`);
}, [zonePoints]);
// Object methods
const handleEditObjectMask = useCallback(
(key, subkey) => {
setEditing({ set: objectMaskPoints, key, subkey, fn: setObjectMaskPoints });
},
[setEditing, objectMaskPoints, setObjectMaskPoints]
);
const handleAddObjectMask = useCallback(() => {
const n = Object.keys(objectMaskPoints).filter((name) => name.startsWith('object_')).length;
const newObjectName = `object_${n}`;
const newObjectMaskPoints = { ...objectMaskPoints, [newObjectName]: [[]] };
setObjectMaskPoints(newObjectMaskPoints);
setEditing({ set: newObjectMaskPoints, key: newObjectName, subkey: 0, fn: setObjectMaskPoints });
}, [objectMaskPoints, setObjectMaskPoints, setEditing]);
const handleRemoveObjectMask = useCallback(
(key, subkey) => {
const newObjectMaskPoints = { ...objectMaskPoints };
delete newObjectMaskPoints[key][subkey];
setObjectMaskPoints(newObjectMaskPoints);
},
[objectMaskPoints, setObjectMaskPoints]
);
const handleCopyObjectMasks = useCallback(async () => {
await window.navigator.clipboard.writeText(` objects:
filters:
${Object.keys(objectMaskPoints)
.map((objectName) =>
objectMaskPoints[objectName].length
? ` ${objectName}:
mask: ${polylinePointsToPolyline(objectMaskPoints[objectName])}`
: ''
)
.filter(Boolean)
.join('\n')}`);
}, [objectMaskPoints]);
const handleAddToObjectMask = useCallback(
(key) => {
const newObjectMaskPoints = { ...objectMaskPoints, [key]: [...objectMaskPoints[key], []] };
setObjectMaskPoints(newObjectMaskPoints);
setEditing({
set: newObjectMaskPoints,
key,
subkey: newObjectMaskPoints[key].length - 1,
fn: setObjectMaskPoints,
});
},
[objectMaskPoints, setObjectMaskPoints, setEditing]
);
const handleChangeSnap = useCallback(
(id, value) => {
setSnap(value);
},
[setSnap]
);
return (
<div class="flex-col space-y-4">
<Heading size="2xl">{camera} mask & zone creator</Heading>
<Box>
<p>
This tool can help you create masks & zones for your {camera} camera. When done, copy each mask configuration
into your <code className="font-mono">config.yml</code> file restart your Frigate instance to save your
changes.
</p>
</Box>
<Box className="space-y-4">
<div className="relative">
<img ref={imageRef} src={`${apiHost}/api/${camera}/latest.jpg`} />
<EditableMask
onChange={handleUpdateEditable}
points={'subkey' in editing ? editing.set[editing.key][editing.subkey] : editing.set[editing.key]}
scale={imageScale}
snap={snap}
width={width}
height={height}
/>
</div>
<Switch checked={snap} label="Snap to edges" onChange={handleChangeSnap} />
</Box>
<div class="flex-col space-y-4">
<MaskValues
editing={editing}
title="Motion masks"
onCopy={handleCopyMotionMasks}
onCreate={handleAddMask}
onEdit={handleEditMask}
onRemove={handleRemoveMask}
points={motionMaskPoints}
yamlPrefix={'motion:\n mask:'}
yamlKeyPrefix={maskYamlKeyPrefix}
/>
<MaskValues
editing={editing}
title="Zones"
onCopy={handleCopyZones}
onCreate={handleAddZone}
onEdit={handleEditZone}
onRemove={handleRemoveZone}
points={zonePoints}
yamlPrefix="zones:"
yamlKeyPrefix={zoneYamlKeyPrefix}
/>
<MaskValues
isMulti
editing={editing}
title="Object masks"
onAdd={handleAddToObjectMask}
onCopy={handleCopyObjectMasks}
onCreate={handleAddObjectMask}
onEdit={handleEditObjectMask}
onRemove={handleRemoveObjectMask}
points={objectMaskPoints}
yamlPrefix={'objects:\n filters:'}
yamlKeyPrefix={objectYamlKeyPrefix}
/>
</div>
</div>
);
}
function maskYamlKeyPrefix(points) {
return ` - `;
}
function zoneYamlKeyPrefix(points, key) {
return ` ${key}:
coordinates: `;
}
function objectYamlKeyPrefix(points, key, subkey) {
return ` - `;
}
const MaskInset = 20;
function EditableMask({ onChange, points, scale, snap, width, height }) {
if (!points) {
return null;
}
const boundingRef = useRef(null);
function boundedSize(value, maxValue) {
const newValue = Math.min(Math.max(0, Math.round(value)), maxValue);
if (snap) {
if (newValue <= MaskInset) {
return 0;
} else if (maxValue - newValue <= MaskInset) {
return maxValue;
}
}
return newValue;
}
const handleMovePoint = useCallback(
(index, newX, newY) => {
if (newX < 0 && newY < 0) {
return;
}
let x = boundedSize(newX / scale, width, snap);
let y = boundedSize(newY / scale, height, snap);
const newPoints = [...points];
newPoints[index] = [x, y];
onChange(newPoints);
},
[scale, points, snap]
);
// Add a new point between the closest two other points
const handleAddPoint = useCallback(
(event) => {
const { offsetX, offsetY } = event;
const scaledX = boundedSize((offsetX - MaskInset) / scale, width, snap);
const scaledY = boundedSize((offsetY - MaskInset) / scale, height, snap);
const newPoint = [scaledX, scaledY];
let closest;
const { index } = points.reduce(
(result, point, i) => {
const nextPoint = points.length === i + 1 ? points[0] : points[i + 1];
const distance0 = Math.sqrt(Math.pow(point[0] - newPoint[0], 2) + Math.pow(point[1] - newPoint[1], 2));
const distance1 = Math.sqrt(Math.pow(point[0] - nextPoint[0], 2) + Math.pow(point[1] - nextPoint[1], 2));
const distance = distance0 + distance1;
return distance < result.distance ? { distance, index: i } : result;
},
{ distance: Infinity, index: -1 }
);
const newPoints = [...points];
newPoints.splice(index, 0, newPoint);
onChange(newPoints);
},
[scale, points, onChange, snap]
);
const handleRemovePoint = useCallback(
(index) => {
const newPoints = [...points];
newPoints.splice(index, 1);
onChange(newPoints);
},
[points, onChange]
);
const scaledPoints = useMemo(() => scalePolylinePoints(points, scale), [points, scale]);
return (
<div className="absolute" style={`inset: -${MaskInset}px`}>
{!scaledPoints
? null
: scaledPoints.map(([x, y], i) => (
<PolyPoint
boundingRef={boundingRef}
index={i}
onMove={handleMovePoint}
onRemove={handleRemovePoint}
x={x + MaskInset}
y={y + MaskInset}
/>
))}
<div className="absolute inset-0 right-0 bottom-0" onclick={handleAddPoint} ref={boundingRef} />
<svg width="100%" height="100%" className="absolute pointer-events-none" style={`inset: ${MaskInset}px`}>
{!scaledPoints ? null : (
<g>
<polyline points={polylinePointsToPolyline(scaledPoints)} fill="rgba(244,0,0,0.5)" />
</g>
)}
</svg>
</div>
);
}
function MaskValues({
isMulti = false,
editing,
title,
onAdd,
onCopy,
onCreate,
onEdit,
onRemove,
points,
yamlPrefix,
yamlKeyPrefix,
}) {
const [showButtons, setShowButtons] = useState(false);
const handleMousein = useCallback(() => {
setShowButtons(true);
}, [setShowButtons]);
const handleMouseout = useCallback(
(event) => {
const el = event.toElement || event.relatedTarget;
if (!el || el.parentNode === event.target) {
return;
}
setShowButtons(false);
},
[setShowButtons]
);
const handleEdit = useCallback(
(event) => {
const { key, subkey } = event.target.dataset;
onEdit(key, subkey);
},
[onEdit]
);
const handleRemove = useCallback(
(event) => {
const { key, subkey } = event.target.dataset;
onRemove(key, subkey);
},
[onRemove]
);
const handleAdd = useCallback(
(event) => {
const { key } = event.target.dataset;
onAdd(key);
},
[onAdd]
);
return (
<Box className="overflow-hidden" onmouseover={handleMousein} onmouseout={handleMouseout}>
<div class="flex space-x-4">
<Heading className="flex-grow self-center" size="base">
{title}
</Heading>
<Button onClick={onCopy}>Copy</Button>
<Button onClick={onCreate}>Add</Button>
</div>
<pre class="relative overflow-auto font-mono text-gray-900 dark:text-gray-100 rounded bg-gray-100 dark:bg-gray-800 p-2">
{yamlPrefix}
{Object.keys(points).map((mainkey) => {
if (isMulti) {
return (
<div>
{` ${mainkey}:\n mask:\n`}
{onAdd && showButtons ? (
<Button className="absolute -mt-12 right-0 font-sans" data-key={mainkey} onClick={handleAdd}>
{`Add to ${mainkey}`}
</Button>
) : null}
{points[mainkey].map((item, subkey) => (
<Item
mainkey={mainkey}
subkey={subkey}
editing={editing}
handleEdit={handleEdit}
handleRemove={handleRemove}
points={item}
showButtons={showButtons}
yamlKeyPrefix={yamlKeyPrefix}
/>
))}
</div>
);
} else {
return (
<Item
mainkey={mainkey}
editing={editing}
handleAdd={onAdd ? handleAdd : undefined}
handleEdit={handleEdit}
handleRemove={handleRemove}
points={points[mainkey]}
showButtons={showButtons}
yamlKeyPrefix={yamlKeyPrefix}
/>
);
}
})}
</pre>
</Box>
);
}
function Item({ mainkey, subkey, editing, handleEdit, points, showButtons, handleAdd, handleRemove, yamlKeyPrefix }) {
return (
<span
data-key={mainkey}
data-subkey={subkey}
className={`block hover:text-blue-400 cursor-pointer relative ${
editing.key === mainkey && editing.subkey === subkey ? 'text-blue-800 dark:text-blue-600' : ''
}`}
onClick={handleEdit}
title="Click to edit"
>
{`${yamlKeyPrefix(points, mainkey, subkey)}${polylinePointsToPolyline(points)}`}
{showButtons ? (
<Button
className="absolute top-0 right-0"
color="red"
data-key={mainkey}
data-subkey={subkey}
onClick={handleRemove}
>
Remove
</Button>
) : null}
</span>
);
}
function getPolylinePoints(polyline) {
if (!polyline) {
return;
}
return polyline.split(',').reduce((memo, point, i) => {
if (i % 2) {
memo[memo.length - 1].push(parseInt(point, 10));
} else {
memo.push([parseInt(point, 10)]);
}
return memo;
}, []);
}
function scalePolylinePoints(polylinePoints, scale) {
if (!polylinePoints) {
return;
}
return polylinePoints.map(([x, y]) => [Math.round(x * scale), Math.round(y * scale)]);
}
function polylinePointsToPolyline(polylinePoints) {
if (!polylinePoints) {
return;
}
return polylinePoints.reduce((memo, [x, y]) => `${memo}${x},${y},`, '').replace(/,$/, '');
}
const PolyPointRadius = 10;
function PolyPoint({ boundingRef, index, x, y, onMove, onRemove }) {
const [hidden, setHidden] = useState(false);
const handleDragOver = useCallback(
(event) => {
if (
!boundingRef.current ||
(event.target !== boundingRef.current && !boundingRef.current.contains(event.target))
) {
return;
}
onMove(index, event.layerX - PolyPointRadius * 2, event.layerY - PolyPointRadius * 2);
},
[onMove, index, boundingRef.current]
);
const handleDragStart = useCallback(() => {
boundingRef.current && boundingRef.current.addEventListener('dragover', handleDragOver, false);
setHidden(true);
}, [setHidden, boundingRef.current, handleDragOver]);
const handleDragEnd = useCallback(() => {
boundingRef.current && boundingRef.current.removeEventListener('dragover', handleDragOver);
setHidden(false);
}, [setHidden, boundingRef.current, handleDragOver]);
const handleRightClick = useCallback(
(event) => {
event.preventDefault();
onRemove(index);
},
[onRemove, index]
);
const handleClick = useCallback((event) => {
event.stopPropagation();
event.preventDefault();
}, []);
return (
<div
className={`${hidden ? 'opacity-0' : ''} bg-gray-900 rounded-full absolute z-20`}
style={`top: ${y - PolyPointRadius}px; left: ${x - PolyPointRadius}px; width: 20px; height: 20px;`}
draggable
onclick={handleClick}
oncontextmenu={handleRightClick}
ondragstart={handleDragStart}
ondragend={handleDragEnd}
/>
);
}

View File

@@ -1,38 +0,0 @@
import { h } from 'preact';
import ActivityIndicator from './components/ActivityIndicator';
import Box from './components/Box';
import CameraImage from './components/CameraImage';
import Events from './Events';
import Heading from './components/Heading';
import { route } from 'preact-router';
import { useConfig } from './api';
export default function Cameras() {
const { data: config, status } = useConfig();
if (!config) {
return <p>loading</p>;
}
return (
<div className="grid lg:grid-cols-2 md:grid-cols-1 gap-4">
{Object.keys(config.cameras).map((camera) => (
<Camera name={camera} />
))}
</div>
);
}
function Camera({ name }) {
const href = `/cameras/${name}`;
return (
<Box
className="bg-white dark:bg-gray-700 shadow-lg rounded-lg p-4 hover:bg-gray-300 hover:dark:bg-gray-500 dark:hover:text-gray-900 dark:hover:text-gray-900"
href={href}
>
<Heading size="base">{name}</Heading>
<CameraImage camera={name} />
</Box>
);
}

View File

@@ -1,112 +0,0 @@
import { h } from 'preact';
import ActivityIndicator from './components/ActivityIndicator';
import Box from './components/Box';
import Button from './components/Button';
import Heading from './components/Heading';
import Link from './components/Link';
import { FetchStatus, useConfig, useStats } from './api';
import { Table, Tbody, Thead, Tr, Th, Td } from './components/Table';
import { useCallback, useEffect, useState } from 'preact/hooks';
export default function Debug() {
const config = useConfig();
const [timeoutId, setTimeoutId] = useState(null);
const forceUpdate = useCallback(async () => {
setTimeoutId(setTimeout(forceUpdate, 1000));
}, []);
useEffect(() => {
forceUpdate();
}, []);
useEffect(() => {
return () => {
clearTimeout(timeoutId);
};
}, [timeoutId]);
const { data: stats, status } = useStats(null, timeoutId);
if (stats === null && (status === FetchStatus.LOADING || status === FetchStatus.NONE)) {
return <ActivityIndicator />;
}
const { detectors, detection_fps, service, ...cameras } = stats;
const detectorNames = Object.keys(detectors);
const detectorDataKeys = Object.keys(detectors[detectorNames[0]]);
const cameraNames = Object.keys(cameras);
const cameraDataKeys = Object.keys(cameras[cameraNames[0]]);
const handleCopyConfig = useCallback(async () => {
await window.navigator.clipboard.writeText(JSON.stringify(config, null, 2));
}, [config]);
return (
<div class="space-y-4">
<Heading>
Debug <span className="text-sm">{service.version}</span>
</Heading>
<Box>
<Table className="w-full">
<Thead>
<Tr>
<Th>detector</Th>
{detectorDataKeys.map((name) => (
<Th>{name.replace('_', ' ')}</Th>
))}
</Tr>
</Thead>
<Tbody>
{detectorNames.map((detector, i) => (
<Tr index={i}>
<Td>{detector}</Td>
{detectorDataKeys.map((name) => (
<Td key={`${name}-${detector}`}>{detectors[detector][name]}</Td>
))}
</Tr>
))}
</Tbody>
</Table>
</Box>
<Box>
<Table className="w-full">
<Thead>
<Tr>
<Th>camera</Th>
{cameraDataKeys.map((name) => (
<Th>{name.replace('_', ' ')}</Th>
))}
</Tr>
</Thead>
<Tbody>
{cameraNames.map((camera, i) => (
<Tr index={i}>
<Td>
<Link href={`/cameras/${camera}`}>{camera}</Link>
</Td>
{cameraDataKeys.map((name) => (
<Td key={`${name}-${camera}`}>{cameras[camera][name]}</Td>
))}
</Tr>
))}
</Tbody>
</Table>
</Box>
<Box className="relative">
<Heading size="sm">Config</Heading>
<Button className="absolute top-4 right-8" onClick={handleCopyConfig}>
Copy to Clipboard
</Button>
<pre className="overflow-auto font-mono text-gray-900 dark:text-gray-100 rounded bg-gray-100 dark:bg-gray-800 p-2 max-h-96">
{JSON.stringify(config, null, 2)}
</pre>
</Box>
</div>
);
}

View File

@@ -1,81 +0,0 @@
import { h, Fragment } from 'preact';
import ActivityIndicator from './components/ActivityIndicator';
import Box from './components/Box';
import Heading from './components/Heading';
import Link from './components/Link';
import { FetchStatus, useApiHost, useEvent } from './api';
import { Table, Thead, Tbody, Tfoot, Th, Tr, Td } from './components/Table';
export default function Event({ eventId }) {
const apiHost = useApiHost();
const { data, status } = useEvent(eventId);
if (status !== FetchStatus.LOADED) {
return <ActivityIndicator />;
}
const startime = new Date(data.start_time * 1000);
const endtime = new Date(data.end_time * 1000);
return (
<div className="space-y-4">
<Heading>
{data.camera} {data.label} <span className="text-sm">{startime.toLocaleString()}</span>
</Heading>
<Box>
{data.has_clip ? (
<Fragment>
<Heading size="sm">Clip</Heading>
<video className="w-100" src={`${apiHost}/clips/${data.camera}-${eventId}.mp4`} controls />
</Fragment>
) : (
<p>No clip available</p>
)}
</Box>
<Box>
<Heading size="sm">{data.has_snapshot ? 'Best image' : 'Thumbnail'}</Heading>
<img
src={
data.has_snapshot
? `${apiHost}/clips/${data.camera}-${eventId}.jpg`
: `data:image/jpeg;base64,${data.thumbnail}`
}
alt={`${data.label} at ${(data.top_score * 100).toFixed(1)}% confidence`}
/>
</Box>
<Box>
<Table>
<Thead>
<Th>Key</Th>
<Th>Value</Th>
</Thead>
<Tbody>
<Tr>
<Td>Camera</Td>
<Td>
<Link href={`/cameras/${data.camera}`}>{data.camera}</Link>
</Td>
</Tr>
<Tr index={1}>
<Td>Timeframe</Td>
<Td>
{startime.toLocaleString()} {endtime.toLocaleString()}
</Td>
</Tr>
<Tr>
<Td>Score</Td>
<Td>{(data.top_score * 100).toFixed(2)}%</Td>
</Tr>
<Tr index={1}>
<Td>Zones</Td>
<Td>{data.zones.join(', ')}</Td>
</Tr>
</Tbody>
</Table>
</Box>
</div>
);
}

View File

@@ -1,300 +0,0 @@
import { h } from 'preact';
import ActivityIndicator from './components/ActivityIndicator';
import Box from './components/Box';
import Heading from './components/Heading';
import Link from './components/Link';
import produce from 'immer';
import { route } from 'preact-router';
import { FetchStatus, useApiHost, useConfig, useEvents } from './api';
import { Table, Thead, Tbody, Tfoot, Th, Tr, Td } from './components/Table';
import { useCallback, useContext, useEffect, useMemo, useRef, useReducer, useState } from 'preact/hooks';
const API_LIMIT = 25;
const initialState = Object.freeze({ events: [], reachedEnd: false, searchStrings: {} });
const reducer = (state = initialState, action) => {
switch (action.type) {
case 'APPEND_EVENTS': {
const {
meta: { searchString },
payload,
} = action;
return produce(state, (draftState) => {
draftState.searchStrings[searchString] = true;
draftState.events.push(...payload);
});
}
case 'REACHED_END': {
const {
meta: { searchString },
} = action;
return produce(state, (draftState) => {
draftState.reachedEnd = true;
draftState.searchStrings[searchString] = true;
});
}
case 'RESET':
return initialState;
default:
return state;
}
};
const defaultSearchString = `include_thumbnails=0&limit=${API_LIMIT}`;
function removeDefaultSearchKeys(searchParams) {
searchParams.delete('limit');
searchParams.delete('include_thumbnails');
searchParams.delete('before');
}
export default function Events({ path: pathname } = {}) {
const apiHost = useApiHost();
const [{ events, reachedEnd, searchStrings }, dispatch] = useReducer(reducer, initialState);
const { searchParams: initialSearchParams } = new URL(window.location);
const [searchString, setSearchString] = useState(`${defaultSearchString}&${initialSearchParams.toString()}`);
const { data, status } = useEvents(searchString);
useEffect(() => {
if (data && !(searchString in searchStrings)) {
dispatch({ type: 'APPEND_EVENTS', payload: data, meta: { searchString } });
}
if (Array.isArray(data) && data.length < API_LIMIT) {
dispatch({ type: 'REACHED_END', meta: { searchString } });
}
}, [data]);
const observer = useRef(
new IntersectionObserver((entries, observer) => {
window.requestAnimationFrame(() => {
if (entries.length === 0) {
return;
}
// under certain edge cases, a ref may be applied / in memory twice
// avoid fetching twice by grabbing the last observed entry only
const entry = entries[entries.length - 1];
if (entry.isIntersecting) {
const { startTime } = entry.target.dataset;
const { searchParams } = new URL(window.location);
searchParams.set('before', parseFloat(startTime) - 0.0001);
setSearchString(`${defaultSearchString}&${searchParams.toString()}`);
}
});
})
);
const lastCellRef = useCallback(
(node) => {
if (node !== null) {
observer.current.disconnect();
if (!reachedEnd) {
observer.current.observe(node);
}
}
},
[observer.current, reachedEnd]
);
const handleFilter = useCallback(
(searchParams) => {
dispatch({ type: 'RESET' });
removeDefaultSearchKeys(searchParams);
setSearchString(`${defaultSearchString}&${searchParams.toString()}`);
route(`${pathname}?${searchParams.toString()}`);
},
[pathname, setSearchString]
);
const searchParams = useMemo(() => new URLSearchParams(searchString), [searchString]);
return (
<div className="space-y-4 w-full">
<Heading>Events</Heading>
<Filters onChange={handleFilter} searchParams={searchParams} />
<Box className="min-w-0 overflow-auto">
<Table className="min-w-full table-fixed">
<Thead>
<Tr>
<Th></Th>
<Th>Camera</Th>
<Th>Label</Th>
<Th>Score</Th>
<Th>Zones</Th>
<Th>Date</Th>
<Th>Start</Th>
<Th>End</Th>
</Tr>
</Thead>
<Tbody>
{events.map(
(
{ camera, id, label, start_time: startTime, end_time: endTime, thumbnail, top_score: score, zones },
i
) => {
const start = new Date(parseInt(startTime * 1000, 10));
const end = new Date(parseInt(endTime * 1000, 10));
const ref = i === events.length - 1 ? lastCellRef : undefined;
return (
<Tr key={id} index={i}>
<Td className="w-40">
<a href={`/events/${id}`} ref={ref} data-start-time={startTime} data-reached-end={reachedEnd}>
<img
width="150"
height="150"
style="min-height: 48px; min-width: 48px;"
src={`${apiHost}/api/events/${id}/thumbnail.jpg`}
/>
</a>
</Td>
<Td>
<Filterable
onFilter={handleFilter}
pathname={pathname}
searchParams={searchParams}
paramName="camera"
name={camera}
/>
</Td>
<Td>
<Filterable
onFilter={handleFilter}
pathname={pathname}
searchParams={searchParams}
paramName="label"
name={label}
/>
</Td>
<Td>{(score * 100).toFixed(2)}%</Td>
<Td>
<ul>
{zones.map((zone) => (
<li>
<Filterable
onFilter={handleFilter}
pathname={pathname}
searchParams={searchString}
paramName="zone"
name={zone}
/>
</li>
))}
</ul>
</Td>
<Td>{start.toLocaleDateString()}</Td>
<Td>{start.toLocaleTimeString()}</Td>
<Td>{end.toLocaleTimeString()}</Td>
</Tr>
);
}
)}
</Tbody>
<Tfoot>
<Tr>
<Td className="text-center p-4" colspan="8">
{status === FetchStatus.LOADING ? <ActivityIndicator /> : reachedEnd ? 'No more events' : null}
</Td>
</Tr>
</Tfoot>
</Table>
</Box>
</div>
);
}
function Filterable({ onFilter, pathname, searchParams, paramName, name }) {
const href = useMemo(() => {
const params = new URLSearchParams(searchParams.toString());
params.set(paramName, name);
removeDefaultSearchKeys(params);
return `${pathname}?${params.toString()}`;
}, [searchParams]);
const handleClick = useCallback(
(event) => {
event.preventDefault();
route(href, true);
const params = new URLSearchParams(searchParams.toString());
params.set(paramName, name);
onFilter(params);
},
[href, searchParams]
);
return (
<Link href={href} onclick={handleClick}>
{name}
</Link>
);
}
function Filters({ onChange, searchParams }) {
const { data } = useConfig();
const cameras = useMemo(() => Object.keys(data.cameras), [data]);
const zones = useMemo(
() =>
Object.values(data.cameras)
.reduce((memo, camera) => {
memo = memo.concat(Object.keys(camera.zones));
return memo;
}, [])
.filter((value, i, self) => self.indexOf(value) === i),
[data]
);
const labels = useMemo(() => {
return Object.values(data.cameras)
.reduce((memo, camera) => {
memo = memo.concat(camera.objects?.track || []);
return memo;
}, data.objects?.track || [])
.filter((value, i, self) => self.indexOf(value) === i);
}, [data]);
return (
<Box className="flex space-y-0 space-x-8 flex-wrap">
<Filter onChange={onChange} options={cameras} paramName="camera" searchParams={searchParams} />
<Filter onChange={onChange} options={zones} paramName="zone" searchParams={searchParams} />
<Filter onChange={onChange} options={labels} paramName="label" searchParams={searchParams} />
</Box>
);
}
function Filter({ onChange, searchParams, paramName, options }) {
const handleSelect = useCallback(
(event) => {
const newParams = new URLSearchParams(searchParams.toString());
const value = event.target.value;
if (value) {
newParams.set(paramName, event.target.value);
} else {
newParams.delete(paramName);
}
onChange(newParams);
},
[searchParams, paramName, onChange]
);
return (
<label>
<span className="block uppercase text-sm">{paramName}</span>
<select className="border-solid border border-gray-500 rounded dark:text-gray-900" onChange={handleSelect}>
<option>All</option>
{options.map((opt) => {
return (
<option value={opt} selected={searchParams.get(paramName) === opt}>
{opt}
</option>
);
})}
</select>
</label>
);
}

View File

@@ -1,87 +0,0 @@
import { h } from 'preact';
import Link from './components/Link';
import { Link as RouterLink } from 'preact-router/match';
import { useCallback, useState } from 'preact/hooks';
function HamburgerIcon() {
return (
<svg fill="currentColor" viewBox="0 0 20 20" className="w-6 h-6">
<path
fill-rule="evenodd"
d="M3 5a1 1 0 011-1h12a1 1 0 110 2H4a1 1 0 01-1-1zM3 10a1 1 0 011-1h12a1 1 0 110 2H4a1 1 0 01-1-1zM9 15a1 1 0 011-1h6a1 1 0 110 2h-6a1 1 0 01-1-1z"
clip-rule="evenodd"
></path>
</svg>
);
}
function CloseIcon() {
return (
<svg fill="currentColor" viewBox="0 0 20 20" className="w-6 h-6">
<path
fill-rule="evenodd"
d="M4.293 4.293a1 1 0 011.414 0L10 8.586l4.293-4.293a1 1 0 111.414 1.414L11.414 10l4.293 4.293a1 1 0 01-1.414 1.414L10 11.414l-4.293 4.293a1 1 0 01-1.414-1.414L8.586 10 4.293 5.707a1 1 0 010-1.414z"
clip-rule="evenodd"
></path>
</svg>
);
}
function NavLink({ className = '', href, text }) {
const external = href.startsWith('http');
const El = external ? Link : RouterLink;
const props = external ? { rel: 'noopener nofollow', target: '_blank' } : {};
return (
<El
activeClassName="bg-gray-200 dark:bg-gray-700 dark:hover:bg-gray-600 dark:focus:bg-gray-600 dark:focus:text-white dark:hover:text-white dark:text-gray-200"
className={`block px-4 py-2 mt-2 text-sm font-semibold text-gray-900 bg-transparent rounded-lg dark:bg-transparent dark:hover:bg-gray-600 dark:focus:bg-gray-600 dark:focus:text-white dark:hover:text-white dark:text-gray-200 hover:text-gray-900 focus:text-gray-900 hover:bg-gray-200 focus:bg-gray-200 focus:outline-none focus:shadow-outline self-end ${className}`}
href={href}
{...props}
>
{text}
</El>
);
}
export default function Sidebar() {
const [open, setOpen] = useState(false);
const handleToggle = useCallback(() => {
setOpen(!open);
}, [open, setOpen]);
return (
<div className="flex flex-col w-full md:w-64 text-gray-700 bg-white dark:text-gray-200 dark:bg-gray-700 flex-shrink-0">
<div className="flex-shrink-0 px-8 py-4 flex flex-row items-center justify-between">
<a
href="#"
className="text-lg font-semibold tracking-widest text-gray-900 uppercase rounded-lg dark:text-white focus:outline-none focus:shadow-outline"
>
Frigate
</a>
<button
className="rounded-lg md:hidden rounded-lg focus:outline-none focus:shadow-outline"
onClick={handleToggle}
>
{open ? <CloseIcon /> : <HamburgerIcon />}
</button>
</div>
<nav
className={`flex-col flex-grow md:block overflow-hidden px-4 pb-4 md:pb-0 md:overflow-y-auto ${
!open ? 'md:h-0 hidden' : ''
}`}
>
<NavLink href="/" text="Cameras" />
<NavLink href="/events" text="Events" />
<NavLink href="/debug" text="Debug" />
<hr className="border-solid border-gray-500 mt-2" />
<NavLink
className="self-end"
href="https://blakeblackshear.github.io/frigate"
text="Documentation"
/>
<NavLink className="self-end" href="https://github.com/blakeblackshear/frigate" text="GitHub" />
</nav>
</div>
);
}

View File

@@ -1,108 +0,0 @@
import { h, createContext } from 'preact';
import produce from 'immer';
import { useCallback, useContext, useEffect, useMemo, useRef, useReducer, useState } from 'preact/hooks';
export const ApiHost = createContext(import.meta.env.SNOWPACK_PUBLIC_API_HOST || window.baseUrl || '');
export const FetchStatus = {
NONE: 'none',
LOADING: 'loading',
LOADED: 'loaded',
ERROR: 'error',
};
const initialState = Object.freeze({
host: import.meta.env.SNOWPACK_PUBLIC_API_HOST || window.baseUrl || '',
queries: {},
});
export const Api = createContext(initialState);
export default Api;
function reducer(state, { type, payload, meta }) {
switch (type) {
case 'REQUEST': {
const { url, request } = payload;
const data = state.queries[url]?.data || null;
return produce(state, (draftState) => {
draftState.queries[url] = { status: FetchStatus.LOADING, data };
});
}
case 'RESPONSE': {
const { url, ok, data } = payload;
return produce(state, (draftState) => {
draftState.queries[url] = { status: ok ? FetchStatus.LOADED : FetchStatus.ERROR, data };
});
}
default:
return state;
}
}
export const ApiProvider = ({ children }) => {
const [state, dispatch] = useReducer(reducer, initialState);
return <Api.Provider value={{ state, dispatch }}>{children}</Api.Provider>;
};
function shouldFetch(state, url, forceRefetch = false) {
if (forceRefetch || !(url in state.queries)) {
return true;
}
const { status } = state.queries[url];
return status !== FetchStatus.LOADING && status !== FetchStatus.LOADED;
}
export function useFetch(url, forceRefetch) {
const { state, dispatch } = useContext(Api);
useEffect(() => {
if (!shouldFetch(state, url, forceRefetch)) {
return;
}
async function fetchConfig() {
await dispatch({ type: 'REQUEST', payload: { url } });
const response = await fetch(`${state.host}${url}`);
const data = await response.json();
await dispatch({ type: 'RESPONSE', payload: { url, ok: response.ok, data } });
}
fetchConfig();
}, [url, forceRefetch]);
if (!(url in state.queries)) {
return { data: null, status: FetchStatus.NONE };
}
const data = state.queries[url].data || null;
const status = state.queries[url].status;
return { data, status };
}
export function useApiHost() {
const { state, dispatch } = useContext(Api);
return state.host;
}
export function useEvents(searchParams, forceRefetch) {
const url = `/api/events${searchParams ? `?${searchParams.toString()}` : ''}`;
return useFetch(url, forceRefetch);
}
export function useEvent(eventId, forceRefetch) {
const url = `/api/events/${eventId}`;
return useFetch(url, forceRefetch);
}
export function useConfig(searchParams, forceRefetch) {
const url = `/api/config${searchParams ? `?${searchParams.toString()}` : ''}`;
return useFetch(url, forceRefetch);
}
export function useStats(searchParams, forceRefetch) {
const url = `/api/stats${searchParams ? `?${searchParams.toString()}` : ''}`;
return useFetch(url, forceRefetch);
}

View File

@@ -1,15 +0,0 @@
import { h } from 'preact';
const sizes = {
sm: 'h-4 w-4 border-2 border-t-2',
md: 'h-8 w-8 border-4 border-t-4',
lg: 'h-16 w-16 border-8 border-t-8',
};
export default function ActivityIndicator({ size = 'md' }) {
return (
<div className="w-full flex items-center justify-center" aria-label="Loading…">
<div className={`activityindicator ease-in rounded-full border-gray-200 text-blue-500 ${sizes[size]}`} />
</div>
);
}

Some files were not shown because too many files have changed in this diff Show More