Compare commits

..

94 Commits

Author SHA1 Message Date
Blake Blackshear
20cff853e8 syntax error 2020-10-11 13:07:00 -05:00
Blake Blackshear
d28d5e04a9 update docs 2020-10-11 12:58:41 -05:00
Blake Blackshear
26f4e27df0 update default detectors 2020-10-11 12:52:50 -05:00
Blake Blackshear
106d513e0b use dictionary for detectors for sensors 2020-10-11 12:49:08 -05:00
Blake Blackshear
223ec76601 only draw during debug 2020-10-11 12:16:57 -05:00
Dejan Zelic
405837de22 Added Healthcheck to Docker Compose
Frigate provides an HTTP server that can be used to detect if frigate is running or not. Using the docker-compose "healthcheck" feature we can set automations to restart the service if it stops working.
2020-10-11 11:49:29 -05:00
Radegast
51bd107536 Fix error in the docker run command
I have very little experience with Docker, but it seems the command in the README has two mistakes in it:

- unknown shorthand flag: 'n' in -name
- docker: Error response from daemon: Invalid container name (blakeblackshear/frigate:stable), only [a-zA-Z0-9][a-zA-Z0-9_.-] are allowed.

I am running Docker version 19.03.13-ce, build 4484c46d9d on Arch linux.
2020-10-11 11:49:29 -05:00
Blake Blackshear
08c43e7918 cleanup frame queue 2020-10-11 11:49:29 -05:00
Blake Blackshear
6f070502b5 cleanup detection shms 2020-10-11 11:49:29 -05:00
Blake Blackshear
61081b91a3 only convert pix_fmt when necessary 2020-10-11 11:49:29 -05:00
Blake Blackshear
2a84d0afb9 use yuv420p pixel format for motion 2020-10-11 11:49:29 -05:00
Blake Blackshear
2c17f27ab4 support multiple coral devices (fixes #100) 2020-10-11 11:49:29 -05:00
Blake Blackshear
5bb9838c4f print stacktraceon segfaults 2020-10-11 11:49:29 -05:00
Blake Blackshear
d59018a14c prevent frame from being deleted while in use 2020-10-11 11:49:29 -05:00
Blake Blackshear
5f2b8bb6ad build ffmpeg in separate container 2020-10-11 11:49:29 -05:00
Blake Blackshear
6554640a61 arm64 ffmpeg cleanup 2020-10-11 11:49:29 -05:00
Blake Blackshear
5fbb092212 arm64 ffmpeg build 2020-10-11 11:49:29 -05:00
Blake Blackshear
dbb4ca7c87 ffmpeg 4.3.1 build for amd64 2020-10-11 11:49:29 -05:00
Blake Blackshear
e506931830 base image build cleanup 2020-10-11 11:49:29 -05:00
Blake Blackshear
feaf63c15f arm64 support 2020-10-11 11:49:29 -05:00
Blake Blackshear
a94179be4d add rpi dockerfile 2020-10-11 11:49:29 -05:00
Blake Blackshear
7837de8bc8 update dockerfiles for amd64 2020-10-11 11:49:29 -05:00
Blake Blackshear
0366781728 Base dockerfile for building wheels 2020-10-11 11:49:29 -05:00
Blake Blackshear
e898fca70a refactor dockerfile 2020-10-11 11:49:29 -05:00
Blake Blackshear
d788ceb1d3 fix shared memory store usage for events 2020-10-11 11:49:29 -05:00
Blake Blackshear
90a48fc761 cleanup 2020-10-11 11:49:29 -05:00
Blake Blackshear
de57c79bf9 update detection handoff to use shared memory 2020-10-11 11:49:29 -05:00
Blake Blackshear
af8c4e7eac upgrade to python3.8 and switch from plasma store to shared_memory 2020-10-11 11:49:29 -05:00
Blake Blackshear
b063099b2a fix zone filters fixes #218 2020-10-11 11:38:32 -05:00
Blake Blackshear
2937dac4c3 update config merging and example config 2020-10-11 11:38:32 -05:00
Blake Blackshear
7c283a1805 remove affiliate links 2020-10-08 07:26:02 -05:00
Blake Blackshear
309c0dcda3 proper handling of crop param (fixes #208) 2020-09-20 20:58:10 -05:00
Blake Blackshear
b35cc01035 allow the best image timeout to be configurable 2020-09-18 07:14:44 -05:00
Blake Blackshear
6e79a5402e Readme updates 2020-09-17 07:37:27 -05:00
Blake Blackshear
a989f8daaf update readme 2020-09-17 07:37:27 -05:00
Blake Blackshear
7880d24b29 prevent the cache from growing indefinitely 2020-09-17 07:37:27 -05:00
Blake Blackshear
fdc8bbf72d move zone config under each camera 2020-09-17 07:37:27 -05:00
Blake Blackshear
005e188d38 continue if frames not in frame manager 2020-09-17 07:37:27 -05:00
Blake Blackshear
adcc3e9b98 copy obj so crop doesnt change 2020-09-17 07:37:27 -05:00
Blake Blackshear
5fe201da25 avoid processing broken frames 2020-09-17 07:37:27 -05:00
Blake Blackshear
974f7bd0df fix mqtt snapshot 2020-09-17 07:37:27 -05:00
Blake Blackshear
780ae7cd4f allow specifying labels to save clips for 2020-09-17 07:37:27 -05:00
Blake Blackshear
50e568b84c allow setting size and cropping of snapshots and best.jpg endpoint 2020-09-17 07:37:27 -05:00
Blake Blackshear
1ce993051e add support for polygon masks 2020-09-17 07:37:27 -05:00
Blake Blackshear
69406343ee allow setting the camera fps if needed 2020-09-17 07:37:27 -05:00
Blake Blackshear
1c33b8acb2 handle mask files that failed to read 2020-09-17 07:37:27 -05:00
Blake Blackshear
5e77436d39 fix coral fps value 2020-09-17 07:37:27 -05:00
Blake Blackshear
e26308a05b print score info 2020-09-17 07:37:27 -05:00
Blake Blackshear
c16ee3186f fix masks 2020-09-17 07:37:27 -05:00
Blake Blackshear
fedeeab561 fix watchdog 2020-09-17 07:37:27 -05:00
Blake Blackshear
bfcaabecfa fix var name 2020-09-17 07:37:27 -05:00
Blake Blackshear
606fa6f6d5 once a true positive always a true positive 2020-09-17 07:37:27 -05:00
Blake Blackshear
6a8d8bf53d dont trigger zones for false positives 2020-09-17 07:37:27 -05:00
Blake Blackshear
1f81cba706 only save a clip if its not a false positive 2020-09-17 07:37:27 -05:00
Blake Blackshear
5db7b242aa another fix 2020-09-17 07:37:27 -05:00
Blake Blackshear
0b7f65e227 fixes 2020-09-17 07:37:27 -05:00
Blake Blackshear
2f758af097 allow setting specific edgetpu in config 2020-09-17 07:37:27 -05:00
Blake Blackshear
f64320a464 remove invalid tests 2020-09-17 07:37:27 -05:00
Blake Blackshear
3e87ef6426 update pip 2020-09-17 07:37:27 -05:00
Blake Blackshear
acb75fa02d refactor and reduce false positives 2020-09-17 07:37:27 -05:00
Blake Blackshear
ea4ecae27c Refactor with a working false positive test 2020-09-17 07:37:27 -05:00
Carl Elkins
a8556a729b Added support for PCIe TPU, as well as USB
Also added message showing which found
2020-09-04 20:56:16 -05:00
Blake Blackshear
068df3ef2d Update bug_report.md 2020-08-22 06:49:45 -05:00
Blake Blackshear
b304139db2 Update bug_report.md 2020-08-22 06:49:05 -05:00
Ryan Press
df2aae5169 Fix zone filters 2020-08-19 09:58:53 -05:00
Blake Blackshear
351ac4ec7d Update bug_report.md 2020-08-17 07:48:53 -05:00
Blake Blackshear
12e40291c0 Update bug_report.md 2020-08-17 07:41:13 -05:00
Blake Blackshear
8af7d51159 Update issue templates 2020-08-17 07:33:51 -05:00
Blake Blackshear
84ada716ac fix readme images 2020-08-09 13:18:12 -05:00
Blake Blackshear
cbcc89be9c readme tweaks 2020-08-09 13:16:40 -05:00
Blake Blackshear
73a5e11b9b Add details for debug info 2020-08-09 13:06:33 -05:00
Blake Blackshear
194baaeb56 fix example config 2020-08-08 20:58:54 -05:00
Blake Blackshear
469259d663 dont refresh cache if exiting 2020-08-08 07:40:48 -05:00
Blake Blackshear
f3db69d975 update docs 2020-08-08 07:40:48 -05:00
Blake Blackshear
0914cb71ad allow resizing best image 2020-08-08 07:40:48 -05:00
Blake Blackshear
0ae2806eb4 fix overwriting variable 2020-08-08 07:40:48 -05:00
Blake Blackshear
adcfe699c2 ensure frigate can exit gracefully 2020-08-08 07:40:48 -05:00
Blake Blackshear
e5048f98b6 fix latest size calculation 2020-08-08 07:40:48 -05:00
Blake Blackshear
e6c6338266 allow mask to be base64 encoded into the config file 2020-08-08 07:40:48 -05:00
Blake Blackshear
1f03c8cb8c add latest jpg endpoint 2020-08-08 07:40:48 -05:00
Blake Blackshear
69f5249788 initial implementation of zones 2020-08-08 07:40:48 -05:00
Blake Blackshear
3a1f1c946b better camera name handling 2020-08-01 18:20:44 -05:00
Blake Blackshear
d88745af6e simplify directory creation 2020-08-01 18:20:44 -05:00
Blake Blackshear
709d917f0c update snapshot with better scores 2020-08-01 18:20:44 -05:00
Blake Blackshear
918386bdc1 use a random string in the object id instead of the index 2020-08-01 18:20:44 -05:00
Blake Blackshear
a8c0fadf95 make pre_capture time configurable 2020-08-01 18:20:44 -05:00
Blake Blackshear
6dc7b8f246 typo 2020-08-01 18:20:44 -05:00
Blake Blackshear
71f6f0bee4 typo 2020-08-01 18:20:44 -05:00
Blake Blackshear
a00afb61c0 add warning about cache to config 2020-08-01 18:20:44 -05:00
Blake Blackshear
5dbe6c5f36 add mqtt messages to readme 2020-08-01 18:20:44 -05:00
Blake Blackshear
16732aa5b3 update example config 2020-08-01 18:20:44 -05:00
Blake Blackshear
3d2f1437e4 filter objects before triggering events 2020-08-01 18:20:44 -05:00
Blake Blackshear
fbe721c860 remove vsync drop because it breaks segment 2020-08-01 18:20:44 -05:00
Blake Blackshear
7383db60b0 save clips for tracked objects 2020-08-01 18:20:44 -05:00
30 changed files with 3628 additions and 625 deletions

55
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@@ -0,0 +1,55 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**Version of frigate**
What version are you using?
**Config file**
Include your full config file wrapped in back ticks.
```
config here
```
**Logs**
```
Include relevant log output here
```
**Frigate debug stats**
```
Output from frigate's /debug/stats endpoint
```
**FFprobe from your camera**
Run the following command and paste output below
```
ffprobe <stream_url>
```
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Computer Hardware**
- OS: [e.g. Ubuntu, Windows]
- Virtualization: [e.g. Proxmox, Virtualbox]
- Coral Version: [e.g. USB, PCIe, None]
- Network Setup: [e.g. Wired, WiFi]
**Camera Info:**
- Manufacturer: [e.g. Dahua]
- Model: [e.g. IPC-HDW5231R-ZE]
- Resolution: [e.g. 720p]
- FPS: [e.g. 5]
**Additional context**
Add any other context about the problem here.

View File

@@ -1,57 +0,0 @@
FROM ubuntu:18.04
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt -qq update && apt -qq install --no-install-recommends -y \
software-properties-common \
# apt-transport-https ca-certificates \
build-essential \
gnupg wget unzip tzdata \
# libcap-dev \
&& add-apt-repository ppa:deadsnakes/ppa -y \
&& apt -qq install --no-install-recommends -y \
python3.7 \
python3.7-dev \
python3-pip \
ffmpeg \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
&& python3.7 -m pip install -U wheel setuptools \
&& python3.7 -m pip install -U \
opencv-python-headless \
# python-prctl \
numpy \
imutils \
scipy \
&& python3.7 -m pip install -U \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
pyarrow \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
&& apt -qq update \
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
&& apt -qq install --no-install-recommends -y \
libedgetpu1-max \
## Tensorflow lite (python 3.7 only)
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& python3.7 -m pip install tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
# get model and labels
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
CMD ["python3.7", "-u", "detect_objects.py"]

37
Makefile Normal file
View File

@@ -0,0 +1,37 @@
default_target: amd64_frigate
amd64_wheels:
docker build --tag blakeblackshear/frigate-wheels:amd64 --file docker/Dockerfile.wheels .
amd64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:amd64 --file docker/Dockerfile.ffmpeg.amd64 .
amd64_frigate:
docker build --tag frigate-base --build-arg ARCH=amd64 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64 .
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
arm64_wheels:
docker build --tag blakeblackshear/frigate-wheels:arm64 --file docker/Dockerfile.wheels.arm64 .
arm64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:arm64 --file docker/Dockerfile.ffmpeg.arm64 .
arm64_frigate:
docker build --tag frigate-base --build-arg ARCH=arm64 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.arm64 .
armv7hf_all: arm64_wheels arm64_ffmpeg arm64_frigate
armv7hf_wheels:
docker build --tag blakeblackshear/frigate-wheels:armv7hf --file docker/Dockerfile.wheels .
armv7hf_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:armv7hf --file docker/Dockerfile.ffmpeg.armv7hf .
armv7hf_frigate:
docker build --tag frigate-base --build-arg ARCH=armv7hf --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.armv7hf .
armv7hf_all: armv7hf_wheels armv7hf_ffmpeg armv7hf_frigate

286
README.md
View File

@@ -1,7 +1,7 @@
# Frigate - Realtime Object Detection for IP Cameras
# Frigate - NVR With Realtime Object Detection for IP Cameras
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
Use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load.
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load.
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
@@ -15,13 +15,17 @@ Use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/ac
You see multiple bounding boxes because it draws bounding boxes from all frames in the past 1 second where a person was detected. Not all of the bounding boxes were from the current frame.
[![](http://img.youtube.com/vi/nqHbCtyo4dY/0.jpg)](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
## Documentation
- [Camera Specific Docs](docs/CAMERAS.md)
- [Hardware Acceleration](docs/HWACCEL.md)
## Getting Started
Run the container with
```bash
docker run --rm \
-name frigate \
--name frigate \
--privileged \
--shm-size=512m \ # should work for a 2-3 cameras
--shm-size=100m \ # only needed with large numbers of high res cameras
-v /dev/bus/usb:/dev/bus/usb \
-v <path_to_config_dir>:/config:ro \
-v /etc/localtime:/etc/localtime:ro \
@@ -36,34 +40,51 @@ Example docker-compose:
container_name: frigate
restart: unless-stopped
privileged: true
shm_size: '1g' # should work for 5-7 cameras
shm_size: '100m' # only needed with large numbers of high res cameras
image: blakeblackshear/frigate:stable
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
- <path_to_config>:/config
- <path_to_directory_for_clips>:/clips
ports:
- "5000:5000"
environment:
FRIGATE_RTSP_PASSWORD: "password"
healthcheck:
test: ["CMD", "wget" , "-q", "-O-", "http://localhost:5000"]
interval: 30s
timeout: 10s
retries: 5
start_period: 3m
```
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and camera specific info can be found [here](docs/CAMERAS.md).
### Calculating shm-size
The default shm-size of 64m should be fine for most setups. If you start seeing segfault errors, it could be because you have too many high resolution cameras and you need to specify a higher shm size.
You can calculate the necessary shm-size for each camera with the following formula:
```
(width * height * 3 + 270480)/1048576 = <shm size in mb>
```
## Recommended Hardware
|Name|Inference Speed|Notes|
|----|---------------|-----|
|Atomic Pi|16ms|Best option for a dedicated low power board with a small number of cameras.|
|Intel NUC NUC7i3BNK|8-10ms|Best possible performance. Can handle 7+ cameras at 5fps depending on typical amounts of motion.|
|BMAX B2 Plus|10-12ms|Good balance of performance and cost. Also capable of running many other services at the same time as frigate.
ARM boards are not officially supported at the moment due to some python dependencies that require modification to work on ARM devices. The Raspberry Pi4 gets about 16ms inference speeds, but the hardware acceleration for ffmpeg does not work for converting yuv420 to rgb24. The Atomic Pi is x86 and much more efficient.
|BMAX B2 Plus|10-12ms|Good balance of performance and cost. Also capable of running many other services at the same time as frigate.|
|Minisforum GK41|9-10ms|Great alternative to a NUC. Easily handiles 4 1080p cameras.|
|Raspberry Pi 3B (32bit)|60ms|Can handle a small number of cameras, but the detection speeds are slow|
|Raspberry Pi 4 (32bit)|15-20ms|Can handle a small number of cameras. The 2GB version runs fine.|
|Raspberry Pi 4 (64bit)|10-15ms|Can handle a small number of cameras. The 2GB version runs fine.|
Users have reported varying success in getting frigate to run in a VM. In some cases, the virtualization layer introduces a significant delay in communication with the Coral. If running virtualized in Proxmox, pass the USB card/interface to the virtual machine not the USB ID for faster inference speed.
## Integration with HomeAssistant
Setup a the camera, binary_sensor, sensor and optionally automation as shown for each camera you define in frigate. Replace <camera_name> with the camera name as defined in the frigate `config.yml` (The `frigate_coral_fps` and `frigate_coral_inference` sensors only need to be defined once)
Setup a camera, binary_sensor, sensor and optionally automation as shown for each camera you define in frigate. Replace <camera_name> with the camera name as defined in the frigate `config.yml` (The `frigate_coral_fps` and `frigate_coral_inference` sensors only need to be defined once)
```
camera:
@@ -88,7 +109,8 @@ sensor:
scan_interval: 5
json_attributes:
- <camera_name>
- coral
- detection_fps
- detectors
value_template: 'OK'
- platform: template
sensors:
@@ -101,11 +123,11 @@ sensor:
<camera_name>_detection_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["detection_fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["fps"] }}'
frigate_detection_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["detection_fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_inference:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
value_template: '{{ states.sensor.frigate_debug.attributes["detectors"]["coral"]["inference_speed"] }}'
unit_of_measurement: 'ms'
automation:
@@ -128,30 +150,238 @@ automation:
- url: http://<ip>:5000/<camera_name>/person/best.jpg
caption: A person was detected.
```
## Debugging Endpoint
## HTTP Endpoints
A web server is available on port 5000 with the following endpoints.
Keep in mind the MJPEG endpoint is for debugging only, but should not be used continuously as it will put additional load on the system.
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
### `/<camera_name>`
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`
Debug info is available at `http://localhost:5000/debug/stats`
### `/<camera_name>/<object_name>/best.jpg[?h=300&crop=1]`
The best snapshot for any object type. It is a full resolution image by default.
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
- `crop=1`: crops the image to the region of the detection rather than returning the entire image
## Using a custom model
### `/<camera_name>/latest.jpg[?h=300]`
The most recent frame that frigate has finished processing. It is a full resolution image by default.
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
### `/debug/stats`
Contains some granular debug info that can be used for sensors in HomeAssistant. See details below.
## MQTT Messages
These are the MQTT messages generated by Frigate. The default topic_prefix is `frigate`, but can be changed in the config file.
### frigate/available
Designed to be used as an availability topic with HomeAssistant. Possible message are:
"online": published when frigate is running (on startup)
"offline": published right before frigate stops
### frigate/<camera_name>/<object_name>
Publishes `ON` or `OFF` and is designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected.
### frigate/<camera_name>/<object_name>/snapshot
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
is published again.
The height and crop of snapshots can be configured as shown in the example config.
### frigate/<camera_name>/events/start
Message published at the start of any tracked object. JSON looks as follows:
```json
{
"label": "person",
"score": 0.87890625,
"box": [
95,
155,
581,
1182
],
"area": 499122,
"region": [
0,
132,
1080,
1212
],
"frame_time": 1600208805.60284,
"centroid": [
338,
668
],
"id": "1600208805.60284-k1l43p",
"start_time": 1600208805.60284,
"top_score": 0.87890625,
"zones": [],
"score_history": [
0.87890625
],
"computed_score": 0.0,
"false_positive": true
}
```
### frigate/<camera_name>/events/end
Same as `frigate/<camera_name>/events/start`, but with an `end_time` property as well.
### frigate/<zone_name>/<object_name>
Publishes `ON` or `OFF` and is designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected in the zone.
## Understanding min_score and threshold filters
`min_score` defines the minimum score for Frigate to begin tracking a detected object. Any single detection below `min_score` will be ignored as a false positive. `threshold` is based on the median of the history of scores for a tracked object. Consider the following frames when `min_score` is set to 0.6 and threshold is set to 0.85:
| Frame | Current Score | Score History | Computed Score | Detected Object |
| --- | --- | --- | --- | --- |
| 1 | 0.7 | 0.0, 0, 0.7 | 0.0 | No
| 2 | 0.55 | 0.0, 0.7, 0.0 | 0.0 | No
| 3 | 0.85 | 0.7, 0.0, 0.85 | 0.7 | No
| 4 | 0.90 | 0.7, 0.85, 0.95, 0.90 | 0.875 | Yes
| 5 | 0.88 | 0.7, 0.85, 0.95, 0.90, 0.88 | 0.88 | Yes
| 6 | 0.95 | 0.7, 0.85, 0.95, 0.90, 0.88, 0.95 | 0.89 | Yes
In frame 2, the score is below the `min_score` value, so frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.
## Using a custom model or labels
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
### Customizing the Labelmap
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
- Download the [COCO labelmap](https://dl.google.com/coral/canned_models/coco_labels.txt)
- Modify the label names as desired. For example, change `7 truck` to `7 car`
- Mount the new file at `/labelmap.txt` in the container with an additional volume
```
-v ./config/labelmap.txt:/labelmap.txt
```
## Recording Clips
**Note**: Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
Frigate can save video clips without any CPU overhead for encoding by simply copying the stream directly with FFmpeg. It leverages FFmpeg's segment functionality to maintain a cache of 90 seconds of video for each camera. The cache files are written to disk at /cache and do not introduce memory overhead. When an object is being tracked, it will extend the cache to ensure it can assemble a clip when the event ends. Once the event ends, it again uses FFmpeg to assemble a clip by combining the video clips without any encoding by the CPU. Assembled clips are are saved to the /clips directory along with a json file containing the current information about the tracked object.
### Global Configuration Options
- `max_seconds`: This limits the size of the cache when an object is being tracked. If an object is stationary and being tracked for a long time, the cache files will expire and this value will be the maximum clip length for the *end* of the event. For example, if this is set to 300 seconds and an object is being tracked for 600 seconds, the clip will end up being the last 300 seconds. Defaults to 300 seconds.
### Per-camera Configuration Options
- `pre_capture`: Defines how much time should be included in the clip prior to the beginning of the event. Defaults to 30 seconds.
- `objects`: List of object types to save clips for. Object types here must be listed for tracking at the camera or global configuration. Defaults to all tracked objects.
## Detectors Configuration
Frigate attempts to detect your Coral device automatically. If you have multiple Coral devices or a version that is not detected automatically, you can specify using the `detectors` config option as shown in the example config.
## Masks and limiting detection to a certain area
You can create a *bitmap (bmp)* file the same aspect ratio as your camera feed to limit detection to certain areas. The mask works by looking at the bottom center of any bounding box (first image, red dot below) and comparing that to your mask. If that red dot falls on an area of your mask that is black, the detection (and motion) will be ignored. The mask in the second image would limit detection on this camera to only objects that are in the front yard and not the street.
The mask works by looking at the bottom center of any bounding box (first image, red dot below) and comparing that to your mask. If that red dot falls on an area of your mask that is black, the detection (and motion) will be ignored. The mask in the second image would limit detection on this camera to only objects that are in the front yard and not the street.
<a href="docs/example-mask-check-point.png"><img src="docs/example-mask-check-point.png" height="300"></a>
<a href="docs/example-mask.bmp"><img src="docs/example-mask.bmp" height="300"></a>
<a href="docs/example-mask-overlay.png"><img src="docs/example-mask-overlay.png" height="300"></a>
The following types of masks are supported:
- `base64`: Base64 encoded image file
- `poly`: List of x,y points like zone configuration
- `image`: Path to an image file in the config directory
`base64` and `image` masks must be the same aspect ratio as your camera.
## Zones
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area. See the sample config for details on how to configure.
During testing, `draw_zones` can be set in the config to tell frigate to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
![Zone Example](docs/zone_example.jpg)
## Debug Info
```jsonc
{
/* Per Camera Stats */
"back": {
/***************
* Frames per second being consumed from your camera. If this is higher
* than it is supposed to be, you should set -r FPS in your input_args.
* camera_fps = process_fps + skipped_fps
***************/
"camera_fps": 5.0,
/***************
* Number of times detection is run per second. This can be higher than
* your camera FPS because frigate often looks at the same frame multiple times
* or in multiple locations
***************/
"detection_fps": 1.5,
/***************
* PID for the ffmpeg process that consumes this camera
***************/
"ffmpeg_pid": 27,
/***************
* Timestamps of frames in various parts of processing
***************/
"frame_info": {
/***************
* Timestamp of the frame frigate is running object detection on.
***************/
"detect": 1596994991.91426,
/***************
* Timestamp of the frame frigate is processing detected objects on.
* This is where MQTT messages are sent, zones are checked, etc.
***************/
"process": 1596994991.91426,
/***************
* Timestamp of the frame frigate last read from ffmpeg.
***************/
"read": 1596994991.91426
},
/***************
* PID for the process that runs detection for this camera
***************/
"pid": 34,
/***************
* Frames per second being processed by frigate.
***************/
"process_fps": 5.1,
/***************
* Timestamp when the detection process started looking for a frame. If this value stays constant
* for a long time, that means there aren't any frames in the frame queue.
***************/
"read_start": 1596994991.943814,
/***************
* Frames per second skip for processing by frigate.
***************/
"skipped_fps": 0.0
},
/***************
* Sum of detection_fps across all cameras and detectors.
* This should be the sum of all detection_fps values from cameras.
***************/
"detection_fps": 5.0,
/* Detectors Stats */
"detectors": {
"coral": {
/***************
* Timestamp when object detection started. If this value stays non-zero and constant
* for a long time, that means the detection process is stuck.
***************/
"detection_start": 0.0,
/***************
* Time spent running object detection in milliseconds.
***************/
"inference_speed": 10.48,
/***************
* PID for the shared process that runs object detection on the Coral.
***************/
"pid": 25321
}
}
}
```
## Tips
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed. Not as effective, but you can also modify the `take_frame` [configuration](config/config.example.yml) for each camera to only analyze every other frame, or every third frame, etc.
- Hard code the resolution of each camera in your config if you are having difficulty starting frigate or if the initial ffprobe for camerea resolution fails or returns incorrect info. Example:
@@ -164,5 +394,17 @@ cameras:
width: 1920
```
- Additional logging is available in the docker container - You can view the logs by running `docker logs -t frigate`
- Object configuration - Tracked objects types, sizes and thresholds can be defined globally and/or on a per camera basis. The global and camera object configuration is *merged*. For example, if you defined tracking person, car, and truck globally but modified your backyard camera to only track person, the global config would merge making the effective list for the backyard camera still contain person, car and truck. If you want precise object tracking per camera, best practice to put a minimal list of objects at the global level and expand objects on a per camera basis. Object threshold and area configuration will be used first from the camera object config (if defined) and then from the global config. See the [example config](config/config.example.yml) for more information.
- Object configuration - Tracked objects types, sizes and thresholds can be defined globally and/or on a per camera basis. The global and camera object configuration is *merged*. For example, if you defined tracking person, car, and truck globally but modified your backyard camera to only track person, the global config would merge making the effective list for the backyard camera still contain person, car and truck. If you want precise object tracking per camera, best practice to put a minimal list of objects at the global level and expand objects on a per camera basis. Object threshold and area configuration will be used first from the camera object config (if defined) and then from the global config. See the [example config](config/config.example.yml) for more information.
## Troubleshooting
### "ffmpeg didnt return a frame. something is wrong"
Turn on logging for the camera by overriding the global_args and setting the log level to `info`:
```yaml
ffmpeg:
global_args:
- -hide_banner
- -loglevel
- info
```

View File

@@ -3,7 +3,7 @@ from statistics import mean
import multiprocessing as mp
import numpy as np
import datetime
from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
from frigate.edgetpu import LocalObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
labels = load_labels('/labelmap.txt')
@@ -11,7 +11,7 @@ labels = load_labels('/labelmap.txt')
######
# Minimal same process runner
######
# object_detector = ObjectDetector()
# object_detector = LocalObjectDetector()
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
# start = datetime.datetime.now().timestamp()
@@ -37,11 +37,9 @@ labels = load_labels('/labelmap.txt')
# print(f"Processed for {duration:.2f} seconds.")
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
######
# Separate process runner
######
def start(id, num_detections, detection_queue):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
def start(id, num_detections, detection_queue, event):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue, event)
start = datetime.datetime.now().timestamp()
frame_times = []
@@ -51,23 +49,39 @@ def start(id, num_detections, detection_queue):
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
duration = datetime.datetime.now().timestamp()-start
object_detector.cleanup()
print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
edgetpu_process = EdgeTPUProcess()
######
# Separate process runner
######
# event = mp.Event()
# detection_queue = mp.Queue()
# edgetpu_process = EdgeTPUProcess(detection_queue, {'1': event}, 'usb:0')
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
# start(1, 1000, edgetpu_process.detection_queue, event)
# print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")
####
# Multiple camera processes
####
camera_processes = []
events = {}
for x in range(0, 10):
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
events[str(x)] = mp.Event()
detection_queue = mp.Queue()
edgetpu_process_1 = EdgeTPUProcess(detection_queue, events, 'usb:0')
edgetpu_process_2 = EdgeTPUProcess(detection_queue, events, 'usb:1')
for x in range(0, 10):
camera_process = mp.Process(target=start, args=(x, 300, detection_queue, events[str(x)]))
camera_process.daemon = True
camera_processes.append(camera_process)
start = datetime.datetime.now().timestamp()
start_time = datetime.datetime.now().timestamp()
for p in camera_processes:
p.start()
@@ -75,5 +89,5 @@ for p in camera_processes:
for p in camera_processes:
p.join()
duration = datetime.datetime.now().timestamp()-start
duration = datetime.datetime.now().timestamp()-start_time
print(f"Total - Processed for {duration:.2f} seconds.")

View File

@@ -1,5 +1,15 @@
web_port: 5000
################
## List of detectors.
## Currently supported types: cpu, edgetpu
## EdgeTPU requires device as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
################
detectors:
coral:
type: edgetpu
device: usb
mqtt:
host: mqtt.server.com
topic_prefix: frigate
@@ -11,6 +21,17 @@ mqtt:
#################
# password: password # Optional
################
# Global configuration for saving clips
################
save_clips:
###########
# Maximum length of time to retain video during long events.
# If an object is being tracked for longer than this amount of time, the cache
# will begin to expire and the resulting clip will be the last x seconds of the event.
###########
max_seconds: 300
#################
# Default ffmpeg args. Optional and can be overwritten per camera.
# Should work with most RTSP cameras that send h264 video
@@ -46,27 +67,27 @@ mqtt:
# - -f
# - rawvideo
# - -pix_fmt
# - rgb24
# - yuv420p
####################
# Global object configuration. Applies to all cameras
# unless overridden at the camera levels.
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
# min_area (optional): minimum width*height of the bounding box for the detected person
# max_area (optional): maximum width*height of the bounding box for the detected person
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
# min_area (optional): minimum width*height of the bounding box for the detected object
# max_area (optional): maximum width*height of the bounding box for the detected object
# min_score (optional): minimum score for the object to initiate tracking
# threshold (optional): The minimum decimal percentage for tracked object's computed score to considered a true positive
####################
objects:
track:
- person
- car
- truck
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
min_score: 0.5
threshold: 0.85
cameras:
back:
@@ -91,7 +112,18 @@ cameras:
# width: 720
################
## Optional mask. Must be the same aspect ratio as your video feed.
## Specify the framerate of your camera
##
## NOTE: This should only be set in the event ffmpeg is unable to determine your camera's framerate
## on its own and the reported framerate for your camera in frigate is well over what is expected.
################
# fps: 5
################
## Optional mask. Must be the same aspect ratio as your video feed. Value is any of the following:
## - name of a file in the config directory
## - base64 encoded image prefixed with 'base64,' eg. 'base64,asfasdfasdf....'
## - polygon of x,y coordinates prefixed with 'poly,' eg. 'poly,0,900,1080,900,1080,1920,0,1920'
##
## The mask works by looking at the bottom center of the bounding box for the detected
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
@@ -110,20 +142,90 @@ cameras:
################
take_frame: 1
################
# The number of seconds to retain the highest scoring image for the best.jpg endpoint before allowing it
# to be replaced by a newer image. Defaults to 60 seconds.
################
best_image_timeout: 60
################
# MQTT settings
################
# mqtt:
# crop_to_region: True
# snapshot_height: 300
################
# Zones
################
zones:
#################
# Name of the zone
################
front_steps:
####################
# A list of x,y coordinates to define the polygon of the zone. The top
# left corner is 0,0. Can also be a comma separated string of all x,y coordinates combined.
# The same zone name can exist across multiple cameras if they have overlapping FOVs.
# An object is determined to be in the zone based on whether or not the bottom center
# of it's bounding box is within the polygon. The polygon must have at least 3 points.
# Coordinates can be generated at https://www.image-map.net/
####################
coordinates:
- 545,1077
- 747,939
- 788,805
################
# Zone level object filters. These are applied in addition to the global and camera filters
# and should be more restrictive than the global and camera filters. The global and camera
# filters are applied upstream.
################
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.8
################
# This will save a clip for each tracked object by frigate along with a json file that contains
# data related to the tracked object. This works by telling ffmpeg to write video segments to /cache
# from the video stream without re-encoding. Clips are then created by using ffmpeg to merge segments
# without re-encoding. The segments saved are unaltered from what frigate receives to avoid re-encoding.
# They do not contain bounding boxes. These are optimized to capture "false_positive" examples for improving frigate.
#
# NOTE: This feature does not work if you have "-vsync drop" configured in your input params.
# This will only work for camera feeds that can be copied into the mp4 container format without
# encoding such as h264. It may not work for some types of streams.
################
save_clips:
enabled: False
#########
# Number of seconds before the event to include in the clips
#########
pre_capture: 30
#########
# Objects to save clips for. Defaults to all tracked object types.
#########
# objects:
# - person
################
# Configuration for the snapshots in the debug view and mqtt
################
snapshots:
show_timestamp: True
draw_zones: False
################
# Camera level object config. This config is merged with the global config above.
# Camera level object config. If defined, this is used instead of the global config.
################
objects:
track:
- person
- car
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
min_score: 0.5
threshold: 0.85

View File

@@ -1,4 +1,6 @@
import faulthandler; faulthandler.enable()
import os
import signal
import sys
import traceback
import signal
@@ -17,6 +19,7 @@ import paho.mqtt.client as mqtt
from frigate.video import track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
from frigate.object_processing import TrackedObjectProcessor
from frigate.events import EventProcessor
from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess
@@ -47,37 +50,28 @@ FFMPEG_DEFAULT_CONFIG = {
'-flags', 'low_delay',
'-strict', 'experimental',
'-fflags', '+genpts+discardcorrupt',
'-vsync', 'drop',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
'output_args': FFMPEG_CONFIG.get('output_args',
['-f', 'rawvideo',
'-pix_fmt', 'rgb24'])
'-pix_fmt', 'yuv420p'])
}
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
def start_plasma_store():
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL)
time.sleep(1)
rc = plasma_process.poll()
if rc is not None:
return None
return plasma_process
DETECTORS = CONFIG.get('detectors', {'coral': {'type': 'edgetpu', 'device': 'usb'}})
class CameraWatchdog(threading.Thread):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, plasma_process):
def __init__(self, camera_processes, config, detectors, detection_queue, tracked_objects_queue, stop_event):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.tflite_process = tflite_process
self.detectors = detectors
self.detection_queue = detection_queue
self.tracked_objects_queue = tracked_objects_queue
self.plasma_process = plasma_process
self.stop_event = stop_event
def run(self):
time.sleep(10)
@@ -85,23 +79,22 @@ class CameraWatchdog(threading.Thread):
# wait a bit before checking
time.sleep(10)
now = datetime.datetime.now().timestamp()
# check the plasma process
rc = self.plasma_process.poll()
if rc != None:
print(f"plasma_process exited unexpectedly with {rc}")
self.plasma_process = start_plasma_store()
if self.stop_event.is_set():
print(f"Exiting watchdog...")
break
# check the detection process
detection_start = self.tflite_process.detection_start.value
if (detection_start > 0.0 and
now - detection_start > 10):
print("Detection appears to be stuck. Restarting detection process")
self.tflite_process.start_or_restart()
elif not self.tflite_process.detect_process.is_alive():
print("Detection appears to have stopped. Restarting detection process")
self.tflite_process.start_or_restart()
now = datetime.datetime.now().timestamp()
# check the detection processes
for detector in self.detectors.values():
detection_start = detector.detection_start.value
if (detection_start > 0.0 and
now - detection_start > 10):
print("Detection appears to be stuck. Restarting detection process")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
print("Detection appears to have stopped. Restarting detection process")
detector.start_or_restart()
# check the camera processes
for name, camera_process in self.camera_processes.items():
@@ -111,10 +104,10 @@ class CameraWatchdog(threading.Thread):
camera_process['process_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0
camera_process['read_start'].value = 0.0
process = mp.Process(target=track_camera, args=(name, self.config[name], GLOBAL_OBJECT_CONFIG, camera_process['frame_queue'],
camera_process['frame_shape'], self.tflite_process.detection_queue, self.tracked_objects_queue,
process = mp.Process(target=track_camera, args=(name, self.config[name], camera_process['frame_queue'],
camera_process['frame_shape'], self.detection_queue, self.tracked_objects_queue,
camera_process['process_fps'], camera_process['detection_fps'],
camera_process['read_start'], camera_process['detection_frame']))
camera_process['read_start'], self.stop_event))
process.daemon = True
camera_process['process'] = process
process.start()
@@ -125,11 +118,11 @@ class CameraWatchdog(threading.Thread):
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
ffmpeg_process = start_or_restart_ffmpeg(camera_process['ffmpeg_cmd'], frame_size)
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, camera_process['frame_queue'],
camera_process['take_frame'], camera_process['camera_fps'], camera_process['detection_frame'])
camera_process['take_frame'], camera_process['camera_fps'], self.stop_event)
camera_capture.start()
camera_process['ffmpeg_process'] = ffmpeg_process
camera_process['capture_thread'] = camera_capture
elif now - camera_process['capture_thread'].current_frame > 5:
elif now - camera_process['capture_thread'].current_frame.value > 5:
print(f"No frames received from {name} in 5 seconds. Exiting ffmpeg...")
ffmpeg_process = camera_process['ffmpeg_process']
ffmpeg_process.terminate()
@@ -142,6 +135,7 @@ class CameraWatchdog(threading.Thread):
ffmpeg_process.communicate()
def main():
stop_event = threading.Event()
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
@@ -164,23 +158,42 @@ def main():
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
plasma_process = start_plasma_store()
##
# Setup config defaults for cameras
##
for name, config in CONFIG['cameras'].items():
config['snapshots'] = {
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
'draw_zones': config.get('snapshots', {}).get('draw_zones', False)
}
config['zones'] = config.get('zones', {})
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.SimpleQueue()
# Start the shared tflite process
tflite_process = EdgeTPUProcess()
tracked_objects_queue = mp.Queue()
# start the camera processes
# Queue for clip processing
event_queue = mp.Queue()
# create the detection pipes and shms
out_events = {}
camera_shms = []
for name in CONFIG['cameras'].keys():
out_events[name] = mp.Event()
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=300*300*3)
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
camera_shms.append(shm_in)
camera_shms.append(shm_out)
detection_queue = mp.Queue()
detectors = {}
for name, detector in DETECTORS.items():
if detector['type'] == 'cpu':
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device='cpu')
if detector['type'] == 'edgetpu':
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device=detector['device'])
# create the camera processes
camera_processes = {}
for name, config in CONFIG['cameras'].items():
# Merge the ffmpeg config with the global config
@@ -190,6 +203,27 @@ def main():
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
if not config.get('fps') is None:
ffmpeg_output_args = ["-r", str(config.get('fps'))] + ffmpeg_output_args
if config.get('save_clips', {}).get('enabled', False):
ffmpeg_output_args = [
"-f",
"segment",
"-segment_time",
"10",
"-segment_format",
"mp4",
"-reset_timestamps",
"1",
"-strftime",
"1",
"-c",
"copy",
"-an",
"-map",
"0",
f"/cache/{name}-%Y%m%d%H%M%S.mp4"
] + ffmpeg_output_args
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
@@ -202,6 +236,8 @@ def main():
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
config['frame_shape'] = frame_shape
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
take_frame = config.get('take_frame', 1)
@@ -209,10 +245,10 @@ def main():
detection_frame = mp.Value('d', 0.0)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
frame_queue = mp.SimpleQueue()
frame_queue = mp.Queue(maxsize=2)
camera_fps = EventsPerSecond()
camera_fps.start()
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps, detection_frame)
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps, stop_event)
camera_capture.start()
camera_processes[name] = {
@@ -229,23 +265,63 @@ def main():
'capture_thread': camera_capture
}
camera_process = mp.Process(target=track_camera, args=(name, config, GLOBAL_OBJECT_CONFIG, frame_queue, frame_shape,
tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['process_fps'],
# merge global object config into camera object config
camera_objects_config = config.get('objects', {})
# get objects to track for camera
objects_to_track = camera_objects_config.get('track', GLOBAL_OBJECT_CONFIG.get('track', ['person']))
# get object filters
object_filters = camera_objects_config.get('filters', GLOBAL_OBJECT_CONFIG.get('filters', {}))
config['objects'] = {
'track': objects_to_track,
'filters': object_filters
}
camera_process = mp.Process(target=track_camera, args=(name, config, frame_queue, frame_shape,
detection_queue, out_events[name], tracked_objects_queue, camera_processes[name]['process_fps'],
camera_processes[name]['detection_fps'],
camera_processes[name]['read_start'], camera_processes[name]['detection_frame']))
camera_processes[name]['read_start'], camera_processes[name]['detection_frame'], stop_event))
camera_process.daemon = True
camera_processes[name]['process'] = camera_process
# start the camera_processes
for name, camera_process in camera_processes.items():
camera_process['process'].start()
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
event_processor = EventProcessor(CONFIG, camera_processes, '/cache', '/clips', event_queue, stop_event)
event_processor.start()
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
object_processor.start()
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process)
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], detectors, detection_queue, tracked_objects_queue, stop_event)
camera_watchdog.start()
def receiveSignal(signalNumber, frame):
print('Received:', signalNumber)
stop_event.set()
event_processor.join()
object_processor.join()
camera_watchdog.join()
for camera_name, camera_process in camera_processes.items():
camera_process['capture_thread'].join()
# cleanup the frame queue
while not camera_process['frame_queue'].empty():
frame_time = camera_process['frame_queue'].get()
shm = mp.shared_memory.SharedMemory(name=f"{camera_name}{frame_time}")
shm.close()
shm.unlink()
for detector in detectors:
detector.stop()
for shm in camera_shms:
shm.close()
shm.unlink()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
log = logging.getLogger('werkzeug')
@@ -291,31 +367,40 @@ def main():
'pid': camera_stats['process'].pid,
'ffmpeg_pid': camera_stats['ffmpeg_process'].pid,
'frame_info': {
'read': capture_thread.current_frame,
'read': capture_thread.current_frame.value,
'detect': camera_stats['detection_frame'].value,
'process': object_processor.camera_data[name]['current_frame_time']
}
}
stats['coral'] = {
'fps': round(total_detection_fps, 2),
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
'detection_start': tflite_process.detection_start.value,
'pid': tflite_process.detect_process.pid
}
rc = camera_watchdog.plasma_process.poll()
stats['plasma_store_rc'] = rc
stats['detectors'] = {}
for name, detector in detectors.items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in CONFIG['cameras']:
best_frame = object_processor.get_best(camera_name, label)
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
best_object = object_processor.get_best(camera_name, label)
best_frame = best_object.get('frame', np.zeros((720,1280,3), np.uint8))
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int))
if crop:
region = best_object.get('region', [0,0,300,300])
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
@@ -333,19 +418,37 @@ def main():
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
if camera_name in CONFIG['cameras']:
# max out at specified FPS
frame = object_processor.get_current_frame(camera_name)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name, fps, height):
while True:
# max out at specified FPS
time.sleep(1/fps)
frame = object_processor.get_current_frame(camera_name)
frame = object_processor.get_current_frame(camera_name, draw=True)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
@@ -354,8 +457,6 @@ def main():
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
object_processor.join()
plasma_process.terminate()
if __name__ == '__main__':
main()

16
docker/Dockerfile.amd64 Normal file
View File

@@ -0,0 +1,16 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg dependencies
libgomp1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
## Tensorflow lite
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.1.0.post1-cp38-cp38-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0.post1-cp38-cp38-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

22
docker/Dockerfile.arm64 Normal file
View File

@@ -0,0 +1,22 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
## Tensorflow lite
&& pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp38-cp38-linux_aarch64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

24
docker/Dockerfile.armv7hf Normal file
View File

@@ -0,0 +1,24 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
libaom0 \
libx265-179 \
## Tensorflow lite
&& pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp38-cp38-linux_armv7l.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

41
docker/Dockerfile.base Normal file
View File

@@ -0,0 +1,41 @@
ARG ARCH=amd64
FROM blakeblackshear/frigate-wheels:${ARCH} as wheels
FROM blakeblackshear/frigate-ffmpeg:${ARCH} as ffmpeg
FROM ubuntu:20.04
LABEL maintainer "blakeb@blakeshome.com"
COPY --from=ffmpeg /usr/local /usr/local/
COPY --from=wheels /wheels/. /wheels/
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
gnupg wget unzip tzdata \
&& apt-get -qq install --no-install-recommends -y \
python3-pip \
&& pip3 install -U /wheels/*.whl \
&& APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn apt-key adv --fetch-keys https://packages.cloud.google.com/apt/doc/apt-key.gpg \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections \
&& apt-get -qq update && apt-get -qq install --no-install-recommends -y \
libedgetpu1-max \
&& rm -rf /var/lib/apt/lists/* /wheels \
&& (apt-get autoremove -y; apt-get autoclean -y)
# get model and labels
ARG MODEL_REFS=7064b94dd5b996189242320359dbab8b52c94a84
COPY labelmap.txt /labelmap.txt
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
RUN mkdir /cache /clips
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
COPY process_clip.py .
CMD ["python3", "-u", "detect_objects.py"]

View File

@@ -0,0 +1,526 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
libva-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make && \
make install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make && \
make install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make && \
make install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make && \
make install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make && \
make install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make && \
make install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make check && \
make install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-vaapi \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make && \
make install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/
RUN \
apt-get update -y && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver && \
rm -rf /var/lib/apt/lists/*

View File

@@ -0,0 +1,533 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
export CXXFLAGS="${CXXFLAGS} -fPIC" && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make check && \
make -j $(nproc) install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
# --enable-omx \
# --enable-omx-rpi \
# --enable-mmal \
--enable-v4l2_m2m \
--enable-neon \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make -j $(nproc) && \
make -j $(nproc) install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/
# Run ffmpeg with -c:v h264_v4l2m2m to enable HW accell for decoding on raspberry pi4 64-bit

View File

@@ -0,0 +1,549 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.3 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig:/opt/vc/lib/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib:/opt/vc/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
sudo \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
libx265-dev \
libaom-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
# ### x265 http://x265.org/
# RUN \
# DIR=/tmp/x265 && \
# mkdir -p ${DIR} && \
# cd ${DIR} && \
# curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
# tar -zx && \
# cd x265_${X265_VERSION}/build/linux && \
# sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
# sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
# # export CXXFLAGS="${CXXFLAGS} -fPIC" && \
# ./multilib.sh && \
# make -C 8bit install && \
# rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
# RUN \
# DIR=/tmp/aom && \
# git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
# cd ${DIR} ; \
# rm -rf CMakeCache.txt CMakeFiles ; \
# mkdir -p ./aom_build ; \
# cd ./aom_build ; \
# cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
# make ; \
# make install ; \
# rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
# make check && \
make -j $(nproc) install && \
rm -rf ${DIR}
## userland https://github.com/raspberrypi/userland
RUN \
DIR=/tmp/userland && \
mkdir -p ${DIR} && \
cd ${DIR} && \
git clone --depth 1 https://github.com/raspberrypi/userland.git . && \
./buildme && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-omx \
--enable-omx-rpi \
--enable-mmal \
--enable-v4l2_m2m \
--enable-neon \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make -j $(nproc) && \
make -j $(nproc) install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
# copy userland lib too
ldd ${PREFIX}/bin/ffmpeg | grep opt/vc | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
RUN \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends libx265-dev libaom-dev && \
apt-get autoremove -y && \
apt-get clean -y
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/

39
docker/Dockerfile.wheels Normal file
View File

@@ -0,0 +1,39 @@
FROM ubuntu:20.04 as build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
&& apt-get -qq install -y \
python3 \
python3-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# scipy dependencies
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py
RUN pip3 install scikit-build
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
imutils \
scipy \
psutil \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
click
FROM scratch
COPY --from=build /wheels /wheels

View File

@@ -0,0 +1,49 @@
FROM ubuntu:20.04 as build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
&& apt-get -qq install -y \
python3 \
python3-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# scipy dependencies
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py
# need to build cmake from source because binary distribution is broken for arm64
# https://github.com/scikit-build/cmake-python-distributions/issues/115
# https://github.com/skvark/opencv-python/issues/366
# https://github.com/scikit-build/cmake-python-distributions/issues/96#issuecomment-663062358
RUN pip3 install scikit-build
RUN git clone https://github.com/scikit-build/cmake-python-distributions.git \
&& cd cmake-python-distributions/ \
&& python3 setup.py bdist_wheel
RUN pip3 install cmake-python-distributions/dist/*.whl
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
imutils \
scipy \
psutil \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
click
FROM scratch
COPY --from=build /wheels /wheels

23
docs/CAMERAS.md Normal file
View File

@@ -0,0 +1,23 @@
# Camera Specific Configuration
Frigate should work with most RTSP cameras and h264 feeds such as Dahua.
## RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -use_wallclock_as_timestamps
- '1'
```

View File

@@ -1,74 +0,0 @@
# Configuration Examples
### Default (most RTSP cameras)
This is the default ffmpeg command and should work with most RTSP cameras that send h264 video
```yaml
ffmpeg:
global_args:
- -hide_banner
- -loglevel
- panic
hwaccel_args: []
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -rtsp_transport
- tcp
- -stimeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
output_args:
- -vf
- mpdecimate
- -f
- rawvideo
- -pix_fmt
- rgb24
```
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -use_wallclock_as_timestamps
- '1'
```
### Hardware Acceleration
Intel Quicksync
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```

32
docs/HWACCEL.md Normal file
View File

@@ -0,0 +1,32 @@
# Hardware Acceleration for Decoding Video
FFmpeg is compiled to support hardware accelerated decoding of video streams.
## Intel-based CPUs via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```
## Raspberry Pi 3b and 4 (32bit OS)
Ensure you increase the allocated RAM for your GPU to at least 128 (raspi-config > Advanced Options > Memory Split)
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_mmal
```
## Raspberry Pi 4 (64bit OS)
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_v4l2m2m
```

BIN
docs/zone_example.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

0
frigate/__init__.py Normal file
View File

View File

@@ -2,11 +2,14 @@ import os
import datetime
import hashlib
import multiprocessing as mp
import queue
from multiprocessing.connection import Connection
from abc import ABC, abstractmethod
from typing import Dict
import numpy as np
import pyarrow.plasma as plasma
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, listen
from frigate.util import EventsPerSecond, listen, SharedMemoryFrameManager
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
@@ -27,13 +30,32 @@ def load_labels(path, encoding='utf-8'):
else:
return {index: line.strip() for index, line in enumerate(lines)}
class ObjectDetector():
def __init__(self):
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold = .4):
pass
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, labels=None):
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
else:
self.labels = load_labels(labels)
device_config = {"device": "usb"}
if not tf_device is None:
device_config = {"device": tf_device}
edge_tpu_delegate = None
try:
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
if tf_device != 'cpu':
try:
print(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
print("TPU found")
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
@@ -48,6 +70,22 @@ class ObjectDetector():
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect(self, tensor_input, threshold=.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
self.interpreter.invoke()
@@ -61,75 +99,87 @@ class ObjectDetector():
return detections
def run_detector(detection_queue, avg_speed, start):
def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, start, tf_device):
print(f"Starting detection process: {os.getpid()}")
listen()
plasma_client = plasma.connect("/tmp/plasma")
object_detector = ObjectDetector()
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(tf_device=tf_device)
outputs = {}
for name in out_events.keys():
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20,6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {
'shm': out_shm,
'np': out_np
}
while True:
object_id_str = detection_queue.get()
object_id_hash = hashlib.sha1(str.encode(object_id_str))
object_id = plasma.ObjectID(object_id_hash.digest())
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
input_frame = plasma_client.get(object_id, timeout_ms=0)
connection_id = detection_queue.get()
input_frame = frame_manager.get(connection_id, (1,300,300,3))
if input_frame is plasma.ObjectNotAvailable:
if input_frame is None:
continue
# detect and put the output in the plasma store
# detect and send the output
start.value = datetime.datetime.now().timestamp()
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
detections = object_detector.detect_raw(input_frame)
duration = datetime.datetime.now().timestamp()-start.value
outputs[connection_id]['np'][:] = detections[:]
out_events[connection_id].set()
start.value = 0.0
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self):
self.detection_queue = mp.SimpleQueue()
def __init__(self, detection_queue, out_events, tf_device=None):
self.out_events = out_events
self.detection_queue = detection_queue
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.tf_device = tf_device
self.start_or_restart()
def stop(self):
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
self.stop()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.tf_device))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue):
def __init__(self, name, labels, detection_queue, event):
self.labels = load_labels(labels)
self.name = name
self.fps = EventsPerSecond()
self.plasma_client = plasma.connect("/tmp/plasma")
self.detection_queue = detection_queue
self.event = event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray((1,300,300,3), dtype=np.uint8, buffer=self.shm.buf)
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
def detect(self, tensor_input, threshold=.4):
detections = []
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
self.plasma_client.put(tensor_input, object_id_frame)
self.detection_queue.put(now)
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
# copy input to shared memory
self.np_shm[:] = tensor_input[:]
self.event.clear()
self.detection_queue.put(self.name)
self.event.wait()
if raw_detections is plasma.ObjectNotAvailable:
self.plasma_client.delete([object_id_frame])
return detections
for d in raw_detections:
for d in self.out_np_shm:
if d[1] < threshold:
break
detections.append((
@@ -137,6 +187,9 @@ class RemoteObjectDetector():
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.plasma_client.delete([object_id_frame, object_id_detections])
self.fps.update()
return detections
return detections
def cleanup(self):
self.shm.unlink()
self.out_shm.unlink()

174
frigate/events.py Normal file
View File

@@ -0,0 +1,174 @@
import os
import time
import psutil
import threading
from collections import defaultdict
import json
import datetime
import subprocess as sp
import queue
class EventProcessor(threading.Thread):
def __init__(self, config, camera_processes, cache_dir, clip_dir, event_queue, stop_event):
threading.Thread.__init__(self)
self.config = config
self.camera_processes = camera_processes
self.cache_dir = cache_dir
self.clip_dir = clip_dir
self.cached_clips = {}
self.event_queue = event_queue
self.events_in_process = {}
self.stop_event = stop_event
def refresh_cache(self):
cached_files = os.listdir(self.cache_dir)
files_in_use = []
for process_data in self.camera_processes.values():
try:
ffmpeg_process = psutil.Process(pid=process_data['ffmpeg_process'].pid)
flist = ffmpeg_process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(self.cache_dir):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in cached_files:
if f in files_in_use or f in self.cached_clips:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(self.cache_dir,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
print(f"bad file: {f}")
os.remove(os.path.join(self.cache_dir,f))
continue
self.cached_clips[f] = {
'path': f,
'camera': camera,
'start_time': start_time.timestamp(),
'duration': duration
}
if len(self.events_in_process) > 0:
earliest_event = min(self.events_in_process.values(), key=lambda x:x['start_time'])['start_time']
else:
earliest_event = datetime.datetime.now().timestamp()
# if the earliest event exceeds the max seconds, cap it
max_seconds = self.config.get('save_clips', {}).get('max_seconds', 300)
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
earliest_event = datetime.datetime.now().timestamp()-max_seconds
for f, data in list(self.cached_clips.items()):
if earliest_event-90 > data['start_time']+data['duration']:
del self.cached_clips[f]
os.remove(os.path.join(self.cache_dir,f))
def create_clip(self, camera, event_data, pre_capture):
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
while sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']:
time.sleep(5)
self.refresh_cache()
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
playlist_start = event_data['start_time']-pre_capture
playlist_end = event_data['end_time']+5
playlist_lines = []
for clip in sorted_clips:
# clip ends before playlist start time, skip
if clip['start_time']+clip['duration'] < playlist_start:
continue
# clip starts after playlist ends, finish
if clip['start_time'] > playlist_end:
break
playlist_lines.append(f"file '{os.path.join(self.cache_dir,clip['path'])}'")
# if this is the starting clip, add an inpoint
if clip['start_time'] < playlist_start:
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
# if this is the ending clip, add an outpoint
if clip['start_time']+clip['duration'] > playlist_end:
playlist_lines.append(f"outpoint {int(playlist_end-clip['start_time'])}")
clip_name = f"{camera}-{event_data['id']}"
ffmpeg_cmd = [
'ffmpeg',
'-y',
'-protocol_whitelist',
'pipe,file',
'-f',
'concat',
'-safe',
'0',
'-i',
'-',
'-c',
'copy',
f"{os.path.join(self.clip_dir, clip_name)}.mp4"
]
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
if p.returncode != 0:
print(p.stderr)
return
with open(f"{os.path.join(self.clip_dir, clip_name)}.json", 'w') as outfile:
json.dump(event_data, outfile)
def run(self):
while True:
if self.stop_event.is_set():
print(f"Exiting event processor...")
break
try:
event_type, camera, event_data = self.event_queue.get(timeout=10)
except queue.Empty:
if not self.stop_event.is_set():
self.refresh_cache()
continue
self.refresh_cache()
save_clips_config = self.config['cameras'][camera].get('save_clips', {})
# if save clips is not enabled for this camera, just continue
if not save_clips_config.get('enabled', False):
continue
# if specific objects are listed for this camera, only save clips for them
if 'objects' in save_clips_config:
if not event_data['label'] in save_clips_config['objects']:
continue
if event_type == 'start':
self.events_in_process[event_data['id']] = event_data
if event_type == 'end':
if len(self.cached_clips) > 0 and not event_data['false_positive']:
self.create_clip(camera, event_data, save_clips_config.get('pre_capture', 30))
del self.events_in_process[event_data['id']]

View File

@@ -4,6 +4,7 @@ import numpy as np
class MotionDetector():
def __init__(self, frame_shape, mask, resize_factor=4):
self.frame_shape = frame_shape
self.resize_factor = resize_factor
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
@@ -16,14 +17,16 @@ class MotionDetector():
def detect(self, frame):
motion_boxes = []
gray = frame[0:self.frame_shape[0], 0:self.frame_shape[1]]
# resize frame
resized_frame = cv2.resize(frame, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
# convert to grayscale
gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
# mask frame
gray[self.mask] = [255]
resized_frame[self.mask] = [255]
# it takes ~30 frames to establish a baseline
# dont bother looking for motion
@@ -31,7 +34,7 @@ class MotionDetector():
self.frame_counter += 1
else:
# compare to average
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg_frame))
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
# compute the average delta over the past few frames
# the alpha value can be modified to configure how sensitive the motion detection is.
@@ -70,10 +73,10 @@ class MotionDetector():
# TODO: this really depends on FPS
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for at least 3 frames
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
self.motion_frame_count = 0
return motion_boxes

View File

@@ -5,13 +5,16 @@ import time
import copy
import cv2
import threading
import queue
import copy
import numpy as np
from collections import Counter, defaultdict
import itertools
import pyarrow.plasma as plasma
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label, PlasmaManager
from frigate.util import draw_box_with_label, SharedMemoryFrameManager
from frigate.edgetpu import load_labels
from typing import Callable, Dict
from statistics import mean, median
PATH_TO_LABELS = '/labelmap.txt'
@@ -22,13 +25,273 @@ COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
class TrackedObjectProcessor(threading.Thread):
def __init__(self, config, client, topic_prefix, tracked_objects_queue):
threading.Thread.__init__(self)
def zone_filtered(obj, object_config):
object_name = obj['label']
if object_name in object_config:
obj_settings = object_config[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['computed_score']:
return True
return False
# Maintains the state of a camera
class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.frame_manager = frame_manager
self.best_objects = {}
self.object_status = defaultdict(lambda: 'OFF')
self.tracked_objects = {}
self.zone_objects = defaultdict(lambda: [])
self._current_frame = np.zeros(self.config['frame_shape'], np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
def get_current_frame(self, draw=False):
with self.current_frame_lock:
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = copy.deepcopy(self.tracked_objects)
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if self.config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if self.config['snapshots']['draw_zones']:
for name, zone in self.config['zones'].items():
thickness = 8 if any([name in obj['zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone['contour']], -1, zone['color'], thickness)
return frame_copy
def false_positive(self, obj):
# once a true positive, always a true positive
if not obj.get('false_positive', True):
return False
threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
if obj['computed_score'] < threshold:
return True
return False
def compute_score(self, obj):
scores = obj['score_history'][:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def on(self, event_type: str, callback: Callable[[Dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, tracked_objects):
self.current_frame_time = frame_time
# get the new frame and delete the old frame
frame_id = f"{self.name}{frame_time}"
current_frame = self.frame_manager.get(frame_id, (self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]))
current_ids = tracked_objects.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
self.tracked_objects[id] = tracked_objects[id]
self.tracked_objects[id]['zones'] = []
# start the score history
self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['start']:
c(self.name, tracked_objects[id])
for id in updated_ids:
self.tracked_objects[id].update(tracked_objects[id])
# if the object is not in the current frame, add a 0.0 to the score history
if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
self.tracked_objects[id]['score_history'].append(0.0)
else:
self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
# only keep the last 10 scores
if len(self.tracked_objects[id]['score_history']) > 10:
self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['update']:
c(self.name, self.tracked_objects[id])
for id in removed_ids:
# publish events to mqtt
self.tracked_objects[id]['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, self.tracked_objects[id])
del self.tracked_objects[id]
# check to see if the objects are in any zones
for obj in self.tracked_objects.values():
current_zones = []
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.config['zones'].items():
contour = zone['contour']
# check if the object is in the zone and not filtered
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0
and not zone_filtered(obj, zone.get('filters', {}))):
current_zones.append(name)
obj['zones'] = current_zones
# maintain best objects
for obj in self.tracked_objects.values():
object_type = obj['label']
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
continue
obj_copy = copy.deepcopy(obj)
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if obj_copy['score'] > current_best['score'] or (now - current_best['frame_time']) > self.config.get('best_image_timeout', 60):
obj_copy['frame'] = np.copy(current_frame)
self.best_objects[object_type] = obj_copy
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
else:
obj_copy['frame'] = np.copy(current_frame)
self.best_objects[object_type] = obj_copy
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj['false_positive']:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != self.object_status[obj_name]:
self.object_status[obj_name] = new_status
for c in self.callbacks['object_status']:
c(self.name, obj_name, new_status)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_status[obj_name] = 'OFF'
for c in self.callbacks['object_status']:
c(self.name, obj_name, 'OFF')
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[obj_name])
with self.current_frame_lock:
self._current_frame = current_frame
if not self.previous_frame_id is None:
self.frame_manager.delete(self.previous_frame_id)
self.previous_frame_id = frame_id
class TrackedObjectProcessor(threading.Thread):
def __init__(self, camera_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
threading.Thread.__init__(self)
self.camera_config = camera_config
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.stop_event = stop_event
self.camera_states: Dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
def start(camera, obj):
# publish events to mqtt
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(obj), retain=False)
self.event_queue.put(('start', camera, obj))
def update(camera, obj):
pass
def end(camera, obj):
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(obj), retain=False)
self.event_queue.put(('end', camera, obj))
def snapshot(camera, obj):
if not 'frame' in obj:
return
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_YUV2BGR_I420)
mqtt_config = self.camera_config[camera].get('mqtt', {'crop_to_region': False})
if mqtt_config.get('crop_to_region'):
region = obj['region']
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if 'snapshot_height' in mqtt_config:
height = int(mqtt_config['snapshot_height'])
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.camera_config.keys():
camera_state = CameraState(camera, self.camera_config[camera], self.frame_manager)
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
camera_state.on('snapshot', snapshot)
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
@@ -37,111 +300,75 @@ class TrackedObjectProcessor(threading.Thread):
'current_frame_time': 0.0,
'object_id': None
})
self.plasma_client = PlasmaManager()
# {
# 'zone_name': {
# 'person': ['camera_1', 'camera_2']
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
# set colors for zones
all_zone_names = set([zone for config in self.camera_config.values() for zone in config['zones'].keys()])
zone_colors = {}
colors = plt.cm.get_cmap('tab10', len(all_zone_names))
for i, zone in enumerate(all_zone_names):
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
# create zone contours
for camera_config in self.camera_config.values():
for zone_name, zone_config in camera_config['zones'].items():
zone_config['color'] = zone_colors[zone_name]
coordinates = zone_config['coordinates']
if isinstance(coordinates, list):
zone_config['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
elif isinstance(coordinates, str):
points = coordinates.split(',')
zone_config['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
else:
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
def get_best(self, camera, label):
if label in self.camera_data[camera]['best_objects']:
return self.camera_data[camera]['best_objects'][label]['frame']
best_objects = self.camera_states[camera].best_objects
if label in best_objects:
return best_objects[label]
else:
return None
return {}
def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame']
def get_current_frame(self, camera, draw=False):
return self.camera_states[camera].get_current_frame(draw)
def run(self):
while True:
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
if self.stop_event.is_set():
print(f"Exiting object processor...")
break
config = self.config[camera]
best_objects = self.camera_data[camera]['best_objects']
current_object_status = self.camera_data[camera]['object_status']
self.camera_data[camera]['tracked_objects'] = tracked_objects
self.camera_data[camera]['current_frame_time'] = frame_time
try:
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
###
# Draw tracked objects on the frame
###
current_frame = self.plasma_client.get(f"{camera}{frame_time}")
camera_state = self.camera_states[camera]
if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
camera_state.update(frame_time, current_tracked_objects)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
###
# Set the current frame
###
self.camera_data[camera]['current_frame'] = current_frame
# delete the previous frame from the plasma store and update the object id
if not self.camera_data[camera]['object_id'] is None:
self.plasma_client.delete(self.camera_data[camera]['object_id'])
self.camera_data[camera]['object_id'] = f"{camera}{frame_time}"
###
# Maintain the highest scoring recent object and frame for each label
###
for obj in tracked_objects.values():
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != frame_time:
continue
if obj['label'] in best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
###
# Report over MQTT
###
# count objects with more than 2 entries in history by type
obj_counter = Counter()
for obj in tracked_objects.values():
if len(obj['history']) > 1:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
# send the best snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
# update zone status for each label
for zone in camera_state.config['zones'].keys():
# get labels for current camera and all labels in current zone
labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones'] and not obj['false_positive']])
labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
# for each label in zone
for label in labels_to_check:
camera_list = self.zone_data[zone][label]
# remove or add the camera to the list for the current label
previous_state = len(camera_list) > 0
if label in labels_for_camera:
camera_list.add(camera_state.name)
elif camera_state.name in camera_list:
camera_list.remove(camera_state.name)
new_state = len(camera_list) > 0
# if the value is changing, send over MQTT
if previous_state == False and new_state == True:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
elif previous_state == True and new_state == False:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)

View File

@@ -5,6 +5,8 @@ import cv2
import itertools
import copy
import numpy as np
import random
import string
import multiprocessing as mp
from collections import defaultdict
from scipy.spatial import distance as dist
@@ -17,10 +19,11 @@ class ObjectTracker():
self.max_disappeared = max_disappeared
def register(self, index, obj):
id = f"{obj['frame_time']}-{index}"
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
id = f"{obj['frame_time']}-{rand_id}"
obj['id'] = id
obj['start_time'] = obj['frame_time']
obj['top_score'] = obj['score']
self.add_history(obj)
self.tracked_objects[id] = obj
self.disappeared[id] = 0
@@ -31,22 +34,8 @@ class ObjectTracker():
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
self.add_history(self.tracked_objects[id])
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def add_history(self, obj):
entry = {
'score': obj['score'],
'box': obj['box'],
'region': obj['region'],
'centroid': obj['centroid'],
'frame_time': obj['frame_time']
}
if 'history' in obj:
obj['history'].append(entry)
else:
obj['history'] = [entry]
def match_and_update(self, frame_time, new_objects):
# group by name

View File

@@ -1,3 +1,4 @@
from abc import ABC, abstractmethod
import datetime
import time
import signal
@@ -8,7 +9,8 @@ import cv2
import threading
import matplotlib.pyplot as plt
import hashlib
import pyarrow.plasma as plasma
from multiprocessing import shared_memory
from typing import AnyStr
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
@@ -43,6 +45,9 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
# dont go any smaller than 300
if size < 300:
size = 300
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
@@ -65,6 +70,37 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
return (x_offset, y_offset, x_offset+size, y_offset+size)
def yuv_region_2_rgb(frame, region):
height = frame.shape[0]//3*2
width = frame.shape[1]
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
x1 = region[0]
y1 = region[1]
uv_x1 = x1//2
uv_y1 = y1//4
uv_width = size//2
uv_height = size//4
u_y_start = height
v_y_start = height + height//4
two_x_offset = width//2
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# y channel
yuv_cropped_frame[0:size, 0:size] = frame[y1:y1+size, x1:x1+size]
# u channel
yuv_cropped_frame[size:size+uv_height, 0:uv_width] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size:size+uv_height, uv_width:size] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
# v channel
yuv_cropped_frame[size+uv_height:size+uv_height*2, 0:uv_width] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size+uv_height:size+uv_height*2, uv_width:size] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
def intersection(box_a, box_b):
return (
max(box_a[0], box_b[0]),
@@ -122,12 +158,16 @@ class EventsPerSecond:
self._start = datetime.datetime.now().timestamp()
def update(self):
if self._start is None:
self.start()
self._timestamps.append(datetime.datetime.now().timestamp())
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events+100:
self._timestamps = self._timestamps[(1-self._max_events):]
def eps(self, last_n_seconds=10):
if self._start is None:
self.start()
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now-self._start, last_n_seconds)
@@ -139,45 +179,66 @@ def print_stack(sig, frame):
def listen():
signal.signal(signal.SIGUSR1, print_stack)
class PlasmaManager:
def __init__(self):
self.connect()
def connect(self):
while True:
try:
self.plasma_client = plasma.connect("/tmp/plasma")
return
except:
print(f"TrackedObjectProcessor: unable to connect plasma client")
time.sleep(10)
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:
pass
@abstractmethod
def get(self, name, timeout_ms=0):
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
while True:
try:
return self.plasma_client.get(object_id, timeout_ms=timeout_ms)
except:
self.connect()
time.sleep(1)
pass
def put(self, name, obj):
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
while True:
try:
self.plasma_client.put(obj, object_id)
return
except Exception as e:
print(f"Failed to put in plasma: {e}")
self.connect()
time.sleep(1)
@abstractmethod
def close(self, name):
pass
@abstractmethod
def delete(self, name):
pass
class DictFrameManager(FrameManager):
def __init__(self):
self.frames = {}
def create(self, name, size) -> AnyStr:
mem = bytearray(size)
self.frames[name] = mem
return mem
def get(self, name, shape):
mem = self.frames[name]
return np.ndarray(shape, dtype=np.uint8, buffer=mem)
def close(self, name):
pass
def delete(self, name):
del self.frames[name]
class SharedMemoryFrameManager(FrameManager):
def __init__(self):
self.shm_store = {}
def create(self, name, size) -> AnyStr:
shm = shared_memory.SharedMemory(name=name, create=True, size=size)
self.shm_store[name] = shm
return shm.buf
def get(self, name, shape):
if name in self.shm_store:
shm = self.shm_store[name]
else:
shm = shared_memory.SharedMemory(name=name)
self.shm_store[name] = shm
return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
def close(self, name):
if name in self.shm_store:
self.shm_store[name].close()
del self.shm_store[name]
def delete(self, name):
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
while True:
try:
self.plasma_client.delete([object_id])
return
except:
self.connect()
time.sleep(1)
if name in self.shm_store:
self.shm_store[name].close()
self.shm_store[name].unlink()
del self.shm_store[name]

View File

@@ -5,15 +5,16 @@ import cv2
import queue
import threading
import ctypes
import pyarrow.plasma as plasma
import multiprocessing as mp
import subprocess as sp
import numpy as np
import copy
import itertools
import json
import base64
from typing import Dict, List
from collections import defaultdict
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, PlasmaManager
from frigate.util import draw_box_with_label, yuv_region_2_rgb, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, SharedMemoryFrameManager
from frigate.objects import ObjectTracker
from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector
@@ -52,7 +53,7 @@ def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
def filtered(obj, objects_to_track, object_filters, mask):
def filtered(obj, objects_to_track, object_filters, mask=None):
object_name = obj[0]
if not object_name in objects_to_track:
@@ -71,8 +72,8 @@ def filtered(obj, objects_to_track, object_filters, mask):
if obj_settings.get('max_area', 24000000) < obj[3]:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj[1]:
# if the score is lower than the min_score, skip
if obj_settings.get('min_score', 0) > obj[1]:
return True
# compute the coordinates of the object and make sure
@@ -81,13 +82,13 @@ def filtered(obj, objects_to_track, object_filters, mask):
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if mask[y_location][x_location] == [0]:
if (not mask is None) and (mask[y_location][x_location] == 0):
return True
return False
return False
def create_tensor_input(frame, region):
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
cropped_frame = yuv_region_2_rgb(frame, region)
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
@@ -114,8 +115,52 @@ def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
return process
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
frame_queue, take_frame: int, fps:EventsPerSecond, skipped_fps: EventsPerSecond,
stop_event: mp.Event, current_frame: mp.Value):
frame_num = 0
frame_size = frame_shape[0] * frame_shape[1] * 3 // 2
skipped_fps.start()
while True:
if stop_event.is_set():
print(f"{camera_name}: stop event set. exiting capture thread...")
break
frame_bytes = ffmpeg_process.stdout.read(frame_size)
current_frame.value = datetime.datetime.now().timestamp()
if len(frame_bytes) < frame_size:
print(f"{camera_name}: ffmpeg sent a broken frame. something is wrong.")
if ffmpeg_process.poll() != None:
print(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
break
else:
continue
fps.update()
frame_num += 1
if (frame_num % take_frame) != 0:
skipped_fps.update()
continue
# if the queue is full, skip this frame
if frame_queue.full():
skipped_fps.update()
continue
# put the frame in the frame manager
frame_buffer = frame_manager.create(f"{camera_name}{current_frame.value}", frame_size)
frame_buffer[:] = frame_bytes[:]
frame_manager.close(f"{camera_name}{current_frame.value}")
# add to the queue
frame_queue.put(current_frame.value)
class CameraCapture(threading.Thread):
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, detection_frame):
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, stop_event):
threading.Thread.__init__(self)
self.name = name
self.frame_shape = frame_shape
@@ -124,187 +169,148 @@ class CameraCapture(threading.Thread):
self.take_frame = take_frame
self.fps = fps
self.skipped_fps = EventsPerSecond()
self.plasma_client = PlasmaManager()
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = 0
self.current_frame = mp.Value('d', 0.0)
self.last_frame = 0
self.detection_frame = detection_frame
self.stop_event = stop_event
def run(self):
frame_num = 0
self.skipped_fps.start()
while True:
if self.ffmpeg_process.poll() != None:
print(f"{self.name}: ffmpeg process is not running. exiting capture thread...")
break
capture_frames(self.ffmpeg_process, self.name, self.frame_shape, self.frame_manager, self.frame_queue, self.take_frame,
self.fps, self.skipped_fps, self.stop_event, self.current_frame)
frame_bytes = self.ffmpeg_process.stdout.read(self.frame_size)
self.current_frame = datetime.datetime.now().timestamp()
if len(frame_bytes) == 0:
print(f"{self.name}: ffmpeg didnt return a frame. something is wrong.")
continue
self.fps.update()
frame_num += 1
if (frame_num % self.take_frame) != 0:
self.skipped_fps.update()
continue
# if the detection process is more than 1 second behind, skip this frame
if self.detection_frame.value > 0.0 and (self.last_frame - self.detection_frame.value) > 1:
self.skipped_fps.update()
continue
# put the frame in the plasma store
self.plasma_client.put(f"{self.name}{self.current_frame}",
np
.frombuffer(frame_bytes, np.uint8)
.reshape(self.frame_shape)
)
# add to the queue
self.frame_queue.put(self.current_frame)
self.last_frame = self.current_frame
def track_camera(name, config, global_objects_config, frame_queue, frame_shape, detection_queue, detected_objects_queue, fps, detection_fps, read_start, detection_frame):
def track_camera(name, config, frame_queue, frame_shape, detection_queue, result_connection, detected_objects_queue, fps, detection_fps, read_start, detection_frame, stop_event):
print(f"Starting process for {name}: {os.getpid()}")
listen()
detection_frame.value = 0.0
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
# combine tracked objects lists
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# merge object filters
global_object_filters = global_objects_config.get('filters', {})
camera_object_filters = camera_objects_config.get('filters', {})
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
object_filters = {}
for obj in objects_with_config:
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
frame = np.zeros(frame_shape, np.uint8)
camera_objects_config = config.get('objects', {})
objects_to_track = camera_objects_config.get('track', [])
object_filters = camera_objects_config.get('filters', {})
# load in the mask for object detection
if 'mask' in config:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
if config['mask'].startswith('base64,'):
img = base64.b64decode(config['mask'][7:])
npimg = np.fromstring(img, dtype=np.uint8)
mask = cv2.imdecode(npimg, cv2.IMREAD_GRAYSCALE)
elif config['mask'].startswith('poly,'):
points = config['mask'].split(',')[1:]
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
mask[:] = 255
cv2.fillPoly(mask, pts=[contour], color=(0))
else:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None
if mask is None:
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
if mask is None or mask.size == 0:
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection)
object_tracker = ObjectTracker(10)
plasma_client = PlasmaManager()
avg_wait = 0.0
frame_manager = SharedMemoryFrameManager()
process_frames(name, frame_queue, frame_shape, frame_manager, motion_detector, object_detector,
object_tracker, detected_objects_queue, fps, detection_fps, detection_frame, objects_to_track, object_filters, mask, stop_event)
print(f"{name}: exiting subprocess")
def reduce_boxes(boxes):
if len(boxes) == 0:
return []
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
return [tuple(b) for b in reduced_boxes]
def detect(object_detector, frame, region, objects_to_track, object_filters, mask):
tensor_input = create_tensor_input(frame, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
# apply object filters
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
return detections
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
frame_manager: FrameManager, motion_detector: MotionDetector,
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue, fps: mp.Value, detection_fps: mp.Value, current_frame_time: mp.Value,
objects_to_track: List[str], object_filters: Dict, mask, stop_event: mp.Event,
exit_on_empty: bool = False):
fps_tracker = EventsPerSecond()
fps_tracker.start()
object_detector.fps.start()
while True:
read_start.value = datetime.datetime.now().timestamp()
frame_time = frame_queue.get()
duration = datetime.datetime.now().timestamp()-read_start.value
read_start.value = 0.0
avg_wait = (avg_wait*99+duration)/100
detection_frame.value = frame_time
# Get frame from plasma store
frame = plasma_client.get(f"{name}{frame_time}")
if frame is plasma.ObjectNotAvailable:
while True:
if stop_event.is_set() or (exit_on_empty and frame_queue.empty()):
print(f"Exiting track_objects...")
break
try:
frame_time = frame_queue.get(True, 10)
except queue.Empty:
continue
current_frame_time.value = frame_time
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
if frame is None:
print(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
fps_tracker.update()
fps.value = fps_tracker.eps()
detection_fps.value = object_detector.fps.eps()
# look for motion
motion_boxes = motion_detector.detect(frame)
tracked_objects = object_tracker.tracked_objects.values()
tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values()]
# merge areas of motion that intersect with a known tracked object into a single area to look at
areas_of_interest = []
used_motion_boxes = []
for obj in tracked_objects:
x_min, y_min, x_max, y_max = obj['box']
for m_index, motion_box in enumerate(motion_boxes):
if intersection_over_union(motion_box, obj['box']) > .2:
used_motion_boxes.append(m_index)
x_min = min(obj['box'][0], motion_box[0])
y_min = min(obj['box'][1], motion_box[1])
x_max = max(obj['box'][2], motion_box[2])
y_max = max(obj['box'][3], motion_box[3])
areas_of_interest.append((x_min, y_min, x_max, y_max))
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
# compute motion regions
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
for i in unused_motion_boxes]
# compute tracked object regions
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in areas_of_interest]
# merge regions with high IOU
merged_regions = motion_regions+object_regions
while True:
max_iou = 0.0
max_indices = None
region_indices = range(len(merged_regions))
for a, b in itertools.combinations(region_indices, 2):
iou = intersection_over_union(merged_regions[a], merged_regions[b])
if iou > max_iou:
max_iou = iou
max_indices = (a, b)
if max_iou > 0.1:
a = merged_regions[max_indices[0]]
b = merged_regions[max_indices[1]]
merged_regions.append(calculate_region(frame_shape,
min(a[0], b[0]),
min(a[1], b[1]),
max(a[2], b[2]),
max(a[3], b[3]),
1
))
del merged_regions[max(max_indices[0], max_indices[1])]
del merged_regions[min(max_indices[0], max_indices[1])]
else:
break
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
# compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in combined_boxes]
# combine overlapping regions
combined_regions = reduce_boxes(regions)
# re-compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in combined_regions]
# resize regions and detect
detections = []
for region in merged_regions:
tensor_input = create_tensor_input(frame, region)
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
for region in regions:
detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
#########
# merge objects, check for clipped objects and look again up to N times
# merge objects, check for clipped objects and look again up to 4 times
#########
refining = True
refine_count = 0
@@ -334,40 +340,24 @@ def track_camera(name, config, global_objects_config, frame_queue, frame_shape,
box[0], box[1],
box[2], box[3])
tensor_input = create_tensor_input(frame, region)
# run detection on new region
refined_detections = object_detector.detect(tensor_input)
for d in refined_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
selected_objects.append(det)
selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
refining = True
else:
selected_objects.append(obj)
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections)
# add to the queue
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects))
print(f"{name}: exiting subprocess")
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")

80
labelmap.txt Normal file
View File

@@ -0,0 +1,80 @@
0 person
1 bicycle
2 car
3 motorcycle
4 airplane
5 bus
6 train
7 car
8 boat
9 traffic light
10 fire hydrant
12 stop sign
13 parking meter
14 bench
15 bird
16 cat
17 dog
18 horse
19 sheep
20 cow
21 elephant
22 bear
23 zebra
24 giraffe
26 backpack
27 umbrella
30 handbag
31 tie
32 suitcase
33 frisbee
34 skis
35 snowboard
36 sports ball
37 kite
38 baseball bat
39 baseball glove
40 skateboard
41 surfboard
42 tennis racket
43 bottle
45 wine glass
46 cup
47 fork
48 knife
49 spoon
50 bowl
51 banana
52 apple
53 sandwich
54 orange
55 broccoli
56 carrot
57 hot dog
58 pizza
59 donut
60 cake
61 chair
62 couch
63 potted plant
64 bed
66 dining table
69 toilet
71 tv
72 laptop
73 mouse
74 remote
75 keyboard
76 cell phone
77 microwave
78 oven
79 toaster
80 sink
81 refrigerator
83 book
84 clock
85 vase
86 scissors
87 teddy bear
88 hair drier
89 toothbrush

152
process_clip.py Normal file
View File

@@ -0,0 +1,152 @@
import sys
import click
import os
import datetime
from unittest import TestCase, main
from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames, get_frame_shape
from frigate.util import DictFrameManager, SharedMemoryFrameManager, EventsPerSecond, draw_box_with_label
from frigate.motion import MotionDetector
from frigate.edgetpu import LocalObjectDetector
from frigate.objects import ObjectTracker
import multiprocessing as mp
import numpy as np
import cv2
from frigate.object_processing import COLOR_MAP, CameraState
class ProcessClip():
def __init__(self, clip_path, frame_shape, config):
self.clip_path = clip_path
self.frame_shape = frame_shape
self.camera_name = 'camera'
self.frame_manager = DictFrameManager()
# self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
stop_event = mp.Event()
detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000)
current_frame = mp.Value('d', 0.0)
ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel panic -i {self.clip_path} -f rawvideo -pix_fmt rgb24 pipe:".split(" ")
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.frame_shape[0]*self.frame_shape[1]*self.frame_shape[2])
capture_frames(ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, 1, fps, skipped_fps, stop_event, detection_frame, current_frame)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=['person'], object_filters={}):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, mask)
object_detector = LocalObjectDetector(labels='/labelmap.txt')
object_tracker = ObjectTracker(10)
process_fps = mp.Value('d', 0.0)
detection_fps = mp.Value('d', 0.0)
current_frame = mp.Value('d', 0.0)
stop_event = mp.Event()
process_frames(self.camera_name, self.frame_queue, self.frame_shape, self.frame_manager, motion_detector, object_detector, object_tracker, self.detected_objects_queue,
process_fps, detection_fps, current_frame, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
def objects_found(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj):
nonlocal obj_detected
nonlocal top_computed_score
if obj['computed_score'] > top_computed_score:
top_computed_score = obj['computed_score']
if not obj['false_positive']:
obj_detected = True
self.camera_state.on('new', handle_event)
self.camera_state.on('update', handle_event)
while(not self.detected_objects_queue.empty()):
camera_name, frame_time, current_tracked_objects = self.detected_objects_queue.get()
if not debug_path is None:
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
self.camera_state.update(frame_time, current_tracked_objects)
for obj in self.camera_state.tracked_objects.values():
print(f"{frame_time}: {obj['id']} - {obj['computed_score']} - {obj['score_history']}")
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
'object_detected': obj_detected,
'top_score': top_computed_score
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = self.frame_manager.get(f"{self.camera_name}{frame_time}", self.frame_shape)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0,0,175)
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
else:
color = (255,255,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR))
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default='person', help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, threshold, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
config = {
'snapshots': {
'show_timestamp': False,
'draw_zones': False
},
'zones': {},
'objects': {
'track': [label],
'filters': {
'person': {
'threshold': threshold
}
}
}
}
results = []
for c in clips:
frame_shape = get_frame_shape(c)
config['frame_shape'] = frame_shape
process_clip = ProcessClip(c, frame_shape, config)
process_clip.load_frames()
process_clip.process_frames(objects_to_track=config['objects']['track'])
results.append((c, process_clip.objects_found(debug_path)))
for result in results:
print(f"{result[0]}: {result[1]}")
positive_count = sum(1 for result in results if result[1]['object_detected'])
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
if __name__ == '__main__':
process()