Compare commits

..

20 Commits

Author SHA1 Message Date
Blake Blackshear
128be72e28 cleanup 2020-02-22 09:15:29 -06:00
Blake Blackshear
aaddedc95c update docs and add back benchmark 2020-02-22 09:10:37 -06:00
Blake Blackshear
ba919fb439 fix watchdog 2020-02-22 09:10:37 -06:00
Blake Blackshear
b1d563f3c4 check avg wait before dropping frames 2020-02-22 09:10:37 -06:00
Blake Blackshear
204d8af5df fix watchdog restart 2020-02-22 09:10:37 -06:00
Blake Blackshear
b507a73d79 improve watchdog and coral fps tracking 2020-02-22 09:10:37 -06:00
Blake Blackshear
66eeb8b5cb dont log http requests 2020-02-22 09:10:37 -06:00
Blake Blackshear
efa67067c6 cleanup 2020-02-22 09:10:37 -06:00
Blake Blackshear
aeb036f1a4 add models and convert speed to ms 2020-02-22 09:10:37 -06:00
Blake Blackshear
74c528f9dc add watchdog for camera processes 2020-02-22 09:10:34 -06:00
Blake Blackshear
f2d54bec43 cleanup old code 2020-02-22 09:09:36 -06:00
Blake Blackshear
f07d57741e add a min_fps option 2020-02-22 09:06:46 -06:00
Blake Blackshear
2c1ec19f98 check plasma store and consolidate frame drawing 2020-02-22 09:06:46 -06:00
Blake Blackshear
6a9027c002 split into separate processes 2020-02-22 09:06:43 -06:00
Blake Blackshear
60c15e4419 update tflite to 2.1.0 2020-02-22 09:05:26 -06:00
Blake Blackshear
03dbf600aa refactor some classes into new files 2020-02-22 09:05:26 -06:00
Blake Blackshear
fbbb79b31b tweak process handoff 2020-02-22 09:05:26 -06:00
Blake Blackshear
496c6bc6c4 Mostly working detection in a separate process 2020-02-22 09:05:26 -06:00
Blake Blackshear
869a81c944 read from ffmpeg 2020-02-22 09:05:26 -06:00
Blake Blackshear
5b1884cfb3 WIP: revamp to incorporate motion 2020-02-22 09:05:26 -06:00
10 changed files with 199 additions and 404 deletions

View File

@@ -25,6 +25,7 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
imutils \
scipy \
&& python3.7 -m pip install -U \
SharedArray \
Flask \
paho-mqtt \
PyYAML \
@@ -37,9 +38,9 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
&& apt -qq install --no-install-recommends -y \
libedgetpu1-max \
## Tensorflow lite (python 3.7 only)
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& python3.7 -m pip install tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -16,6 +16,16 @@ You see multiple bounding boxes because it draws bounding boxes from all frames
[![](http://img.youtube.com/vi/nqHbCtyo4dY/0.jpg)](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
## Getting Started
Build the container with
```
docker build -t frigate .
```
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
Run the container with
```bash
docker run --rm \
@@ -26,7 +36,7 @@ docker run --rm \
-v /etc/localtime:/etc/localtime:ro \
-p 5000:5000 \
-e FRIGATE_RTSP_PASSWORD='password' \
blakeblackshear/frigate:stable
frigate:latest
```
Example docker-compose:
@@ -36,7 +46,7 @@ Example docker-compose:
restart: unless-stopped
privileged: true
shm_size: '1g' # should work for 5-7 cameras
image: blakeblackshear/frigate:stable
image: frigate:latest
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
@@ -117,11 +127,6 @@ sensor:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
unit_of_measurement: 'ms'
```
## Using a custom model
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
## Tips
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed

View File

@@ -1,79 +1,18 @@
import os
from statistics import mean
import multiprocessing as mp
import statistics
import numpy as np
import datetime
from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
import time
from frigate.edgetpu import ObjectDetector
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
labels = load_labels('/labelmap.txt')
object_detector = ObjectDetector()
######
# Minimal same process runner
######
# object_detector = ObjectDetector()
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
frame = np.zeros((300,300,3), np.uint8)
input_frame = np.expand_dims(frame, axis=0)
# start = datetime.datetime.now().timestamp()
detection_times = []
# frame_times = []
# for x in range(0, 1000):
# start_frame = datetime.datetime.now().timestamp()
for x in range(0, 100):
start = time.monotonic()
object_detector.detect_raw(input_frame)
detection_times.append(time.monotonic()-start)
# tensor_input[:] = my_frame
# detections = object_detector.detect_raw(tensor_input)
# parsed_detections = []
# for d in detections:
# if d[1] < 0.4:
# break
# parsed_detections.append((
# labels[int(d[0])],
# float(d[1]),
# (d[2], d[3], d[4], d[5])
# ))
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
# duration = datetime.datetime.now().timestamp()-start
# print(f"Processed for {duration:.2f} seconds.")
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
######
# Separate process runner
######
def start(id, num_detections, detection_queue):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
start = datetime.datetime.now().timestamp()
frame_times = []
for x in range(0, num_detections):
start_frame = datetime.datetime.now().timestamp()
detections = object_detector.detect(my_frame)
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
duration = datetime.datetime.now().timestamp()-start
print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
edgetpu_process = EdgeTPUProcess()
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
####
# Multiple camera processes
####
camera_processes = []
for x in range(0, 10):
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
camera_process.daemon = True
camera_processes.append(camera_process)
start = datetime.datetime.now().timestamp()
for p in camera_processes:
p.start()
for p in camera_processes:
p.join()
duration = datetime.datetime.now().timestamp()-start
print(f"Total - Processed for {duration:.2f} seconds.")
print(f"Average inference time: {statistics.mean(detection_times)*1000:.2f}ms")

View File

@@ -3,13 +3,9 @@ web_port: 5000
mqtt:
host: mqtt.server.com
topic_prefix: frigate
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
# user: username # Optional
#################
## Environment variables that begin with 'FRIGATE_' may be referenced in {}.
## password: '{FRIGATE_MQTT_PASSWORD}'
#################
# password: password # Optional
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
# user: username # Optional -- Uncomment for use
# password: password # Optional -- Uncomment for use
#################
# Default ffmpeg args. Optional and can be overwritten per camera.

View File

@@ -1,7 +1,3 @@
import os
import sys
import traceback
import signal
import cv2
import time
import datetime
@@ -12,7 +8,7 @@ import multiprocessing as mp
import subprocess as sp
import numpy as np
import logging
from flask import Flask, Response, make_response, jsonify, request
from flask import Flask, Response, make_response, jsonify
import paho.mqtt.client as mqtt
from frigate.video import track_camera
@@ -20,8 +16,6 @@ from frigate.object_processing import TrackedObjectProcessor
from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
with open('/config/config.yml') as f:
CONFIG = yaml.safe_load(f)
@@ -30,8 +24,6 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
if not MQTT_PASS is None:
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
# Set the default FFmpeg config
@@ -39,7 +31,7 @@ FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
FFMPEG_DEFAULT_CONFIG = {
'global_args': FFMPEG_CONFIG.get('global_args',
['-hide_banner','-loglevel','panic']),
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
[]),
'input_args': FFMPEG_CONFIG.get('input_args',
['-avoid_negative_ts', 'make_zero',
@@ -61,83 +53,45 @@ GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
def start_plasma_store():
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
time.sleep(1)
rc = plasma_process.poll()
if rc is not None:
return None
return plasma_process
class CameraWatchdog(threading.Thread):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, plasma_process):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.tflite_process = tflite_process
self.tracked_objects_queue = tracked_objects_queue
self.plasma_process = plasma_process
self.object_processor = object_processor
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(30)
# check the plasma process
rc = self.plasma_process.poll()
if rc != None:
print(f"plasma_process exited unexpectedly with {rc}")
self.plasma_process = start_plasma_store()
time.sleep(10)
time.sleep(10)
# check the detection process
if (self.tflite_process.detection_start.value > 0.0 and
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
print("Detection appears to be stuck. Restarting detection process")
self.tflite_process.start_or_restart()
time.sleep(30)
elif not self.tflite_process.detect_process.is_alive():
print("Detection appears to have stopped. Restarting detection process")
self.tflite_process.start_or_restart()
time.sleep(30)
# check the camera processes
for name, camera_process in self.camera_processes.items():
process = camera_process['process']
if (datetime.datetime.now().timestamp() - self.object_processor.get_current_frame_time(name)) > 30:
print(f"Last frame for {name} is more than 30 seconds old...")
if process.is_alive():
process.terminate()
print("Waiting for process to exit gracefully...")
process.join(timeout=30)
if process.exitcode is None:
print("Process didnt exit. Force killing...")
process.kill()
process.join()
if not process.is_alive():
print(f"Process for {name} is not alive. Starting again...")
camera_process['fps'].value = float(self.config[name]['fps'])
camera_process['skipped_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0
camera_process['read_start'].value = 0.0
camera_process['ffmpeg_pid'].value = 0
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
self.tflite_process.detection_queue, self.tracked_objects_queue,
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps'],
camera_process['read_start'], camera_process['ffmpeg_pid']))
self.tflite_process.detect_lock, self.tflite_process.detect_ready, self.tflite_process.frame_ready, self.tracked_objects_queue,
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
process.daemon = True
camera_process['process'] = process
process.start()
print(f"Camera_process started for {name}: {process.pid}")
if (camera_process['read_start'].value > 0.0 and
datetime.datetime.now().timestamp() - camera_process['read_start'].value > 10):
print(f"Process for {name} has been reading from ffmpeg for over 10 seconds long. Killing ffmpeg...")
ffmpeg_pid = camera_process['ffmpeg_pid'].value
if ffmpeg_pid != 0:
try:
os.kill(ffmpeg_pid, signal.SIGTERM)
except OSError:
print(f"Unable to terminate ffmpeg with pid {ffmpeg_pid}")
time.sleep(10)
try:
os.kill(ffmpeg_pid, signal.SIGKILL)
print(f"Unable to kill ffmpeg with pid {ffmpeg_pid}")
except OSError:
pass
def main():
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
@@ -161,7 +115,14 @@ def main():
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
plasma_process = start_plasma_store()
# start plasma store
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL)
time.sleep(1)
rc = plasma_process.poll()
if rc is not None:
raise RuntimeError("plasma_store exited unexpectedly with "
"code %d" % (rc,))
##
# Setup config defaults for cameras
@@ -172,7 +133,7 @@ def main():
}
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.SimpleQueue()
tracked_objects_queue = mp.Queue()
# Start the shared tflite process
tflite_process = EdgeTPUProcess()
@@ -184,13 +145,11 @@ def main():
'fps': mp.Value('d', float(config['fps'])),
'skipped_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0)
'last_frame': datetime.datetime.now().timestamp()
}
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['fps'],
camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'],
camera_processes[name]['read_start'], camera_processes[name]['ffmpeg_pid']))
tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue,
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
camera_process.daemon = True
camera_processes[name]['process'] = camera_process
@@ -201,7 +160,7 @@ def main():
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
object_processor.start()
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process)
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
camera_watchdog.start()
# create a flask app that encodes frames a mjpeg on demand
@@ -214,23 +173,6 @@ def main():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/debug/stack')
def processor_stack():
frame = sys._current_frames().get(object_processor.ident, None)
if frame:
return "<br>".join(traceback.format_stack(frame)), 200
else:
return "no frame found", 200
@app.route('/debug/print_stack')
def print_stack():
pid = int(request.args.get('pid', 0))
if pid == 0:
return "missing pid", 200
else:
os.kill(pid, signal.SIGUSR1)
return "check logs", 200
@app.route('/debug/stats')
def stats():
stats = {}
@@ -240,24 +182,16 @@ def main():
for name, camera_stats in camera_processes.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'fps': round(camera_stats['fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'read_start': camera_stats['read_start'].value,
'pid': camera_stats['process'].pid,
'ffmpeg_pid': camera_stats['ffmpeg_pid'].value
'fps': camera_stats['fps'].value,
'skipped_fps': camera_stats['skipped_fps'].value,
'detection_fps': camera_stats['detection_fps'].value
}
stats['coral'] = {
'fps': round(total_detection_fps, 2),
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
'detection_start': tflite_process.detection_start.value,
'pid': tflite_process.detect_process.pid
'fps': total_detection_fps,
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2)
}
rc = camera_watchdog.plasma_process.poll()
stats['plasma_store_rc'] = rc
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
@@ -276,26 +210,21 @@ def main():
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
if camera_name in CONFIG['cameras']:
# return a multipart response
return Response(imagestream(camera_name, fps, height),
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name, fps, height):
def imagestream(camera_name):
while True:
# max out at specified FPS
time.sleep(1/fps)
# max out at 1 FPS
time.sleep(1)
frame = object_processor.get_current_frame(camera_name)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
frame = cv2.resize(frame, dsize=(int(height*16/9), height), interpolation=cv2.INTER_LINEAR)
frame = np.zeros((720,1280,3), np.uint8)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')

View File

@@ -1,12 +1,11 @@
import os
import datetime
import hashlib
import multiprocessing as mp
import numpy as np
import pyarrow.plasma as plasma
import SharedArray as sa
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, listen
from frigate.util import EventsPerSecond
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
@@ -61,82 +60,77 @@ class ObjectDetector():
return detections
def run_detector(detection_queue, avg_speed, start):
print(f"Starting detection process: {os.getpid()}")
listen()
plasma_client = plasma.connect("/tmp/plasma")
object_detector = ObjectDetector()
while True:
object_id_str = detection_queue.get()
object_id_hash = hashlib.sha1(str.encode(object_id_str))
object_id = plasma.ObjectID(object_id_hash.digest())
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
input_frame = plasma_client.get(object_id, timeout_ms=0)
if input_frame is plasma.ObjectNotAvailable:
continue
# detect and put the output in the plasma store
start.value = datetime.datetime.now().timestamp()
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
duration = datetime.datetime.now().timestamp()-start.value
start.value = 0.0
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self):
self.detection_queue = mp.SimpleQueue()
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.start_or_restart()
# TODO: see if we can use the plasma store with a queue and maintain the same speeds
try:
sa.delete("frame")
except:
pass
try:
sa.delete("detections")
except:
pass
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
self.detect_lock = mp.Lock()
self.detect_ready = mp.Event()
self.frame_ready = mp.Event()
self.avg_inference_speed = mp.Value('d', 0.01)
def run_detector(detect_ready, frame_ready, avg_speed):
print(f"Starting detection process: {os.getpid()}")
object_detector = ObjectDetector()
input_frame = sa.attach("frame")
detections = sa.attach("detections")
while True:
# wait until a frame is ready
frame_ready.wait()
start = datetime.datetime.now().timestamp()
# signal that the process is busy
frame_ready.clear()
detections[:] = object_detector.detect_raw(input_frame)
# signal that the process is ready to detect
detect_ready.set()
duration = datetime.datetime.now().timestamp()-start
avg_speed.value = (avg_speed.value*9 + duration)/10
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue):
def __init__(self, labels, detect_lock, detect_ready, frame_ready):
self.labels = load_labels(labels)
self.name = name
self.input_frame = sa.attach("frame")
self.detections = sa.attach("detections")
self.fps = EventsPerSecond()
self.plasma_client = plasma.connect("/tmp/plasma")
self.detection_queue = detection_queue
self.detect_lock = detect_lock
self.detect_ready = detect_ready
self.frame_ready = frame_ready
def detect(self, tensor_input, threshold=.4):
detections = []
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
self.plasma_client.put(tensor_input, object_id_frame)
self.detection_queue.put(now)
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
if raw_detections is plasma.ObjectNotAvailable:
self.plasma_client.delete([object_id_frame])
return detections
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.plasma_client.delete([object_id_frame, object_id_detections])
with self.detect_lock:
self.input_frame[:] = tensor_input
# unset detections and signal that a frame is ready
self.detect_ready.clear()
self.frame_ready.set()
# wait until the detection process is finished,
self.detect_ready.wait()
for d in self.detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections

View File

@@ -1,7 +1,6 @@
import json
import hashlib
import datetime
import time
import copy
import cv2
import threading
@@ -9,6 +8,7 @@ import numpy as np
from collections import Counter, defaultdict
import itertools
import pyarrow.plasma as plasma
import SharedArray as sa
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label
from frigate.edgetpu import load_labels
@@ -29,12 +29,12 @@ class TrackedObjectProcessor(threading.Thread):
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.plasma_client = plasma.connect("/tmp/plasma")
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {},
'current_frame': np.zeros((720,1280,3), np.uint8),
'object_id': None
'current_frame_time': datetime.datetime.now().timestamp()
})
def get_best(self, camera, label):
@@ -46,34 +46,10 @@ class TrackedObjectProcessor(threading.Thread):
def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame']
def connect_plasma_client(self):
while True:
try:
self.plasma_client = plasma.connect("/tmp/plasma")
return
except:
print(f"TrackedObjectProcessor: unable to connect plasma client")
time.sleep(10)
def get_from_plasma(self, object_id):
while True:
try:
return self.plasma_client.get(object_id, timeout_ms=0)
except:
self.connect_plasma_client()
time.sleep(1)
def delete_from_plasma(self, object_ids):
while True:
try:
self.plasma_client.delete(object_ids)
return
except:
self.connect_plasma_client()
time.sleep(1)
def get_current_frame_time(self, camera):
return self.camera_data[camera]['current_frame_time']
def run(self):
self.connect_plasma_client()
while True:
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
@@ -88,39 +64,33 @@ class TrackedObjectProcessor(threading.Thread):
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
object_id_bytes = object_id_hash.digest()
object_id = plasma.ObjectID(object_id_bytes)
current_frame = self.get_from_plasma(object_id)
current_frame = self.plasma_client.get(object_id)
if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
###
# Set the current frame as ready
###
self.camera_data[camera]['current_frame'] = current_frame
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# store the object id, so you can delete it at the next loop
previous_object_id = self.camera_data[camera]['object_id']
if not previous_object_id is None:
self.delete_from_plasma([previous_object_id])
self.camera_data[camera]['object_id'] = object_id
###
# Set the current frame as ready
###
self.camera_data[camera]['current_frame'] = current_frame
self.camera_data[camera]['current_frame_time'] = frame_time
###
# Maintain the highest scoring recent object and frame for each label
@@ -134,10 +104,10 @@ class TrackedObjectProcessor(threading.Thread):
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
obj['frame'] = np.copy(current_frame)
best_objects[obj['label']] = obj
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
obj['frame'] = np.copy(current_frame)
best_objects[obj['label']] = obj
###
@@ -172,4 +142,4 @@ class TrackedObjectProcessor(threading.Thread):
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)

View File

@@ -49,6 +49,14 @@ class ObjectTracker():
obj['history'] = [entry]
def match_and_update(self, frame_time, new_objects):
if len(new_objects) == 0:
for id in list(self.tracked_objects.keys()):
if self.disappeared[id] >= self.max_disappeared:
self.deregister(id)
else:
self.disappeared[id] += 1
return
# group by name
new_object_groups = defaultdict(lambda: [])
for obj in new_objects:
@@ -61,18 +69,6 @@ class ObjectTracker():
'frame_time': frame_time
})
# update any tracked objects with labels that are not
# seen in the current objects and deregister if needed
for obj in list(self.tracked_objects.values()):
if not obj['label'] in new_object_groups:
if self.disappeared[obj['id']] >= self.max_disappeared:
self.deregister(obj['id'])
else:
self.disappeared[obj['id']] += 1
if len(new_objects) == 0:
return
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]

View File

@@ -1,6 +1,4 @@
import datetime
import signal
import traceback
import collections
import numpy as np
import cv2
@@ -129,9 +127,3 @@ class EventsPerSecond:
now = datetime.datetime.now().timestamp()
seconds = min(now-self._start, last_n_seconds)
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
def print_stack(sig, frame):
traceback.print_stack(frame)
def listen():
signal.signal(signal.SIGUSR1, print_stack)

View File

@@ -10,15 +10,17 @@ import subprocess as sp
import numpy as np
import hashlib
import pyarrow.plasma as plasma
import SharedArray as sa
import copy
import itertools
import json
from collections import defaultdict
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
from frigate.objects import ObjectTracker
from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector
# TODO: add back opencv fallback
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
@@ -97,44 +99,16 @@ def create_tensor_input(frame, region):
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, pid, ffmpeg_process=None):
if not ffmpeg_process is None:
print("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
print("Creating ffmpeg process...")
print(" ".join(ffmpeg_cmd))
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
pid.value = process.pid
return process
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps, read_start, ffmpeg_pid):
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps):
print(f"Starting process for {name}: {os.getpid()}")
listen()
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_restart_delay = ffmpeg.get('restart_delay', 0)
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
@@ -151,14 +125,15 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
expected_fps = config['fps']
take_frame = config.get('take_frame', 1)
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
frame_shape = get_frame_shape(ffmpeg_input)
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
frame = np.zeros(frame_shape, np.uint8)
try:
sa.delete(name)
except:
pass
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
# load in the mask for object detection
if 'mask' in config:
@@ -171,11 +146,21 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
object_detector = RemoteObjectDetector('/labelmap.txt', detect_lock, detect_ready, frame_ready)
object_tracker = ObjectTracker(10)
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
print(" ".join(ffmpeg_cmd))
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_pid)
ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size)
plasma_client = plasma.connect("/tmp/plasma")
frame_num = 0
@@ -186,23 +171,13 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
skipped_fps_tracker.start()
object_detector.fps.start()
while True:
rc = ffmpeg_process.poll()
if rc != None:
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
print(f"Letting {name} rest for {ffmpeg_restart_delay} seconds before restarting...")
time.sleep(ffmpeg_restart_delay)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_pid, ffmpeg_process)
time.sleep(10)
read_start.value = datetime.datetime.now().timestamp()
start = datetime.datetime.now().timestamp()
frame_bytes = ffmpeg_process.stdout.read(frame_size)
duration = datetime.datetime.now().timestamp()-read_start.value
read_start.value = 0.0
duration = datetime.datetime.now().timestamp()-start
avg_wait = (avg_wait*99+duration)/100
if len(frame_bytes) == 0:
print(f"{name}: ffmpeg_process didnt return any bytes")
continue
if not frame_bytes:
break
# limit frame rate
frame_num += 1
@@ -375,5 +350,3 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
plasma_client.put(frame, plasma.ObjectID(object_id))
# add to the queue
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
print(f"{name}: exiting subprocess")