forked from Github/frigate
Compare commits
5 Commits
v0.5.0-rc5
...
v0.5.0-rc7
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0e6eca7cd6 | ||
|
|
91415f7e9d | ||
|
|
0f66a8cb41 | ||
|
|
04ef6ac30e | ||
|
|
ab42a9625d |
@@ -38,9 +38,9 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||
&& apt -qq install --no-install-recommends -y \
|
||||
libedgetpu1-max \
|
||||
## Tensorflow lite (python 3.7 only)
|
||||
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
|
||||
&& python3.7 -m pip install tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
|
||||
&& rm tflite_runtime-2.1.0.post1-cp37-cp37m-linux_x86_64.whl \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
|
||||
|
||||
19
README.md
19
README.md
@@ -16,16 +16,6 @@ You see multiple bounding boxes because it draws bounding boxes from all frames
|
||||
[](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
|
||||
|
||||
## Getting Started
|
||||
Build the container with
|
||||
```
|
||||
docker build -t frigate .
|
||||
```
|
||||
|
||||
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
|
||||
- CPU Model: `/cpu_model.tflite`
|
||||
- EdgeTPU Model: `/edgetpu_model.tflite`
|
||||
- Labels: `/labelmap.txt`
|
||||
|
||||
Run the container with
|
||||
```bash
|
||||
docker run --rm \
|
||||
@@ -36,7 +26,7 @@ docker run --rm \
|
||||
-v /etc/localtime:/etc/localtime:ro \
|
||||
-p 5000:5000 \
|
||||
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||
frigate:latest
|
||||
blakeblackshear/frigate:stable
|
||||
```
|
||||
|
||||
Example docker-compose:
|
||||
@@ -46,7 +36,7 @@ Example docker-compose:
|
||||
restart: unless-stopped
|
||||
privileged: true
|
||||
shm_size: '1g' # should work for 5-7 cameras
|
||||
image: frigate:latest
|
||||
image: blakeblackshear/frigate:stable
|
||||
volumes:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
- /etc/localtime:/etc/localtime:ro
|
||||
@@ -127,6 +117,11 @@ sensor:
|
||||
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
|
||||
unit_of_measurement: 'ms'
|
||||
```
|
||||
## Using a custom model
|
||||
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
|
||||
- CPU Model: `/cpu_model.tflite`
|
||||
- EdgeTPU Model: `/edgetpu_model.tflite`
|
||||
- Labels: `/labelmap.txt`
|
||||
|
||||
## Tips
|
||||
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
|
||||
|
||||
@@ -3,9 +3,13 @@ web_port: 5000
|
||||
mqtt:
|
||||
host: mqtt.server.com
|
||||
topic_prefix: frigate
|
||||
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
|
||||
# user: username # Optional -- Uncomment for use
|
||||
# password: password # Optional -- Uncomment for use
|
||||
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
|
||||
# user: username # Optional
|
||||
#################
|
||||
## Environment variables that begin with 'FRIGATE_' may be referenced in {}.
|
||||
## password: '{FRIGATE_MQTT_PASSWORD}'
|
||||
#################
|
||||
# password: password # Optional
|
||||
|
||||
#################
|
||||
# Default ffmpeg args. Optional and can be overwritten per camera.
|
||||
|
||||
@@ -76,6 +76,7 @@ class CameraWatchdog(threading.Thread):
|
||||
if (self.tflite_process.detection_start.value > 0.0 and
|
||||
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
|
||||
print("Detection appears to be stuck. Restarting detection process")
|
||||
self.tflite_process.start_or_restart()
|
||||
time.sleep(30)
|
||||
|
||||
for name, camera_process in self.camera_processes.items():
|
||||
|
||||
@@ -71,16 +71,18 @@ def run_detector(detection_queue, avg_speed, start):
|
||||
object_id_str = detection_queue.get()
|
||||
object_id_hash = hashlib.sha1(str.encode(object_id_str))
|
||||
object_id = plasma.ObjectID(object_id_hash.digest())
|
||||
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
|
||||
input_frame = plasma_client.get(object_id, timeout_ms=0)
|
||||
|
||||
start.value = datetime.datetime.now().timestamp()
|
||||
if input_frame is plasma.ObjectNotAvailable:
|
||||
continue
|
||||
|
||||
# detect and put the output in the plasma store
|
||||
object_id_out = hashlib.sha1(str.encode(f"out-{object_id_str}")).digest()
|
||||
plasma_client.put(object_detector.detect_raw(input_frame), plasma.ObjectID(object_id_out))
|
||||
|
||||
start.value = datetime.datetime.now().timestamp()
|
||||
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
|
||||
duration = datetime.datetime.now().timestamp()-start.value
|
||||
start.value = 0.0
|
||||
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
class EdgeTPUProcess():
|
||||
@@ -121,7 +123,11 @@ class RemoteObjectDetector():
|
||||
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
|
||||
self.plasma_client.put(tensor_input, object_id_frame)
|
||||
self.detection_queue.put(now)
|
||||
raw_detections = self.plasma_client.get(object_id_detections)
|
||||
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
|
||||
|
||||
if raw_detections is plasma.ObjectNotAvailable:
|
||||
self.plasma_client.delete([object_id_frame])
|
||||
return detections
|
||||
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
|
||||
Reference in New Issue
Block a user