forked from Github/frigate
Compare commits
6 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ab3e70b4db | ||
|
|
d90e408d50 | ||
|
|
6c87ce0879 | ||
|
|
b7b4e38f62 | ||
|
|
480175d70f | ||
|
|
bee99ca6ff |
17
Dockerfile
17
Dockerfile
@@ -53,14 +53,6 @@ RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
|
||||
libva-drm2 libva2 i965-va-driver vainfo \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install core packages
|
||||
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
|
||||
RUN pip install -U pip \
|
||||
numpy \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML
|
||||
|
||||
# Download & build OpenCV
|
||||
# TODO: use multistage build to reduce image size:
|
||||
# https://medium.com/@denismakogon/pain-and-gain-running-opencv-application-with-golang-and-docker-on-alpine-3-7-435aa11c7aec
|
||||
@@ -101,6 +93,15 @@ RUN ln -s /coco_labels.txt /label_map.pbtext
|
||||
RUN (apt-get autoremove -y; \
|
||||
apt-get autoclean -y)
|
||||
|
||||
# Install core packages
|
||||
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
|
||||
RUN pip install -U pip \
|
||||
numpy \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
COPY detect_objects.py .
|
||||
|
||||
12
README.md
12
README.md
@@ -55,20 +55,22 @@ Example docker-compose:
|
||||
|
||||
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
|
||||
|
||||
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best person snapshot at `http://localhost:5000/<camera_name>/best_person.jpg`
|
||||
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
|
||||
|
||||
## Integration with HomeAssistant
|
||||
```
|
||||
camera:
|
||||
- name: Camera Last Person
|
||||
platform: mqtt
|
||||
topic: frigate/<camera_name>/snapshot
|
||||
topic: frigate/<camera_name>/person/snapshot
|
||||
- name: Camera Last Car
|
||||
platform: mqtt
|
||||
topic: frigate/<camera_name>/car/snapshot
|
||||
|
||||
binary_sensor:
|
||||
- name: Camera Person
|
||||
platform: mqtt
|
||||
state_topic: "frigate/<camera_name>/objects"
|
||||
value_template: '{{ value_json.person }}'
|
||||
state_topic: "frigate/<camera_name>/person"
|
||||
device_class: motion
|
||||
availability_topic: "frigate/available"
|
||||
|
||||
@@ -89,7 +91,7 @@ automation:
|
||||
message: "A person was detected."
|
||||
data:
|
||||
photo:
|
||||
- url: http://<ip>:5000/<camera_name>/best_person.jpg
|
||||
- url: http://<ip>:5000/<camera_name>/person/best.jpg
|
||||
caption: A person was detected.
|
||||
```
|
||||
|
||||
|
||||
@@ -45,7 +45,19 @@ mqtt:
|
||||
# - rawvideo
|
||||
# - -pix_fmt
|
||||
# - rgb24
|
||||
|
||||
|
||||
####################
|
||||
# Global object configuration. Applies to all cameras and regions
|
||||
# unless overridden at the camera/region levels.
|
||||
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
|
||||
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
|
||||
####################
|
||||
objects:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
|
||||
cameras:
|
||||
back:
|
||||
ffmpeg:
|
||||
@@ -78,6 +90,12 @@ cameras:
|
||||
# 3 every 3rd frame, etc.
|
||||
################
|
||||
take_frame: 1
|
||||
|
||||
objects:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
|
||||
################
|
||||
# size: size of the region in pixels
|
||||
@@ -93,18 +111,18 @@ cameras:
|
||||
- size: 350
|
||||
x_offset: 0
|
||||
y_offset: 300
|
||||
min_person_area: 5000
|
||||
max_person_area: 100000
|
||||
threshold: 0.5
|
||||
objects:
|
||||
car:
|
||||
threshold: 0.2
|
||||
- size: 400
|
||||
x_offset: 350
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
max_person_area: 100000
|
||||
threshold: 0.5
|
||||
objects:
|
||||
person:
|
||||
min_area: 2000
|
||||
- size: 400
|
||||
x_offset: 750
|
||||
y_offset: 250
|
||||
min_person_area: 2000
|
||||
max_person_area: 100000
|
||||
threshold: 0.5
|
||||
objects:
|
||||
person:
|
||||
min_area: 2000
|
||||
|
||||
@@ -42,6 +42,8 @@ FFMPEG_DEFAULT_CONFIG = {
|
||||
'-pix_fmt', 'rgb24'])
|
||||
}
|
||||
|
||||
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
|
||||
|
||||
WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||
|
||||
@@ -74,7 +76,7 @@ def main():
|
||||
|
||||
cameras = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
cameras,
|
||||
@@ -94,13 +96,13 @@ def main():
|
||||
# return a healh
|
||||
return "Frigate is running. Alive and healthy!"
|
||||
|
||||
@app.route('/<camera_name>/best_person.jpg')
|
||||
def best_person(camera_name):
|
||||
@app.route('/<camera_name>/<label>/best.jpg')
|
||||
def best(camera_name, label):
|
||||
if camera_name in cameras:
|
||||
best_person_frame = cameras[camera_name].get_best_person()
|
||||
if best_person_frame is None:
|
||||
best_person_frame = np.zeros((720,1280,3), np.uint8)
|
||||
ret, jpg = cv2.imencode('.jpg', best_person_frame)
|
||||
best_frame = cameras[camera_name].get_best(label)
|
||||
if best_frame is None:
|
||||
best_frame = np.zeros((720,1280,3), np.uint8)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
@@ -118,13 +120,11 @@ def main():
|
||||
|
||||
def imagestream(camera_name):
|
||||
while True:
|
||||
# max out at 5 FPS
|
||||
time.sleep(0.2)
|
||||
# max out at 1 FPS
|
||||
time.sleep(1)
|
||||
frame = cameras[camera_name].get_current_frame_with_objects()
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
|
||||
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
|
||||
@@ -1,41 +1,47 @@
|
||||
import json
|
||||
import cv2
|
||||
import threading
|
||||
from collections import Counter, defaultdict
|
||||
|
||||
class MqttObjectPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_person_frame):
|
||||
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
|
||||
threading.Thread.__init__(self)
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.best_person_frame = best_person_frame
|
||||
self.best_frames = best_frames
|
||||
|
||||
def run(self):
|
||||
last_sent_payload = ""
|
||||
current_object_status = defaultdict(lambda: 'OFF')
|
||||
while True:
|
||||
|
||||
# initialize the payload
|
||||
payload = {}
|
||||
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
|
||||
# add all the person scores in detected objects
|
||||
# make a copy of detected objects
|
||||
detected_objects = self._detected_objects.copy()
|
||||
person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])
|
||||
# if the person score is more than 100, set person to ON
|
||||
payload['person'] = 'ON' if int(person_score*100) > 100 else 'OFF'
|
||||
|
||||
# send message for objects if different
|
||||
new_payload = json.dumps(payload, sort_keys=True)
|
||||
if new_payload != last_sent_payload:
|
||||
last_sent_payload = new_payload
|
||||
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
|
||||
# send the snapshot over mqtt as well
|
||||
if not self.best_person_frame.best_frame is None:
|
||||
ret, jpg = cv2.imencode('.jpg', self.best_person_frame.best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/snapshot', jpg_bytes, retain=True)
|
||||
# total up all scores by object type
|
||||
obj_counter = Counter()
|
||||
for obj in detected_objects:
|
||||
obj_counter[obj['name']] += obj['score']
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, total_score in obj_counter.items():
|
||||
new_status = 'ON' if int(total_score*100) > 100 else 'OFF'
|
||||
if new_status != current_object_status[obj_name]:
|
||||
current_object_status[obj_name] = new_status
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
|
||||
# send the snapshot over mqtt if we have it as well
|
||||
if obj_name in self.best_frames.best_frames:
|
||||
ret, jpg = cv2.imencode('.jpg', self.best_frames.best_frames[obj_name])
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
|
||||
|
||||
# expire any objects that are ON and no longer detected
|
||||
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
current_object_status[obj_name] = 'OFF'
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
|
||||
@@ -4,22 +4,7 @@ import cv2
|
||||
import threading
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
from . util import tonumpyarray
|
||||
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
# List of the strings that is used to add correct label for each box.
|
||||
PATH_TO_LABELS = '/label_map.pbtext'
|
||||
|
||||
# Function to read labels from text files.
|
||||
def ReadLabelFile(file_path):
|
||||
with open(file_path, 'r') as f:
|
||||
lines = f.readlines()
|
||||
ret = {}
|
||||
for line in lines:
|
||||
pair = line.strip().split(maxsplit=1)
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
from . util import tonumpyarray, LABELS, PATH_TO_CKPT
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, cameras, prepped_frame_queue):
|
||||
@@ -30,7 +15,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
self.labels = ReadLabelFile(PATH_TO_LABELS)
|
||||
self.labels = LABELS
|
||||
|
||||
def run(self):
|
||||
# process queue...
|
||||
@@ -38,21 +23,18 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=frame['region_threshold'], top_k=3)
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
|
||||
# print(self.engine.get_inference_time())
|
||||
|
||||
# parse and pass detected objects back to the camera
|
||||
parsed_objects = []
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
parsed_objects.append({
|
||||
'region_id': frame['region_id'],
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
|
||||
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
|
||||
'box': obj.bounding_box.flatten().tolist()
|
||||
})
|
||||
self.cameras[frame['camera_name']].add_objects(parsed_objects)
|
||||
|
||||
@@ -61,7 +43,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
class FramePrepper(threading.Thread):
|
||||
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
||||
frame_lock,
|
||||
region_size, region_x_offset, region_y_offset, region_threshold,
|
||||
region_size, region_x_offset, region_y_offset, region_id,
|
||||
prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
@@ -73,7 +55,7 @@ class FramePrepper(threading.Thread):
|
||||
self.region_size = region_size
|
||||
self.region_x_offset = region_x_offset
|
||||
self.region_y_offset = region_y_offset
|
||||
self.region_threshold = region_threshold
|
||||
self.region_id = region_id
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
@@ -104,7 +86,7 @@ class FramePrepper(threading.Thread):
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
'region_threshold': self.region_threshold,
|
||||
'region_id': self.region_id,
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
|
||||
@@ -2,6 +2,7 @@ import time
|
||||
import datetime
|
||||
import threading
|
||||
import cv2
|
||||
import numpy as np
|
||||
from . util import draw_box_with_label
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
@@ -35,16 +36,15 @@ class ObjectCleaner(threading.Thread):
|
||||
self._objects_parsed.notify_all()
|
||||
|
||||
|
||||
# Maintains the frame and person with the highest score from the most recent
|
||||
# motion event
|
||||
class BestPersonFrame(threading.Thread):
|
||||
# Maintains the frame and object with the highest score
|
||||
class BestFrames(threading.Thread):
|
||||
def __init__(self, objects_parsed, recent_frames, detected_objects):
|
||||
threading.Thread.__init__(self)
|
||||
self.objects_parsed = objects_parsed
|
||||
self.recent_frames = recent_frames
|
||||
self.detected_objects = detected_objects
|
||||
self.best_person = None
|
||||
self.best_frame = None
|
||||
self.best_objects = {}
|
||||
self.best_frames = {}
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
@@ -55,38 +55,29 @@ class BestPersonFrame(threading.Thread):
|
||||
|
||||
# make a copy of detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
|
||||
|
||||
# get the highest scoring person
|
||||
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
|
||||
|
||||
# if there isnt a person, continue
|
||||
if new_best_person is None:
|
||||
continue
|
||||
|
||||
# if there is no current best_person
|
||||
if self.best_person is None:
|
||||
self.best_person = new_best_person
|
||||
# if there is already a best_person
|
||||
else:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the new best person is a higher score than the current best person
|
||||
# or the current person is more than 1 minute old, use the new best person
|
||||
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
|
||||
self.best_person = new_best_person
|
||||
for obj in detected_objects:
|
||||
if obj['name'] in self.best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is more than 1 minute old, use the new object
|
||||
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
|
||||
self.best_objects[obj['name']] = obj
|
||||
else:
|
||||
self.best_objects[obj['name']] = obj
|
||||
|
||||
# make a copy of the recent frames
|
||||
recent_frames = self.recent_frames.copy()
|
||||
|
||||
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
|
||||
best_frame = recent_frames[self.best_person['frame_time']]
|
||||
|
||||
label = "{}: {}% {}".format(self.best_person['name'],int(self.best_person['score']*100),int(self.best_person['area']))
|
||||
draw_box_with_label(best_frame, self.best_person['xmin'], self.best_person['ymin'],
|
||||
self.best_person['xmax'], self.best_person['ymax'], label)
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(self.best_person['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
for name, obj in self.best_objects.items():
|
||||
if obj['frame_time'] in recent_frames:
|
||||
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
|
||||
|
||||
draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
|
||||
obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
self.best_frames[name] = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
@@ -1,19 +1,31 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Function to read labels from text files.
|
||||
def ReadLabelFile(file_path):
|
||||
with open(file_path, 'r') as f:
|
||||
lines = f.readlines()
|
||||
ret = {}
|
||||
for line in lines:
|
||||
pair = line.strip().split(maxsplit=1)
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
def tonumpyarray(mp_arr):
|
||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label):
|
||||
color = (255,0,0)
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, score, area):
|
||||
color = COLOR_MAP[label]
|
||||
display_text = "{}: {}% {}".format(label,int(score*100),int(area))
|
||||
cv2.rectangle(frame, (x_min, y_min),
|
||||
(x_max, y_max),
|
||||
color, 2)
|
||||
font_scale = 0.5
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
# get the width and height of the text box
|
||||
size = cv2.getTextSize(label, font, fontScale=font_scale, thickness=2)
|
||||
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
|
||||
text_width = size[0][0]
|
||||
text_height = size[0][1]
|
||||
line_height = text_height + size[1]
|
||||
@@ -23,4 +35,16 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label):
|
||||
# make the coords of the box with a small padding of two pixels
|
||||
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
|
||||
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
|
||||
cv2.putText(frame, label, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
# List of the strings that is used to add correct label for each box.
|
||||
PATH_TO_LABELS = '/label_map.pbtext'
|
||||
|
||||
LABELS = ReadLabelFile(PATH_TO_LABELS)
|
||||
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
||||
|
||||
COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
123
frigate/video.py
123
frigate/video.py
@@ -7,9 +7,10 @@ import ctypes
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
from . util import tonumpyarray, draw_box_with_label
|
||||
from . object_detection import FramePrepper
|
||||
from . objects import ObjectCleaner, BestPersonFrame
|
||||
from . objects import ObjectCleaner, BestFrames
|
||||
from . mqtt import MqttObjectPublisher
|
||||
|
||||
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
||||
@@ -70,8 +71,8 @@ class CameraWatchdog(threading.Thread):
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
|
||||
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 10:
|
||||
print("last frame is more than 10 seconds old, restarting camera capture...")
|
||||
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
|
||||
print("last frame is more than 5 minutes old, restarting camera capture...")
|
||||
self.camera.start_or_restart_capture()
|
||||
time.sleep(5)
|
||||
|
||||
@@ -111,7 +112,7 @@ class CameraCapture(threading.Thread):
|
||||
self.camera.frame_ready.notify_all()
|
||||
|
||||
class Camera:
|
||||
def __init__(self, name, ffmpeg_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.detected_objects = []
|
||||
@@ -124,6 +125,8 @@ class Camera:
|
||||
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
|
||||
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
|
||||
|
||||
camera_objects_config = config.get('objects', {})
|
||||
|
||||
self.take_frame = self.config.get('take_frame', 1)
|
||||
self.regions = self.config['regions']
|
||||
self.frame_shape = get_frame_shape(self.ffmpeg_input)
|
||||
@@ -141,26 +144,35 @@ class Camera:
|
||||
self.frame_ready = mp.Condition()
|
||||
# Condition for notifying that objects were parsed
|
||||
self.objects_parsed = mp.Condition()
|
||||
|
||||
# initialize the frame cache
|
||||
self.cached_frame_with_objects = {
|
||||
'frame_bytes': [],
|
||||
'frame_time': 0
|
||||
}
|
||||
|
||||
self.ffmpeg_process = None
|
||||
self.capture_thread = None
|
||||
|
||||
# for each region, create a separate thread to resize the region and prep for detection
|
||||
self.detection_prep_threads = []
|
||||
for region in self.config['regions']:
|
||||
# set a default threshold of 0.5 if not defined
|
||||
if not 'threshold' in region:
|
||||
region['threshold'] = 0.5
|
||||
if not isinstance(region['threshold'], float):
|
||||
print('Threshold is not a float. Setting to 0.5 default.')
|
||||
region['threshold'] = 0.5
|
||||
for index, region in enumerate(self.config['regions']):
|
||||
region_objects = region.get('objects', {})
|
||||
# build objects config for region
|
||||
objects_with_config = set().union(global_objects_config.keys(), camera_objects_config.keys(), region_objects.keys())
|
||||
merged_objects_config = defaultdict(lambda: {})
|
||||
for obj in objects_with_config:
|
||||
merged_objects_config[obj] = {**global_objects_config.get(obj,{}), **camera_objects_config.get(obj, {}), **region_objects.get(obj, {})}
|
||||
|
||||
region['objects'] = merged_objects_config
|
||||
|
||||
self.detection_prep_threads.append(FramePrepper(
|
||||
self.name,
|
||||
self.current_frame,
|
||||
self.frame_time,
|
||||
self.frame_ready,
|
||||
self.frame_lock,
|
||||
region['size'], region['x_offset'], region['y_offset'], region['threshold'],
|
||||
region['size'], region['x_offset'], region['y_offset'], index,
|
||||
prepped_frame_queue
|
||||
))
|
||||
|
||||
@@ -169,22 +181,22 @@ class Camera:
|
||||
self.frame_ready, self.frame_lock, self.recent_frames)
|
||||
self.frame_tracker.start()
|
||||
|
||||
# start a thread to store the highest scoring recent person frame
|
||||
self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
|
||||
self.best_person_frame.start()
|
||||
# start a thread to store the highest scoring recent frames for monitored object types
|
||||
self.best_frames = BestFrames(self.objects_parsed, self.recent_frames, self.detected_objects)
|
||||
self.best_frames.start()
|
||||
|
||||
# start a thread to expire objects from the detected objects list
|
||||
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
|
||||
self.object_cleaner.start()
|
||||
|
||||
# start a thread to publish object scores (currently only person)
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_person_frame)
|
||||
# start a thread to publish object scores
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# create a watchdog thread for capture process
|
||||
self.watchdog = CameraWatchdog(self)
|
||||
|
||||
# load in the mask for person detection
|
||||
# load in the mask for object detection
|
||||
if 'mask' in self.config:
|
||||
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
@@ -252,38 +264,45 @@ class Camera:
|
||||
return
|
||||
|
||||
for obj in objects:
|
||||
# Store object area to use in bounding box labels
|
||||
# find the matching region
|
||||
region = self.regions[obj['region_id']]
|
||||
|
||||
# Compute some extra properties
|
||||
obj.update({
|
||||
'xmin': int((obj['box'][0] * region['size']) + region['x_offset']),
|
||||
'ymin': int((obj['box'][1] * region['size']) + region['y_offset']),
|
||||
'xmax': int((obj['box'][2] * region['size']) + region['x_offset']),
|
||||
'ymax': int((obj['box'][3] * region['size']) + region['y_offset'])
|
||||
})
|
||||
|
||||
# Compute the area
|
||||
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
|
||||
if obj['name'] == 'person':
|
||||
# find the matching region
|
||||
region = None
|
||||
for r in self.regions:
|
||||
if (
|
||||
obj['xmin'] >= r['x_offset'] and
|
||||
obj['ymin'] >= r['y_offset'] and
|
||||
obj['xmax'] <= r['x_offset']+r['size'] and
|
||||
obj['ymax'] <= r['y_offset']+r['size']
|
||||
):
|
||||
region = r
|
||||
break
|
||||
|
||||
# if the min person area is larger than the
|
||||
# detected person, don't add it to detected objects
|
||||
if region and 'min_person_area' in region and region['min_person_area'] > obj['area']:
|
||||
object_name = obj['name']
|
||||
|
||||
if object_name in region['objects']:
|
||||
obj_settings = region['objects'][object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj['area']:
|
||||
continue
|
||||
|
||||
# if the detected person is larger than the
|
||||
# max person area, don't add it to detected objects
|
||||
if region and 'max_person_area' in region and region['max_person_area'] < obj['area']:
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', region['size']**2) < obj['area']:
|
||||
continue
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['score']:
|
||||
continue
|
||||
|
||||
# compute the coordinates of the person and make sure
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj['ymax']), len(self.mask)-1)
|
||||
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
|
||||
|
||||
# if the person is in a masked location, continue
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if self.mask[y_location][x_location] == [0]:
|
||||
continue
|
||||
|
||||
@@ -291,9 +310,9 @@ class Camera:
|
||||
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.notify_all()
|
||||
|
||||
def get_best_person(self):
|
||||
return self.best_person_frame.best_frame
|
||||
|
||||
def get_best(self, label):
|
||||
return self.best_frames.best_frames.get(label)
|
||||
|
||||
def get_current_frame_with_objects(self):
|
||||
# make a copy of the current detected objects
|
||||
@@ -302,11 +321,13 @@ class Camera:
|
||||
with self.frame_lock:
|
||||
frame = self.current_frame.copy()
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
if frame_time == self.cached_frame_with_objects['frame_time']:
|
||||
return self.cached_frame_with_objects['frame_bytes']
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in detected_objects:
|
||||
label = "{}: {}% {}".format(obj['name'],int(obj['score']*100),int(obj['area']))
|
||||
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], label)
|
||||
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
@@ -321,7 +342,17 @@ class Camera:
|
||||
# convert to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
return frame
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
|
||||
frame_bytes = jpg.tobytes()
|
||||
|
||||
self.cached_frame_with_objects = {
|
||||
'frame_bytes': frame_bytes,
|
||||
'frame_time': frame_time
|
||||
}
|
||||
|
||||
return frame_bytes
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user