forked from Github/frigate
Compare commits
38 Commits
v0.5.1-rc2
...
v0.5.0-rc6
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0f66a8cb41 | ||
|
|
04ef6ac30e | ||
|
|
ab42a9625d | ||
|
|
30ad0e30f8 | ||
|
|
7bad89c9bf | ||
|
|
f077c397f4 | ||
|
|
cc729d83a8 | ||
|
|
c520b81e49 | ||
|
|
9c304391c0 | ||
|
|
9a12b02d22 | ||
|
|
7686c510b3 | ||
|
|
2f5e322d3c | ||
|
|
1cd4c12104 | ||
|
|
1a8b034685 | ||
|
|
da6dc03a57 | ||
|
|
7fa3b70d2d | ||
|
|
1fc5a2bfd4 | ||
|
|
7e84da7dad | ||
|
|
128be72e28 | ||
|
|
aaddedc95c | ||
|
|
ba919fb439 | ||
|
|
b1d563f3c4 | ||
|
|
204d8af5df | ||
|
|
b507a73d79 | ||
|
|
66eeb8b5cb | ||
|
|
efa67067c6 | ||
|
|
aeb036f1a4 | ||
|
|
74c528f9dc | ||
|
|
f2d54bec43 | ||
|
|
f07d57741e | ||
|
|
2c1ec19f98 | ||
|
|
6a9027c002 | ||
|
|
60c15e4419 | ||
|
|
03dbf600aa | ||
|
|
fbbb79b31b | ||
|
|
496c6bc6c4 | ||
|
|
869a81c944 | ||
|
|
5b1884cfb3 |
@@ -25,6 +25,7 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||
imutils \
|
||||
scipy \
|
||||
&& python3.7 -m pip install -U \
|
||||
SharedArray \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
@@ -37,9 +38,9 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||
&& apt -qq install --no-install-recommends -y \
|
||||
libedgetpu1-max \
|
||||
## Tensorflow lite (python 3.7 only)
|
||||
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
|
||||
&& python3.7 -m pip install tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
|
||||
&& rm tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
|
||||
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
|
||||
|
||||
@@ -1,7 +1,4 @@
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
import signal
|
||||
import cv2
|
||||
import time
|
||||
import datetime
|
||||
@@ -12,10 +9,10 @@ import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import logging
|
||||
from flask import Flask, Response, make_response, jsonify, request
|
||||
from flask import Flask, Response, make_response, jsonify
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
from frigate.video import track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
|
||||
from frigate.video import track_camera
|
||||
from frigate.object_processing import TrackedObjectProcessor
|
||||
from frigate.util import EventsPerSecond
|
||||
from frigate.edgetpu import EdgeTPUProcess
|
||||
@@ -61,72 +58,41 @@ GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
|
||||
WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||
|
||||
def start_plasma_store():
|
||||
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
|
||||
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
|
||||
time.sleep(1)
|
||||
rc = plasma_process.poll()
|
||||
if rc is not None:
|
||||
return None
|
||||
return plasma_process
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, plasma_process):
|
||||
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_processes = camera_processes
|
||||
self.config = config
|
||||
self.tflite_process = tflite_process
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.plasma_process = plasma_process
|
||||
self.object_processor = object_processor
|
||||
|
||||
def run(self):
|
||||
time.sleep(10)
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
|
||||
# check the plasma process
|
||||
rc = self.plasma_process.poll()
|
||||
if rc != None:
|
||||
print(f"plasma_process exited unexpectedly with {rc}")
|
||||
self.plasma_process = start_plasma_store()
|
||||
time.sleep(30)
|
||||
|
||||
# check the detection process
|
||||
if (self.tflite_process.detection_start.value > 0.0 and
|
||||
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
|
||||
print("Detection appears to be stuck. Restarting detection process")
|
||||
self.tflite_process.start_or_restart()
|
||||
elif not self.tflite_process.detect_process.is_alive():
|
||||
print("Detection appears to have stopped. Restarting detection process")
|
||||
self.tflite_process.start_or_restart()
|
||||
time.sleep(30)
|
||||
|
||||
# check the camera processes
|
||||
for name, camera_process in self.camera_processes.items():
|
||||
process = camera_process['process']
|
||||
if not process.is_alive():
|
||||
print(f"Track process for {name} is not alive. Starting again...")
|
||||
print(f"Process for {name} is not alive. Starting again...")
|
||||
camera_process['fps'].value = float(self.config[name]['fps'])
|
||||
camera_process['skipped_fps'].value = 0.0
|
||||
camera_process['detection_fps'].value = 0.0
|
||||
camera_process['read_start'].value = 0.0
|
||||
process = mp.Process(target=track_camera, args=(name, self.config[name], GLOBAL_OBJECT_CONFIG, camera_process['frame_queue'],
|
||||
camera_process['frame_shape'], self.tflite_process.detection_queue, self.tracked_objects_queue,
|
||||
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps'],
|
||||
camera_process['read_start']))
|
||||
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||
self.tflite_process.detection_queue, self.tracked_objects_queue,
|
||||
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
|
||||
process.daemon = True
|
||||
camera_process['process'] = process
|
||||
process.start()
|
||||
print(f"Track process started for {name}: {process.pid}")
|
||||
|
||||
if not camera_process['capture_thread'].is_alive():
|
||||
frame_shape = camera_process['frame_shape']
|
||||
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
ffmpeg_process = start_or_restart_ffmpeg(camera_process['ffmpeg_cmd'], frame_size)
|
||||
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, camera_process['frame_queue'],
|
||||
camera_process['take_frame'], camera_process['camera_fps'])
|
||||
camera_capture.start()
|
||||
camera_process['ffmpeg_process'] = ffmpeg_process
|
||||
camera_process['capture_thread'] = camera_capture
|
||||
print(f"Camera_process started for {name}: {process.pid}")
|
||||
|
||||
def main():
|
||||
# connect to mqtt and setup last will
|
||||
@@ -151,7 +117,14 @@ def main():
|
||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||
client.loop_start()
|
||||
|
||||
plasma_process = start_plasma_store()
|
||||
# start plasma store
|
||||
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
|
||||
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
|
||||
time.sleep(1)
|
||||
rc = plasma_process.poll()
|
||||
if rc is not None:
|
||||
raise RuntimeError("plasma_store exited unexpectedly with "
|
||||
"code %d" % (rc,))
|
||||
|
||||
##
|
||||
# Setup config defaults for cameras
|
||||
@@ -162,7 +135,7 @@ def main():
|
||||
}
|
||||
|
||||
# Queue for cameras to push tracked objects to
|
||||
tracked_objects_queue = mp.SimpleQueue()
|
||||
tracked_objects_queue = mp.Queue()
|
||||
|
||||
# Start the shared tflite process
|
||||
tflite_process = EdgeTPUProcess()
|
||||
@@ -170,54 +143,14 @@ def main():
|
||||
# start the camera processes
|
||||
camera_processes = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
# Merge the ffmpeg config with the global config
|
||||
ffmpeg = config.get('ffmpeg', {})
|
||||
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
|
||||
ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args'])
|
||||
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
|
||||
ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
|
||||
ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
ffmpeg_global_args +
|
||||
ffmpeg_hwaccel_args +
|
||||
ffmpeg_input_args +
|
||||
['-i', ffmpeg_input] +
|
||||
ffmpeg_output_args +
|
||||
['pipe:'])
|
||||
|
||||
if 'width' in config and 'height' in config:
|
||||
frame_shape = (config['height'], config['width'], 3)
|
||||
else:
|
||||
frame_shape = get_frame_shape(ffmpeg_input)
|
||||
|
||||
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
take_frame = config.get('take_frame', 1)
|
||||
|
||||
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
|
||||
frame_queue = mp.SimpleQueue()
|
||||
camera_fps = EventsPerSecond()
|
||||
camera_fps.start()
|
||||
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps)
|
||||
camera_capture.start()
|
||||
|
||||
camera_processes[name] = {
|
||||
'camera_fps': camera_fps,
|
||||
'take_frame': take_frame,
|
||||
'fps': mp.Value('d', float(config['fps'])),
|
||||
'skipped_fps': mp.Value('d', 0.0),
|
||||
'detection_fps': mp.Value('d', 0.0),
|
||||
'read_start': mp.Value('d', 0.0),
|
||||
'ffmpeg_process': ffmpeg_process,
|
||||
'ffmpeg_cmd': ffmpeg_cmd,
|
||||
'frame_queue': frame_queue,
|
||||
'frame_shape': frame_shape,
|
||||
'capture_thread': camera_capture
|
||||
'detection_fps': mp.Value('d', 0.0)
|
||||
}
|
||||
|
||||
camera_process = mp.Process(target=track_camera, args=(name, config, GLOBAL_OBJECT_CONFIG, frame_queue, frame_shape,
|
||||
tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['fps'],
|
||||
camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'],
|
||||
camera_processes[name]['read_start']))
|
||||
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||
tflite_process.detection_queue, tracked_objects_queue,
|
||||
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
|
||||
camera_process.daemon = True
|
||||
camera_processes[name]['process'] = camera_process
|
||||
|
||||
@@ -228,7 +161,7 @@ def main():
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
|
||||
object_processor.start()
|
||||
|
||||
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process)
|
||||
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
|
||||
camera_watchdog.start()
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
@@ -241,23 +174,6 @@ def main():
|
||||
# return a healh
|
||||
return "Frigate is running. Alive and healthy!"
|
||||
|
||||
@app.route('/debug/stack')
|
||||
def processor_stack():
|
||||
frame = sys._current_frames().get(object_processor.ident, None)
|
||||
if frame:
|
||||
return "<br>".join(traceback.format_stack(frame)), 200
|
||||
else:
|
||||
return "no frame found", 200
|
||||
|
||||
@app.route('/debug/print_stack')
|
||||
def print_stack():
|
||||
pid = int(request.args.get('pid', 0))
|
||||
if pid == 0:
|
||||
return "missing pid", 200
|
||||
else:
|
||||
os.kill(pid, signal.SIGUSR1)
|
||||
return "check logs", 200
|
||||
|
||||
@app.route('/debug/stats')
|
||||
def stats():
|
||||
stats = {}
|
||||
@@ -269,22 +185,21 @@ def main():
|
||||
stats[name] = {
|
||||
'fps': round(camera_stats['fps'].value, 2),
|
||||
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
||||
'detection_fps': round(camera_stats['detection_fps'].value, 2),
|
||||
'read_start': camera_stats['read_start'].value,
|
||||
'pid': camera_stats['process'].pid,
|
||||
'ffmpeg_pid': camera_stats['ffmpeg_process'].pid
|
||||
'detection_fps': round(camera_stats['detection_fps'].value, 2)
|
||||
}
|
||||
|
||||
stats['coral'] = {
|
||||
'fps': round(total_detection_fps, 2),
|
||||
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
|
||||
'detection_start': tflite_process.detection_start.value,
|
||||
'pid': tflite_process.detect_process.pid
|
||||
'detection_queue': tflite_process.detection_queue.qsize(),
|
||||
'detection_start': tflite_process.detection_start.value
|
||||
}
|
||||
|
||||
rc = camera_watchdog.plasma_process.poll()
|
||||
rc = plasma_process.poll()
|
||||
stats['plasma_store_rc'] = rc
|
||||
|
||||
stats['tracked_objects_queue'] = tracked_objects_queue.qsize()
|
||||
|
||||
return jsonify(stats)
|
||||
|
||||
@app.route('/<camera_name>/<label>/best.jpg')
|
||||
@@ -303,33 +218,28 @@ def main():
|
||||
|
||||
@app.route('/<camera_name>')
|
||||
def mjpeg_feed(camera_name):
|
||||
fps = int(request.args.get('fps', '3'))
|
||||
height = int(request.args.get('h', '360'))
|
||||
if camera_name in CONFIG['cameras']:
|
||||
# return a multipart response
|
||||
return Response(imagestream(camera_name, fps, height),
|
||||
return Response(imagestream(camera_name),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
else:
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
def imagestream(camera_name, fps, height):
|
||||
def imagestream(camera_name):
|
||||
while True:
|
||||
# max out at specified FPS
|
||||
time.sleep(1/fps)
|
||||
# max out at 1 FPS
|
||||
time.sleep(1)
|
||||
frame = object_processor.get_current_frame(camera_name)
|
||||
if frame is None:
|
||||
frame = np.zeros((height,int(height*16/9),3), np.uint8)
|
||||
|
||||
frame = cv2.resize(frame, dsize=(int(height*16/9), height), interpolation=cv2.INTER_LINEAR)
|
||||
frame = np.zeros((720,1280,3), np.uint8)
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
object_processor.join()
|
||||
camera_watchdog.join()
|
||||
|
||||
plasma_process.terminate()
|
||||
|
||||
|
||||
@@ -3,10 +3,11 @@ import datetime
|
||||
import hashlib
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
import SharedArray as sa
|
||||
import pyarrow.plasma as plasma
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
from frigate.util import EventsPerSecond, listen
|
||||
from frigate.util import EventsPerSecond
|
||||
|
||||
def load_labels(path, encoding='utf-8'):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
@@ -63,7 +64,6 @@ class ObjectDetector():
|
||||
|
||||
def run_detector(detection_queue, avg_speed, start):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
listen()
|
||||
plasma_client = plasma.connect("/tmp/plasma")
|
||||
object_detector = ObjectDetector()
|
||||
|
||||
@@ -75,6 +75,7 @@ def run_detector(detection_queue, avg_speed, start):
|
||||
input_frame = plasma_client.get(object_id, timeout_ms=0)
|
||||
|
||||
if input_frame is plasma.ObjectNotAvailable:
|
||||
plasma_client.put(np.zeros((20,6), np.float32), object_id_out)
|
||||
continue
|
||||
|
||||
# detect and put the output in the plasma store
|
||||
@@ -87,7 +88,7 @@ def run_detector(detection_queue, avg_speed, start):
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self):
|
||||
self.detection_queue = mp.SimpleQueue()
|
||||
self.detection_queue = mp.Queue()
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
self.detection_start = mp.Value('d', 0.0)
|
||||
self.detect_process = None
|
||||
@@ -123,11 +124,7 @@ class RemoteObjectDetector():
|
||||
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
|
||||
self.plasma_client.put(tensor_input, object_id_frame)
|
||||
self.detection_queue.put(now)
|
||||
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
|
||||
|
||||
if raw_detections is plasma.ObjectNotAvailable:
|
||||
self.plasma_client.delete([object_id_frame])
|
||||
return detections
|
||||
raw_detections = self.plasma_client.get(object_id_detections)
|
||||
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import json
|
||||
import hashlib
|
||||
import datetime
|
||||
import time
|
||||
import copy
|
||||
import cv2
|
||||
import threading
|
||||
@@ -9,8 +8,9 @@ import numpy as np
|
||||
from collections import Counter, defaultdict
|
||||
import itertools
|
||||
import pyarrow.plasma as plasma
|
||||
import SharedArray as sa
|
||||
import matplotlib.pyplot as plt
|
||||
from frigate.util import draw_box_with_label, PlasmaManager
|
||||
from frigate.util import draw_box_with_label
|
||||
from frigate.edgetpu import load_labels
|
||||
|
||||
PATH_TO_LABELS = '/labelmap.txt'
|
||||
@@ -29,6 +29,7 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||
self.camera_data = defaultdict(lambda: {
|
||||
'best_objects': {},
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
@@ -36,7 +37,6 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
'current_frame': np.zeros((720,1280,3), np.uint8),
|
||||
'object_id': None
|
||||
})
|
||||
self.plasma_client = PlasmaManager()
|
||||
|
||||
def get_best(self, camera, label):
|
||||
if label in self.camera_data[camera]['best_objects']:
|
||||
@@ -59,7 +59,10 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
###
|
||||
# Draw tracked objects on the frame
|
||||
###
|
||||
current_frame = self.plasma_client.get(f"{camera}{frame_time}")
|
||||
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
|
||||
object_id_bytes = object_id_hash.digest()
|
||||
object_id = plasma.ObjectID(object_id_bytes)
|
||||
current_frame = self.plasma_client.get(object_id, timeout_ms=0)
|
||||
|
||||
if not current_frame is plasma.ObjectNotAvailable:
|
||||
# draw the bounding boxes on the frame
|
||||
@@ -88,10 +91,10 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
self.camera_data[camera]['current_frame'] = current_frame
|
||||
|
||||
# store the object id, so you can delete it at the next loop
|
||||
previous_object_id = f"{camera}{frame_time}"
|
||||
previous_object_id = self.camera_data[camera]['object_id']
|
||||
if not previous_object_id is None:
|
||||
self.plasma_client.delete(f"{camera}{frame_time}")
|
||||
self.camera_data[camera]['object_id'] = f"{camera}{frame_time}"
|
||||
self.plasma_client.delete([previous_object_id])
|
||||
self.camera_data[camera]['object_id'] = object_id
|
||||
|
||||
###
|
||||
# Maintain the highest scoring recent object and frame for each label
|
||||
@@ -143,4 +146,4 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
||||
@@ -1,14 +1,9 @@
|
||||
import datetime
|
||||
import time
|
||||
import signal
|
||||
import traceback
|
||||
import collections
|
||||
import numpy as np
|
||||
import cv2
|
||||
import threading
|
||||
import matplotlib.pyplot as plt
|
||||
import hashlib
|
||||
import pyarrow.plasma as plasma
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
||||
if color is None:
|
||||
@@ -132,52 +127,3 @@ class EventsPerSecond:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
seconds = min(now-self._start, last_n_seconds)
|
||||
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
|
||||
|
||||
def print_stack(sig, frame):
|
||||
traceback.print_stack(frame)
|
||||
|
||||
def listen():
|
||||
signal.signal(signal.SIGUSR1, print_stack)
|
||||
|
||||
class PlasmaManager:
|
||||
def __init__(self):
|
||||
self.connect()
|
||||
|
||||
def connect(self):
|
||||
while True:
|
||||
try:
|
||||
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||
return
|
||||
except:
|
||||
print(f"TrackedObjectProcessor: unable to connect plasma client")
|
||||
time.sleep(10)
|
||||
|
||||
def get(self, name, timeout_ms=0):
|
||||
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
|
||||
while True:
|
||||
try:
|
||||
return self.plasma_client.get(object_id, timeout_ms=timeout_ms)
|
||||
except:
|
||||
self.connect()
|
||||
time.sleep(1)
|
||||
|
||||
def put(self, name, obj):
|
||||
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
|
||||
while True:
|
||||
try:
|
||||
self.plasma_client.put(obj, object_id)
|
||||
return
|
||||
except Exception as e:
|
||||
print(f"Failed to put in plasma: {e}")
|
||||
self.connect()
|
||||
time.sleep(1)
|
||||
|
||||
def delete(self, name):
|
||||
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
|
||||
while True:
|
||||
try:
|
||||
self.plasma_client.delete([object_id])
|
||||
return
|
||||
except:
|
||||
self.connect()
|
||||
time.sleep(1)
|
||||
135
frigate/video.py
135
frigate/video.py
@@ -5,15 +5,17 @@ import cv2
|
||||
import queue
|
||||
import threading
|
||||
import ctypes
|
||||
import pyarrow.plasma as plasma
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import hashlib
|
||||
import pyarrow.plasma as plasma
|
||||
import SharedArray as sa
|
||||
import copy
|
||||
import itertools
|
||||
import json
|
||||
from collections import defaultdict
|
||||
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, PlasmaManager
|
||||
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
|
||||
from frigate.objects import ObjectTracker
|
||||
from frigate.edgetpu import RemoteObjectDetector
|
||||
from frigate.motion import MotionDetector
|
||||
@@ -102,62 +104,33 @@ def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
|
||||
ffmpeg_process.terminate()
|
||||
try:
|
||||
print("Waiting for ffmpeg to exit gracefully...")
|
||||
ffmpeg_process.communicate(timeout=30)
|
||||
ffmpeg_process.wait(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
print("FFmpeg didnt exit. Force killing...")
|
||||
ffmpeg_process.kill()
|
||||
ffmpeg_process.communicate()
|
||||
ffmpeg_process = None
|
||||
ffmpeg_process.wait()
|
||||
|
||||
print("Creating ffmpeg process...")
|
||||
print(" ".join(ffmpeg_cmd))
|
||||
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
|
||||
return process
|
||||
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
|
||||
|
||||
class CameraCapture(threading.Thread):
|
||||
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps):
|
||||
threading.Thread.__init__(self)
|
||||
self.name = name
|
||||
self.frame_shape = frame_shape
|
||||
self.frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
self.frame_queue = frame_queue
|
||||
self.take_frame = take_frame
|
||||
self.fps = fps
|
||||
self.plasma_client = PlasmaManager()
|
||||
self.ffmpeg_process = ffmpeg_process
|
||||
|
||||
def run(self):
|
||||
frame_num = 0
|
||||
while True:
|
||||
if self.ffmpeg_process.poll() != None:
|
||||
print(f"{self.name}: ffmpeg process is not running. exiting capture thread...")
|
||||
break
|
||||
|
||||
frame_bytes = self.ffmpeg_process.stdout.read(self.frame_size)
|
||||
frame_time = datetime.datetime.now().timestamp()
|
||||
|
||||
if len(frame_bytes) == 0:
|
||||
print(f"{self.name}: ffmpeg didnt return a frame. something is wrong.")
|
||||
continue
|
||||
|
||||
frame_num += 1
|
||||
if (frame_num % self.take_frame) != 0:
|
||||
continue
|
||||
|
||||
# put the frame in the plasma store
|
||||
self.plasma_client.put(f"{self.name}{frame_time}",
|
||||
np
|
||||
.frombuffer(frame_bytes, np.uint8)
|
||||
.reshape(self.frame_shape)
|
||||
)
|
||||
# add to the queue
|
||||
self.frame_queue.put(frame_time)
|
||||
|
||||
self.fps.update()
|
||||
|
||||
def track_camera(name, config, global_objects_config, frame_queue, frame_shape, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps, read_start):
|
||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
|
||||
print(f"Starting process for {name}: {os.getpid()}")
|
||||
listen()
|
||||
|
||||
# Merge the ffmpeg config with the global config
|
||||
ffmpeg = config.get('ffmpeg', {})
|
||||
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
|
||||
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
|
||||
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
|
||||
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
|
||||
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
ffmpeg_global_args +
|
||||
ffmpeg_hwaccel_args +
|
||||
ffmpeg_input_args +
|
||||
['-i', ffmpeg_input] +
|
||||
ffmpeg_output_args +
|
||||
['pipe:'])
|
||||
|
||||
# Merge the tracked object config with the global config
|
||||
camera_objects_config = config.get('objects', {})
|
||||
@@ -172,8 +145,21 @@ def track_camera(name, config, global_objects_config, frame_queue, frame_shape,
|
||||
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
||||
|
||||
expected_fps = config['fps']
|
||||
take_frame = config.get('take_frame', 1)
|
||||
|
||||
frame = np.zeros(frame_shape, np.uint8)
|
||||
if 'width' in config and 'height' in config:
|
||||
frame_shape = (config['height'], config['width'], 3)
|
||||
else:
|
||||
frame_shape = get_frame_shape(ffmpeg_input)
|
||||
|
||||
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
|
||||
try:
|
||||
sa.delete(name)
|
||||
except:
|
||||
pass
|
||||
|
||||
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
|
||||
|
||||
# load in the mask for object detection
|
||||
if 'mask' in config:
|
||||
@@ -189,8 +175,10 @@ def track_camera(name, config, global_objects_config, frame_queue, frame_shape,
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
|
||||
|
||||
object_tracker = ObjectTracker(10)
|
||||
|
||||
plasma_client = PlasmaManager()
|
||||
|
||||
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
|
||||
|
||||
plasma_client = plasma.connect("/tmp/plasma")
|
||||
frame_num = 0
|
||||
avg_wait = 0.0
|
||||
fps_tracker = EventsPerSecond()
|
||||
@@ -199,23 +187,36 @@ def track_camera(name, config, global_objects_config, frame_queue, frame_shape,
|
||||
skipped_fps_tracker.start()
|
||||
object_detector.fps.start()
|
||||
while True:
|
||||
read_start.value = datetime.datetime.now().timestamp()
|
||||
frame_time = frame_queue.get()
|
||||
duration = datetime.datetime.now().timestamp()-read_start.value
|
||||
read_start.value = 0.0
|
||||
start = datetime.datetime.now().timestamp()
|
||||
frame_bytes = ffmpeg_process.stdout.read(frame_size)
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
avg_wait = (avg_wait*99+duration)/100
|
||||
|
||||
if not frame_bytes:
|
||||
rc = ffmpeg_process.poll()
|
||||
if rc is not None:
|
||||
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
|
||||
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
|
||||
time.sleep(10)
|
||||
else:
|
||||
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
|
||||
continue
|
||||
|
||||
# limit frame rate
|
||||
frame_num += 1
|
||||
if (frame_num % take_frame) != 0:
|
||||
continue
|
||||
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
|
||||
# Get frame from plasma store
|
||||
frame = plasma_client.get(f"{name}{frame_time}")
|
||||
|
||||
if frame is plasma.ObjectNotAvailable:
|
||||
skipped_fps_tracker.update()
|
||||
skipped_fps.value = skipped_fps_tracker.eps()
|
||||
continue
|
||||
frame_time = datetime.datetime.now().timestamp()
|
||||
|
||||
# Store frame in numpy array
|
||||
frame[:] = (np
|
||||
.frombuffer(frame_bytes, np.uint8)
|
||||
.reshape(frame_shape))
|
||||
|
||||
# look for motion
|
||||
motion_boxes = motion_detector.detect(frame)
|
||||
@@ -224,7 +225,6 @@ def track_camera(name, config, global_objects_config, frame_queue, frame_shape,
|
||||
if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait:
|
||||
skipped_fps_tracker.update()
|
||||
skipped_fps.value = skipped_fps_tracker.eps()
|
||||
plasma_client.delete(f"{name}{frame_time}")
|
||||
continue
|
||||
|
||||
skipped_fps.value = skipped_fps_tracker.eps()
|
||||
@@ -328,7 +328,7 @@ def track_camera(name, config, global_objects_config, frame_queue, frame_shape,
|
||||
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
if clipped(obj, frame_shape):
|
||||
if clipped(obj, frame_shape): #obj['clipped']:
|
||||
box = obj[2]
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
region = calculate_region(frame_shape,
|
||||
@@ -368,6 +368,9 @@ def track_camera(name, config, global_objects_config, frame_queue, frame_shape,
|
||||
# now that we have refined our detections, we need to track objects
|
||||
object_tracker.match_and_update(frame_time, detections)
|
||||
|
||||
# put the frame in the plasma store
|
||||
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
|
||||
plasma_client.put(frame, plasma.ObjectID(object_id))
|
||||
# add to the queue
|
||||
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
|
||||
|
||||
|
||||
Reference in New Issue
Block a user