Compare commits

..

38 Commits

Author SHA1 Message Date
Blake Blackshear
0f66a8cb41 call the restart function and handle errors better in the detection process 2020-03-01 18:45:07 -06:00
Blake Blackshear
04ef6ac30e clarify mqtt password readme 2020-03-01 18:45:07 -06:00
Blake Blackshear
ab42a9625d readme updates 2020-03-01 07:47:22 -06:00
Blake Blackshear
30ad0e30f8 allow mqtt password to be set by env var 2020-03-01 07:23:56 -06:00
Blake Blackshear
7bad89c9bf update benchmark script to mirror actual frigate use 2020-03-01 07:16:56 -06:00
Blake Blackshear
f077c397f4 improve detection processing and restart when stuck 2020-03-01 07:16:49 -06:00
Blake Blackshear
cc729d83a8 handle ffmpeg process failures in the camera process itself 2020-02-26 19:02:12 -06:00
Blake Blackshear
c520b81e49 add a few print statements for debugging 2020-02-25 20:37:12 -06:00
Blake Blackshear
9c304391c0 dont kill the camera process from the main process 2020-02-25 20:36:30 -06:00
Blake Blackshear
9a12b02d22 increase the buffer size a bit 2020-02-24 20:05:30 -06:00
Blake Blackshear
7686c510b3 add a few more metrics to debug 2020-02-23 18:11:39 -06:00
Blake Blackshear
2f5e322d3c cleanup the plasma store when finished with a frame 2020-02-23 18:11:08 -06:00
Blake Blackshear
1cd4c12104 dont redirect stdout for plasma store 2020-02-23 15:53:17 -06:00
Blake Blackshear
1a8b034685 reset detection fps 2020-02-23 15:53:00 -06:00
Blake Blackshear
da6dc03a57 dont change dictionary while iterating 2020-02-23 11:18:00 -06:00
Blake Blackshear
7fa3b70d2d allow specifying the frame size in the config instead of detecting 2020-02-23 07:56:14 -06:00
Blake Blackshear
1fc5a2bfd4 ensure missing objects are expired even when other object types are in the frame 2020-02-23 07:55:51 -06:00
Blake Blackshear
7e84da7dad Fix watchdog last_frame calculation 2020-02-23 07:55:16 -06:00
Blake Blackshear
128be72e28 cleanup 2020-02-22 09:15:29 -06:00
Blake Blackshear
aaddedc95c update docs and add back benchmark 2020-02-22 09:10:37 -06:00
Blake Blackshear
ba919fb439 fix watchdog 2020-02-22 09:10:37 -06:00
Blake Blackshear
b1d563f3c4 check avg wait before dropping frames 2020-02-22 09:10:37 -06:00
Blake Blackshear
204d8af5df fix watchdog restart 2020-02-22 09:10:37 -06:00
Blake Blackshear
b507a73d79 improve watchdog and coral fps tracking 2020-02-22 09:10:37 -06:00
Blake Blackshear
66eeb8b5cb dont log http requests 2020-02-22 09:10:37 -06:00
Blake Blackshear
efa67067c6 cleanup 2020-02-22 09:10:37 -06:00
Blake Blackshear
aeb036f1a4 add models and convert speed to ms 2020-02-22 09:10:37 -06:00
Blake Blackshear
74c528f9dc add watchdog for camera processes 2020-02-22 09:10:34 -06:00
Blake Blackshear
f2d54bec43 cleanup old code 2020-02-22 09:09:36 -06:00
Blake Blackshear
f07d57741e add a min_fps option 2020-02-22 09:06:46 -06:00
Blake Blackshear
2c1ec19f98 check plasma store and consolidate frame drawing 2020-02-22 09:06:46 -06:00
Blake Blackshear
6a9027c002 split into separate processes 2020-02-22 09:06:43 -06:00
Blake Blackshear
60c15e4419 update tflite to 2.1.0 2020-02-22 09:05:26 -06:00
Blake Blackshear
03dbf600aa refactor some classes into new files 2020-02-22 09:05:26 -06:00
Blake Blackshear
fbbb79b31b tweak process handoff 2020-02-22 09:05:26 -06:00
Blake Blackshear
496c6bc6c4 Mostly working detection in a separate process 2020-02-22 09:05:26 -06:00
Blake Blackshear
869a81c944 read from ffmpeg 2020-02-22 09:05:26 -06:00
Blake Blackshear
5b1884cfb3 WIP: revamp to incorporate motion 2020-02-22 09:05:26 -06:00
3 changed files with 11 additions and 19 deletions

View File

@@ -38,9 +38,9 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
&& apt -qq install --no-install-recommends -y \
libedgetpu1-max \
## Tensorflow lite (python 3.7 only)
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& python3.7 -m pip install tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -9,7 +9,7 @@ import multiprocessing as mp
import subprocess as sp
import numpy as np
import logging
from flask import Flask, Response, make_response, jsonify, request
from flask import Flask, Response, make_response, jsonify
import paho.mqtt.client as mqtt
from frigate.video import track_camera
@@ -218,26 +218,21 @@ def main():
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
if camera_name in CONFIG['cameras']:
# return a multipart response
return Response(imagestream(camera_name, fps, height),
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name, fps, height):
def imagestream(camera_name):
while True:
# max out at specified FPS
time.sleep(1/fps)
# max out at 1 FPS
time.sleep(1)
frame = object_processor.get_current_frame(camera_name)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
frame = cv2.resize(frame, dsize=(int(height*16/9), height), interpolation=cv2.INTER_LINEAR)
frame = np.zeros((720,1280,3), np.uint8)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')

View File

@@ -75,6 +75,7 @@ def run_detector(detection_queue, avg_speed, start):
input_frame = plasma_client.get(object_id, timeout_ms=0)
if input_frame is plasma.ObjectNotAvailable:
plasma_client.put(np.zeros((20,6), np.float32), object_id_out)
continue
# detect and put the output in the plasma store
@@ -123,11 +124,7 @@ class RemoteObjectDetector():
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
self.plasma_client.put(tensor_input, object_id_frame)
self.detection_queue.put(now)
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
if raw_detections is plasma.ObjectNotAvailable:
self.plasma_client.delete([object_id_frame])
return detections
raw_detections = self.plasma_client.get(object_id_detections)
for d in raw_detections:
if d[1] < threshold: