forked from Github/frigate
Compare commits
40 Commits
v0.8.0-bet
...
v0.8.0-bet
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3ad75a441d | ||
|
|
f006e9be8d | ||
|
|
03f3ba8008 | ||
|
|
96a44eb7bf | ||
|
|
006782fe3d | ||
|
|
ff3e95bbf7 | ||
|
|
4b95a37e65 | ||
|
|
38c661b3a8 | ||
|
|
0d6e4f6a66 | ||
|
|
1ad2219f1c | ||
|
|
dfcdd289c3 | ||
|
|
32f5f2cca9 | ||
|
|
24bfe9f3e8 | ||
|
|
004667dc99 | ||
|
|
9d785dc781 | ||
|
|
cbba5a7af0 | ||
|
|
29b29ee349 | ||
|
|
9ad53e09af | ||
|
|
c9278991c9 | ||
|
|
729de48934 | ||
|
|
7476bff5fb | ||
|
|
1e9eae8d9a | ||
|
|
8113a53381 | ||
|
|
72833686f1 | ||
|
|
096c21f105 | ||
|
|
181f66357b | ||
|
|
a54fbc483c | ||
|
|
92d5a002d3 | ||
|
|
f9184903d7 | ||
|
|
91cde6ce7b | ||
|
|
186a4587c7 | ||
|
|
6049acb1f3 | ||
|
|
2d2ebf313c | ||
|
|
3d329dcb52 | ||
|
|
06854fc34f | ||
|
|
e01e14d866 | ||
|
|
3dfd251ebb | ||
|
|
dcea807f77 | ||
|
|
87d83ff33a | ||
|
|
1d31cbdf0d |
@@ -4,3 +4,4 @@ docs/
|
||||
debug
|
||||
config/
|
||||
*.pyc
|
||||
.git
|
||||
17
.github/ISSUE_TEMPLATE/bug_report.md
vendored
17
.github/ISSUE_TEMPLATE/bug_report.md
vendored
@@ -1,6 +1,6 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
name: Bug report or Support request
|
||||
about: ''
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
@@ -8,10 +8,10 @@ assignees: ''
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
A clear and concise description of what your issue is.
|
||||
|
||||
**Version of frigate**
|
||||
What version are you using?
|
||||
Output from `/version`
|
||||
|
||||
**Config file**
|
||||
Include your full config file wrapped in triple back ticks.
|
||||
@@ -19,14 +19,14 @@ Include your full config file wrapped in triple back ticks.
|
||||
config here
|
||||
```
|
||||
|
||||
**Logs**
|
||||
**Frigate container logs**
|
||||
```
|
||||
Include relevant log output here
|
||||
```
|
||||
|
||||
**Frigate debug stats**
|
||||
```
|
||||
Output from frigate's /debug/stats endpoint
|
||||
**Frigate stats**
|
||||
```json
|
||||
Output from frigate's /stats endpoint
|
||||
```
|
||||
|
||||
**FFprobe from your camera**
|
||||
@@ -41,6 +41,7 @@ If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**Computer Hardware**
|
||||
- OS: [e.g. Ubuntu, Windows]
|
||||
- Install method: [e.g. Addon, Docker Compose, Docker Command]
|
||||
- Virtualization: [e.g. Proxmox, Virtualbox]
|
||||
- Coral Version: [e.g. USB, PCIe, None]
|
||||
- Network Setup: [e.g. Wired, WiFi]
|
||||
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -2,3 +2,7 @@
|
||||
debug
|
||||
.vscode
|
||||
config/config.yml
|
||||
models
|
||||
*.mp4
|
||||
*.db
|
||||
frigate/version.py
|
||||
23
Makefile
23
Makefile
@@ -1,13 +1,18 @@
|
||||
default_target: amd64_frigate
|
||||
|
||||
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h")
|
||||
|
||||
version:
|
||||
echo "VERSION='0.8.0-$(COMMIT_HASH)'" > frigate/version.py
|
||||
|
||||
amd64_wheels:
|
||||
docker build --tag blakeblackshear/frigate-wheels:amd64 --file docker/Dockerfile.wheels .
|
||||
|
||||
amd64_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.1.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
|
||||
|
||||
amd64_frigate:
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64 --file docker/Dockerfile.base .
|
||||
amd64_frigate: version
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.amd64 .
|
||||
|
||||
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
|
||||
@@ -18,8 +23,8 @@ amd64nvidia_wheels:
|
||||
amd64nvidia_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
|
||||
|
||||
amd64nvidia_frigate:
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --file docker/Dockerfile.base .
|
||||
amd64nvidia_frigate: version
|
||||
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.amd64nvidia .
|
||||
|
||||
amd64nvidia_all: amd64nvidia_wheels amd64nvidia_ffmpeg amd64nvidia_frigate
|
||||
@@ -30,8 +35,8 @@ aarch64_wheels:
|
||||
aarch64_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
|
||||
|
||||
aarch64_frigate:
|
||||
docker build --tag frigate-base --build-arg ARCH=aarch64 --file docker/Dockerfile.base .
|
||||
aarch64_frigate: version
|
||||
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.aarch64 .
|
||||
|
||||
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
|
||||
@@ -42,8 +47,8 @@ armv7_wheels:
|
||||
armv7_ffmpeg:
|
||||
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
|
||||
|
||||
armv7_frigate:
|
||||
docker build --tag frigate-base --build-arg ARCH=armv7 --file docker/Dockerfile.base .
|
||||
armv7_frigate: version
|
||||
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
|
||||
docker build --tag frigate --file docker/Dockerfile.armv7 .
|
||||
|
||||
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
|
||||
|
||||
205
README.md
205
README.md
@@ -33,9 +33,9 @@ Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but
|
||||
- [Object Filters](#object-filters)
|
||||
- [Masks](#masks)
|
||||
- [Zones](#zones)
|
||||
- [Recording Clips](#recording-clips)
|
||||
- [24/7 Recordings](#247-recordings)
|
||||
- [RTMP Streams](#rtmp-streams)
|
||||
- [Recording Clips (save_clips)](#recording-clips)
|
||||
- [24/7 Recordings (record)](#247-recordings)
|
||||
- [RTMP Streams (rtmp)](#rtmp-streams)
|
||||
- [Integration with HomeAssistant](#integration-with-homeassistant)
|
||||
- [MQTT Topics](#mqtt-topics)
|
||||
- [HTTP Endpoints](#http-endpoints)
|
||||
@@ -43,6 +43,11 @@ Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but
|
||||
- [Troubleshooting](#troubleshooting)
|
||||
|
||||
## Recommended Hardware
|
||||
|
||||
### Cameras
|
||||
Cameras that output H.264 video and AAC audio will offer the most compatibility with all features of Frigate and HomeAssistant. It is also helpful if your camera supports multiple substreams to allow different resolutions to be used for detection, streaming, clips, and recordings without re-encoding.
|
||||
|
||||
### Computer
|
||||
|Name|Inference Speed|Notes|
|
||||
|----|---------------|-----|
|
||||
|Atomic Pi|16ms|Good option for a dedicated low power board with a small number of cameras. Can leverage Intel QuickSync for stream decoding.|
|
||||
@@ -56,9 +61,14 @@ Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Installing
|
||||
Frigate is a Docker container that can be run on any Docker host including as a [HassOS Addon](https://www.home-assistant.io/addons/). See instructions below for installing the HassOS addon.
|
||||
|
||||
For HomeAssistant users, there is also a [custom component (aka integration)](https://github.com/blakeblackshear/frigate-hass-integration). This custom component adds tighter integration with HomeAssistant by automatically setting up camera entities, sensors, media browser for clips and recordings, and a public API to simplify notifications.
|
||||
|
||||
Note that HassOS Addons and custom components are different things. If you are already running Frigate with Docker directly, you do not need the Addon since the Addon would run another instance of Frigate.
|
||||
|
||||
### HassOS Addon
|
||||
HassOS users can install via the addon repository. Frigate requires that an MQTT server be running.
|
||||
HassOS users can install via the addon repository. Frigate requires an MQTT server.
|
||||
1. Navigate to Supervisor > Add-on Store > Repositories
|
||||
1. Add https://github.com/blakeblackshear/frigate-hass-addons
|
||||
1. Setup your configuration in the `Configuration` tab
|
||||
@@ -69,16 +79,19 @@ Make sure you choose the right image for your architecture:
|
||||
|Arch|Image Name|
|
||||
|-|-|
|
||||
|amd64|blakeblackshear/frigate:stable-amd64|
|
||||
|amd64nvidia|blakeblackshear/frigate:stable-amd64nvidia|
|
||||
|armv7|blakeblackshear/frigate:stable-armv7|
|
||||
|aarch64|blakeblackshear/frigate:stable-aarch64|
|
||||
|
||||
It is recommended to run with docker-compose:
|
||||
```yaml
|
||||
version: "3.6"
|
||||
services:
|
||||
frigate:
|
||||
container_name: frigate
|
||||
restart: unless-stopped
|
||||
privileged: true
|
||||
image: blakeblackshear/frigate:stable-amd64
|
||||
image: blakeblackshear/frigate:0.8.0-beta2-amd64
|
||||
volumes:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
@@ -94,12 +107,6 @@ It is recommended to run with docker-compose:
|
||||
- "1935:1935" # RTMP feeds
|
||||
environment:
|
||||
FRIGATE_RTSP_PASSWORD: "password"
|
||||
healthcheck:
|
||||
test: ["CMD", "wget" , "-q", "-O-", "http://localhost:5000"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 5
|
||||
start_period: 3m
|
||||
```
|
||||
|
||||
If you can't use docker compose, you can run the container with something similar to this:
|
||||
@@ -107,12 +114,16 @@ If you can't use docker compose, you can run the container with something simila
|
||||
docker run --rm \
|
||||
--name frigate \
|
||||
--privileged \
|
||||
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=100000000 \
|
||||
-v /dev/bus/usb:/dev/bus/usb \
|
||||
-v <path_to_config_dir>:/config:ro \
|
||||
-v <path_to_directory_for_clips>:/media/frigate/clips \
|
||||
-v <path_to_directory_for_recordings>:/media/frigate/recordings \
|
||||
-v <path_to_config>:/config:ro \
|
||||
-v /etc/localtime:/etc/localtime:ro \
|
||||
-p 5000:5000 \
|
||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||
blakeblackshear/frigate:stable-amd64
|
||||
-p 5000:5000 \
|
||||
-p 1935:1935 \
|
||||
blakeblackshear/frigate:0.8.0-beta2-amd64
|
||||
```
|
||||
|
||||
### Kubernetes
|
||||
@@ -165,8 +176,8 @@ cameras:
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
height: 720
|
||||
width: 1280
|
||||
height: 720
|
||||
fps: 5
|
||||
```
|
||||
Here are all the configuration options:
|
||||
@@ -179,6 +190,12 @@ logger:
|
||||
logs:
|
||||
frigate.mqtt: error
|
||||
|
||||
# Optional: database configuration
|
||||
database:
|
||||
# Optional: database path
|
||||
# This may need to be in a custom location if network storage is used for clips
|
||||
path: /media/frigate/clips/frigate.db
|
||||
|
||||
# Optional: detectors configuration
|
||||
# USB Coral devices will be auto detected with CPU fallback
|
||||
detectors:
|
||||
@@ -189,6 +206,16 @@ detectors:
|
||||
type: edgetpu
|
||||
# Optional: device name as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
|
||||
device: usb
|
||||
# Optional: num_threads value passed to the tflite.Interpreter (default: shown below)
|
||||
# This value is only used for CPU types
|
||||
num_threads: 3
|
||||
|
||||
# Optional: model configuration
|
||||
model:
|
||||
# Required: height of the trained model
|
||||
height: 320
|
||||
# Required: width of the trained model
|
||||
width: 320
|
||||
|
||||
# Required: mqtt configuration
|
||||
mqtt:
|
||||
@@ -215,6 +242,10 @@ save_clips:
|
||||
# NOTE: If an object is being tracked for longer than this amount of time, the cache
|
||||
# will begin to expire and the resulting clip will be the last x seconds of the event.
|
||||
max_seconds: 300
|
||||
# Optional: size of tmpfs mount to create for cache files (default: not set)
|
||||
# mount -t tmpfs -o size={tmpfs_cache_size} tmpfs /tmp/cache
|
||||
# Notice: If you have mounted a tmpfs volume through docker, this value should not be set in your config
|
||||
tmpfs_cache_size: 256m
|
||||
# Optional: Retention settings for clips (default: shown below)
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
@@ -261,7 +292,39 @@ objects:
|
||||
# Optional: minimum score for the object to initiate tracking (default: shown below)
|
||||
min_score: 0.5
|
||||
# Optional: minimum decimal percentage for tracked object's computed score to be considered a true positive (default: shown below)
|
||||
threshold: 0.85
|
||||
threshold: 0.7
|
||||
|
||||
# Optional: Global motion detection config. These may also be defined at the camera level.
|
||||
# ADVANCED: Most users will not need to set these values in their config
|
||||
motion:
|
||||
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
|
||||
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
|
||||
# The value should be between 1 and 255.
|
||||
threshold: 25
|
||||
# Optional: Minimum size in pixels in the resized motion image that counts as motion
|
||||
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will make motion detection more sensitive to smaller
|
||||
# moving objects.
|
||||
contour_area: 100
|
||||
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
|
||||
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
|
||||
# Too low and a fast moving person wont be detected as motion.
|
||||
delta_alpha: 0.2
|
||||
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
|
||||
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
|
||||
# Low values will cause things like moving shadows to be detected as motion for longer.
|
||||
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
|
||||
frame_alpha: 0.2
|
||||
# Optional: Height of the resized motion frame (default: 1/6th of the original frame height)
|
||||
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense of higher CPU usage.
|
||||
# Lower values result in less CPU, but small changes may not register as motion.
|
||||
frame_height: 180
|
||||
|
||||
# Optional: Global detecttion settings. These may also be defined at the camera level.
|
||||
# ADVANCED: Most users will not need to set these values in their config
|
||||
detect:
|
||||
# Optional: Number of frames without a detection before frigate considers an object to be gone. (default: double the frame rate)
|
||||
max_disappeared: 10
|
||||
|
||||
|
||||
# Required: configuration section for cameras
|
||||
cameras:
|
||||
@@ -275,6 +338,8 @@ cameras:
|
||||
# NOTE: Environment variables that begin with 'FRIGATE_' may be referenced in {}
|
||||
- path: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||
# Required: list of roles for this stream. valid values are: detect,record,clips,rtmp
|
||||
# NOTICE: In addition to assigning the record, clips, and rtmp roles,
|
||||
# they must also be enabled in the camera config.
|
||||
roles:
|
||||
- detect
|
||||
- rtmp
|
||||
@@ -294,32 +359,24 @@ cameras:
|
||||
# Optional: camera specific output args (default: inherit)
|
||||
output_args:
|
||||
|
||||
# Required: height of the frame
|
||||
# NOTE: Recommended to set this value, but frigate will attempt to autodetect.
|
||||
height: 720
|
||||
# Required: width of the frame
|
||||
# NOTE: Recommended to set this value, but frigate will attempt to autodetect.
|
||||
# Required: width of the frame for the input with the detect role
|
||||
width: 1280
|
||||
# Optional: desired fps for your camera
|
||||
# Required: height of the frame for the input with the detect role
|
||||
height: 720
|
||||
# Optional: desired fps for your camera for the input with the detect role
|
||||
# NOTE: Recommended value of 5. Ideally, try and reduce your FPS on the camera.
|
||||
# Frigate will attempt to autodetect if not specified.
|
||||
fps: 5
|
||||
|
||||
# Optional: motion mask
|
||||
# Optional: list of motion masks
|
||||
# NOTE: see docs for more detailed info on creating masks
|
||||
mask: poly,0,900,1080,900,1080,1920,0,1920
|
||||
mask:
|
||||
- poly,0,900,1080,900,1080,1920,0,1920
|
||||
|
||||
# Optional: timeout for highest scoring image before allowing it
|
||||
# to be replaced by a newer image. (default: shown below)
|
||||
best_image_timeout: 60
|
||||
|
||||
# Optional: camera specific mqtt settings
|
||||
mqtt:
|
||||
# Optional: crop the camera frame to the detection region of the object (default: False)
|
||||
crop_to_region: True
|
||||
# Optional: resize the image before publishing over mqtt
|
||||
snapshot_height: 175
|
||||
|
||||
# Optional: zones for this camera
|
||||
zones:
|
||||
# Required: name of the zone
|
||||
@@ -335,7 +392,7 @@ cameras:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.8
|
||||
threshold: 0.7
|
||||
|
||||
# Optional: save clips configuration
|
||||
# NOTE: This feature does not work if you have added "-vsync drop" in your input params.
|
||||
@@ -345,7 +402,9 @@ cameras:
|
||||
# Required: enables clips for the camera (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Number of seconds before the event to include in the clips (default: shown below)
|
||||
pre_capture: 30
|
||||
pre_capture: 5
|
||||
# Optional: Number of seconds after the event to include in the clips (default: shown below)
|
||||
post_capture: 5
|
||||
# Optional: Objects to save clips for. (default: all tracked objects)
|
||||
objects:
|
||||
- person
|
||||
@@ -393,7 +452,7 @@ cameras:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
min_score: 0.5
|
||||
threshold: 0.85
|
||||
threshold: 0.7
|
||||
```
|
||||
[Back to top](#documentation)
|
||||
|
||||
@@ -424,8 +483,8 @@ cameras:
|
||||
roles:
|
||||
- clips
|
||||
- record
|
||||
height: 720
|
||||
width: 1280
|
||||
height: 720
|
||||
fps: 5
|
||||
```
|
||||
|
||||
@@ -433,7 +492,7 @@ cameras:
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Optimizing Performance
|
||||
- **Google Coral**: It is strongly recommended to use a Google Coral, but Frigate will fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU.
|
||||
- **Google Coral**: It is strongly recommended to use a Google Coral, but Frigate will fall back to CPU in the event one is not found. Offloading TensorFlow to the Google Coral is an order of magnitude faster and will reduce your CPU load dramatically. A $60 device will outperform $2000 CPU. Frigate should work with any supported Coral device from https://coral.ai
|
||||
- **Resolution**: For the `detect` input, choose a camera resolution where the smallest object you want to detect barely fits inside a 300x300px square. The model used by Frigate is trained on 300x300px images, so you will get worse performance and no improvement in accuracy by using a larger resolution since Frigate resizes the area where it is looking for objects to 300x300 anyway.
|
||||
- **FPS**: 5 frames per second should be adequate. Higher frame rates will require more CPU usage without improving detections or accuracy. Reducing the frame rate on your camera will have the greatest improvement on system resources.
|
||||
- **Hardware Acceleration**: Make sure you configure the `hwaccel_args` for your hardware. They provide a significant reduction in CPU usage if they are available.
|
||||
@@ -442,7 +501,8 @@ cameras:
|
||||
### FFmpeg Hardware Acceleration
|
||||
Frigate works on Raspberry Pi 3b/4 and x86 machines. It is recommended to update your configuration to enable hardware accelerated decoding in ffmpeg. Depending on your system, these parameters may not be compatible.
|
||||
|
||||
Raspberry Pi 3/4 (32-bit OS):
|
||||
Raspberry Pi 3/4 (32-bit OS)
|
||||
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
@@ -451,6 +511,7 @@ ffmpeg:
|
||||
```
|
||||
|
||||
Raspberry Pi 3/4 (64-bit OS)
|
||||
**NOTICE**: If you are using the addon, ensure you turn off `Protection mode` for hardware acceleration.
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
@@ -471,7 +532,17 @@ ffmpeg:
|
||||
```
|
||||
|
||||
Intel-based CPUs (>=10th Generation) via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
**Note:** You also need to set `LIBVA_DRIVER_NAME=iHD` as an environment variable on the container.
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
- -hwaccel
|
||||
- qsv
|
||||
- -qsv_device
|
||||
- /dev/dri/renderD128
|
||||
```
|
||||
|
||||
AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
|
||||
**Note:** You also need to set `LIBVA_DRIVER_NAME=radeonsi` as an environment variable on the container.
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args:
|
||||
@@ -490,6 +561,8 @@ By default Frigate will look for a USB Coral device and fall back to the CPU if
|
||||
|
||||
Frigate supports `edgetpu` and `cpu` as detector types. The device value should be specified according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api).
|
||||
|
||||
**Note**: There is no support for Nvidia GPUs to perform object detection with tensorflow. It can be used for ffmpeg decoding, but not object detection.
|
||||
|
||||
Single USB Coral:
|
||||
```yaml
|
||||
detectors:
|
||||
@@ -597,11 +670,14 @@ Frigate can save video clips without any CPU overhead for encoding by simply cop
|
||||
### Database
|
||||
Event and clip information is managed in a sqlite database at `/media/frigate/clips/frigate.db`. If that database is deleted, clips will be orphaned and will need to be cleaned up manually. They also won't show up in the Media Browser within HomeAssistant.
|
||||
|
||||
If you are storing your clips on a network share (SMB, NFS, etc), you may get a `database is locked` error message on startup. You can customize the location of the database in the config if necessary.
|
||||
|
||||
### Global Configuration Options
|
||||
- `max_seconds`: This limits the size of the cache when an object is being tracked. If an object is stationary and being tracked for a long time, the cache files will expire and this value will be the maximum clip length for the *end* of the event. For example, if this is set to 300 seconds and an object is being tracked for 600 seconds, the clip will end up being the last 300 seconds. Defaults to 300 seconds.
|
||||
|
||||
### Per-camera Configuration Options
|
||||
- `pre_capture`: Defines how much time should be included in the clip prior to the beginning of the event. Defaults to 30 seconds.
|
||||
- `pre_capture`: Defines how much time should be included in the clip prior to the beginning of the event. Defaults to 5 seconds.
|
||||
- `post_capture`: Defines how much time should be included in the clip after the end of the event. Defaults to 5 seconds.
|
||||
- `objects`: List of object types to save clips for. Object types here must be listed for tracking at the camera or global configuration. Defaults to all tracked objects.
|
||||
|
||||
|
||||
@@ -615,12 +691,14 @@ Event and clip information is managed in a sqlite database at `/media/frigate/cl
|
||||
[Back to top](#documentation)
|
||||
|
||||
## RTMP Streams
|
||||
Frigate can re-stream your video feed as a RTMP feed for other applications such as HomeAssistant to utilize it. This allows you to use a video feed for detection in frigate and HomeAssistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
|
||||
Frigate can re-stream your video feed as a RTMP feed for other applications such as HomeAssistant to utilize it at `rtmp://<frigate_host>/live/<camera_name>`. Port 1935 must be open. This allows you to use a video feed for detection in frigate and HomeAssistant live view at the same time without having to make two separate connections to the camera. The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
|
||||
|
||||
Some video feeds are not compatible with RTMP. If you are experiencing issues, check to make sure your camera feed is h264 with AAC audio. If your camera doesn't support a compatible format for RTMP, you can use the ffmpeg args to re-encode it on the fly at the expense of increased CPU utilization.
|
||||
|
||||
[Back to top](#documentation)
|
||||
|
||||
## Integration with HomeAssistant
|
||||
The best way to integrate with HomeAssistant is to use the [official integration](https://github.com/blakeblackshear/frigate-hass-integration). When configuring the integration, you will be asked for the `Host` of your frigate instance. This value should be the url you use to access Frigate in the browser and will look like `http://<host>:5000/`. If you are using HassOS with the addon, the host should be `http://ccab4aaf-frigate:5000`. HomeAssistant needs access to port 5000 (api) and 1935 (rtmp) for all features. The integration will setup the following entities within HomeAssistant:
|
||||
The best way to integrate with HomeAssistant is to use the [official integration](https://github.com/blakeblackshear/frigate-hass-integration). When configuring the integration, you will be asked for the `Host` of your frigate instance. This value should be the url you use to access Frigate in the browser and will look like `http://<host>:5000/`. If you are using HassOS with the addon, the host should be `http://ccab4aaf-frigate:5000` (or `http://ccab4aaf-frigate-beta:5000` if your are using the beta version of the addon). HomeAssistant needs access to port 5000 (api) and 1935 (rtmp) for all features. The integration will setup the following entities within HomeAssistant:
|
||||
|
||||
Sensors:
|
||||
- Stats to monitor frigate performance
|
||||
@@ -667,7 +745,19 @@ A web server is available on port 5000 with the following endpoints.
|
||||
### `/<camera_name>`
|
||||
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
|
||||
|
||||
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`
|
||||
Accepts the following query string parameters:
|
||||
|param|Type|Description|
|
||||
|----|-----|--|
|
||||
|`fps`|int|Frame rate|
|
||||
|`h`|int|Height in pixels|
|
||||
|`bbox`|int|Show bounding boxes for detected objects (0 or 1)|
|
||||
|`timestamp`|int|Print the timestamp in the upper left (0 or 1)|
|
||||
|`zones`|int|Draw the zones on the image (0 or 1)|
|
||||
|`mask`|int|Overlay the mask on the image (0 or 1)|
|
||||
|`motion`|int|Draw blue boxes for areas with detected motion (0 or 1)|
|
||||
|`regions`|int|Draw green boxes for areas where object detection was run (0 or 1)|
|
||||
|
||||
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`.
|
||||
|
||||
### `/<camera_name>/<object_name>/best.jpg[?h=300&crop=1]`
|
||||
The best snapshot for any object type. It is a full resolution image by default.
|
||||
@@ -679,6 +769,17 @@ Example parameters:
|
||||
### `/<camera_name>/latest.jpg[?h=300]`
|
||||
The most recent frame that frigate has finished processing. It is a full resolution image by default.
|
||||
|
||||
Accepts the following query string parameters:
|
||||
|param|Type|Description|
|
||||
|----|-----|--|
|
||||
|`h`|int|Height in pixels|
|
||||
|`bbox`|int|Show bounding boxes for detected objects (0 or 1)|
|
||||
|`timestamp`|int|Print the timestamp in the upper left (0 or 1)|
|
||||
|`zones`|int|Draw the zones on the image (0 or 1)|
|
||||
|`mask`|int|Overlay the mask on the image (0 or 1)|
|
||||
|`motion`|int|Draw blue boxes for areas with detected motion (0 or 1)|
|
||||
|`regions`|int|Draw green boxes for areas where object detection was run (0 or 1)|
|
||||
|
||||
Example parameters:
|
||||
- `h=300`: resizes the image to 300 pixes tall
|
||||
|
||||
@@ -748,6 +849,9 @@ Sample response:
|
||||
### `/config`
|
||||
A json representation of your configuration
|
||||
|
||||
### `/version`
|
||||
Version info
|
||||
|
||||
### `/events`
|
||||
Events from the database. Accepts the following query string parameters:
|
||||
|param|Type|Description|
|
||||
@@ -790,8 +894,9 @@ is published again.
|
||||
The height and crop of snapshots can be configured in the config.
|
||||
|
||||
### `frigate/events`
|
||||
Message published for each changed event:
|
||||
```json
|
||||
Message published for each changed event. The first message is published when the tracked object is no longer marked as a false_positive. When frigate finds a better snapshot of the tracked object or when a zone change occurs, it will publish a message with the same id. When the event ends, a final message is published with `end_time` set.
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"before": {
|
||||
"id": "1607123955.475377-mxklsc",
|
||||
@@ -869,6 +974,8 @@ Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use yo
|
||||
- EdgeTPU Model: `/edgetpu_model.tflite`
|
||||
- Labels: `/labelmap.txt`
|
||||
|
||||
You also need to update the model width/height in the config if they differ from the defaults.
|
||||
|
||||
### Customizing the Labelmap
|
||||
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
|
||||
|
||||
@@ -895,14 +1002,14 @@ Examples of available modules are:
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### "[mov,mp4,m4a,3gp,3g2,mj2 @ 0x5639eeb6e140] moov atom not found"
|
||||
These messages in the logs are expected in certain situations. Frigate checks the integrity of the video cache before assembling clips. Occasionally these cached files will be invalid and cleaned up automatically.
|
||||
|
||||
### "ffmpeg didnt return a frame. something is wrong"
|
||||
Turn on logging for the camera by overriding the global_args and setting the log level to `info`:
|
||||
Turn on logging for the ffmpeg process by overriding the global_args and setting the log level to `info` (the default is `fatal`). Note that all ffmpeg logs show up in the Frigate logs as `ERROR` level. This does not mean they are actually errors.
|
||||
```yaml
|
||||
ffmpeg:
|
||||
global_args:
|
||||
- -hide_banner
|
||||
- -loglevel
|
||||
- info
|
||||
global_args: -hide_banner -loglevel info
|
||||
```
|
||||
|
||||
### "On connect called"
|
||||
|
||||
@@ -9,7 +9,7 @@ RUN apt-get -qq update \
|
||||
# ffmpeg dependencies
|
||||
libgomp1 \
|
||||
# VAAPI drivers for Intel hardware accel
|
||||
libva-drm2 libva2 i965-va-driver vainfo intel-media-va-driver mesa-va-drivers \
|
||||
libva-drm2 libva2 libmfx1 i965-va-driver vainfo intel-media-va-driver mesa-va-drivers \
|
||||
## Tensorflow lite
|
||||
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
ARG ARCH=amd64
|
||||
ARG FFMPEG_VERSION
|
||||
FROM blakeblackshear/frigate-wheels:${ARCH} as wheels
|
||||
FROM blakeblackshear/frigate-ffmpeg:1.0.0-${ARCH} as ffmpeg
|
||||
FROM blakeblackshear/frigate-ffmpeg:${FFMPEG_VERSION}-${ARCH} as ffmpeg
|
||||
|
||||
FROM ubuntu:20.04
|
||||
LABEL maintainer "blakeb@blakeshome.com"
|
||||
@@ -36,10 +37,9 @@ RUN pip3 install \
|
||||
COPY nginx/nginx.conf /etc/nginx/nginx.conf
|
||||
|
||||
# get model and labels
|
||||
ARG MODEL_REFS=7064b94dd5b996189242320359dbab8b52c94a84
|
||||
COPY labelmap.txt /labelmap.txt
|
||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
|
||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
|
||||
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
|
||||
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess.tflite -O /cpu_model.tflite
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
|
||||
@@ -79,6 +79,7 @@ RUN buildDeps="autoconf \
|
||||
libssl-dev \
|
||||
yasm \
|
||||
libva-dev \
|
||||
libmfx-dev \
|
||||
zlib1g-dev" && \
|
||||
apt-get -yqq update && \
|
||||
apt-get install -yq --no-install-recommends ${buildDeps}
|
||||
@@ -404,6 +405,7 @@ RUN \
|
||||
--enable-gpl \
|
||||
--enable-libfreetype \
|
||||
--enable-libvidstab \
|
||||
--enable-libmfx \
|
||||
--enable-libmp3lame \
|
||||
--enable-libopus \
|
||||
--enable-libtheora \
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
# Notification examples
|
||||
|
||||
Here are some examples of notifications for the HomeAssistant android companion app:
|
||||
```yaml
|
||||
automation:
|
||||
|
||||
@@ -8,45 +9,63 @@ automation:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
conditions:
|
||||
- "{{ trigger.payload_json["after"]["label"] == 'person' }}"
|
||||
- "{{ 'yard' in trigger.payload_json["after"]["entered_zones"] }}"
|
||||
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
|
||||
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: 'A {{trigger.payload_json["after"]["label"]}} has entered the yard.'
|
||||
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
|
||||
data:
|
||||
image: 'https://url.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}.jpg'
|
||||
tag: '{{trigger.payload_json["after"]["id"]}}'
|
||||
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
|
||||
tag: "{{trigger.payload_json['after']['id']}}"
|
||||
|
||||
- alias: When a person leaves a zone named yard
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
conditions:
|
||||
- "{{ trigger.payload_json["after"]["label"] == 'person' }}"
|
||||
- "{{ 'yard' in trigger.payload_json["before"]["current_zones"] }}"
|
||||
- "{{ not 'yard' in trigger.payload_json["after"]["current_zones"] }}"
|
||||
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
|
||||
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
|
||||
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: 'A {{trigger.payload_json["after"]["label"]}} has left the yard.'
|
||||
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
|
||||
data:
|
||||
image: 'https://url.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}.jpg'
|
||||
tag: '{{trigger.payload_json["after"]["id"]}}'
|
||||
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
|
||||
tag: "{{trigger.payload_json['after']['id']}}"
|
||||
|
||||
- alias: Notify for dogs in the front with a high top score
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
conditions:
|
||||
- "{{ trigger.payload_json["after"]["label"] == 'dog' }}"
|
||||
- "{{ trigger.payload_json["after"]["camera"] == 'front' }}"
|
||||
- "{{ trigger.payload_json["after"]["top_score"] > 0.98 }}"
|
||||
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
|
||||
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
|
||||
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
|
||||
action:
|
||||
- service: notify.mobile_app_pixel_3
|
||||
data_template:
|
||||
message: 'High confidence dog detection.'
|
||||
data:
|
||||
image: 'https://url.com/api/frigate/notifications/{{trigger.payload_json["after"]["id"]}}.jpg'
|
||||
tag: '{{trigger.payload_json["after"]["id"]}}'
|
||||
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
|
||||
tag: "{{trigger.payload_json['after']['id']}}"
|
||||
```
|
||||
|
||||
If you are using telegram, you can fetch the image directly from Frigate:
|
||||
```yaml
|
||||
automation:
|
||||
- alias: Notify of events
|
||||
trigger:
|
||||
platform: mqtt
|
||||
topic: frigate/events
|
||||
action:
|
||||
- service: notify.telegram_full
|
||||
data_template:
|
||||
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
|
||||
data:
|
||||
photo:
|
||||
# this url should work for addon users
|
||||
- url: 'http://ccab4aaf-frigate:5000/events/{{trigger.payload_json["after"]["id"]}}/snapshot.jpg'
|
||||
caption : 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
|
||||
```
|
||||
@@ -38,6 +38,13 @@ class FrigateApp():
|
||||
self.camera_metrics = {}
|
||||
|
||||
def ensure_dirs(self):
|
||||
tmpfs_size = self.config.save_clips.tmpfs_cache_size
|
||||
if tmpfs_size:
|
||||
logger.info(f"Creating tmpfs of size {tmpfs_size}")
|
||||
rc = os.system(f"mount -t tmpfs -o size={tmpfs_size} tmpfs {CACHE_DIR}")
|
||||
if rc != 0:
|
||||
logger.error(f"Failed to create tmpfs, error code: {rc}")
|
||||
|
||||
for d in [RECORD_DIR, CLIPS_DIR, CACHE_DIR]:
|
||||
if not os.path.exists(d) and not os.path.islink(d):
|
||||
logger.info(f"Creating directory: {d}")
|
||||
@@ -68,6 +75,24 @@ class FrigateApp():
|
||||
'frame_queue': mp.Queue(maxsize=2)
|
||||
}
|
||||
|
||||
def check_config(self):
|
||||
for name, camera in self.config.cameras.items():
|
||||
assigned_roles = list(set([r for i in camera.ffmpeg.inputs for r in i.roles]))
|
||||
if not camera.save_clips.enabled and 'clips' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has clips assigned to an input, but save_clips is not enabled.")
|
||||
elif camera.save_clips.enabled and not 'clips' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has save_clips enabled, but clips is not assigned to an input.")
|
||||
|
||||
if not camera.record.enabled and 'record' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has record assigned to an input, but record is not enabled.")
|
||||
elif camera.record.enabled and not 'record' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has record enabled, but record is not assigned to an input.")
|
||||
|
||||
if not camera.rtmp.enabled and 'rtmp' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled.")
|
||||
elif camera.rtmp.enabled and not 'rtmp' in assigned_roles:
|
||||
logger.warning(f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input.")
|
||||
|
||||
def set_log_levels(self):
|
||||
logging.getLogger().setLevel(self.config.logger.default)
|
||||
for log, level in self.config.logger.logs.items():
|
||||
@@ -85,7 +110,7 @@ class FrigateApp():
|
||||
self.detected_frames_queue = mp.Queue(maxsize=len(self.config.cameras.keys())*2)
|
||||
|
||||
def init_database(self):
|
||||
self.db = SqliteExtDatabase(f"/{os.path.join(CLIPS_DIR, 'frigate.db')}")
|
||||
self.db = SqliteExtDatabase(self.config.database.path)
|
||||
models = [Event]
|
||||
self.db.bind(models)
|
||||
self.db.create_tables(models, safe=True)
|
||||
@@ -97,18 +122,19 @@ class FrigateApp():
|
||||
self.mqtt_client = create_mqtt_client(self.config.mqtt)
|
||||
|
||||
def start_detectors(self):
|
||||
model_shape = (self.config.model.height, self.config.model.width)
|
||||
for name in self.config.cameras.keys():
|
||||
self.detection_out_events[name] = mp.Event()
|
||||
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=300*300*3)
|
||||
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=self.config.model.height*self.config.model.width*3)
|
||||
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
|
||||
self.detection_shms.append(shm_in)
|
||||
self.detection_shms.append(shm_out)
|
||||
|
||||
for name, detector in self.config.detectors.items():
|
||||
if detector.type == 'cpu':
|
||||
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, out_events=self.detection_out_events, tf_device='cpu')
|
||||
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, 'cpu', detector.num_threads)
|
||||
if detector.type == 'edgetpu':
|
||||
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, out_events=self.detection_out_events, tf_device=detector.device)
|
||||
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads)
|
||||
|
||||
def start_detected_frames_processor(self):
|
||||
self.detected_frames_processor = TrackedObjectProcessor(self.config, self.mqtt_client, self.config.mqtt.topic_prefix,
|
||||
@@ -116,8 +142,9 @@ class FrigateApp():
|
||||
self.detected_frames_processor.start()
|
||||
|
||||
def start_camera_processors(self):
|
||||
model_shape = (self.config.model.height, self.config.model.width)
|
||||
for name, config in self.config.cameras.items():
|
||||
camera_process = mp.Process(target=track_camera, name=f"camera_processor:{name}", args=(name, config,
|
||||
camera_process = mp.Process(target=track_camera, name=f"camera_processor:{name}", args=(name, config, model_shape,
|
||||
self.detection_queue, self.detection_out_events[name], self.detected_frames_queue,
|
||||
self.camera_metrics[name]))
|
||||
camera_process.daemon = True
|
||||
@@ -153,19 +180,20 @@ class FrigateApp():
|
||||
def start(self):
|
||||
self.init_logger()
|
||||
try:
|
||||
self.ensure_dirs()
|
||||
try:
|
||||
self.init_config()
|
||||
except Exception as e:
|
||||
logger.error(f"Error parsing config: {e}")
|
||||
self.log_process.terminate()
|
||||
sys.exit(1)
|
||||
self.ensure_dirs()
|
||||
self.check_config()
|
||||
self.set_log_levels()
|
||||
self.init_queues()
|
||||
self.init_database()
|
||||
self.init_mqtt()
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
print(e)
|
||||
self.log_process.terminate()
|
||||
sys.exit(1)
|
||||
self.start_detectors()
|
||||
|
||||
@@ -15,7 +15,8 @@ DETECTORS_SCHEMA = vol.Schema(
|
||||
{
|
||||
vol.Required(str): {
|
||||
vol.Required('type', default='edgetpu'): vol.In(['cpu', 'edgetpu']),
|
||||
vol.Optional('device', default='usb'): str
|
||||
vol.Optional('device', default='usb'): str,
|
||||
vol.Optional('num_threads', default=3): int
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -50,6 +51,7 @@ SAVE_CLIPS_RETAIN_SCHEMA = vol.Schema(
|
||||
SAVE_CLIPS_SCHEMA = vol.Schema(
|
||||
{
|
||||
vol.Optional('max_seconds', default=300): int,
|
||||
'tmpfs_cache_size': str,
|
||||
vol.Optional('retain', default={}): SAVE_CLIPS_RETAIN_SCHEMA
|
||||
}
|
||||
)
|
||||
@@ -84,12 +86,28 @@ GLOBAL_FFMPEG_SCHEMA = vol.Schema(
|
||||
}
|
||||
)
|
||||
|
||||
MOTION_SCHEMA = vol.Schema(
|
||||
{
|
||||
'threshold': vol.Range(min=1, max=255),
|
||||
'contour_area': int,
|
||||
'delta_alpha': float,
|
||||
'frame_alpha': float,
|
||||
'frame_height': int
|
||||
}
|
||||
)
|
||||
|
||||
DETECT_SCHEMA = vol.Schema(
|
||||
{
|
||||
'max_disappeared': int
|
||||
}
|
||||
)
|
||||
|
||||
FILTER_SCHEMA = vol.Schema(
|
||||
{
|
||||
str: {
|
||||
vol.Optional('min_area', default=0): int,
|
||||
vol.Optional('max_area', default=24000000): int,
|
||||
vol.Optional('threshold', default=0.85): float
|
||||
vol.Optional('threshold', default=0.7): float
|
||||
}
|
||||
}
|
||||
)
|
||||
@@ -109,16 +127,6 @@ OBJECTS_SCHEMA = vol.Schema(vol.All(filters_for_all_tracked_objects,
|
||||
}
|
||||
))
|
||||
|
||||
DEFAULT_CAMERA_SAVE_CLIPS = {
|
||||
'enabled': False
|
||||
}
|
||||
DEFAULT_CAMERA_SNAPSHOTS = {
|
||||
'show_timestamp': True,
|
||||
'draw_zones': False,
|
||||
'draw_bounding_boxes': True,
|
||||
'crop_to_region': True
|
||||
}
|
||||
|
||||
def each_role_used_once(inputs):
|
||||
roles = [role for i in inputs for role in i['roles']]
|
||||
roles_set = set(roles)
|
||||
@@ -158,7 +166,7 @@ CAMERAS_SCHEMA = vol.Schema(vol.All(
|
||||
vol.Required('height'): int,
|
||||
vol.Required('width'): int,
|
||||
'fps': int,
|
||||
'mask': str,
|
||||
'mask': vol.Any(str, [str]),
|
||||
vol.Optional('best_image_timeout', default=60): int,
|
||||
vol.Optional('zones', default={}): {
|
||||
str: {
|
||||
@@ -166,9 +174,10 @@ CAMERAS_SCHEMA = vol.Schema(vol.All(
|
||||
vol.Optional('filters', default={}): FILTER_SCHEMA
|
||||
}
|
||||
},
|
||||
vol.Optional('save_clips', default=DEFAULT_CAMERA_SAVE_CLIPS): {
|
||||
vol.Optional('save_clips', default={}): {
|
||||
vol.Optional('enabled', default=False): bool,
|
||||
vol.Optional('pre_capture', default=30): int,
|
||||
vol.Optional('pre_capture', default=5): int,
|
||||
vol.Optional('post_capture', default=5): int,
|
||||
'objects': [str],
|
||||
vol.Optional('retain', default={}): SAVE_CLIPS_RETAIN_SCHEMA,
|
||||
},
|
||||
@@ -179,20 +188,29 @@ CAMERAS_SCHEMA = vol.Schema(vol.All(
|
||||
vol.Optional('rtmp', default={}): {
|
||||
vol.Required('enabled', default=True): bool,
|
||||
},
|
||||
vol.Optional('snapshots', default=DEFAULT_CAMERA_SNAPSHOTS): {
|
||||
vol.Optional('snapshots', default={}): {
|
||||
vol.Optional('show_timestamp', default=True): bool,
|
||||
vol.Optional('draw_zones', default=False): bool,
|
||||
vol.Optional('draw_bounding_boxes', default=True): bool,
|
||||
vol.Optional('crop_to_region', default=True): bool,
|
||||
vol.Optional('height', default=175): int
|
||||
},
|
||||
'objects': OBJECTS_SCHEMA
|
||||
'objects': OBJECTS_SCHEMA,
|
||||
vol.Optional('motion', default={}): MOTION_SCHEMA,
|
||||
vol.Optional('detect', default={}): DETECT_SCHEMA
|
||||
}
|
||||
}, vol.Msg(ensure_zones_and_cameras_have_different_names, msg='Zones cannot share names with cameras'))
|
||||
)
|
||||
|
||||
FRIGATE_CONFIG_SCHEMA = vol.Schema(
|
||||
{
|
||||
vol.Optional('database', default={}): {
|
||||
vol.Optional('path', default=os.path.join(CLIPS_DIR, 'frigate.db')): str
|
||||
},
|
||||
vol.Optional('model', default={'width': 320, 'height': 320}): {
|
||||
vol.Required('width'): int,
|
||||
vol.Required('height'): int
|
||||
},
|
||||
vol.Optional('detectors', default=DEFAULT_DETECTORS): DETECTORS_SCHEMA,
|
||||
'mqtt': MQTT_SCHEMA,
|
||||
vol.Optional('logger', default={'default': 'info', 'logs': {}}): {
|
||||
@@ -206,14 +224,49 @@ FRIGATE_CONFIG_SCHEMA = vol.Schema(
|
||||
},
|
||||
vol.Optional('ffmpeg', default={}): GLOBAL_FFMPEG_SCHEMA,
|
||||
vol.Optional('objects', default={}): OBJECTS_SCHEMA,
|
||||
vol.Optional('motion', default={}): MOTION_SCHEMA,
|
||||
vol.Optional('detect', default={}): DETECT_SCHEMA,
|
||||
vol.Required('cameras', default={}): CAMERAS_SCHEMA
|
||||
}
|
||||
)
|
||||
|
||||
class DatabaseConfig():
|
||||
def __init__(self, config):
|
||||
self._path = config['path']
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return self._path
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'path': self.path
|
||||
}
|
||||
|
||||
class ModelConfig():
|
||||
def __init__(self, config):
|
||||
self._width = config['width']
|
||||
self._height = config['height']
|
||||
|
||||
@property
|
||||
def width(self):
|
||||
return self._width
|
||||
|
||||
@property
|
||||
def height(self):
|
||||
return self._height
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'width': self.width,
|
||||
'height': self.height
|
||||
}
|
||||
|
||||
class DetectorConfig():
|
||||
def __init__(self, config):
|
||||
self._type = config['type']
|
||||
self._device = config['device']
|
||||
self._num_threads = config['num_threads']
|
||||
|
||||
@property
|
||||
def type(self):
|
||||
@@ -223,10 +276,15 @@ class DetectorConfig():
|
||||
def device(self):
|
||||
return self._device
|
||||
|
||||
@property
|
||||
def num_threads(self):
|
||||
return self._num_threads
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'type': self.type,
|
||||
'device': self.device
|
||||
'device': self.device,
|
||||
'num_threads': self.num_threads
|
||||
}
|
||||
|
||||
class LoggerConfig():
|
||||
@@ -353,12 +411,17 @@ class SaveClipsRetainConfig():
|
||||
class SaveClipsConfig():
|
||||
def __init__(self, config):
|
||||
self._max_seconds = config['max_seconds']
|
||||
self._tmpfs_cache_size = config.get('tmpfs_cache_size', '').strip()
|
||||
self._retain = SaveClipsRetainConfig(config['retain'], config['retain'])
|
||||
|
||||
@property
|
||||
def max_seconds(self):
|
||||
return self._max_seconds
|
||||
|
||||
@property
|
||||
def tmpfs_cache_size(self):
|
||||
return self._tmpfs_cache_size
|
||||
|
||||
@property
|
||||
def retain(self):
|
||||
return self._retain
|
||||
@@ -366,6 +429,7 @@ class SaveClipsConfig():
|
||||
def to_dict(self):
|
||||
return {
|
||||
'max_seconds': self.max_seconds,
|
||||
'tmpfs_cache_size': self.tmpfs_cache_size,
|
||||
'retain': self.retain.to_dict()
|
||||
}
|
||||
|
||||
@@ -482,6 +546,7 @@ class CameraSaveClipsConfig():
|
||||
def __init__(self, global_config, config):
|
||||
self._enabled = config['enabled']
|
||||
self._pre_capture = config['pre_capture']
|
||||
self._post_capture = config['post_capture']
|
||||
self._objects = config.get('objects', global_config['objects']['track'])
|
||||
self._retain = SaveClipsRetainConfig(global_config['save_clips']['retain'], config['retain'])
|
||||
|
||||
@@ -493,6 +558,10 @@ class CameraSaveClipsConfig():
|
||||
def pre_capture(self):
|
||||
return self._pre_capture
|
||||
|
||||
@property
|
||||
def post_capture(self):
|
||||
return self._post_capture
|
||||
|
||||
@property
|
||||
def objects(self):
|
||||
return self._objects
|
||||
@@ -505,6 +574,7 @@ class CameraSaveClipsConfig():
|
||||
return {
|
||||
'enabled': self.enabled,
|
||||
'pre_capture': self.pre_capture,
|
||||
'post_capture': self.post_capture,
|
||||
'objects': self.objects,
|
||||
'retain': self.retain.to_dict()
|
||||
}
|
||||
@@ -522,6 +592,58 @@ class CameraRtmpConfig():
|
||||
'enabled': self.enabled,
|
||||
}
|
||||
|
||||
class MotionConfig():
|
||||
def __init__(self, global_config, config, camera_height: int):
|
||||
self._threshold = config.get('threshold', global_config.get('threshold', 25))
|
||||
self._contour_area = config.get('contour_area', global_config.get('contour_area', 100))
|
||||
self._delta_alpha = config.get('delta_alpha', global_config.get('delta_alpha', 0.2))
|
||||
self._frame_alpha = config.get('frame_alpha', global_config.get('frame_alpha', 0.2))
|
||||
self._frame_height = config.get('frame_height', global_config.get('frame_height', camera_height//6))
|
||||
|
||||
@property
|
||||
def threshold(self):
|
||||
return self._threshold
|
||||
|
||||
@property
|
||||
def contour_area(self):
|
||||
return self._contour_area
|
||||
|
||||
@property
|
||||
def delta_alpha(self):
|
||||
return self._delta_alpha
|
||||
|
||||
@property
|
||||
def frame_alpha(self):
|
||||
return self._frame_alpha
|
||||
|
||||
@property
|
||||
def frame_height(self):
|
||||
return self._frame_height
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'threshold': self.threshold,
|
||||
'contour_area': self.contour_area,
|
||||
'delta_alpha': self.delta_alpha,
|
||||
'frame_alpha': self.frame_alpha,
|
||||
'frame_height': self.frame_height,
|
||||
}
|
||||
|
||||
|
||||
|
||||
class DetectConfig():
|
||||
def __init__(self, global_config, config, camera_fps):
|
||||
self._max_disappeared = config.get('max_disappeared', global_config.get('max_disappeared', camera_fps*2))
|
||||
|
||||
@property
|
||||
def max_disappeared(self):
|
||||
return self._max_disappeared
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'max_disappeared': self._max_disappeared,
|
||||
}
|
||||
|
||||
class ZoneConfig():
|
||||
def __init__(self, name, config):
|
||||
self._coordinates = config['coordinates']
|
||||
@@ -584,40 +706,46 @@ class CameraConfig():
|
||||
self._rtmp = CameraRtmpConfig(global_config, config['rtmp'])
|
||||
self._snapshots = CameraSnapshotsConfig(config['snapshots'])
|
||||
self._objects = ObjectConfig(global_config['objects'], config.get('objects', {}))
|
||||
self._motion = MotionConfig(global_config['motion'], config['motion'], self._height)
|
||||
self._detect = DetectConfig(global_config['detect'], config['detect'], config.get('fps', 5))
|
||||
|
||||
self._ffmpeg_cmds = []
|
||||
for ffmpeg_input in self._ffmpeg.inputs:
|
||||
ffmpeg_cmd = self._get_ffmpeg_cmd(ffmpeg_input)
|
||||
if ffmpeg_cmd is None:
|
||||
continue
|
||||
|
||||
self._ffmpeg_cmds.append({
|
||||
'roles': ffmpeg_input.roles,
|
||||
'cmd': self._get_ffmpeg_cmd(ffmpeg_input)
|
||||
'cmd': ffmpeg_cmd
|
||||
})
|
||||
|
||||
|
||||
self._set_zone_colors(self._zones)
|
||||
|
||||
def _create_mask(self, mask):
|
||||
if mask:
|
||||
if mask.startswith('base64,'):
|
||||
img = base64.b64decode(mask[7:])
|
||||
np_img = np.fromstring(img, dtype=np.uint8)
|
||||
mask_img = cv2.imdecode(np_img, cv2.IMREAD_GRAYSCALE)
|
||||
elif mask.startswith('poly,'):
|
||||
points = mask.split(',')[1:]
|
||||
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
mask_img = np.zeros(self.frame_shape, np.uint8)
|
||||
mask_img[:] = 255
|
||||
cv2.fillPoly(mask_img, pts=[contour], color=(0))
|
||||
else:
|
||||
mask_img = cv2.imread(f"/config/{mask}", cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
mask_img = None
|
||||
|
||||
if mask_img is None or mask_img.size == 0:
|
||||
mask_img = np.zeros(self.frame_shape, np.uint8)
|
||||
mask_img[:] = 255
|
||||
if isinstance(mask, list):
|
||||
for m in mask:
|
||||
self._add_mask(m, mask_img)
|
||||
|
||||
elif isinstance(mask, str):
|
||||
self._add_mask(mask, mask_img)
|
||||
|
||||
return mask_img
|
||||
|
||||
def _add_mask(self, mask, mask_img):
|
||||
if mask.startswith('poly,'):
|
||||
points = mask.split(',')[1:]
|
||||
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
cv2.fillPoly(mask_img, pts=[contour], color=(0))
|
||||
else:
|
||||
mask_file = cv2.imread(f"/config/{mask}", cv2.IMREAD_GRAYSCALE)
|
||||
if not mask_file.size == 0:
|
||||
mask_img[np.where(mask_file==[0])] = [0]
|
||||
|
||||
def _get_ffmpeg_cmd(self, ffmpeg_input):
|
||||
ffmpeg_output_args = []
|
||||
if 'detect' in ffmpeg_input.roles:
|
||||
@@ -636,13 +764,20 @@ class CameraConfig():
|
||||
ffmpeg_output_args = self.ffmpeg.output_args['record'] + [
|
||||
f"{os.path.join(RECORD_DIR, self.name)}-%Y%m%d%H%M%S.mp4"
|
||||
] + ffmpeg_output_args
|
||||
return (['ffmpeg'] +
|
||||
|
||||
# if there arent any outputs enabled for this input
|
||||
if len(ffmpeg_output_args) == 0:
|
||||
return None
|
||||
|
||||
cmd = (['ffmpeg'] +
|
||||
ffmpeg_input.global_args +
|
||||
ffmpeg_input.hwaccel_args +
|
||||
ffmpeg_input.input_args +
|
||||
['-i', ffmpeg_input.path] +
|
||||
ffmpeg_output_args)
|
||||
|
||||
return [part for part in cmd if part != '']
|
||||
|
||||
def _set_zone_colors(self, zones: Dict[str, ZoneConfig]):
|
||||
# set colors for zones
|
||||
all_zone_names = zones.keys()
|
||||
@@ -706,6 +841,14 @@ class CameraConfig():
|
||||
def objects(self):
|
||||
return self._objects
|
||||
|
||||
@property
|
||||
def motion(self):
|
||||
return self._motion
|
||||
|
||||
@property
|
||||
def detect(self):
|
||||
return self._detect
|
||||
|
||||
@property
|
||||
def frame_shape(self):
|
||||
return self._frame_shape
|
||||
@@ -731,6 +874,8 @@ class CameraConfig():
|
||||
'rtmp': self.rtmp.to_dict(),
|
||||
'snapshots': self.snapshots.to_dict(),
|
||||
'objects': self.objects.to_dict(),
|
||||
'motion': self.motion.to_dict(),
|
||||
'detect': self.detect.to_dict(),
|
||||
'frame_shape': self.frame_shape,
|
||||
'ffmpeg_cmds': [{'roles': c['roles'], 'cmd': ' '.join(c['cmd'])} for c in self.ffmpeg_cmds],
|
||||
}
|
||||
@@ -747,6 +892,8 @@ class FrigateConfig():
|
||||
|
||||
config = self._sub_env_vars(config)
|
||||
|
||||
self._database = DatabaseConfig(config['database'])
|
||||
self._model = ModelConfig(config['model'])
|
||||
self._detectors = { name: DetectorConfig(d) for name, d in config['detectors'].items() }
|
||||
self._mqtt = MqttConfig(config['mqtt'])
|
||||
self._save_clips = SaveClipsConfig(config['save_clips'])
|
||||
@@ -778,6 +925,8 @@ class FrigateConfig():
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'database': self.database.to_dict(),
|
||||
'model': self.model.to_dict(),
|
||||
'detectors': {k: d.to_dict() for k, d in self.detectors.items()},
|
||||
'mqtt': self.mqtt.to_dict(),
|
||||
'save_clips': self.save_clips.to_dict(),
|
||||
@@ -785,6 +934,14 @@ class FrigateConfig():
|
||||
'logger': self.logger.to_dict()
|
||||
}
|
||||
|
||||
@property
|
||||
def database(self):
|
||||
return self._database
|
||||
|
||||
@property
|
||||
def model(self):
|
||||
return self._model
|
||||
|
||||
@property
|
||||
def detectors(self) -> Dict[str, DetectorConfig]:
|
||||
return self._detectors
|
||||
|
||||
@@ -43,7 +43,7 @@ class ObjectDetector(ABC):
|
||||
pass
|
||||
|
||||
class LocalObjectDetector(ObjectDetector):
|
||||
def __init__(self, tf_device=None, labels=None):
|
||||
def __init__(self, tf_device=None, num_threads=3, labels=None):
|
||||
self.fps = EventsPerSecond()
|
||||
if labels is None:
|
||||
self.labels = {}
|
||||
@@ -66,7 +66,7 @@ class LocalObjectDetector(ObjectDetector):
|
||||
|
||||
if edge_tpu_delegate is None:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/cpu_model.tflite')
|
||||
model_path='/cpu_model.tflite', num_threads=num_threads)
|
||||
else:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/edgetpu_model.tflite',
|
||||
@@ -106,7 +106,7 @@ class LocalObjectDetector(ObjectDetector):
|
||||
|
||||
return detections
|
||||
|
||||
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, tf_device):
|
||||
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, model_shape, tf_device, num_threads):
|
||||
threading.current_thread().name = f"detector:{name}"
|
||||
logger = logging.getLogger(f"detector.{name}")
|
||||
logger.info(f"Starting detection process: {os.getpid()}")
|
||||
@@ -120,7 +120,7 @@ def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
object_detector = LocalObjectDetector(tf_device=tf_device)
|
||||
object_detector = LocalObjectDetector(tf_device=tf_device, num_threads=num_threads)
|
||||
|
||||
outputs = {}
|
||||
for name in out_events.keys():
|
||||
@@ -139,7 +139,7 @@ def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.
|
||||
connection_id = detection_queue.get(timeout=5)
|
||||
except queue.Empty:
|
||||
continue
|
||||
input_frame = frame_manager.get(connection_id, (1,300,300,3))
|
||||
input_frame = frame_manager.get(connection_id, (1,model_shape[0],model_shape[1],3))
|
||||
|
||||
if input_frame is None:
|
||||
continue
|
||||
@@ -155,14 +155,16 @@ def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self, name, detection_queue, out_events, tf_device=None):
|
||||
def __init__(self, name, detection_queue, out_events, model_shape, tf_device=None, num_threads=3):
|
||||
self.name = name
|
||||
self.out_events = out_events
|
||||
self.detection_queue = detection_queue
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
self.detection_start = mp.Value('d', 0.0)
|
||||
self.detect_process = None
|
||||
self.model_shape = model_shape
|
||||
self.tf_device = tf_device
|
||||
self.num_threads = num_threads
|
||||
self.start_or_restart()
|
||||
|
||||
def stop(self):
|
||||
@@ -178,19 +180,19 @@ class EdgeTPUProcess():
|
||||
self.detection_start.value = 0.0
|
||||
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||
self.stop()
|
||||
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.tf_device))
|
||||
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.model_shape, self.tf_device, self.num_threads))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
class RemoteObjectDetector():
|
||||
def __init__(self, name, labels, detection_queue, event):
|
||||
def __init__(self, name, labels, detection_queue, event, model_shape):
|
||||
self.labels = load_labels(labels)
|
||||
self.name = name
|
||||
self.fps = EventsPerSecond()
|
||||
self.detection_queue = detection_queue
|
||||
self.event = event
|
||||
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
|
||||
self.np_shm = np.ndarray((1,300,300,3), dtype=np.uint8, buffer=self.shm.buf)
|
||||
self.np_shm = np.ndarray((1,model_shape[0],model_shape[1],3), dtype=np.uint8, buffer=self.shm.buf)
|
||||
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
|
||||
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
|
||||
|
||||
|
||||
@@ -36,9 +36,10 @@ class EventProcessor(threading.Thread):
|
||||
|
||||
files_in_use = []
|
||||
for process in psutil.process_iter():
|
||||
try:
|
||||
if process.name() != 'ffmpeg':
|
||||
continue
|
||||
try:
|
||||
|
||||
flist = process.open_files()
|
||||
if flist:
|
||||
for nt in flist:
|
||||
@@ -96,18 +97,18 @@ class EventProcessor(threading.Thread):
|
||||
del self.cached_clips[f]
|
||||
os.remove(os.path.join(CACHE_DIR,f))
|
||||
|
||||
def create_clip(self, camera, event_data, pre_capture):
|
||||
def create_clip(self, camera, event_data, pre_capture, post_capture):
|
||||
# get all clips from the camera with the event sorted
|
||||
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
|
||||
|
||||
while sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']:
|
||||
while len(sorted_clips) == 0 or sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']+post_capture:
|
||||
time.sleep(5)
|
||||
self.refresh_cache()
|
||||
# get all clips from the camera with the event sorted
|
||||
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
|
||||
|
||||
playlist_start = event_data['start_time']-pre_capture
|
||||
playlist_end = event_data['end_time']+5
|
||||
playlist_end = event_data['end_time']+post_capture
|
||||
playlist_lines = []
|
||||
for clip in sorted_clips:
|
||||
# clip ends before playlist start time, skip
|
||||
@@ -138,6 +139,8 @@ class EventProcessor(threading.Thread):
|
||||
'-',
|
||||
'-c',
|
||||
'copy',
|
||||
'-movflags',
|
||||
'+faststart',
|
||||
f"{os.path.join(CLIPS_DIR, clip_name)}.mp4"
|
||||
]
|
||||
|
||||
@@ -180,7 +183,7 @@ class EventProcessor(threading.Thread):
|
||||
|
||||
if event_type == 'end':
|
||||
if len(self.cached_clips) > 0 and not event_data['false_positive']:
|
||||
self.create_clip(camera, event_data, save_clips_config.pre_capture)
|
||||
self.create_clip(camera, event_data, save_clips_config.pre_capture, save_clips_config.post_capture)
|
||||
Event.create(
|
||||
id=event_data['id'],
|
||||
label=event_data['label'],
|
||||
|
||||
@@ -13,6 +13,8 @@ from peewee import SqliteDatabase, operator, fn, DoesNotExist
|
||||
from playhouse.shortcuts import model_to_dict
|
||||
|
||||
from frigate.models import Event
|
||||
from frigate.util import calculate_region
|
||||
from frigate.version import VERSION
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -144,6 +146,10 @@ def events():
|
||||
def config():
|
||||
return jsonify(current_app.frigate_config.to_dict())
|
||||
|
||||
@bp.route('/version')
|
||||
def version():
|
||||
return VERSION
|
||||
|
||||
@bp.route('/stats')
|
||||
def stats():
|
||||
camera_metrics = current_app.camera_metrics
|
||||
@@ -185,7 +191,8 @@ def best(camera_name, label):
|
||||
|
||||
crop = bool(request.args.get('crop', 0, type=int))
|
||||
if crop:
|
||||
region = best_object.get('region', [0,0,300,300])
|
||||
box = best_object.get('box', (0,0,300,300))
|
||||
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
|
||||
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
||||
|
||||
height = int(request.args.get('h', str(best_frame.shape[0])))
|
||||
@@ -203,18 +210,34 @@ def best(camera_name, label):
|
||||
def mjpeg_feed(camera_name):
|
||||
fps = int(request.args.get('fps', '3'))
|
||||
height = int(request.args.get('h', '360'))
|
||||
draw_options = {
|
||||
'bounding_boxes': request.args.get('bbox', type=int),
|
||||
'timestamp': request.args.get('timestamp', type=int),
|
||||
'zones': request.args.get('zones', type=int),
|
||||
'mask': request.args.get('mask', type=int),
|
||||
'motion_boxes': request.args.get('motion', type=int),
|
||||
'regions': request.args.get('regions', type=int),
|
||||
}
|
||||
if camera_name in current_app.frigate_config.cameras:
|
||||
# return a multipart response
|
||||
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height),
|
||||
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height, draw_options),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
@bp.route('/<camera_name>/latest.jpg')
|
||||
def latest_frame(camera_name):
|
||||
draw_options = {
|
||||
'bounding_boxes': request.args.get('bbox', type=int),
|
||||
'timestamp': request.args.get('timestamp', type=int),
|
||||
'zones': request.args.get('zones', type=int),
|
||||
'mask': request.args.get('mask', type=int),
|
||||
'motion_boxes': request.args.get('motion', type=int),
|
||||
'regions': request.args.get('regions', type=int),
|
||||
}
|
||||
if camera_name in current_app.frigate_config.cameras:
|
||||
# max out at specified FPS
|
||||
frame = current_app.detected_frames_processor.get_current_frame(camera_name)
|
||||
frame = current_app.detected_frames_processor.get_current_frame(camera_name, draw_options)
|
||||
if frame is None:
|
||||
frame = np.zeros((720,1280,3), np.uint8)
|
||||
|
||||
@@ -230,11 +253,11 @@ def latest_frame(camera_name):
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
def imagestream(detected_frames_processor, camera_name, fps, height):
|
||||
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
|
||||
while True:
|
||||
# max out at specified FPS
|
||||
time.sleep(1/fps)
|
||||
frame = detected_frames_processor.get_current_frame(camera_name, draw=True)
|
||||
frame = detected_frames_processor.get_current_frame(camera_name, draw_options)
|
||||
if frame is None:
|
||||
frame = np.zeros((height,int(height*16/9),3), np.uint8)
|
||||
|
||||
|
||||
@@ -1,13 +1,15 @@
|
||||
import cv2
|
||||
import imutils
|
||||
import numpy as np
|
||||
from frigate.config import MotionConfig
|
||||
|
||||
|
||||
class MotionDetector():
|
||||
def __init__(self, frame_shape, mask, resize_factor=4):
|
||||
def __init__(self, frame_shape, mask, config: MotionConfig):
|
||||
self.config = config
|
||||
self.frame_shape = frame_shape
|
||||
self.resize_factor = resize_factor
|
||||
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
|
||||
self.resize_factor = frame_shape[0]/config.frame_height
|
||||
self.motion_frame_size = (config.frame_height, config.frame_height*frame_shape[1]//frame_shape[0])
|
||||
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
|
||||
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
|
||||
self.motion_frame_count = 0
|
||||
@@ -23,6 +25,8 @@ class MotionDetector():
|
||||
# resize frame
|
||||
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# TODO: can I improve the contrast of the grayscale image here?
|
||||
|
||||
# convert to grayscale
|
||||
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
@@ -38,14 +42,13 @@ class MotionDetector():
|
||||
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
|
||||
|
||||
# compute the average delta over the past few frames
|
||||
# the alpha value can be modified to configure how sensitive the motion detection is.
|
||||
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
||||
# register as motion, too low and a fast moving person wont be detected as motion
|
||||
# this also assumes that a person is in the same location across more than a single frame
|
||||
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
|
||||
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
|
||||
|
||||
# compute the threshold image for the current frame
|
||||
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
# TODO: threshold
|
||||
current_thresh = cv2.threshold(frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# black out everything in the avg_delta where there isnt motion in the current frame
|
||||
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
|
||||
@@ -53,7 +56,7 @@ class MotionDetector():
|
||||
|
||||
# then look for deltas above the threshold, but only in areas where there is a delta
|
||||
# in the current frame. this prevents deltas from previous frames from being included
|
||||
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
thresh = cv2.threshold(avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
@@ -65,19 +68,18 @@ class MotionDetector():
|
||||
for c in cnts:
|
||||
# if the contour is big enough, count it as motion
|
||||
contour_area = cv2.contourArea(c)
|
||||
if contour_area > 100:
|
||||
if contour_area > self.config.contour_area:
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
|
||||
motion_boxes.append((int(x*self.resize_factor), int(y*self.resize_factor), int((x+w)*self.resize_factor), int((y+h)*self.resize_factor)))
|
||||
|
||||
if len(motion_boxes) > 0:
|
||||
self.motion_frame_count += 1
|
||||
# TODO: this really depends on FPS
|
||||
if self.motion_frame_count >= 10:
|
||||
# only average in the current frame if the difference persists for at least 3 frames
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
|
||||
# only average in the current frame if the difference persists for a bit
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
|
||||
else:
|
||||
# when no motion, just keep averaging the frames together
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
|
||||
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
|
||||
self.motion_frame_count = 0
|
||||
|
||||
return motion_boxes
|
||||
|
||||
@@ -20,7 +20,7 @@ import numpy as np
|
||||
from frigate.config import FrigateConfig, CameraConfig
|
||||
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
|
||||
from frigate.edgetpu import load_labels
|
||||
from frigate.util import SharedMemoryFrameManager, draw_box_with_label
|
||||
from frigate.util import SharedMemoryFrameManager, draw_box_with_label, calculate_region
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -73,7 +73,7 @@ class TrackedObject():
|
||||
self.top_score = self.computed_score = 0.0
|
||||
self.thumbnail_data = None
|
||||
self.frame = None
|
||||
self.previous = None
|
||||
self.previous = self.to_dict()
|
||||
self._snapshot_jpg_time = 0
|
||||
ret, jpg = cv2.imencode('.jpg', np.zeros((300,300,3), np.uint8))
|
||||
self._snapshot_jpg = jpg.tobytes()
|
||||
@@ -99,7 +99,7 @@ class TrackedObject():
|
||||
return median(scores)
|
||||
|
||||
def update(self, current_frame_time, obj_data):
|
||||
previous = self.to_dict()
|
||||
significant_update = False
|
||||
self.obj_data.update(obj_data)
|
||||
# if the object is not in the current frame, add a 0.0 to the score history
|
||||
if self.obj_data['frame_time'] != current_frame_time:
|
||||
@@ -129,7 +129,7 @@ class TrackedObject():
|
||||
'region': self.obj_data['region'],
|
||||
'score': self.obj_data['score']
|
||||
}
|
||||
self.previous = previous
|
||||
significant_update = True
|
||||
|
||||
# check zones
|
||||
current_zones = []
|
||||
@@ -144,7 +144,12 @@ class TrackedObject():
|
||||
current_zones.append(name)
|
||||
self.entered_zones.add(name)
|
||||
|
||||
# if the zones changed, signal an update
|
||||
if not self.false_positive and set(self.current_zones) != set(current_zones):
|
||||
significant_update = True
|
||||
|
||||
self.current_zones = current_zones
|
||||
return significant_update
|
||||
|
||||
def to_dict(self, include_thumbnail: bool = False):
|
||||
return {
|
||||
@@ -187,7 +192,8 @@ class TrackedObject():
|
||||
f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
|
||||
|
||||
if snapshot_config.crop_to_region:
|
||||
region = self.thumbnail_data['region']
|
||||
box = self.thumbnail_data['box']
|
||||
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
|
||||
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
|
||||
|
||||
if snapshot_config.height:
|
||||
@@ -250,15 +256,17 @@ class CameraState():
|
||||
self.previous_frame_id = None
|
||||
self.callbacks = defaultdict(lambda: [])
|
||||
|
||||
def get_current_frame(self, draw=False):
|
||||
def get_current_frame(self, draw_options={}):
|
||||
with self.current_frame_lock:
|
||||
frame_copy = np.copy(self._current_frame)
|
||||
frame_time = self.current_frame_time
|
||||
tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
|
||||
motion_boxes = self.motion_boxes.copy()
|
||||
regions = self.regions.copy()
|
||||
|
||||
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
|
||||
# draw on the frame
|
||||
if draw:
|
||||
if draw_options.get('bounding_boxes'):
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects.values():
|
||||
thickness = 2
|
||||
@@ -271,19 +279,28 @@ class CameraState():
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
||||
|
||||
if self.camera_config.snapshots.show_timestamp:
|
||||
if draw_options.get('regions'):
|
||||
for region in regions:
|
||||
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
|
||||
|
||||
if draw_options.get('timestamp'):
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
if self.camera_config.snapshots.draw_zones:
|
||||
if draw_options.get('zones'):
|
||||
for name, zone in self.camera_config.zones.items():
|
||||
thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
|
||||
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
|
||||
|
||||
if draw_options.get('mask'):
|
||||
mask_overlay = np.where(self.camera_config.mask==[0])
|
||||
frame_copy[mask_overlay] = [0,0,0]
|
||||
|
||||
if draw_options.get('motion_boxes'):
|
||||
for m_box in motion_boxes:
|
||||
cv2.rectangle(frame_copy, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0,0,255), 2)
|
||||
|
||||
return frame_copy
|
||||
|
||||
def finished(self, obj_id):
|
||||
@@ -292,8 +309,10 @@ class CameraState():
|
||||
def on(self, event_type: str, callback: Callable[[Dict], None]):
|
||||
self.callbacks[event_type].append(callback)
|
||||
|
||||
def update(self, frame_time, current_detections):
|
||||
def update(self, frame_time, current_detections, motion_boxes, regions):
|
||||
self.current_frame_time = frame_time
|
||||
self.motion_boxes = motion_boxes
|
||||
self.regions = regions
|
||||
# get the new frame
|
||||
frame_id = f"{self.name}{frame_time}"
|
||||
current_frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape_yuv)
|
||||
@@ -313,11 +332,11 @@ class CameraState():
|
||||
|
||||
for id in updated_ids:
|
||||
updated_obj = self.tracked_objects[id]
|
||||
updated_obj.update(frame_time, current_detections[id])
|
||||
significant_update = updated_obj.update(frame_time, current_detections[id])
|
||||
|
||||
if (not updated_obj.false_positive
|
||||
and updated_obj.thumbnail_data['frame_time'] == frame_time
|
||||
and frame_time not in self.frame_cache):
|
||||
if significant_update:
|
||||
# ensure this frame is stored in the cache
|
||||
if updated_obj.thumbnail_data['frame_time'] == frame_time and frame_time not in self.frame_cache:
|
||||
self.frame_cache[frame_time] = np.copy(current_frame)
|
||||
|
||||
# call event handlers
|
||||
@@ -407,9 +426,10 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
self.event_queue.put(('start', camera, obj.to_dict()))
|
||||
|
||||
def update(camera, obj: TrackedObject, current_frame_time):
|
||||
if not obj.thumbnail_data is None and obj.thumbnail_data['frame_time'] == current_frame_time:
|
||||
message = { 'before': obj.previous, 'after': obj.to_dict() }
|
||||
after = obj.to_dict()
|
||||
message = { 'before': obj.previous, 'after': after }
|
||||
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
|
||||
obj.previous = after
|
||||
|
||||
def end(camera, obj: TrackedObject, current_frame_time):
|
||||
if not obj.false_positive:
|
||||
@@ -447,14 +467,14 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
camera_state = self.camera_states[camera]
|
||||
if label in camera_state.best_objects:
|
||||
best_obj = camera_state.best_objects[label]
|
||||
best = best_obj.to_dict()
|
||||
best['frame'] = camera_state.frame_cache[best_obj.thumbnail_data['frame_time']]
|
||||
best = best_obj.thumbnail_data.copy()
|
||||
best['frame'] = camera_state.frame_cache.get(best_obj.thumbnail_data['frame_time'])
|
||||
return best
|
||||
else:
|
||||
return {}
|
||||
|
||||
def get_current_frame(self, camera, draw=False):
|
||||
return self.camera_states[camera].get_current_frame(draw)
|
||||
def get_current_frame(self, camera, draw_options={}):
|
||||
return self.camera_states[camera].get_current_frame(draw_options)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
@@ -463,13 +483,13 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
break
|
||||
|
||||
try:
|
||||
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
|
||||
camera, frame_time, current_tracked_objects, motion_boxes, regions = self.tracked_objects_queue.get(True, 10)
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
camera_state = self.camera_states[camera]
|
||||
|
||||
camera_state.update(frame_time, current_tracked_objects)
|
||||
camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
|
||||
|
||||
# update zone counts for each label
|
||||
# for each zone in the current camera
|
||||
|
||||
@@ -12,14 +12,15 @@ import cv2
|
||||
import numpy as np
|
||||
from scipy.spatial import distance as dist
|
||||
|
||||
from frigate.util import calculate_region, draw_box_with_label
|
||||
from frigate.config import DetectConfig
|
||||
from frigate.util import draw_box_with_label
|
||||
|
||||
|
||||
class ObjectTracker():
|
||||
def __init__(self, max_disappeared):
|
||||
def __init__(self, config: DetectConfig):
|
||||
self.tracked_objects = {}
|
||||
self.disappeared = {}
|
||||
self.max_disappeared = max_disappeared
|
||||
self.max_disappeared = config.max_disappeared
|
||||
|
||||
def register(self, index, obj):
|
||||
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
||||
|
||||
208
frigate/process_clip.py
Normal file
208
frigate/process_clip.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import subprocess as sp
|
||||
import sys
|
||||
from unittest import TestCase, main
|
||||
|
||||
import click
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
|
||||
from frigate.edgetpu import LocalObjectDetector
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.object_processing import COLOR_MAP, CameraState
|
||||
from frigate.objects import ObjectTracker
|
||||
from frigate.util import (DictFrameManager, EventsPerSecond,
|
||||
SharedMemoryFrameManager, draw_box_with_label)
|
||||
from frigate.video import (capture_frames, process_frames,
|
||||
start_or_restart_ffmpeg)
|
||||
|
||||
logging.basicConfig()
|
||||
logging.root.setLevel(logging.DEBUG)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def get_frame_shape(source):
|
||||
ffprobe_cmd = " ".join([
|
||||
'ffprobe',
|
||||
'-v',
|
||||
'panic',
|
||||
'-show_error',
|
||||
'-show_streams',
|
||||
'-of',
|
||||
'json',
|
||||
'"'+source+'"'
|
||||
])
|
||||
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
||||
(output, err) = p.communicate()
|
||||
p_status = p.wait()
|
||||
info = json.loads(output)
|
||||
|
||||
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
|
||||
|
||||
if video_info['height'] != 0 and video_info['width'] != 0:
|
||||
return (video_info['height'], video_info['width'], 3)
|
||||
|
||||
# fallback to using opencv if ffprobe didnt succeed
|
||||
video = cv2.VideoCapture(source)
|
||||
ret, frame = video.read()
|
||||
frame_shape = frame.shape
|
||||
video.release()
|
||||
return frame_shape
|
||||
|
||||
class ProcessClip():
|
||||
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
|
||||
self.clip_path = clip_path
|
||||
self.camera_name = 'camera'
|
||||
self.config = config
|
||||
self.camera_config = self.config.cameras['camera']
|
||||
self.frame_shape = self.camera_config.frame_shape
|
||||
self.ffmpeg_cmd = [c['cmd'] for c in self.camera_config.ffmpeg_cmds if 'detect' in c['roles']][0]
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
self.frame_queue = mp.Queue()
|
||||
self.detected_objects_queue = mp.Queue()
|
||||
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
|
||||
|
||||
def load_frames(self):
|
||||
fps = EventsPerSecond()
|
||||
skipped_fps = EventsPerSecond()
|
||||
current_frame = mp.Value('d', 0.0)
|
||||
frame_size = self.camera_config.frame_shape_yuv[0] * self.camera_config.frame_shape_yuv[1]
|
||||
ffmpeg_process = start_or_restart_ffmpeg(self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size)
|
||||
capture_frames(ffmpeg_process, self.camera_name, self.camera_config.frame_shape_yuv, self.frame_manager,
|
||||
self.frame_queue, fps, skipped_fps, current_frame)
|
||||
ffmpeg_process.wait()
|
||||
ffmpeg_process.communicate()
|
||||
|
||||
def process_frames(self, objects_to_track=['person'], object_filters={}):
|
||||
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
mask[:] = 255
|
||||
motion_detector = MotionDetector(self.frame_shape, mask, self.camera_config.motion)
|
||||
|
||||
object_detector = LocalObjectDetector(labels='/labelmap.txt')
|
||||
object_tracker = ObjectTracker(self.camera_config.detect)
|
||||
process_info = {
|
||||
'process_fps': mp.Value('d', 0.0),
|
||||
'detection_fps': mp.Value('d', 0.0),
|
||||
'detection_frame': mp.Value('d', 0.0)
|
||||
}
|
||||
stop_event = mp.Event()
|
||||
model_shape = (self.config.model.height, self.config.model.width)
|
||||
|
||||
process_frames(self.camera_name, self.frame_queue, self.frame_shape, model_shape,
|
||||
self.frame_manager, motion_detector, object_detector, object_tracker,
|
||||
self.detected_objects_queue, process_info,
|
||||
objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
|
||||
|
||||
def top_object(self, debug_path=None):
|
||||
obj_detected = False
|
||||
top_computed_score = 0.0
|
||||
def handle_event(name, obj, frame_time):
|
||||
nonlocal obj_detected
|
||||
nonlocal top_computed_score
|
||||
if obj.computed_score > top_computed_score:
|
||||
top_computed_score = obj.computed_score
|
||||
if not obj.false_positive:
|
||||
obj_detected = True
|
||||
self.camera_state.on('new', handle_event)
|
||||
self.camera_state.on('update', handle_event)
|
||||
|
||||
while(not self.detected_objects_queue.empty()):
|
||||
camera_name, frame_time, current_tracked_objects, motion_boxes, regions = self.detected_objects_queue.get()
|
||||
if not debug_path is None:
|
||||
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
|
||||
|
||||
self.camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
|
||||
|
||||
self.frame_manager.delete(self.camera_state.previous_frame_id)
|
||||
|
||||
return {
|
||||
'object_detected': obj_detected,
|
||||
'top_score': top_computed_score
|
||||
}
|
||||
|
||||
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
|
||||
current_frame = cv2.cvtColor(self.frame_manager.get(f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv), cv2.COLOR_YUV2BGR_I420)
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects:
|
||||
thickness = 2
|
||||
color = (0,0,175)
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
else:
|
||||
color = (255,255,0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['id'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
|
||||
|
||||
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", current_frame)
|
||||
|
||||
@click.command()
|
||||
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
|
||||
@click.option("-l", "--label", default='person', help="Label name to detect.")
|
||||
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
|
||||
@click.option("-s", "--scores", default=None, help="File to save csv of top scores")
|
||||
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
|
||||
def process(path, label, threshold, scores, debug_path):
|
||||
clips = []
|
||||
if os.path.isdir(path):
|
||||
files = os.listdir(path)
|
||||
files.sort()
|
||||
clips = [os.path.join(path, file) for file in files]
|
||||
elif os.path.isfile(path):
|
||||
clips.append(path)
|
||||
|
||||
json_config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'camera': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'path.mp4', 'global_args': '', 'input_args': '', 'roles': ['detect'] }
|
||||
]
|
||||
},
|
||||
'height': 1920,
|
||||
'width': 1080
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
results = []
|
||||
for c in clips:
|
||||
logger.info(c)
|
||||
frame_shape = get_frame_shape(c)
|
||||
|
||||
json_config['cameras']['camera']['height'] = frame_shape[0]
|
||||
json_config['cameras']['camera']['width'] = frame_shape[1]
|
||||
json_config['cameras']['camera']['ffmpeg']['inputs'][0]['path'] = c
|
||||
|
||||
config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
|
||||
|
||||
process_clip = ProcessClip(c, frame_shape, config)
|
||||
process_clip.load_frames()
|
||||
process_clip.process_frames(objects_to_track=[label])
|
||||
|
||||
results.append((c, process_clip.top_object(debug_path)))
|
||||
|
||||
if not scores is None:
|
||||
with open(scores, 'w') as writer:
|
||||
for result in results:
|
||||
writer.write(f"{result[0]},{result[1]['top_score']}\n")
|
||||
|
||||
positive_count = sum(1 for result in results if result[1]['object_detected'])
|
||||
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
|
||||
|
||||
if __name__ == '__main__':
|
||||
process()
|
||||
@@ -315,5 +315,30 @@ class TestConfig(TestCase):
|
||||
assert('dog' in config.cameras['back'].save_clips.objects)
|
||||
assert('person' in config.cameras['back'].save_clips.objects)
|
||||
|
||||
def test_role_assigned_but_not_enabled(self):
|
||||
json_config = {
|
||||
'mqtt': {
|
||||
'host': 'mqtt'
|
||||
},
|
||||
'cameras': {
|
||||
'back': {
|
||||
'ffmpeg': {
|
||||
'inputs': [
|
||||
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect', 'rtmp'] },
|
||||
{ 'path': 'rtsp://10.0.0.1:554/clips', 'roles': ['clips'] }
|
||||
]
|
||||
},
|
||||
'height': 1080,
|
||||
'width': 1920
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
config = FrigateConfig(config=json_config)
|
||||
ffmpeg_cmds = config.cameras['back'].ffmpeg_cmds
|
||||
assert(len(ffmpeg_cmds) == 1)
|
||||
assert(not 'clips' in ffmpeg_cmds[0]['roles'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(verbosity=2)
|
||||
|
||||
39
frigate/test/test_yuv_region_2_rgb.py
Normal file
39
frigate/test/test_yuv_region_2_rgb.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from unittest import TestCase, main
|
||||
from frigate.util import yuv_region_2_rgb
|
||||
|
||||
class TestYuvRegion2RGB(TestCase):
|
||||
def setUp(self):
|
||||
self.bgr_frame = np.zeros((100, 200, 3), np.uint8)
|
||||
self.bgr_frame[:] = (0, 0, 255)
|
||||
self.bgr_frame[5:55, 5:55] = (255,0,0)
|
||||
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
|
||||
self.yuv_frame = cv2.cvtColor(self.bgr_frame, cv2.COLOR_BGR2YUV_I420)
|
||||
|
||||
def test_crop_yuv(self):
|
||||
cropped = yuv_region_2_rgb(self.yuv_frame, (10,10,50,50))
|
||||
# ensure the upper left pixel is blue
|
||||
assert(np.all(cropped[0, 0] == [0, 0, 255]))
|
||||
|
||||
def test_crop_yuv_out_of_bounds(self):
|
||||
cropped = yuv_region_2_rgb(self.yuv_frame, (0,0,200,200))
|
||||
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
|
||||
# ensure the upper left pixel is red
|
||||
# the yuv conversion has some noise
|
||||
assert(np.all(cropped[0, 0] == [255, 1, 0]))
|
||||
# ensure the bottom right is black
|
||||
assert(np.all(cropped[199, 199] == [0, 0, 0]))
|
||||
|
||||
def test_crop_yuv_portrait(self):
|
||||
bgr_frame = np.zeros((1920, 1080, 3), np.uint8)
|
||||
bgr_frame[:] = (0, 0, 255)
|
||||
bgr_frame[5:55, 5:55] = (255,0,0)
|
||||
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
|
||||
yuv_frame = cv2.cvtColor(bgr_frame, cv2.COLOR_BGR2YUV_I420)
|
||||
|
||||
cropped = yuv_region_2_rgb(yuv_frame, (0, 852, 648, 1500))
|
||||
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(verbosity=2)
|
||||
165
frigate/util.py
165
frigate/util.py
@@ -47,14 +47,11 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
|
||||
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
|
||||
# size is the longest edge and divisible by 4
|
||||
size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
|
||||
# dont go any smaller than 300
|
||||
if size < 300:
|
||||
size = 300
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
@@ -62,48 +59,156 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = (frame_shape[1]-size)
|
||||
x_offset = max(0, (frame_shape[1]-size))
|
||||
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# if outside the image
|
||||
# # if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
elif y_offset > (frame_shape[0]-size):
|
||||
y_offset = (frame_shape[0]-size)
|
||||
y_offset = max(0, (frame_shape[0]-size))
|
||||
|
||||
return (x_offset, y_offset, x_offset+size, y_offset+size)
|
||||
|
||||
def get_yuv_crop(frame_shape, crop):
|
||||
# crop should be (x1,y1,x2,y2)
|
||||
frame_height = frame_shape[0]//3*2
|
||||
frame_width = frame_shape[1]
|
||||
|
||||
# compute the width/height of the uv channels
|
||||
uv_width = frame_width//2 # width of the uv channels
|
||||
uv_height = frame_height//4 # height of the uv channels
|
||||
|
||||
# compute the offset for upper left corner of the uv channels
|
||||
uv_x_offset = crop[0]//2 # x offset of the uv channels
|
||||
uv_y_offset = crop[1]//4 # y offset of the uv channels
|
||||
|
||||
# compute the width/height of the uv crops
|
||||
uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
|
||||
uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
|
||||
|
||||
# ensure crop dimensions are multiples of 2 and 4
|
||||
y = (
|
||||
crop[0],
|
||||
crop[1],
|
||||
crop[0] + uv_crop_width*2,
|
||||
crop[1] + uv_crop_height*4
|
||||
)
|
||||
|
||||
u1 = (
|
||||
0 + uv_x_offset,
|
||||
frame_height + uv_y_offset,
|
||||
0 + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
u2 = (
|
||||
uv_width + uv_x_offset,
|
||||
frame_height + uv_y_offset,
|
||||
uv_width + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
v1 = (
|
||||
0 + uv_x_offset,
|
||||
frame_height + uv_height + uv_y_offset,
|
||||
0 + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
v2 = (
|
||||
uv_width + uv_x_offset,
|
||||
frame_height + uv_height + uv_y_offset,
|
||||
uv_width + uv_x_offset + uv_crop_width,
|
||||
frame_height + uv_height + uv_y_offset + uv_crop_height
|
||||
)
|
||||
|
||||
return y, u1, u2, v1, v2
|
||||
|
||||
def yuv_region_2_rgb(frame, region):
|
||||
try:
|
||||
height = frame.shape[0]//3*2
|
||||
width = frame.shape[1]
|
||||
|
||||
# get the crop box if the region extends beyond the frame
|
||||
crop_x1 = max(0, region[0])
|
||||
crop_y1 = max(0, region[1])
|
||||
# ensure these are a multiple of 4
|
||||
crop_x2 = min(width, region[2])
|
||||
crop_y2 = min(height, region[3])
|
||||
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
|
||||
|
||||
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
|
||||
|
||||
# if the region starts outside the frame, indent the start point in the cropped frame
|
||||
y_channel_x_offset = abs(min(0, region[0]))
|
||||
y_channel_y_offset = abs(min(0, region[1]))
|
||||
|
||||
uv_channel_x_offset = y_channel_x_offset//2
|
||||
uv_channel_y_offset = y_channel_y_offset//4
|
||||
|
||||
# create the yuv region frame
|
||||
# make sure the size is a multiple of 4
|
||||
size = (region[3] - region[1])//4*4
|
||||
|
||||
x1 = region[0]
|
||||
y1 = region[1]
|
||||
|
||||
uv_x1 = x1//2
|
||||
uv_y1 = y1//4
|
||||
|
||||
uv_width = size//2
|
||||
uv_height = size//4
|
||||
|
||||
u_y_start = height
|
||||
v_y_start = height + height//4
|
||||
two_x_offset = width//2
|
||||
|
||||
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
|
||||
# y channel
|
||||
yuv_cropped_frame[0:size, 0:size] = frame[y1:y1+size, x1:x1+size]
|
||||
# u channel
|
||||
yuv_cropped_frame[size:size+uv_height, 0:uv_width] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1:uv_x1+uv_width]
|
||||
yuv_cropped_frame[size:size+uv_height, uv_width:size] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
|
||||
# v channel
|
||||
yuv_cropped_frame[size+uv_height:size+uv_height*2, 0:uv_width] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1:uv_x1+uv_width]
|
||||
yuv_cropped_frame[size+uv_height:size+uv_height*2, uv_width:size] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
|
||||
# fill in black
|
||||
yuv_cropped_frame[:] = 128
|
||||
yuv_cropped_frame[0:size,0:size] = 16
|
||||
|
||||
# copy the y channel
|
||||
yuv_cropped_frame[
|
||||
y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
|
||||
y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
|
||||
] = frame[
|
||||
y[1]:y[3],
|
||||
y[0]:y[2]
|
||||
]
|
||||
|
||||
uv_crop_width = u1[2] - u1[0]
|
||||
uv_crop_height = u1[3] - u1[1]
|
||||
|
||||
# copy u1
|
||||
yuv_cropped_frame[
|
||||
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
|
||||
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
u1[1]:u1[3],
|
||||
u1[0]:u1[2]
|
||||
]
|
||||
|
||||
# copy u2
|
||||
yuv_cropped_frame[
|
||||
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
|
||||
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
u2[1]:u2[3],
|
||||
u2[0]:u2[2]
|
||||
]
|
||||
|
||||
# copy v1
|
||||
yuv_cropped_frame[
|
||||
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
|
||||
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
v1[1]:v1[3],
|
||||
v1[0]:v1[2]
|
||||
]
|
||||
|
||||
# copy v2
|
||||
yuv_cropped_frame[
|
||||
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
|
||||
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
|
||||
] = frame[
|
||||
v2[1]:v2[3],
|
||||
v2[0]:v2[2]
|
||||
]
|
||||
|
||||
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
|
||||
except:
|
||||
print(f"frame.shape: {frame.shape}")
|
||||
print(f"region: {region}")
|
||||
raise
|
||||
|
||||
def intersection(box_a, box_b):
|
||||
return (
|
||||
|
||||
@@ -64,14 +64,14 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
|
||||
|
||||
return False
|
||||
|
||||
def create_tensor_input(frame, region):
|
||||
def create_tensor_input(frame, model_shape, region):
|
||||
cropped_frame = yuv_region_2_rgb(frame, region)
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
def stop_ffmpeg(ffmpeg_process, logger):
|
||||
@@ -113,14 +113,13 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
|
||||
frame_buffer = frame_manager.create(frame_name, frame_size)
|
||||
try:
|
||||
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
|
||||
except:
|
||||
logger.info(f"{camera_name}: ffmpeg sent a broken frame. something is wrong.")
|
||||
except Exception as e:
|
||||
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
|
||||
|
||||
if ffmpeg_process.poll() != None:
|
||||
logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
|
||||
frame_manager.delete(frame_name)
|
||||
break
|
||||
|
||||
continue
|
||||
|
||||
frame_rate.update()
|
||||
@@ -241,7 +240,7 @@ def capture_camera(name, config: CameraConfig, process_info):
|
||||
camera_watchdog.start()
|
||||
camera_watchdog.join()
|
||||
|
||||
def track_camera(name, config: CameraConfig, detection_queue, result_connection, detected_objects_queue, process_info):
|
||||
def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
|
||||
stop_event = mp.Event()
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
@@ -259,14 +258,14 @@ def track_camera(name, config: CameraConfig, detection_queue, result_connection,
|
||||
object_filters = config.objects.filters
|
||||
mask = config.mask
|
||||
|
||||
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection)
|
||||
motion_detector = MotionDetector(frame_shape, mask, config.motion)
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
|
||||
|
||||
object_tracker = ObjectTracker(10)
|
||||
object_tracker = ObjectTracker(config.detect)
|
||||
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
|
||||
process_frames(name, frame_queue, frame_shape, frame_manager, motion_detector, object_detector,
|
||||
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
|
||||
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, mask, stop_event)
|
||||
|
||||
logger.info(f"{name}: exiting subprocess")
|
||||
@@ -277,8 +276,8 @@ def reduce_boxes(boxes):
|
||||
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
|
||||
return [tuple(b) for b in reduced_boxes]
|
||||
|
||||
def detect(object_detector, frame, region, objects_to_track, object_filters, mask):
|
||||
tensor_input = create_tensor_input(frame, region)
|
||||
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask):
|
||||
tensor_input = create_tensor_input(frame, model_shape, region)
|
||||
|
||||
detections = []
|
||||
region_detections = object_detector.detect(tensor_input)
|
||||
@@ -300,7 +299,7 @@ def detect(object_detector, frame, region, objects_to_track, object_filters, mas
|
||||
detections.append(det)
|
||||
return detections
|
||||
|
||||
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
|
||||
frame_manager: FrameManager, motion_detector: MotionDetector,
|
||||
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
|
||||
detected_objects_queue: mp.Queue, process_info: Dict,
|
||||
@@ -357,7 +356,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
# resize regions and detect
|
||||
detections = []
|
||||
for region in regions:
|
||||
detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
|
||||
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
|
||||
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to 4 times
|
||||
@@ -390,7 +389,9 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
box[0], box[1],
|
||||
box[2], box[3])
|
||||
|
||||
selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
|
||||
regions.append(region)
|
||||
|
||||
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
|
||||
|
||||
refining = True
|
||||
else:
|
||||
@@ -412,6 +413,6 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
|
||||
else:
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects))
|
||||
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
frame_manager.close(f"{camera_name}{frame_time}")
|
||||
|
||||
152
process_clip.py
152
process_clip.py
@@ -1,152 +0,0 @@
|
||||
import sys
|
||||
import click
|
||||
import os
|
||||
import datetime
|
||||
from unittest import TestCase, main
|
||||
from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames, get_frame_shape
|
||||
from frigate.util import DictFrameManager, SharedMemoryFrameManager, EventsPerSecond, draw_box_with_label
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.edgetpu import LocalObjectDetector
|
||||
from frigate.objects import ObjectTracker
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
import cv2
|
||||
from frigate.object_processing import COLOR_MAP, CameraState
|
||||
|
||||
class ProcessClip():
|
||||
def __init__(self, clip_path, frame_shape, config):
|
||||
self.clip_path = clip_path
|
||||
self.frame_shape = frame_shape
|
||||
self.camera_name = 'camera'
|
||||
self.frame_manager = DictFrameManager()
|
||||
# self.frame_manager = SharedMemoryFrameManager()
|
||||
self.frame_queue = mp.Queue()
|
||||
self.detected_objects_queue = mp.Queue()
|
||||
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
|
||||
|
||||
def load_frames(self):
|
||||
fps = EventsPerSecond()
|
||||
skipped_fps = EventsPerSecond()
|
||||
stop_event = mp.Event()
|
||||
detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000)
|
||||
current_frame = mp.Value('d', 0.0)
|
||||
ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel panic -i {self.clip_path} -f rawvideo -pix_fmt rgb24 pipe:".split(" ")
|
||||
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.frame_shape[0]*self.frame_shape[1]*self.frame_shape[2])
|
||||
capture_frames(ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, 1, fps, skipped_fps, stop_event, detection_frame, current_frame)
|
||||
ffmpeg_process.wait()
|
||||
ffmpeg_process.communicate()
|
||||
|
||||
def process_frames(self, objects_to_track=['person'], object_filters={}):
|
||||
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
mask[:] = 255
|
||||
motion_detector = MotionDetector(self.frame_shape, mask)
|
||||
|
||||
object_detector = LocalObjectDetector(labels='/labelmap.txt')
|
||||
object_tracker = ObjectTracker(10)
|
||||
process_fps = mp.Value('d', 0.0)
|
||||
detection_fps = mp.Value('d', 0.0)
|
||||
current_frame = mp.Value('d', 0.0)
|
||||
stop_event = mp.Event()
|
||||
|
||||
process_frames(self.camera_name, self.frame_queue, self.frame_shape, self.frame_manager, motion_detector, object_detector, object_tracker, self.detected_objects_queue,
|
||||
process_fps, detection_fps, current_frame, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
|
||||
|
||||
def objects_found(self, debug_path=None):
|
||||
obj_detected = False
|
||||
top_computed_score = 0.0
|
||||
def handle_event(name, obj):
|
||||
nonlocal obj_detected
|
||||
nonlocal top_computed_score
|
||||
if obj['computed_score'] > top_computed_score:
|
||||
top_computed_score = obj['computed_score']
|
||||
if not obj['false_positive']:
|
||||
obj_detected = True
|
||||
self.camera_state.on('new', handle_event)
|
||||
self.camera_state.on('update', handle_event)
|
||||
|
||||
while(not self.detected_objects_queue.empty()):
|
||||
camera_name, frame_time, current_tracked_objects = self.detected_objects_queue.get()
|
||||
if not debug_path is None:
|
||||
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
|
||||
|
||||
self.camera_state.update(frame_time, current_tracked_objects)
|
||||
for obj in self.camera_state.tracked_objects.values():
|
||||
print(f"{frame_time}: {obj['id']} - {obj['computed_score']} - {obj['score_history']}")
|
||||
|
||||
self.frame_manager.delete(self.camera_state.previous_frame_id)
|
||||
|
||||
return {
|
||||
'object_detected': obj_detected,
|
||||
'top_score': top_computed_score
|
||||
}
|
||||
|
||||
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
|
||||
current_frame = self.frame_manager.get(f"{self.camera_name}{frame_time}", self.frame_shape)
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects:
|
||||
thickness = 2
|
||||
color = (0,0,175)
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
else:
|
||||
color = (255,255,0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
|
||||
|
||||
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR))
|
||||
|
||||
@click.command()
|
||||
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
|
||||
@click.option("-l", "--label", default='person', help="Label name to detect.")
|
||||
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
|
||||
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
|
||||
def process(path, label, threshold, debug_path):
|
||||
clips = []
|
||||
if os.path.isdir(path):
|
||||
files = os.listdir(path)
|
||||
files.sort()
|
||||
clips = [os.path.join(path, file) for file in files]
|
||||
elif os.path.isfile(path):
|
||||
clips.append(path)
|
||||
|
||||
config = {
|
||||
'snapshots': {
|
||||
'show_timestamp': False,
|
||||
'draw_zones': False
|
||||
},
|
||||
'zones': {},
|
||||
'objects': {
|
||||
'track': [label],
|
||||
'filters': {
|
||||
'person': {
|
||||
'threshold': threshold
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
results = []
|
||||
for c in clips:
|
||||
frame_shape = get_frame_shape(c)
|
||||
config['frame_shape'] = frame_shape
|
||||
process_clip = ProcessClip(c, frame_shape, config)
|
||||
process_clip.load_frames()
|
||||
process_clip.process_frames(objects_to_track=config['objects']['track'])
|
||||
|
||||
results.append((c, process_clip.objects_found(debug_path)))
|
||||
|
||||
for result in results:
|
||||
print(f"{result[0]}: {result[1]}")
|
||||
|
||||
positive_count = sum(1 for result in results if result[1]['object_detected'])
|
||||
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
|
||||
|
||||
if __name__ == '__main__':
|
||||
process()
|
||||
Reference in New Issue
Block a user