Compare commits

..

1 Commits

Author SHA1 Message Date
Blake Blackshear
e1c4aa94f4 track and report all detected object types 2019-12-14 15:18:21 -06:00
11 changed files with 454 additions and 953 deletions

View File

@@ -1,50 +1,106 @@
FROM ubuntu:18.04
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
ARG DEVICE
# Install packages for apt repo
RUN apt -qq update && apt -qq install --no-install-recommends -y \
apt-transport-https ca-certificates \
gnupg wget \
ffmpeg \
python3 \
python3-pip \
python3-dev \
python3-numpy \
# python-prctl
build-essential libcap-dev \
# pillow-simd
# zlib1g-dev libjpeg-dev \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
&& apt -qq update \
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
&& apt -qq install --no-install-recommends -y \
libedgetpu1-max \
python3-edgetpu \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
apt-transport-https \
ca-certificates \
curl \
wget \
gnupg-agent \
dirmngr \
software-properties-common \
&& rm -rf /var/lib/apt/lists/*
# needs to be installed before others
RUN pip3 install -U wheel setuptools
COPY scripts/install_odroid_repo.sh .
RUN pip3 install -U \
opencv-python-headless \
python-prctl \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
scipy
RUN if [ "$DEVICE" = "odroid" ]; then \
sh /install_odroid_repo.sh; \
fi
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
python3 \
# OpenCV dependencies
ffmpeg \
build-essential \
cmake \
unzip \
pkg-config \
libjpeg-dev \
libpng-dev \
libtiff-dev \
libavcodec-dev \
libavformat-dev \
libswscale-dev \
libv4l-dev \
libxvidcore-dev \
libx264-dev \
libgtk-3-dev \
libatlas-base-dev \
gfortran \
python3-dev \
# Coral USB Python API Dependencies
libusb-1.0-0 \
python3-pip \
python3-pil \
python3-numpy \
libc++1 \
libc++abi1 \
libunwind8 \
libgcc1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
&& rm -rf /var/lib/apt/lists/*
# Install core packages
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
RUN pip install -U pip \
numpy \
Flask \
paho-mqtt \
PyYAML
# Download & build OpenCV
# TODO: use multistage build to reduce image size:
# https://medium.com/@denismakogon/pain-and-gain-running-opencv-application-with-golang-and-docker-on-alpine-3-7-435aa11c7aec
# https://www.merixstudio.com/blog/docker-multi-stage-builds-python-development/
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
RUN cd /usr/local/src/ \
&& unzip 4.0.1.zip \
&& rm 4.0.1.zip \
&& cd /usr/local/src/opencv-4.0.1/ \
&& mkdir build \
&& cd /usr/local/src/opencv-4.0.1/build \
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
&& make -j4 \
&& make install \
&& ldconfig \
&& rm -rf /usr/local/src/opencv-4.0.1
# Download and install EdgeTPU libraries for Coral
RUN wget https://dl.google.com/coral/edgetpu_api/edgetpu_api_latest.tar.gz -O edgetpu_api.tar.gz --trust-server-names \
&& tar xzf edgetpu_api.tar.gz
COPY scripts/install_edgetpu_api.sh edgetpu_api/install.sh
RUN cd edgetpu_api \
&& /bin/bash install.sh
# Copy a python 3.6 version
RUN cd /usr/local/lib/python3.6/dist-packages/edgetpu/swig/ \
&& ln -s _edgetpu_cpp_wrapper.cpython-35m-arm-linux-gnueabihf.so _edgetpu_cpp_wrapper.cpython-36m-arm-linux-gnueabihf.so
# symlink the model and labels
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
RUN wget https://dl.google.com/coral/canned_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
RUN wget https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
RUN ln -s mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
RUN ln -s /coco_labels.txt /label_map.pbtext
# Minimize image size
RUN (apt-get autoremove -y; \
apt-get autoclean -y)
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .

View File

@@ -14,7 +14,7 @@ flattened_frame = np.expand_dims(frame, axis=0).flatten()
detection_times = []
for x in range(0, 1000):
objects = engine.detect_with_input_tensor(flattened_frame, threshold=0.1, top_k=3)
objects = engine.DetectWithInputTensor(flattened_frame, threshold=0.1, top_k=3)
detection_times.append(engine.get_inference_time())
print("Average inference time: " + str(statistics.mean(detection_times)))

View File

@@ -47,24 +47,16 @@ mqtt:
# - rgb24
####################
# Global object configuration. Applies to all cameras
# unless overridden at the camera levels.
# Global object configuration. Applies to all cameras and regions
# unless overridden at the camera/region levels.
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
# min_area (optional): minimum width*height of the bounding box for the detected person
# max_area (optional): maximum width*height of the bounding box for the detected person
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
####################
objects:
track:
- person
- car
- truck
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
person:
min_area: 5000
max_area: 100000
threshold: 0.5
cameras:
back:
@@ -81,12 +73,6 @@ cameras:
# hwaccel_args: []
# input_args: []
# output_args: []
################
## Optionally specify the resolution of the video feed. Frigate will try to auto detect if not specified
################
# height: 1280
# width: 720
################
## Optional mask. Must be the same dimensions as your video feed.
@@ -105,33 +91,18 @@ cameras:
################
take_frame: 1
################
# The number of seconds frigate will allow a camera to go without sending a frame before
# assuming the ffmpeg process has a problem and restarting.
################
# watchdog_timeout: 300
################
# Configuration for the snapshot sent over mqtt
################
snapshots:
show_timestamp: True
################
# Camera level object config. This config is merged with the global config above.
################
objects:
track:
- person
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.5
person:
min_area: 5000
max_area: 100000
threshold: 0.5
################
# size: size of the region in pixels
# x_offset/y_offset: position of the upper left corner of your region (top left of image is 0,0)
# min_person_area (optional): minimum width*height of the bounding box for the detected person
# max_person_area (optional): maximum width*height of the bounding box for the detected person
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
# Tips: All regions are resized to 300x300 before detection because the model is trained on that size.
# Resizing regions takes CPU power. Ideally, all regions should be as close to 300x300 as possible.
# Defining a region that goes outside the bounds of the image will result in errors.
@@ -140,9 +111,18 @@ cameras:
- size: 350
x_offset: 0
y_offset: 300
objects:
car:
threshold: 0.2
- size: 400
x_offset: 350
y_offset: 250
objects:
person:
min_area: 2000
- size: 400
x_offset: 750
y_offset: 250
objects:
person:
min_area: 2000

View File

@@ -3,12 +3,11 @@ import time
import queue
import yaml
import numpy as np
from flask import Flask, Response, make_response, jsonify
from flask import Flask, Response, make_response
import paho.mqtt.client as mqtt
from frigate.video import Camera
from frigate.object_detection import PreppedQueueProcessor
from frigate.util import EventsPerSecond
with open('/config/config.yml') as f:
CONFIG = yaml.safe_load(f)
@@ -71,23 +70,19 @@ def main():
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
# Queue for prepped frames, max size set to number of regions * 3
prepped_frame_queue = queue.Queue()
# Queue for prepped frames, max size set to (number of cameras * 5)
max_queue_size = len(CONFIG['cameras'].items())*5
prepped_frame_queue = queue.Queue(max_queue_size)
cameras = {}
for name, config in CONFIG['cameras'].items():
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config,
prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
fps_tracker = EventsPerSecond()
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
prepped_queue_processor = PreppedQueueProcessor(
cameras,
prepped_frame_queue,
fps_tracker
prepped_frame_queue
)
prepped_queue_processor.start()
fps_tracker.start()
for name, camera in cameras.items():
camera.start()
@@ -101,34 +96,18 @@ def main():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/debug/stats')
def stats():
stats = {
'coral': {
'fps': fps_tracker.eps(),
'inference_speed': prepped_queue_processor.avg_inference_speed,
'queue_length': prepped_frame_queue.qsize()
}
}
for name, camera in cameras.items():
stats[name] = camera.stats()
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in cameras:
best_frame = cameras[camera_name].get_best(label)
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
return f'Camera named {camera_name} not found', 404
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
@@ -137,15 +116,17 @@ def main():
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
return f'Camera named {camera_name} not found', 404
def imagestream(camera_name):
while True:
# max out at 1 FPS
time.sleep(1)
# max out at 5 FPS
time.sleep(0.2)
frame = cameras[camera_name].get_current_frame_with_objects()
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)

View File

@@ -1,41 +1,41 @@
import json
import cv2
import threading
import prctl
from collections import Counter, defaultdict
import itertools
class MqttObjectPublisher(threading.Thread):
def __init__(self, client, topic_prefix, camera):
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
threading.Thread.__init__(self)
self.client = client
self.topic_prefix = topic_prefix
self.camera = camera
self.objects_parsed = objects_parsed
self._detected_objects = detected_objects
self.best_frames = best_frames
def run(self):
prctl.set_name(self.__class__.__name__)
current_object_status = defaultdict(lambda: 'OFF')
while True:
# wait until objects have been tracked
with self.camera.objects_tracked:
self.camera.objects_tracked.wait()
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# count objects with more than 2 entries in history by type
# make a copy of detected objects
detected_objects = self._detected_objects.copy()
# total up all scores by object type
obj_counter = Counter()
for obj in self.camera.object_tracker.tracked_objects.values():
if len(obj['history']) > 1:
obj_counter[obj['name']] += 1
for obj in detected_objects:
obj_counter[obj['name']] += obj['score']
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
for obj_name, total_score in obj_counter.items():
new_status = 'ON' if int(total_score*100) > 100 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
# send the snapshot over mqtt if we have it as well
if obj_name in self.camera.best_frames.best_frames:
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
# send the snapshot over mqtt as well
if not self.best_frames.best_frames[obj_name] is None:
ret, jpg = cv2.imencode('.jpg', self.best_frames.best_frames[obj_name])
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
@@ -43,12 +43,4 @@ class MqttObjectPublisher(threading.Thread):
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
# send updated snapshot snapshot over mqtt if we have it as well
if obj_name in self.camera.best_frames.best_frames:
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)

View File

@@ -2,15 +2,27 @@ import datetime
import time
import cv2
import threading
import copy
import prctl
import numpy as np
from edgetpu.detection.engine import DetectionEngine
from . util import tonumpyarray
from frigate.util import tonumpyarray, LABELS, PATH_TO_CKPT, calculate_region
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
class PreppedQueueProcessor(threading.Thread):
def __init__(self, cameras, prepped_frame_queue, fps):
def __init__(self, cameras, prepped_frame_queue):
threading.Thread.__init__(self)
self.cameras = cameras
@@ -18,122 +30,80 @@ class PreppedQueueProcessor(threading.Thread):
# Load the edgetpu engine and labels
self.engine = DetectionEngine(PATH_TO_CKPT)
self.labels = LABELS
self.fps = fps
self.avg_inference_speed = 10
self.labels = ReadLabelFile(PATH_TO_LABELS)
def run(self):
prctl.set_name(self.__class__.__name__)
# process queue...
while True:
frame = self.prepped_frame_queue.get()
# Actual detection.
frame['detected_objects'] = self.engine.detect_with_input_tensor(frame['frame'], threshold=0.2, top_k=5)
self.fps.update()
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
# print(self.engine.get_inference_time())
self.cameras[frame['camera_name']].detected_objects_queue.put(frame)
# parse and pass detected objects back to the camera
parsed_objects = []
for obj in objects:
parsed_objects.append({
'region_id': frame['region_id'],
'frame_time': frame['frame_time'],
'name': str(self.labels[obj.label_id]),
'score': float(obj.score),
'box': obj.bounding_box.flatten().tolist()
})
self.cameras[frame['camera_name']].add_objects(parsed_objects)
# should this be a region class?
class FramePrepper(threading.Thread):
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
frame_lock,
region_size, region_x_offset, region_y_offset, region_id,
prepped_frame_queue):
class RegionRequester(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
self.camera_name = camera_name
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.region_size = region_size
self.region_x_offset = region_x_offset
self.region_y_offset = region_y_offset
self.region_id = region_id
self.prepped_frame_queue = prepped_frame_queue
def run(self):
prctl.set_name(self.__class__.__name__)
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
with self.camera.frame_ready:
with self.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5:
self.camera.frame_ready.wait()
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# make a copy of the frame_time
frame_time = self.camera.frame_time.value
# grab the current tracked objects
with self.camera.object_tracker.tracked_objects_lock:
tracked_objects = copy.deepcopy(self.camera.object_tracker.tracked_objects).values()
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
self.camera.regions_in_process[frame_time] += len(tracked_objects)
for index, region in enumerate(self.camera.config['regions']):
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': index,
'size': region['size'],
'x_offset': region['x_offset'],
'y_offset': region['y_offset']
})
# make a copy of the cropped frame
with self.frame_lock:
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
frame_time = self.frame_time.value
# request a region for tracked objects
for tracked_object in tracked_objects:
box = tracked_object['box']
# calculate a new region that will hopefully get the entire object
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
box['xmin'], box['ymin'],
box['xmax'], box['ymax'])
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': -1,
'size': size,
'x_offset': x_offset,
'y_offset': y_offset
})
class RegionPrepper(threading.Thread):
def __init__(self, camera, frame_cache, resize_request_queue, prepped_frame_queue):
threading.Thread.__init__(self)
self.camera = camera
self.frame_cache = frame_cache
self.resize_request_queue = resize_request_queue
self.prepped_frame_queue = prepped_frame_queue
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
resize_request = self.resize_request_queue.get()
# if the queue is over 100 items long, only prep dynamic regions
if resize_request['region_id'] != -1 and self.prepped_frame_queue.qsize() > 100:
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[resize_request['frame_time']] -= 1
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
del self.camera.regions_in_process[resize_request['frame_time']]
self.camera.skipped_region_tracker.update()
continue
frame = self.frame_cache.get(resize_request['frame_time'], None)
if frame is None:
print("RegionPrepper: frame_time not in frame_cache")
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[resize_request['frame_time']] -= 1
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
del self.camera.regions_in_process[resize_request['frame_time']]
self.camera.skipped_region_tracker.update()
continue
# make a copy of the region
cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
# TODO: use Pillow-SIMD?
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame, axis=0)
# add the frame to the queue
resize_request['frame'] = frame_expanded.flatten().copy()
self.prepped_frame_queue.put(resize_request)
if not self.prepped_frame_queue.full():
self.prepped_frame_queue.put({
'camera_name': self.camera_name,
'frame_time': frame_time,
'frame': frame_expanded.flatten().copy(),
'region_size': self.region_size,
'region_id': self.region_id,
'region_x_offset': self.region_x_offset,
'region_y_offset': self.region_y_offset
})
else:
print("queue full. moving on")

View File

@@ -2,417 +2,83 @@ import time
import datetime
import threading
import cv2
import prctl
import itertools
import copy
import numpy as np
import multiprocessing as mp
from collections import defaultdict
from scipy.spatial import distance as dist
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
from . util import draw_box_with_label
class ObjectCleaner(threading.Thread):
def __init__(self, camera):
def __init__(self, objects_parsed, detected_objects):
threading.Thread.__init__(self)
self.camera = camera
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
def run(self):
prctl.set_name("ObjectCleaner")
while True:
# wait a bit before checking for expired frames
time.sleep(0.2)
for frame_time in list(self.camera.detected_objects.keys()).copy():
if not frame_time in self.camera.frame_cache:
del self.camera.detected_objects[frame_time]
objects_deregistered = False
with self.camera.object_tracker.tracked_objects_lock:
now = datetime.datetime.now().timestamp()
for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
# if the object is more than 10 seconds old
# and not in the most recent frame, deregister
if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
self.camera.object_tracker.deregister(id)
objects_deregistered = True
if objects_deregistered:
with self.camera.objects_tracked:
self.camera.objects_tracked.notify_all()
# expire the objects that are more than 1 second old
now = datetime.datetime.now().timestamp()
# look for the first object found within the last second
# (newest objects are appended to the end)
detected_objects = self._detected_objects.copy()
class DetectedObjectsProcessor(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame = self.camera.detected_objects_queue.get()
objects = frame['detected_objects']
for raw_obj in objects:
name = str(LABELS[raw_obj.label_id])
if not name in self.camera.objects_to_track:
continue
obj = {
'name': name,
'score': float(raw_obj.score),
'box': {
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
},
'region': {
'xmin': frame['x_offset'],
'ymin': frame['y_offset'],
'xmax': frame['x_offset']+frame['size'],
'ymax': frame['y_offset']+frame['size']
},
'frame_time': frame['frame_time'],
'region_id': frame['region_id']
}
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
obj['clipped'] = False
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
obj['clipped'] = True
# Compute the area
# TODO: +1 right?
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
self.camera.detected_objects[frame['frame_time']].append(obj)
# TODO: use in_process and processed counts instead to avoid lock
with self.camera.regions_in_process_lock:
if frame['frame_time'] in self.camera.regions_in_process:
self.camera.regions_in_process[frame['frame_time']] -= 1
# print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
if self.camera.regions_in_process[frame['frame_time']] == 0:
del self.camera.regions_in_process[frame['frame_time']]
# print(f"{frame['frame_time']} no remaining regions")
self.camera.finished_frame_queue.put(frame['frame_time'])
else:
self.camera.finished_frame_queue.put(frame['frame_time'])
# Thread that checks finished frames for clipped objects and sends back
# for processing if needed
# TODO: evaluate whether or not i really need separate threads/queues for each step
# given that only 1 thread will really be able to run at a time. you need a
# separate process to actually do things in parallel for when you are CPU bound.
# threads are good when you are waiting and could be processing while you wait
class RegionRefiner(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame_time = self.camera.finished_frame_queue.get()
detected_objects = self.camera.detected_objects[frame_time].copy()
# print(f"{frame_time} finished")
# group by name
detected_object_groups = defaultdict(lambda: [])
num_to_delete = 0
for obj in detected_objects:
detected_object_groups[obj['name']].append(obj)
if now-obj['frame_time']<2:
break
num_to_delete += 1
if num_to_delete > 0:
del self._detected_objects[:num_to_delete]
look_again = False
selected_objects = []
for group in detected_object_groups.values():
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
for o in group]
confidences = [o['score'] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
selected_objects.append(obj)
if obj['clipped']:
box = obj['box']
# calculate a new region that will hopefully get the entire object
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
box['xmin'], box['ymin'],
box['xmax'], box['ymax'])
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
with self.camera.regions_in_process_lock:
if not frame_time in self.camera.regions_in_process:
self.camera.regions_in_process[frame_time] = 1
else:
self.camera.regions_in_process[frame_time] += 1
# add it to the queue
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': -1,
'size': size,
'x_offset': x_offset,
'y_offset': y_offset
})
self.camera.dynamic_region_fps.update()
look_again = True
# if we are looking again, then this frame is not ready for processing
if look_again:
# remove the clipped objects
self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
continue
# filter objects based on camera settings
selected_objects = [o for o in selected_objects if not self.filtered(o)]
self.camera.detected_objects[frame_time] = selected_objects
# print(f"{frame_time} is actually finished")
# keep adding frames to the refined queue as long as they are finished
with self.camera.regions_in_process_lock:
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
self.camera.last_processed_frame = self.camera.frame_queue.get()
self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
def filtered(self, obj):
object_name = obj['name']
if object_name in self.camera.object_filters:
obj_settings = self.camera.object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if self.camera.mask[y_location][x_location] == [0]:
return True
return False
def has_overlap(self, new_obj, obj, overlap=.7):
# compute intersection rectangle with existing object and new objects region
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
# compute intersection rectangle with new object and existing objects region
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
# compute iou for the two intersection rectangles that were just computed
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
# if intersection is greater than overlap
if iou > overlap:
return True
else:
return False
def find_group(self, new_obj, groups):
for index, group in enumerate(groups):
for obj in group:
if self.has_overlap(new_obj, obj):
return index
return None
class ObjectTracker(threading.Thread):
def __init__(self, camera, max_disappeared):
threading.Thread.__init__(self)
self.camera = camera
self.tracked_objects = {}
self.tracked_objects_lock = mp.Lock()
self.most_recent_frame_time = None
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
frame_time = self.camera.refined_frame_queue.get()
with self.tracked_objects_lock:
self.match_and_update(self.camera.detected_objects[frame_time])
self.most_recent_frame_time = frame_time
self.camera.frame_output_queue.put((frame_time, copy.deepcopy(self.tracked_objects)))
if len(self.tracked_objects) > 0:
with self.camera.objects_tracked:
self.camera.objects_tracked.notify_all()
def register(self, index, obj):
id = "{}-{}".format(str(obj['frame_time']), index)
obj['id'] = id
obj['top_score'] = obj['score']
self.add_history(obj)
self.tracked_objects[id] = obj
def deregister(self, id):
del self.tracked_objects[id]
def update(self, id, new_obj):
self.tracked_objects[id].update(new_obj)
self.add_history(self.tracked_objects[id])
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def add_history(self, obj):
entry = {
'score': obj['score'],
'box': obj['box'],
'region': obj['region'],
'centroid': obj['centroid'],
'frame_time': obj['frame_time']
}
if 'history' in obj:
obj['history'].append(entry)
else:
obj['history'] = [entry]
def match_and_update(self, new_objects):
if len(new_objects) == 0:
return
# group by name
new_object_groups = defaultdict(lambda: [])
for obj in new_objects:
new_object_groups[obj['name']].append(obj)
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
current_ids = [o['id'] for o in current_objects]
current_centroids = np.array([o['centroid'] for o in current_objects])
# compute centroids of new objects
for obj in group:
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
obj['centroid'] = (centroid_x, centroid_y)
if len(current_objects) == 0:
for index, obj in enumerate(group):
self.register(index, obj)
return
new_centroids = np.array([o['centroid'] for o in group])
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
if row in usedRows or col in usedCols:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = current_ids[row]
self.update(objectID, group[col])
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute the column index we have NOT yet examined
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
# if D.shape[0] < D.shape[1]:
# TODO: rather than assuming these are new objects, we could
# look to see if any of the remaining boxes have a large amount
# of overlap...
for col in unusedCols:
self.register(col, group[col])
# Maintains the frame and object with the highest score
class BestFrames(threading.Thread):
def __init__(self, camera):
def __init__(self, objects_parsed, recent_frames, detected_objects):
threading.Thread.__init__(self)
self.camera = camera
self.objects_parsed = objects_parsed
self.recent_frames = recent_frames
self.detected_objects = detected_objects
self.best_objects = {}
self.best_frames = {}
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
# wait until objects have been tracked
with self.camera.objects_tracked:
self.camera.objects_tracked.wait()
# make a copy of tracked objects
tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
for obj in tracked_objects:
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
for obj in detected_objects:
if obj['name'] in self.best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
self.best_objects[obj['name']] = copy.deepcopy(obj)
self.best_objects[obj['name']] = obj
else:
self.best_objects[obj['name']] = copy.deepcopy(obj)
self.best_objects[obj['name']] = obj
for name, obj in self.best_objects.items():
if obj['frame_time'] in self.camera.frame_cache:
best_frame = self.camera.frame_cache[obj['frame_time']]
# make a copy of the recent frames
recent_frames = self.recent_frames.copy()
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
for name, obj in self.best_objects.items():
if obj['frame_time'] in recent_frames:
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
label = "{}: {}% {}".format(name,int(obj['score']*100),int(obj['area']))
draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
obj['xmax'], obj['ymax'], label)
# print a timestamp
if self.camera.snapshot_config['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
self.best_frames[name] = best_frame
self.best_frames[name] = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)

View File

@@ -1,161 +1,26 @@
import datetime
import collections
import numpy as np
import cv2
import threading
import matplotlib.pyplot as plt
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*2)
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1]-size):
x_offset = (frame_shape[1]-size)
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0]-size):
y_offset = (frame_shape[0]-size)
return (size, x_offset, y_offset)
def compute_intersection_rectangle(box_a, box_b):
return {
'xmin': max(box_a['xmin'], box_b['xmin']),
'ymin': max(box_a['ymin'], box_b['ymin']),
'xmax': min(box_a['xmax'], box_b['xmax']),
'ymax': min(box_a['ymax'], box_b['ymax'])
}
def compute_intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = compute_intersection_rectangle(box_a, box_b)
# compute the area of intersection rectangle
inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = inter_area / float(box_a_area + box_b_area - inter_area)
# return the intersection over union value
return iou
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
color = COLOR_MAP[label]
display_text = "{}: {}".format(label, info)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label):
color = (255,0,0)
cv2.rectangle(frame, (x_min, y_min),
(x_max, y_max),
color, thickness)
color, 2)
font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
size = cv2.getTextSize(label, font, fontScale=font_scale, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
if position == 'ul':
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'ur':
text_offset_x = x_max - (text_width+8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'bl':
text_offset_x = x_min
text_offset_y = y_max
elif position == 'br':
text_offset_x = x_max - (text_width+8)
text_offset_y = y_max
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
# make the coords of the box with a small padding of two pixels
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
LABELS = ReadLabelFile(PATH_TO_LABELS)
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
class QueueMerger():
def __init__(self, from_queues, to_queue):
self.from_queues = from_queues
self.to_queue = to_queue
self.merge_threads = []
def start(self):
for from_q in self.from_queues:
self.merge_threads.append(QueueTransfer(from_q,self.to_queue))
class QueueTransfer(threading.Thread):
def __init__(self, from_queue, to_queue):
threading.Thread.__init__(self)
self.from_queue = from_queue
self.to_queue = to_queue
def run(self):
while True:
self.to_queue.put(self.from_queue.get())
class EventsPerSecond:
def __init__(self, max_events=1000):
self._start = None
self._max_events = max_events
self._timestamps = []
def start(self):
self._start = datetime.datetime.now().timestamp()
def update(self):
self._timestamps.append(datetime.datetime.now().timestamp())
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events+100:
self._timestamps = self._timestamps[(1-self._max_events):]
def eps(self, last_n_seconds=10):
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now-self._start, last_n_seconds)
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
cv2.putText(frame, label, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)

View File

@@ -2,70 +2,54 @@ import os
import time
import datetime
import cv2
import queue
import threading
import ctypes
import multiprocessing as mp
import subprocess as sp
import numpy as np
import prctl
import copy
import itertools
import json
from collections import defaultdict
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
from frigate.object_detection import RegionPrepper, RegionRequester
from frigate.objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
from frigate.mqtt import MqttObjectPublisher
from . util import tonumpyarray, draw_box_with_label
from . object_detection import FramePrepper
from . objects import ObjectCleaner, BestFrames
from . mqtt import MqttObjectPublisher
# Stores 2 seconds worth of frames so they can be used for other threads
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
class FrameTracker(threading.Thread):
def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
threading.Thread.__init__(self)
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.recent_frames = recent_frames
def run(self):
prctl.set_name(self.__class__.__name__)
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# wait for a frame
with self.frame_ready:
self.frame_ready.wait()
# if there isnt a frame ready for processing or it is old, wait for a signal
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# lock and make a copy of the frame
with self.frame_lock:
frame = self.shared_frame.copy()
frame_time = self.frame_time.value
# add the frame to recent frames
self.recent_frames[frame_time] = frame
# delete any old frames
stored_frame_times = list(self.recent_frames.keys())
stored_frame_times.sort(reverse=True)
if len(stored_frame_times) > 100:
frames_to_delete = stored_frame_times[50:]
for k in frames_to_delete:
for k in stored_frame_times:
if (now - k) > 2:
del self.recent_frames[k]
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
print(ffprobe_cmd)
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
print(info)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
@@ -82,13 +66,13 @@ class CameraWatchdog(threading.Thread):
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
# wait a bit before checking
time.sleep(10)
if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > self.camera.watchdog_timeout:
print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
print("last frame is more than 5 minutes old, restarting camera capture...")
self.camera.start_or_restart_capture()
time.sleep(5)
@@ -99,17 +83,16 @@ class CameraCapture(threading.Thread):
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
frame_num = 0
while True:
if self.camera.ffmpeg_process.poll() != None:
print(self.camera.name + ": ffmpeg process is not running. exiting capture thread...")
print("ffmpeg process is not running. exiting capture thread...")
break
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
if len(raw_image) == 0:
print(self.camera.name + ": ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
print("ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
break
frame_num += 1
@@ -117,51 +100,23 @@ class CameraCapture(threading.Thread):
continue
with self.camera.frame_lock:
# TODO: use frame_queue instead
self.camera.frame_time.value = datetime.datetime.now().timestamp()
self.camera.frame_cache[self.camera.frame_time.value] = (
self.camera.current_frame[:] = (
np
.frombuffer(raw_image, np.uint8)
.reshape(self.camera.frame_shape)
)
self.camera.frame_queue.put(self.camera.frame_time.value)
# Notify with the condition that a new frame is ready
with self.camera.frame_ready:
self.camera.frame_ready.notify_all()
self.camera.fps.update()
class VideoWriter(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
(frame_time, tracked_objects) = self.camera.frame_output_queue.get()
# if len(tracked_objects) == 0:
# continue
# f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
# f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
# f.close()
class Camera:
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
self.name = name
self.config = config
self.detected_objects = defaultdict(lambda: [])
self.frame_cache = {}
self.last_processed_frame = None
# queue for re-assembling frames in order
self.frame_queue = queue.Queue()
# track how many regions have been requested for a frame so we know when a frame is complete
self.regions_in_process = {}
# Lock to control access
self.regions_in_process_lock = mp.Lock()
self.finished_frame_queue = queue.Queue()
self.refined_frame_queue = queue.Queue()
self.frame_output_queue = queue.Queue()
self.detected_objects = []
self.recent_frames = {}
self.ffmpeg = config.get('ffmpeg', {})
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
@@ -173,95 +128,63 @@ class Camera:
camera_objects_config = config.get('objects', {})
self.take_frame = self.config.get('take_frame', 1)
self.watchdog_timeout = self.config.get('watchdog_timeout', 300)
self.snapshot_config = {
'show_timestamp': self.config.get('snapshots', {}).get('show_timestamp', True)
}
self.regions = self.config['regions']
if 'width' in self.config and 'height' in self.config:
self.frame_shape = (self.config['height'], self.config['width'], 3)
else:
self.frame_shape = get_frame_shape(self.ffmpeg_input)
self.frame_shape = get_frame_shape(self.ffmpeg_input)
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
self.mqtt_client = mqtt_client
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
# create a numpy array for the current frame in initialize to zeros
self.current_frame = np.zeros(self.frame_shape, np.uint8)
# create shared value for storing the frame_time
self.frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame
self.frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
self.frame_ready = mp.Condition()
# Condition for notifying that objects were tracked
self.objects_tracked = mp.Condition()
# Queue for prepped frames, max size set to (number of regions * 5)
self.resize_queue = queue.Queue()
# Queue for raw detected objects
self.detected_objects_queue = queue.Queue()
self.detected_objects_processor = DetectedObjectsProcessor(self)
self.detected_objects_processor.start()
# initialize the frame cache
self.cached_frame_with_objects = {
'frame_bytes': [],
'frame_time': 0
}
# Condition for notifying that objects were parsed
self.objects_parsed = mp.Condition()
self.ffmpeg_process = None
self.capture_thread = None
self.fps = EventsPerSecond()
self.skipped_region_tracker = EventsPerSecond()
# combine tracked objects lists
self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# for each region, create a separate thread to resize the region and prep for detection
self.detection_prep_threads = []
for index, region in enumerate(self.config['regions']):
region_objects = region.get('objects', {})
# build objects config for region
objects_with_config = set().union(global_objects_config.keys(), camera_objects_config.keys(), region_objects.keys())
merged_objects_config = defaultdict(lambda: {})
for obj in objects_with_config:
merged_objects_config[obj] = {**global_objects_config.get(obj,{}), **camera_objects_config.get(obj, {}), **region_objects.get(obj, {})}
region['objects'] = merged_objects_config
# merge object filters
global_object_filters = global_objects_config.get('filters', {})
camera_object_filters = camera_objects_config.get('filters', {})
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
self.object_filters = {}
for obj in objects_with_config:
self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
# start a thread to track objects
self.object_tracker = ObjectTracker(self, 10)
self.object_tracker.start()
# start a thread to write tracked frames to disk
self.video_writer = VideoWriter(self)
self.video_writer.start()
# start a thread to queue resize requests for regions
self.region_requester = RegionRequester(self)
self.region_requester.start()
# start a thread to cache recent frames for processing
self.frame_tracker = FrameTracker(self.frame_time,
self.frame_ready, self.frame_lock, self.frame_cache)
self.detection_prep_threads.append(FramePrepper(
self.name,
self.current_frame,
self.frame_time,
self.frame_ready,
self.frame_lock,
region['size'], region['x_offset'], region['y_offset'], index,
prepped_frame_queue
))
# start a thread to store recent motion frames for processing
self.frame_tracker = FrameTracker(self.current_frame, self.frame_time,
self.frame_ready, self.frame_lock, self.recent_frames)
self.frame_tracker.start()
# start a thread to resize regions
self.region_prepper = RegionPrepper(self, self.frame_cache, self.resize_queue, prepped_frame_queue)
self.region_prepper.start()
# start a thread to store the highest scoring recent frames for monitored object types
self.best_frames = BestFrames(self)
self.best_frames = BestFrames(self.objects_parsed, self.recent_frames, self.detected_objects)
self.best_frames.start()
# start a thread to expire objects from the detected objects list
self.object_cleaner = ObjectCleaner(self)
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
self.object_cleaner.start()
# start a thread to refine regions when objects are clipped
self.dynamic_region_fps = EventsPerSecond()
self.region_refiner = RegionRefiner(self)
self.region_refiner.start()
self.dynamic_region_fps.start()
# start a thread to publish object scores
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
mqtt_publisher.start()
# create a watchdog thread for capture process
@@ -303,8 +226,6 @@ class Camera:
self.capture_thread = CameraCapture(self)
print("Starting a new capture thread...")
self.capture_thread.start()
self.fps.start()
self.skipped_region_tracker.start()
def start_ffmpeg(self):
ffmpeg_cmd = (['ffmpeg'] +
@@ -321,6 +242,9 @@ class Camera:
def start(self):
self.start_or_restart_capture()
# start the object detection prep threads
for detection_prep_thread in self.detection_prep_threads:
detection_prep_thread.start()
self.watchdog.start()
def join(self):
@@ -329,76 +253,88 @@ class Camera:
def get_capture_pid(self):
return self.ffmpeg_process.pid
def add_objects(self, objects):
if len(objects) == 0:
return
for obj in objects:
# find the matching region
region = self.regions[obj['region_id']]
# Compute some extra properties
obj.update({
'xmin': int((obj['box'][0] * region['size']) + region['x_offset']),
'ymin': int((obj['box'][1] * region['size']) + region['y_offset']),
'xmax': int((obj['box'][2] * region['size']) + region['x_offset']),
'ymax': int((obj['box'][3] * region['size']) + region['y_offset'])
})
# Compute the area
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
object_name = obj['name']
if object_name in region['objects']:
obj_settings = region['objects'][object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
continue
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', region['size']**2) < obj['area']:
continue
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
continue
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['ymax']), len(self.mask)-1)
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if self.mask[y_location][x_location] == [0]:
continue
self.detected_objects.append(obj)
with self.objects_parsed:
self.objects_parsed.notify_all()
def get_best(self, label):
return self.best_frames.best_frames.get(label)
def stats(self):
return {
'camera_fps': self.fps.eps(60),
'resize_queue': self.resize_queue.qsize(),
'frame_queue': self.frame_queue.qsize(),
'finished_frame_queue': self.finished_frame_queue.qsize(),
'refined_frame_queue': self.refined_frame_queue.qsize(),
'regions_in_process': self.regions_in_process,
'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
}
def frame_with_objects(self, frame_time, tracked_objects=None):
if not frame_time in self.frame_cache:
frame = np.zeros(self.frame_shape, np.uint8)
else:
frame = self.frame_cache[frame_time].copy()
detected_objects = self.detected_objects[frame_time].copy()
def get_current_frame_with_objects(self):
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# lock and make a copy of the current frame
with self.frame_lock:
frame = self.current_frame.copy()
frame_time = self.frame_time.value
# draw the bounding boxes on the screen
for obj in detected_objects:
label = "{}: {}% {}".format(obj['name'],int(obj['score']*100),int(obj['area']))
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], label)
for region in self.regions:
color = (255,255,255)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# draw the bounding boxes on the screen
if tracked_objects is None:
with self.object_tracker.tracked_objects_lock:
tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
for obj in detected_objects:
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
for id, obj in tracked_objects.items():
color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# print fps
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# convert to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
return jpg.tobytes()
def get_current_frame_with_objects(self):
frame_time = self.last_processed_frame
if frame_time == self.cached_frame_with_objects['frame_time']:
return self.cached_frame_with_objects['frame_bytes']
frame_bytes = self.frame_with_objects(frame_time)
self.cached_frame_with_objects = {
'frame_bytes': frame_bytes,
'frame_time': frame_time
}
return frame_bytes
return frame

View File

@@ -0,0 +1,50 @@
#!/bin/bash
set -e
CPU_ARCH=$(uname -m)
OS_VERSION=$(uname -v)
echo "CPU_ARCH ${CPU_ARCH}"
echo "OS_VERSION ${OS_VERSION}"
if [[ "${CPU_ARCH}" == "x86_64" ]]; then
echo "Recognized as Linux on x86_64."
LIBEDGETPU_SUFFIX=x86_64
HOST_GNU_TYPE=x86_64-linux-gnu
elif [[ "${CPU_ARCH}" == "armv7l" ]]; then
echo "Recognized as Linux on ARM32 platform."
LIBEDGETPU_SUFFIX=arm32
HOST_GNU_TYPE=arm-linux-gnueabihf
elif [[ "${CPU_ARCH}" == "aarch64" ]]; then
echo "Recognized as generic ARM64 platform."
LIBEDGETPU_SUFFIX=arm64
HOST_GNU_TYPE=aarch64-linux-gnu
fi
if [[ -z "${HOST_GNU_TYPE}" ]]; then
echo "Your platform is not supported."
exit 1
fi
echo "Using maximum operating frequency."
LIBEDGETPU_SRC="libedgetpu/libedgetpu_${LIBEDGETPU_SUFFIX}.so"
LIBEDGETPU_DST="/usr/lib/${HOST_GNU_TYPE}/libedgetpu.so.1.0"
# Runtime library.
echo "Installing Edge TPU runtime library [${LIBEDGETPU_DST}]..."
if [[ -f "${LIBEDGETPU_DST}" ]]; then
echo "File already exists. Replacing it..."
rm -f "${LIBEDGETPU_DST}"
fi
cp -p "${LIBEDGETPU_SRC}" "${LIBEDGETPU_DST}"
ldconfig
echo "Done."
# Python API.
WHEEL=$(ls edgetpu-*-py3-none-any.whl 2>/dev/null)
if [[ $? == 0 ]]; then
echo "Installing Edge TPU Python API..."
python3 -m pip install --no-deps "${WHEEL}"
echo "Done."
fi

View File

@@ -0,0 +1,5 @@
#!/bin/bash
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys D986B59D
echo "deb http://deb.odroid.in/5422-s bionic main" > /etc/apt/sources.list.d/odroid.list