Compare commits

..

22 Commits

Author SHA1 Message Date
Blake Blackshear
469259d663 dont refresh cache if exiting 2020-08-08 07:40:48 -05:00
Blake Blackshear
f3db69d975 update docs 2020-08-08 07:40:48 -05:00
Blake Blackshear
0914cb71ad allow resizing best image 2020-08-08 07:40:48 -05:00
Blake Blackshear
0ae2806eb4 fix overwriting variable 2020-08-08 07:40:48 -05:00
Blake Blackshear
adcfe699c2 ensure frigate can exit gracefully 2020-08-08 07:40:48 -05:00
Blake Blackshear
e5048f98b6 fix latest size calculation 2020-08-08 07:40:48 -05:00
Blake Blackshear
e6c6338266 allow mask to be base64 encoded into the config file 2020-08-08 07:40:48 -05:00
Blake Blackshear
1f03c8cb8c add latest jpg endpoint 2020-08-08 07:40:48 -05:00
Blake Blackshear
69f5249788 initial implementation of zones 2020-08-08 07:40:48 -05:00
Blake Blackshear
3a1f1c946b better camera name handling 2020-08-01 18:20:44 -05:00
Blake Blackshear
d88745af6e simplify directory creation 2020-08-01 18:20:44 -05:00
Blake Blackshear
709d917f0c update snapshot with better scores 2020-08-01 18:20:44 -05:00
Blake Blackshear
918386bdc1 use a random string in the object id instead of the index 2020-08-01 18:20:44 -05:00
Blake Blackshear
a8c0fadf95 make pre_capture time configurable 2020-08-01 18:20:44 -05:00
Blake Blackshear
6dc7b8f246 typo 2020-08-01 18:20:44 -05:00
Blake Blackshear
71f6f0bee4 typo 2020-08-01 18:20:44 -05:00
Blake Blackshear
a00afb61c0 add warning about cache to config 2020-08-01 18:20:44 -05:00
Blake Blackshear
5dbe6c5f36 add mqtt messages to readme 2020-08-01 18:20:44 -05:00
Blake Blackshear
16732aa5b3 update example config 2020-08-01 18:20:44 -05:00
Blake Blackshear
3d2f1437e4 filter objects before triggering events 2020-08-01 18:20:44 -05:00
Blake Blackshear
fbe721c860 remove vsync drop because it breaks segment 2020-08-01 18:20:44 -05:00
Blake Blackshear
7383db60b0 save clips for tracked objects 2020-08-01 18:20:44 -05:00
11 changed files with 587 additions and 37 deletions

View File

@@ -24,6 +24,7 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
numpy \
imutils \
scipy \
psutil \
&& python3.7 -m pip install -U \
Flask \
paho-mqtt \
@@ -49,6 +50,8 @@ RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelm
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
RUN mkdir /cache /clips
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .

115
README.md
View File

@@ -42,6 +42,7 @@ Example docker-compose:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
- <path_to_config>:/config
- <path_to_directory_for_clips>:/clips
ports:
- "5000:5000"
environment:
@@ -128,29 +129,125 @@ automation:
- url: http://<ip>:5000/<camera_name>/person/best.jpg
caption: A person was detected.
```
## Debugging Endpoint
## HTTP Endpoints
A web server is available on port 5000 with the following endpoints.
Keep in mind the MJPEG endpoint is for debugging only, but should not be used continuously as it will put additional load on the system.
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
### `/<camera_name>`
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`
Debug info is available at `http://localhost:5000/debug/stats`
### `/<camera_name>/<object_name>/best.jpg`
The best snapshot for any object type. It is a full resolution image by default. You can change the size of the image by appending `h=height-in-pixels` to the endpoint.
### `/<camera_name>/latest.jpg`
The most recent frame that frigate has finished processing. It is a full resolution image by default. You can change the size of the image by appending `h=height-in-pixels` to the endpoint.
## Using a custom model
### `/debug/stats`
Contains some granular debug info that can be used for sensors in HomeAssistant.
## MQTT Messages
These are the MQTT messages generated by Frigate. The default topic_prefix is `frigate`, but can be changed in the config file.
### frigate/available
Designed to be used as an availability topic with HomeAssistant. Possible message are:
"online": published when frigate is running (on startup)
"offline": published right before frigate stops
### frigate/<camera_name>/<object_name>
Publishes `ON` or `OFF` and is designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected.
### frigate/<camera_name>/<object_name>/snapshot
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
is published again.
### frigate/<camera_name>/events/start
Message published at the start of any tracked object. JSON looks as follows:
```json
{
"label": "person",
"score": 0.7890625,
"box": [
468,
446,
550,
592
],
"area": 11972,
"region": [
403,
395,
613,
605
],
"frame_time": 1594298020.819046,
"centroid": [
509,
519
],
"id": "1594298020.819046-0",
"start_time": 1594298020.819046,
"top_score": 0.7890625,
"history": [
{
"score": 0.7890625,
"box": [
468,
446,
550,
592
],
"region": [
403,
395,
613,
605
],
"centroid": [
509,
519
],
"frame_time": 1594298020.819046
}
]
}
```
### frigate/<camera_name>/events/end
Same as `frigate/<camera_name>/events/start`, but with an `end_time` property as well.
### frigate/<zone_name>/<object_name>
Publishes `ON` or `OFF` and is designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected in the zone.
## Using a custom model or labels
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
### Customizing the Labelmap
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
- Download the [COCO labelmap](https://dl.google.com/coral/canned_models/coco_labels.txt)
- Modify the label names as desired. For example, change `7 truck` to `7 car`
- Mount the new file at `/labelmap.txt` in the container with an additional volume
```
-v ./config/labelmap.txt:/labelmap.txt
```
## Masks and limiting detection to a certain area
You can create a *bitmap (bmp)* file the same aspect ratio as your camera feed to limit detection to certain areas. The mask works by looking at the bottom center of any bounding box (first image, red dot below) and comparing that to your mask. If that red dot falls on an area of your mask that is black, the detection (and motion) will be ignored. The mask in the second image would limit detection on this camera to only objects that are in the front yard and not the street.
<a href="docs/example-mask-check-point.png"><img src="docs/example-mask-check-point.png" height="300"></a>
<a href="docs/example-mask.bmp"><img src="docs/example-mask.bmp" height="300"></a>
<a href="docs/example-mask-overlay.png"><img src="docs/example-mask-overlay.png" height="300"></a>
<img src="docs/example-mask-check-point.png" height="300">
<img src="docs/example-mask.bmp" height="300">
<img src="docs/example-mask-overlay.png" height="300">
## Zones
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area. See the sample config for details on how to configure.
During testing, `draw_zones` can be set in the config to tell frigate to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
![Zone Example](docs/zone_example.jpg)
## Tips
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed. Not as effective, but you can also modify the `take_frame` [configuration](config/config.example.yml) for each camera to only analyze every other frame, or every third frame, etc.

View File

@@ -66,7 +66,42 @@ objects:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
threshold: 0.8
zones:
#################
# Name of the zone
################
front_steps:
cameras:
front_door:
####################
# For each camera, a list of x,y coordinates to define the polygon of the zone. The top
# left corner is 0,0. Can also be a comma separated string of all x,y coordinates combined.
# The same zone can exist across multiple cameras if they have overlapping FOVs.
# An object is determined to be in the zone based on whether or not the bottom center
# of it's bounding box is within the polygon. The polygon must have at least 3 points.
# Coordinates can be generated at https://www.image-map.net/
####################
coordinates:
- 545,1077
- 747,939
- 788,805
################
# Zone level object filters. These are applied in addition to the global and camera filters
# and should be more restrictive than the global and camera filters. The global and camera
# filters are applied upstream.
################
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.8
driveway:
cameras:
front_door:
coordinates: 545,1077,747,939,788,805
yard:
cameras:
back:
@@ -91,7 +126,9 @@ cameras:
# width: 720
################
## Optional mask. Must be the same aspect ratio as your video feed.
## Optional mask. Must be the same aspect ratio as your video feed. Value is either the
## name of a file in the config directory or a base64 encoded bmp image prefixed with
## 'base64,' eg. 'base64,asfasdfasdf....'.
##
## The mask works by looking at the bottom center of the bounding box for the detected
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
@@ -110,11 +147,34 @@ cameras:
################
take_frame: 1
################
# This will save a clip for each tracked object by frigate along with a json file that contains
# data related to the tracked object. This works by telling ffmpeg to write video segments to /cache
# from the video stream without re-encoding. Clips are then created by using ffmpeg to merge segments
# without re-encoding. The segments saved are unaltered from what frigate receives to avoid re-encoding.
# They do not contain bounding boxes. 30 seconds of video is added to the start of the clip. These are
# optimized to capture "false_positive" examples for improving frigate.
#
# NOTE: This will only work for camera feeds that can be copied into the mp4 container format without
# encoding such as h264. I do not expect this to work for mjpeg streams, and it may not work for many other
# types of streams.
#
# WARNING: Videos in /cache are retained until there are no ongoing events. If you are tracking cars or
# other objects for long periods of time, the cache will continue to grow indefinitely.
################
save_clips:
enabled: False
#########
# Number of seconds before the event to include in the clips
#########
pre_capture: 30
################
# Configuration for the snapshots in the debug view and mqtt
################
snapshots:
show_timestamp: True
draw_zones: False
################
# Camera level object config. This config is merged with the global config above.
@@ -126,4 +186,4 @@ cameras:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
threshold: 0.8

View File

@@ -1,4 +1,5 @@
import os
import signal
import sys
import traceback
import signal
@@ -17,6 +18,7 @@ import paho.mqtt.client as mqtt
from frigate.video import track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
from frigate.object_processing import TrackedObjectProcessor
from frigate.events import EventProcessor
from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess
@@ -47,7 +49,6 @@ FFMPEG_DEFAULT_CONFIG = {
'-flags', 'low_delay',
'-strict', 'experimental',
'-fflags', '+genpts+discardcorrupt',
'-vsync', 'drop',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
@@ -71,13 +72,14 @@ def start_plasma_store():
return plasma_process
class CameraWatchdog(threading.Thread):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, plasma_process):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, plasma_process, stop_event):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.tflite_process = tflite_process
self.tracked_objects_queue = tracked_objects_queue
self.plasma_process = plasma_process
self.stop_event = stop_event
def run(self):
time.sleep(10)
@@ -85,6 +87,10 @@ class CameraWatchdog(threading.Thread):
# wait a bit before checking
time.sleep(10)
if self.stop_event.is_set():
print(f"Exiting watchdog...")
break
now = datetime.datetime.now().timestamp()
# check the plasma process
@@ -125,7 +131,7 @@ class CameraWatchdog(threading.Thread):
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
ffmpeg_process = start_or_restart_ffmpeg(camera_process['ffmpeg_cmd'], frame_size)
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, camera_process['frame_queue'],
camera_process['take_frame'], camera_process['camera_fps'], camera_process['detection_frame'])
camera_process['take_frame'], camera_process['camera_fps'], camera_process['detection_frame'], self.stop_event)
camera_capture.start()
camera_process['ffmpeg_process'] = ffmpeg_process
camera_process['capture_thread'] = camera_capture
@@ -142,6 +148,7 @@ class CameraWatchdog(threading.Thread):
ffmpeg_process.communicate()
def main():
stop_event = threading.Event()
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
@@ -171,11 +178,15 @@ def main():
##
for name, config in CONFIG['cameras'].items():
config['snapshots'] = {
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
'draw_zones': config.get('snapshots', {}).get('draw_zones', False)
}
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.SimpleQueue()
tracked_objects_queue = mp.Queue()
# Queue for clip processing
event_queue = mp.Queue()
# Start the shared tflite process
tflite_process = EdgeTPUProcess()
@@ -190,6 +201,25 @@ def main():
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
if config.get('save_clips', {}).get('enabled', False):
ffmpeg_output_args = [
"-f",
"segment",
"-segment_time",
"10",
"-segment_format",
"mp4",
"-reset_timestamps",
"1",
"-strftime",
"1",
"-c",
"copy",
"-an",
"-map",
"0",
f"/cache/{name}-%Y%m%d%H%M%S.mp4"
] + ffmpeg_output_args
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
@@ -209,10 +239,10 @@ def main():
detection_frame = mp.Value('d', 0.0)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
frame_queue = mp.SimpleQueue()
frame_queue = mp.Queue()
camera_fps = EventsPerSecond()
camera_fps.start()
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps, detection_frame)
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps, detection_frame, stop_event)
camera_capture.start()
camera_processes[name] = {
@@ -240,12 +270,31 @@ def main():
camera_process['process'].start()
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
event_processor = EventProcessor(CONFIG['cameras'], camera_processes, '/cache', '/clips', event_queue, stop_event)
event_processor.start()
object_processor = TrackedObjectProcessor(CONFIG['cameras'], CONFIG.get('zones', {}), client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue,stop_event)
object_processor.start()
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process)
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process, stop_event)
camera_watchdog.start()
def receiveSignal(signalNumber, frame):
print('Received:', signalNumber)
stop_event.set()
event_processor.join()
object_processor.join()
camera_watchdog.join()
for name, camera_process in camera_processes.items():
camera_process['capture_thread'].join()
rc = camera_watchdog.plasma_process.poll()
if rc == None:
camera_watchdog.plasma_process.terminate()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
log = logging.getLogger('werkzeug')
@@ -315,6 +364,11 @@ def main():
best_frame = object_processor.get_best(camera_name, label)
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
@@ -334,6 +388,27 @@ def main():
else:
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
if camera_name in CONFIG['cameras']:
# max out at specified FPS
frame = object_processor.get_current_frame(camera_name)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name, fps, height):
while True:
# max out at specified FPS

BIN
docs/zone_example.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

View File

@@ -87,7 +87,7 @@ def run_detector(detection_queue, avg_speed, start):
class EdgeTPUProcess():
def __init__(self):
self.detection_queue = mp.SimpleQueue()
self.detection_queue = mp.Queue()
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None

158
frigate/events.py Normal file
View File

@@ -0,0 +1,158 @@
import os
import time
import psutil
import threading
from collections import defaultdict
import json
import datetime
import subprocess as sp
import queue
class EventProcessor(threading.Thread):
def __init__(self, config, camera_processes, cache_dir, clip_dir, event_queue, stop_event):
threading.Thread.__init__(self)
self.config = config
self.camera_processes = camera_processes
self.cache_dir = cache_dir
self.clip_dir = clip_dir
self.cached_clips = {}
self.event_queue = event_queue
self.events_in_process = {}
self.stop_event = stop_event
def refresh_cache(self):
cached_files = os.listdir(self.cache_dir)
files_in_use = []
for process_data in self.camera_processes.values():
try:
ffmpeg_process = psutil.Process(pid=process_data['ffmpeg_process'].pid)
flist = ffmpeg_process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(self.cache_dir):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in cached_files:
if f in files_in_use or f in self.cached_clips:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(self.cache_dir,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
print(f"bad file: {f}")
os.remove(os.path.join(self.cache_dir,f))
continue
self.cached_clips[f] = {
'path': f,
'camera': camera,
'start_time': start_time.timestamp(),
'duration': duration
}
if len(self.events_in_process) > 0:
earliest_event = min(self.events_in_process.values(), key=lambda x:x['start_time'])['start_time']
else:
earliest_event = datetime.datetime.now().timestamp()
for f, data in list(self.cached_clips.items()):
if earliest_event-90 > data['start_time']+data['duration']:
del self.cached_clips[f]
os.remove(os.path.join(self.cache_dir,f))
def create_clip(self, camera, event_data, pre_capture):
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
while sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']:
time.sleep(5)
self.refresh_cache()
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
playlist_start = event_data['start_time']-pre_capture
playlist_end = event_data['end_time']+5
playlist_lines = []
for clip in sorted_clips:
# clip ends before playlist start time, skip
if clip['start_time']+clip['duration'] < playlist_start:
continue
# clip starts after playlist ends, finish
if clip['start_time'] > playlist_end:
break
playlist_lines.append(f"file '{os.path.join(self.cache_dir,clip['path'])}'")
# if this is the starting clip, add an inpoint
if clip['start_time'] < playlist_start:
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
# if this is the ending clip, add an outpoint
if clip['start_time']+clip['duration'] > playlist_end:
playlist_lines.append(f"outpoint {int(playlist_end-clip['start_time'])}")
clip_name = f"{camera}-{event_data['id']}"
ffmpeg_cmd = [
'ffmpeg',
'-y',
'-protocol_whitelist',
'pipe,file',
'-f',
'concat',
'-safe',
'0',
'-i',
'-',
'-c',
'copy',
f"{os.path.join(self.clip_dir, clip_name)}.mp4"
]
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
if p.returncode != 0:
print(p.stderr)
return
with open(f"{os.path.join(self.clip_dir, clip_name)}.json", 'w') as outfile:
json.dump(event_data, outfile)
def run(self):
while True:
if self.stop_event.is_set():
print(f"Exiting event processor...")
break
try:
event_type, camera, event_data = self.event_queue.get(timeout=10)
except queue.Empty:
if not self.stop_event.is_set():
self.refresh_cache()
continue
self.refresh_cache()
if event_type == 'start':
self.events_in_process[event_data['id']] = event_data
if event_type == 'end':
if self.config[camera].get('save_clips', {}).get('enabled', False) and len(self.cached_clips) > 0:
self.create_clip(camera, event_data, self.config[camera].get('save_clips', {}).get('pre_capture', 30))
del self.events_in_process[event_data['id']]

View File

@@ -5,6 +5,7 @@ import time
import copy
import cv2
import threading
import queue
import numpy as np
from collections import Counter, defaultdict
import itertools
@@ -22,13 +23,44 @@ COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
def filter_false_positives(event):
if len(event['history']) < 2:
return True
return False
def zone_filtered(obj, object_config):
object_name = obj['label']
object_filters = object_config.get('filters', {})
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
return True
return False
class TrackedObjectProcessor(threading.Thread):
def __init__(self, config, client, topic_prefix, tracked_objects_queue):
def __init__(self, camera_config, zone_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
threading.Thread.__init__(self)
self.config = config
self.camera_config = camera_config
self.zone_config = zone_config
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.stop_event = stop_event
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
@@ -37,7 +69,29 @@ class TrackedObjectProcessor(threading.Thread):
'current_frame_time': 0.0,
'object_id': None
})
self.plasma_client = PlasmaManager()
self.zone_data = defaultdict(lambda: {
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'contours': {}
})
# create zone contours
for name, config in zone_config.items():
for camera, camera_zone_config in config.items():
coordinates = camera_zone_config['coordinates']
if isinstance(coordinates, list):
self.zone_data[name]['contours'][camera] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
elif isinstance(coordinates, str):
points = coordinates.split(',')
self.zone_data[name]['contours'][camera] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
else:
print(f"Unable to parse zone coordinates for {name} - {camera}")
# set colors for zones
colors = plt.cm.get_cmap('tab10', len(self.zone_data.keys()))
for i, zone in enumerate(self.zone_data.values()):
zone['color'] = tuple(int(round(255 * c)) for c in colors(i)[:3])
self.plasma_client = PlasmaManager(self.stop_event)
def get_best(self, camera, label):
if label in self.camera_data[camera]['best_objects']:
@@ -50,14 +104,61 @@ class TrackedObjectProcessor(threading.Thread):
def run(self):
while True:
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
if self.stop_event.is_set():
print(f"Exiting object processor...")
break
config = self.config[camera]
try:
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
camera_config = self.camera_config[camera]
best_objects = self.camera_data[camera]['best_objects']
current_object_status = self.camera_data[camera]['object_status']
self.camera_data[camera]['tracked_objects'] = tracked_objects
tracked_objects = self.camera_data[camera]['tracked_objects']
current_ids = current_tracked_objects.keys()
previous_ids = tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
# only register the object here if we are sure it isnt a false positive
if not filter_false_positives(current_tracked_objects[id]):
tracked_objects[id] = current_tracked_objects[id]
# publish events to mqtt
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(tracked_objects[id]), retain=False)
self.event_queue.put(('start', camera, tracked_objects[id]))
for id in updated_ids:
tracked_objects[id] = current_tracked_objects[id]
for id in removed_ids:
# publish events to mqtt
tracked_objects[id]['end_time'] = frame_time
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(tracked_objects[id]), retain=False)
self.event_queue.put(('end', camera, tracked_objects[id]))
del tracked_objects[id]
self.camera_data[camera]['current_frame_time'] = frame_time
# build a dict of objects in each zone for current camera
current_objects_in_zones = defaultdict(lambda: [])
for obj in tracked_objects.values():
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.zone_data.items():
current_contour = zone['contours'].get(camera, None)
# if the current camera does not have a contour for this zone, skip
if current_contour is None:
continue
# check if the object is in the zone and not filtered
if (cv2.pointPolygonTest(current_contour, bottom_center, False) >= 0
and not zone_filtered(obj, self.zone_config[name][camera].get('filters', {}))):
current_objects_in_zones[name].append(obj['label'])
###
# Draw tracked objects on the frame
###
@@ -80,10 +181,16 @@ class TrackedObjectProcessor(threading.Thread):
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if config['snapshots']['show_timestamp']:
if camera_config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if camera_config['snapshots']['draw_zones']:
for name, zone in self.zone_data.items():
thickness = 2 if len(current_objects_in_zones[name]) == 0 else 8
if camera in zone['contours']:
cv2.drawContours(current_frame, [zone['contours'][camera]], -1, zone['color'], thickness)
###
# Set the current frame
###
@@ -108,6 +215,12 @@ class TrackedObjectProcessor(threading.Thread):
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
@@ -115,11 +228,28 @@ class TrackedObjectProcessor(threading.Thread):
###
# Report over MQTT
###
# count objects with more than 2 entries in history by type
# get the zones that are relevant for this camera
relevant_zones = [zone for zone, config in self.zone_config.items() if camera in config]
for zone in relevant_zones:
# create the set of labels in the current frame and previously reported
labels_for_zone = set(current_objects_in_zones[zone] + list(self.zone_data[zone]['object_status'][camera].keys()))
# for each label
for label in labels_for_zone:
# compute the current 'ON' vs 'OFF' status by checking if any camera sees the object in the zone
previous_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()])
self.zone_data[zone]['object_status'][camera][label] = 'ON' if label in current_objects_in_zones[zone] else 'OFF'
new_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()])
# if the value is changing, send over MQTT
if previous_state == False and new_state == True:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
elif previous_state == True and new_state == False:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
# count by type
obj_counter = Counter()
for obj in tracked_objects.values():
if len(obj['history']) > 1:
obj_counter[obj['label']] += 1
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():

View File

@@ -5,6 +5,8 @@ import cv2
import itertools
import copy
import numpy as np
import random
import string
import multiprocessing as mp
from collections import defaultdict
from scipy.spatial import distance as dist
@@ -17,8 +19,10 @@ class ObjectTracker():
self.max_disappeared = max_disappeared
def register(self, index, obj):
id = f"{obj['frame_time']}-{index}"
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
id = f"{obj['frame_time']}-{rand_id}"
obj['id'] = id
obj['start_time'] = obj['frame_time']
obj['top_score'] = obj['score']
self.add_history(obj)
self.tracked_objects[id] = obj
@@ -45,6 +49,9 @@ class ObjectTracker():
}
if 'history' in obj:
obj['history'].append(entry)
# only maintain the last 20 in history
if len(obj['history']) > 20:
obj['history'] = obj['history'][-20:]
else:
obj['history'] = [entry]

View File

@@ -140,11 +140,14 @@ def listen():
signal.signal(signal.SIGUSR1, print_stack)
class PlasmaManager:
def __init__(self):
def __init__(self, stop_event=None):
self.stop_event = stop_event
self.connect()
def connect(self):
while True:
if self.stop_event != None and self.stop_event.is_set():
return
try:
self.plasma_client = plasma.connect("/tmp/plasma")
return
@@ -155,6 +158,8 @@ class PlasmaManager:
def get(self, name, timeout_ms=0):
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
while True:
if self.stop_event != None and self.stop_event.is_set():
return
try:
return self.plasma_client.get(object_id, timeout_ms=timeout_ms)
except:
@@ -164,6 +169,8 @@ class PlasmaManager:
def put(self, name, obj):
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
while True:
if self.stop_event != None and self.stop_event.is_set():
return
try:
self.plasma_client.put(obj, object_id)
return
@@ -175,6 +182,8 @@ class PlasmaManager:
def delete(self, name):
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
while True:
if self.stop_event != None and self.stop_event.is_set():
return
try:
self.plasma_client.delete([object_id])
return

View File

@@ -12,6 +12,7 @@ import numpy as np
import copy
import itertools
import json
import base64
from collections import defaultdict
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, PlasmaManager
from frigate.objects import ObjectTracker
@@ -115,7 +116,7 @@ def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
return process
class CameraCapture(threading.Thread):
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, detection_frame):
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, detection_frame, stop_event):
threading.Thread.__init__(self)
self.name = name
self.frame_shape = frame_shape
@@ -124,16 +125,21 @@ class CameraCapture(threading.Thread):
self.take_frame = take_frame
self.fps = fps
self.skipped_fps = EventsPerSecond()
self.plasma_client = PlasmaManager()
self.plasma_client = PlasmaManager(stop_event)
self.ffmpeg_process = ffmpeg_process
self.current_frame = 0
self.last_frame = 0
self.detection_frame = detection_frame
self.stop_event = stop_event
def run(self):
frame_num = 0
self.skipped_fps.start()
while True:
if self.stop_event.is_set():
print(f"{self.name}: stop event set. exiting capture thread...")
break
if self.ffmpeg_process.poll() != None:
print(f"{self.name}: ffmpeg process is not running. exiting capture thread...")
break
@@ -189,7 +195,12 @@ def track_camera(name, config, global_objects_config, frame_queue, frame_shape,
# load in the mask for object detection
if 'mask' in config:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
if config['mask'].startswith('base64,'):
img = base64.b64decode(config['mask'][7:])
npimg = np.fromstring(img, dtype=np.uint8)
mask = cv2.imdecode(npimg, cv2.IMREAD_GRAYSCALE)
else:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None