Compare commits

..

3 Commits

Author SHA1 Message Date
Josh Hawkins
b0c4c77cfd update docs 2024-10-21 09:36:16 -05:00
Josh Hawkins
059475e6bb add try/except around ollama initialization 2024-10-21 09:31:34 -05:00
Josh Hawkins
8002e59031 disable mem arena in options for cpu only 2024-10-21 09:31:11 -05:00
307 changed files with 6077 additions and 16435 deletions

View File

@@ -2,7 +2,6 @@ aarch
absdiff absdiff
airockchip airockchip
Alloc Alloc
alpr
Amcrest Amcrest
amdgpu amdgpu
analyzeduration analyzeduration
@@ -13,7 +12,6 @@ argmax
argmin argmin
argpartition argpartition
ascontiguousarray ascontiguousarray
astype
authelia authelia
authentik authentik
autodetected autodetected
@@ -44,7 +42,6 @@ codeproject
colormap colormap
colorspace colorspace
comms comms
coro
ctypeslib ctypeslib
CUDA CUDA
Cuvid Cuvid
@@ -62,8 +59,6 @@ dsize
dtype dtype
ECONNRESET ECONNRESET
edgetpu edgetpu
facenet
fastapi
faststart faststart
fflags fflags
ffprobe ffprobe
@@ -116,8 +111,6 @@ itemsize
Jellyfin Jellyfin
jetson jetson
jetsons jetsons
jina
jinaai
joserfc joserfc
jsmpeg jsmpeg
jsonify jsonify
@@ -191,7 +184,6 @@ openai
opencv opencv
openvino openvino
OWASP OWASP
paddleocr
paho paho
passwordless passwordless
popleft popleft
@@ -201,7 +193,6 @@ poweroff
preexec preexec
probesize probesize
protobuf protobuf
pstate
psutil psutil
pubkey pubkey
putenv putenv
@@ -246,7 +237,6 @@ sleeptime
SNDMORE SNDMORE
socs socs
sqliteq sqliteq
sqlitevecq
ssdlite ssdlite
statm statm
stimeout stimeout
@@ -281,11 +271,9 @@ unraid
unreviewed unreviewed
userdata userdata
usermod usermod
uvicorn
vaapi vaapi
vainfo vainfo
variations variations
vbios
vconcat vconcat
vitb vitb
vstream vstream

View File

@@ -3,12 +3,10 @@
set -euxo pipefail set -euxo pipefail
# Cleanup the old github host key # Cleanup the old github host key
if [[ -f ~/.ssh/known_hosts ]]; then sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts
# Add new github host key # Add new github host key
sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \
curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \ sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
fi
# Frigate normal container runs as root, so it have permission to create # Frigate normal container runs as root, so it have permission to create
# the folders. But the devcontainer runs as the host user, so we need to # the folders. But the devcontainer runs as the host user, so we need to

View File

@@ -13,7 +13,6 @@
- [ ] New feature - [ ] New feature
- [ ] Breaking change (fix/feature causing existing functionality to break) - [ ] Breaking change (fix/feature causing existing functionality to break)
- [ ] Code quality improvements to existing code - [ ] Code quality improvements to existing code
- [ ] Documentation Update
## Additional information ## Additional information

View File

@@ -6,8 +6,6 @@ on:
branches: branches:
- dev - dev
- master - master
paths-ignore:
- "docs/**"
# only run the latest commit to avoid cache overwrites # only run the latest commit to avoid cache overwrites
concurrency: concurrency:
@@ -24,8 +22,6 @@ jobs:
steps: steps:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx - name: Set up QEMU and Buildx
id: setup id: setup
uses: ./.github/actions/setup uses: ./.github/actions/setup
@@ -47,8 +43,6 @@ jobs:
steps: steps:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx - name: Set up QEMU and Buildx
id: setup id: setup
uses: ./.github/actions/setup uses: ./.github/actions/setup
@@ -75,14 +69,21 @@ jobs:
rpi.tags=${{ steps.setup.outputs.image-name }}-rpi rpi.tags=${{ steps.setup.outputs.image-name }}-rpi
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64 *.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64,mode=max *.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64,mode=max
- name: Build and push Rockchip build
uses: docker/bake-action@v3
with:
push: true
targets: rk
files: docker/rockchip/rk.hcl
set: |
rk.tags=${{ steps.setup.outputs.image-name }}-rk
*.cache-from=type=gha
jetson_jp4_build: jetson_jp4_build:
runs-on: ubuntu-latest runs-on: ubuntu-latest
name: Jetson Jetpack 4 name: Jetson Jetpack 4
steps: steps:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx - name: Set up QEMU and Buildx
id: setup id: setup
uses: ./.github/actions/setup uses: ./.github/actions/setup
@@ -109,8 +110,6 @@ jobs:
steps: steps:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx - name: Set up QEMU and Buildx
id: setup id: setup
uses: ./.github/actions/setup uses: ./.github/actions/setup
@@ -139,8 +138,6 @@ jobs:
steps: steps:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx - name: Set up QEMU and Buildx
id: setup id: setup
uses: ./.github/actions/setup uses: ./.github/actions/setup
@@ -166,8 +163,6 @@ jobs:
steps: steps:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx - name: Set up QEMU and Buildx
id: setup id: setup
uses: ./.github/actions/setup uses: ./.github/actions/setup
@@ -191,8 +186,6 @@ jobs:
steps: steps:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up QEMU and Buildx - name: Set up QEMU and Buildx
id: setup id: setup
uses: ./.github/actions/setup uses: ./.github/actions/setup

View File

@@ -0,0 +1,24 @@
name: dependabot-auto-merge
on: pull_request
permissions:
contents: write
jobs:
dependabot-auto-merge:
runs-on: ubuntu-latest
if: github.actor == 'dependabot[bot]'
steps:
- name: Get Dependabot metadata
id: metadata
uses: dependabot/fetch-metadata@v2
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Enable auto-merge for Dependabot PRs
if: steps.metadata.outputs.dependency-type == 'direct:development' && (steps.metadata.outputs.update-type == 'version-update:semver-minor' || steps.metadata.outputs.update-type == 'version-update:semver-patch')
run: |
gh pr review --approve "$PR_URL"
gh pr merge --auto --squash "$PR_URL"
env:
PR_URL: ${{ github.event.pull_request.html_url }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -1,12 +1,9 @@
name: On pull request name: On pull request
on: on: pull_request
pull_request:
paths-ignore:
- "docs/**"
env: env:
DEFAULT_PYTHON: 3.11 DEFAULT_PYTHON: 3.9
jobs: jobs:
build_devcontainer: build_devcontainer:
@@ -19,8 +16,6 @@ jobs:
DOCKER_BUILDKIT: "1" DOCKER_BUILDKIT: "1"
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master - uses: actions/setup-node@master
with: with:
node-version: 16.x node-version: 16.x
@@ -40,8 +35,6 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master - uses: actions/setup-node@master
with: with:
node-version: 16.x node-version: 16.x
@@ -56,8 +49,6 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master - uses: actions/setup-node@master
with: with:
node-version: 20.x node-version: 20.x
@@ -73,10 +64,8 @@ jobs:
steps: steps:
- name: Check out the repository - name: Check out the repository
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up Python ${{ env.DEFAULT_PYTHON }} - name: Set up Python ${{ env.DEFAULT_PYTHON }}
uses: actions/setup-python@v5.3.0 uses: actions/setup-python@v5.1.0
with: with:
python-version: ${{ env.DEFAULT_PYTHON }} python-version: ${{ env.DEFAULT_PYTHON }}
- name: Install requirements - name: Install requirements
@@ -96,8 +85,6 @@ jobs:
steps: steps:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-node@master - uses: actions/setup-node@master
with: with:
node-version: 16.x node-version: 16.x

View File

@@ -11,8 +11,6 @@ jobs:
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with:
persist-credentials: false
- id: lowercaseRepo - id: lowercaseRepo
uses: ASzc/change-string-case-action@v6 uses: ASzc/change-string-case-action@v6
with: with:
@@ -24,13 +22,10 @@ jobs:
username: ${{ github.actor }} username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }} password: ${{ secrets.GITHUB_TOKEN }}
- name: Create tag variables - name: Create tag variables
env:
TAG: ${{ github.ref_name }}
LOWERCASE_REPO: ${{ steps.lowercaseRepo.outputs.lowercase }}
run: | run: |
BUILD_TYPE=$([[ "${TAG}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta") BUILD_TYPE=$([[ "${{ github.ref_name }}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
echo "BUILD_TYPE=${BUILD_TYPE}" >> $GITHUB_ENV echo "BUILD_TYPE=${BUILD_TYPE}" >> $GITHUB_ENV
echo "BASE=ghcr.io/${LOWERCASE_REPO}" >> $GITHUB_ENV echo "BASE=ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}" >> $GITHUB_ENV
echo "BUILD_TAG=${GITHUB_SHA::7}" >> $GITHUB_ENV echo "BUILD_TAG=${GITHUB_SHA::7}" >> $GITHUB_ENV
echo "CLEAN_VERSION=$(echo ${GITHUB_REF##*/} | tr '[:upper:]' '[:lower:]' | sed 's/^[v]//')" >> $GITHUB_ENV echo "CLEAN_VERSION=$(echo ${GITHUB_REF##*/} | tr '[:upper:]' '[:lower:]' | sed 's/^[v]//')" >> $GITHUB_ENV
- name: Tag and push the main image - name: Tag and push the main image
@@ -39,14 +34,14 @@ jobs:
STABLE_TAG=${BASE}:stable STABLE_TAG=${BASE}:stable
PULL_TAG=${BASE}:${BUILD_TAG} PULL_TAG=${BASE}:${BUILD_TAG}
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${VERSION_TAG} docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${VERSION_TAG}
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${VERSION_TAG}-${variant} docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${VERSION_TAG}-${variant}
done done
# stable tag # stable tag
if [[ "${BUILD_TYPE}" == "stable" ]]; then if [[ "${BUILD_TYPE}" == "stable" ]]; then
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${STABLE_TAG} docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${STABLE_TAG}
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${STABLE_TAG}-${variant} docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${STABLE_TAG}-${variant}
done done
fi fi

View File

@@ -23,9 +23,7 @@ jobs:
exempt-pr-labels: "pinned,security,dependencies" exempt-pr-labels: "pinned,security,dependencies"
operations-per-run: 120 operations-per-run: 120
- name: Print outputs - name: Print outputs
env: run: echo ${{ join(steps.stale.outputs.*, ',') }}
STALE_OUTPUT: ${{ join(steps.stale.outputs.*, ',') }}
run: echo "$STALE_OUTPUT"
# clean_ghcr: # clean_ghcr:
# name: Delete outdated dev container images # name: Delete outdated dev container images
@@ -40,3 +38,4 @@ jobs:
# account-type: personal # account-type: personal
# token: ${{ secrets.GITHUB_TOKEN }} # token: ${{ secrets.GITHUB_TOKEN }}
# token-type: github-token # token-type: github-token

View File

@@ -1,7 +1,7 @@
default_target: local default_target: local
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1) COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
VERSION = 0.16.0 VERSION = 0.15.0
IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate
GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD) GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD)
BOARDS= #Initialized empty BOARDS= #Initialized empty

View File

@@ -61,7 +61,7 @@ def start(id, num_detections, detection_queue, event):
object_detector.cleanup() object_detector.cleanup()
print(f"{id} - Processed for {duration:.2f} seconds.") print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - FPS: {object_detector.fps.eps():.2f}") print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
print(f"{id} - Average frame processing time: {mean(frame_times) * 1000:.2f}ms") print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
###### ######

View File

@@ -23,7 +23,7 @@ services:
# count: 1 # count: 1
# capabilities: [gpu] # capabilities: [gpu]
environment: environment:
YOLO_MODELS: "" YOLO_MODELS: yolov7-320
devices: devices:
- /dev/bus/usb:/dev/bus/usb - /dev/bus/usb:/dev/bus/usb
# - /dev/dri:/dev/dri # for intel hwaccel, needs to be updated for your hardware # - /dev/dri:/dev/dri # for intel hwaccel, needs to be updated for your hardware

View File

@@ -5,7 +5,6 @@ ARG DEBIAN_FRONTEND=noninteractive
# Build Python wheels # Build Python wheels
FROM wheels AS h8l-wheels FROM wheels AS h8l-wheels
RUN python3 -m pip config set global.break-system-packages true
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
COPY docker/hailo8l/requirements-wheels-h8l.txt /requirements-wheels-h8l.txt COPY docker/hailo8l/requirements-wheels-h8l.txt /requirements-wheels-h8l.txt
@@ -17,26 +16,89 @@ RUN mkdir /h8l-wheels
# Build the wheels # Build the wheels
RUN pip3 wheel --wheel-dir=/h8l-wheels -c /requirements-wheels.txt -r /requirements-wheels-h8l.txt RUN pip3 wheel --wheel-dir=/h8l-wheels -c /requirements-wheels.txt -r /requirements-wheels-h8l.txt
FROM wget AS hailort # Build HailoRT and create wheel
FROM wheels AS build-hailort
ARG TARGETARCH ARG TARGETARCH
RUN --mount=type=bind,source=docker/hailo8l/install_hailort.sh,target=/deps/install_hailort.sh \
/deps/install_hailort.sh SHELL ["/bin/bash", "-c"]
# Install necessary APT packages
RUN apt-get -qq update \
&& apt-get -qq install -y \
apt-transport-https \
gnupg \
wget \
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
&& apt-get -qq update \
&& apt-get -qq install -y \
python3.9 \
python3.9-dev \
build-essential cmake git \
&& rm -rf /var/lib/apt/lists/*
# Extract Python version and set environment variables
RUN PYTHON_VERSION=$(python3 --version 2>&1 | awk '{print $2}' | cut -d. -f1,2) && \
PYTHON_VERSION_NO_DOT=$(echo $PYTHON_VERSION | sed 's/\.//') && \
echo "PYTHON_VERSION=$PYTHON_VERSION" > /etc/environment && \
echo "PYTHON_VERSION_NO_DOT=$PYTHON_VERSION_NO_DOT" >> /etc/environment
# Clone and build HailoRT
RUN . /etc/environment && \
git clone https://github.com/hailo-ai/hailort.git /opt/hailort && \
cd /opt/hailort && \
git checkout v4.18.0 && \
cmake -H. -Bbuild -DCMAKE_BUILD_TYPE=Release -DHAILO_BUILD_PYBIND=1 -DPYBIND11_PYTHON_VERSION=${PYTHON_VERSION} && \
cmake --build build --config release --target libhailort && \
cmake --build build --config release --target _pyhailort && \
cp build/hailort/libhailort/bindings/python/src/_pyhailort.cpython-${PYTHON_VERSION_NO_DOT}-$(if [ $TARGETARCH == "amd64" ]; then echo 'x86_64'; else echo 'aarch64'; fi )-linux-gnu.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/ && \
cp build/hailort/libhailort/src/libhailort.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
RUN ls -ahl /opt/hailort/build/hailort/libhailort/src/
RUN ls -ahl /opt/hailort/hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
# Remove the existing setup.py if it exists in the target directory
RUN rm -f /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
# Copy generate_wheel_conf.py and setup.py
COPY docker/hailo8l/pyhailort_build_scripts/generate_wheel_conf.py /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
COPY docker/hailo8l/pyhailort_build_scripts/setup.py /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
# Run the generate_wheel_conf.py script
RUN python3 /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
# Create a wheel file using pip3 wheel
RUN cd /opt/hailort/hailort/libhailort/bindings/python/platform && \
python3 setup.py bdist_wheel --dist-dir /hailo-wheels
# Use deps as the base image # Use deps as the base image
FROM deps AS h8l-frigate FROM deps AS h8l-frigate
# Copy the wheels from the wheels stage # Copy the wheels from the wheels stage
COPY --from=h8l-wheels /h8l-wheels /deps/h8l-wheels COPY --from=h8l-wheels /h8l-wheels /deps/h8l-wheels
COPY --from=hailort /hailo-wheels /deps/hailo-wheels COPY --from=build-hailort /hailo-wheels /deps/hailo-wheels
COPY --from=hailort /rootfs/ / COPY --from=build-hailort /etc/environment /etc/environment
RUN CC=$(python3 -c "import sysconfig; import shlex; cc = sysconfig.get_config_var('CC'); cc_cmd = shlex.split(cc)[0]; print(cc_cmd[:-4] if cc_cmd.endswith('-gcc') else cc_cmd)") && \
echo "CC=$CC" >> /etc/environment
# Install the wheels # Install the wheels
RUN python3 -m pip config set global.break-system-packages true
RUN pip3 install -U /deps/h8l-wheels/*.whl RUN pip3 install -U /deps/h8l-wheels/*.whl
RUN pip3 install -U /deps/hailo-wheels/*.whl RUN pip3 install -U /deps/hailo-wheels/*.whl
RUN . /etc/environment && \
mv /usr/local/lib/python${PYTHON_VERSION}/dist-packages/hailo_platform/pyhailort/libhailort.so /usr/lib/${CC} && \
cd /usr/lib/${CC}/ && \
ln -s libhailort.so libhailort.so.4.18.0
# Copy base files from the rootfs stage # Copy base files from the rootfs stage
COPY --from=rootfs / / COPY --from=rootfs / /
# Set environment variables for Hailo SDK
ENV PATH="/opt/hailort/bin:${PATH}"
ENV LD_LIBRARY_PATH="/usr/lib/$(if [ $TARGETARCH == "amd64" ]; then echo 'x86_64'; else echo 'aarch64'; fi )-linux-gnu:${LD_LIBRARY_PATH}"
# Set workdir # Set workdir
WORKDIR /opt/frigate/ WORKDIR /opt/frigate/

View File

@@ -1,9 +1,3 @@
target wget {
dockerfile = "docker/main/Dockerfile"
platforms = ["linux/arm64","linux/amd64"]
target = "wget"
}
target wheels { target wheels {
dockerfile = "docker/main/Dockerfile" dockerfile = "docker/main/Dockerfile"
platforms = ["linux/arm64","linux/amd64"] platforms = ["linux/arm64","linux/amd64"]
@@ -25,7 +19,6 @@ target rootfs {
target h8l { target h8l {
dockerfile = "docker/hailo8l/Dockerfile" dockerfile = "docker/hailo8l/Dockerfile"
contexts = { contexts = {
wget = "target:wget"
wheels = "target:wheels" wheels = "target:wheels"
deps = "target:deps" deps = "target:deps"
rootfs = "target:rootfs" rootfs = "target:rootfs"

View File

@@ -1,19 +0,0 @@
#!/bin/bash
set -euxo pipefail
hailo_version="4.20.0"
if [[ "${TARGETARCH}" == "amd64" ]]; then
arch="x86_64"
elif [[ "${TARGETARCH}" == "arm64" ]]; then
arch="aarch64"
fi
wget -qO- "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${TARGETARCH}.tar.gz" |
tar -C / -xzf -
mkdir -p /hailo-wheels
wget -P /hailo-wheels/ "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${hailo_version}-cp311-cp311-linux_${arch}.whl"

View File

@@ -0,0 +1,67 @@
import json
import os
import platform
import sys
import sysconfig
def extract_toolchain_info(compiler):
# Remove the "-gcc" or "-g++" suffix if present
if compiler.endswith("-gcc") or compiler.endswith("-g++"):
compiler = compiler.rsplit("-", 1)[0]
# Extract the toolchain and ABI part (e.g., "gnu")
toolchain_parts = compiler.split("-")
abi_conventions = next(
(part for part in toolchain_parts if part in ["gnu", "musl", "eabi", "uclibc"]),
"",
)
return abi_conventions
def generate_wheel_conf():
conf_file_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
)
# Extract current system and Python version information
py_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
arch = platform.machine()
system = platform.system().lower()
libc_version = platform.libc_ver()[1]
# Get the compiler information
compiler = sysconfig.get_config_var("CC")
abi_conventions = extract_toolchain_info(compiler)
# Create the new configuration data
new_conf_data = {
"py_version": py_version,
"arch": arch,
"system": system,
"libc_version": libc_version,
"abi": abi_conventions,
"extension": {
"posix": "so",
"nt": "pyd", # Windows
}[os.name],
}
# If the file exists, load the existing data
if os.path.isfile(conf_file_path):
with open(conf_file_path, "r") as conf_file:
conf_data = json.load(conf_file)
# Update the existing data with the new data
conf_data.update(new_conf_data)
else:
# If the file does not exist, use the new data
conf_data = new_conf_data
# Write the updated data to the file
with open(conf_file_path, "w") as conf_file:
json.dump(conf_data, conf_file, indent=4)
if __name__ == "__main__":
generate_wheel_conf()

View File

@@ -0,0 +1,111 @@
import json
import os
from setuptools import find_packages, setup
from wheel.bdist_wheel import bdist_wheel as orig_bdist_wheel
class NonPurePythonBDistWheel(orig_bdist_wheel):
"""Makes the wheel platform-dependent so it can be based on the _pyhailort architecture"""
def finalize_options(self):
orig_bdist_wheel.finalize_options(self)
self.root_is_pure = False
def _get_hailort_lib_path():
lib_filename = "libhailort.so"
lib_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
f"hailo_platform/pyhailort/{lib_filename}",
)
if os.path.exists(lib_path):
print(f"Found libhailort shared library at: {lib_path}")
else:
print(f"Error: libhailort shared library not found at: {lib_path}")
raise FileNotFoundError(f"libhailort shared library not found at: {lib_path}")
return lib_path
def _get_pyhailort_lib_path():
conf_file_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
)
if not os.path.isfile(conf_file_path):
raise FileNotFoundError(f"Configuration file not found: {conf_file_path}")
with open(conf_file_path, "r") as conf_file:
content = json.load(conf_file)
py_version = content["py_version"]
arch = content["arch"]
system = content["system"]
extension = content["extension"]
abi = content["abi"]
# Construct the filename directly
lib_filename = f"_pyhailort.cpython-{py_version.split('cp')[1]}-{arch}-{system}-{abi}.{extension}"
lib_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
f"hailo_platform/pyhailort/{lib_filename}",
)
if os.path.exists(lib_path):
print(f"Found _pyhailort shared library at: {lib_path}")
else:
print(f"Error: _pyhailort shared library not found at: {lib_path}")
raise FileNotFoundError(
f"_pyhailort shared library not found at: {lib_path}"
)
return lib_path
def _get_package_paths():
packages = []
pyhailort_lib = _get_pyhailort_lib_path()
hailort_lib = _get_hailort_lib_path()
if pyhailort_lib:
packages.append(pyhailort_lib)
if hailort_lib:
packages.append(hailort_lib)
packages.append(os.path.abspath("hailo_tutorials/notebooks/*"))
packages.append(os.path.abspath("hailo_tutorials/hefs/*"))
return packages
if __name__ == "__main__":
setup(
author="Hailo team",
author_email="contact@hailo.ai",
cmdclass={
"bdist_wheel": NonPurePythonBDistWheel,
},
description="HailoRT",
entry_points={
"console_scripts": [
"hailo=hailo_platform.tools.hailocli.main:main",
]
},
install_requires=[
"argcomplete",
"contextlib2",
"future",
"netaddr",
"netifaces",
"verboselogs",
"numpy==1.23.3",
],
name="hailort",
package_data={
"hailo_platform": _get_package_paths(),
},
packages=find_packages(),
platforms=[
"linux_x86_64",
"linux_aarch64",
"win_amd64",
],
url="https://hailo.ai/",
version="4.17.0",
zip_safe=False,
)

View File

@@ -1,12 +1,12 @@
appdirs==1.4.* appdirs==1.4.4
argcomplete==2.0.* argcomplete==2.0.0
contextlib2==0.6.* contextlib2==0.6.0.post1
distlib==0.3.* distlib==0.3.6
filelock==3.8.* filelock==3.8.0
future==0.18.* future==0.18.2
importlib-metadata==5.1.* importlib-metadata==5.1.0
importlib-resources==5.1.* importlib-resources==5.1.2
netaddr==0.8.* netaddr==0.8.0
netifaces==0.10.* netifaces==0.10.9
verboselogs==1.7.* verboselogs==1.7
virtualenv==20.17.* virtualenv==20.17.0

View File

@@ -4,7 +4,6 @@
sudo apt-get update sudo apt-get update
sudo apt-get install -y build-essential cmake git wget sudo apt-get install -y build-essential cmake git wget
hailo_version="4.20.0"
arch=$(uname -m) arch=$(uname -m)
if [[ $arch == "x86_64" ]]; then if [[ $arch == "x86_64" ]]; then
@@ -14,7 +13,7 @@ else
fi fi
# Clone the HailoRT driver repository # Clone the HailoRT driver repository
git clone --depth 1 --branch v${hailo_version} https://github.com/hailo-ai/hailort-drivers.git git clone --depth 1 --branch v4.18.0 https://github.com/hailo-ai/hailort-drivers.git
# Build and install the HailoRT driver # Build and install the HailoRT driver
cd hailort-drivers/linux/pcie cd hailort-drivers/linux/pcie
@@ -39,7 +38,7 @@ cd ../../
if [ ! -d /lib/firmware/hailo ]; then if [ ! -d /lib/firmware/hailo ]; then
sudo mkdir /lib/firmware/hailo sudo mkdir /lib/firmware/hailo
fi fi
sudo mv hailo8_fw.*.bin /lib/firmware/hailo/hailo8_fw.bin sudo mv hailo8_fw.4.17.0.bin /lib/firmware/hailo/hailo8_fw.bin
# Install udev rules # Install udev rules
sudo cp ./linux/pcie/51-hailo-udev.rules /etc/udev/rules.d/ sudo cp ./linux/pcie/51-hailo-udev.rules /etc/udev/rules.d/

View File

@@ -3,12 +3,12 @@
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable # https://askubuntu.com/questions/972516/debian-frontend-environment-variable
ARG DEBIAN_FRONTEND=noninteractive ARG DEBIAN_FRONTEND=noninteractive
ARG BASE_IMAGE=debian:12 ARG BASE_IMAGE=debian:11
ARG SLIM_BASE=debian:12-slim ARG SLIM_BASE=debian:11-slim
FROM ${BASE_IMAGE} AS base FROM ${BASE_IMAGE} AS base
FROM --platform=${BUILDPLATFORM} debian:12 AS base_host FROM --platform=${BUILDPLATFORM} debian:11 AS base_host
FROM ${SLIM_BASE} AS slim-base FROM ${SLIM_BASE} AS slim-base
@@ -66,8 +66,8 @@ COPY docker/main/requirements-ov.txt /requirements-ov.txt
RUN apt-get -qq update \ RUN apt-get -qq update \
&& apt-get -qq install -y wget python3 python3-dev python3-distutils gcc pkg-config libhdf5-dev \ && apt-get -qq install -y wget python3 python3-dev python3-distutils gcc pkg-config libhdf5-dev \
&& wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \ && wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py "pip" --break-system-packages \ && python3 get-pip.py "pip" \
&& pip install --break-system-packages -r /requirements-ov.txt && pip install -r /requirements-ov.txt
# Get OpenVino Model # Get OpenVino Model
RUN --mount=type=bind,source=docker/main/build_ov_model.py,target=/build_ov_model.py \ RUN --mount=type=bind,source=docker/main/build_ov_model.py,target=/build_ov_model.py \
@@ -139,17 +139,24 @@ ARG TARGETARCH
# Use a separate container to build wheels to prevent build dependencies in final image # Use a separate container to build wheels to prevent build dependencies in final image
RUN apt-get -qq update \ RUN apt-get -qq update \
&& apt-get -qq install -y \ && apt-get -qq install -y \
apt-transport-https wget \ apt-transport-https \
gnupg \
wget \
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
&& apt-get -qq update \ && apt-get -qq update \
&& apt-get -qq install -y \ && apt-get -qq install -y \
python3 \ python3.9 \
python3-dev \ python3.9-dev \
# opencv dependencies # opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \ build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \ libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \ libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\ gfortran openexr libatlas-base-dev libssl-dev\
libtbbmalloc2 libtbb-dev libdc1394-dev libopenexr-dev \ libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \ libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# sqlite3 dependencies # sqlite3 dependencies
tclsh \ tclsh \
@@ -157,11 +164,14 @@ RUN apt-get -qq update \
gcc gfortran libopenblas-dev liblapack-dev && \ gcc gfortran libopenblas-dev liblapack-dev && \
rm -rf /var/lib/apt/lists/* rm -rf /var/lib/apt/lists/*
# Ensure python3 defaults to python3.9
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \ RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py "pip" --break-system-packages && python3 get-pip.py "pip"
COPY docker/main/requirements.txt /requirements.txt COPY docker/main/requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt --break-system-packages RUN pip3 install -r /requirements.txt
# Build pysqlite3 from source # Build pysqlite3 from source
COPY docker/main/build_pysqlite3.sh /build_pysqlite3.sh COPY docker/main/build_pysqlite3.sh /build_pysqlite3.sh
@@ -201,9 +211,6 @@ ENV TOKENIZERS_PARALLELISM=true
# https://github.com/huggingface/transformers/issues/27214 # https://github.com/huggingface/transformers/issues/27214
ENV TRANSFORMERS_NO_ADVISORY_WARNINGS=1 ENV TRANSFORMERS_NO_ADVISORY_WARNINGS=1
# Set OpenCV ffmpeg loglevel to fatal: https://ffmpeg.org/doxygen/trunk/log_8h.html
ENV OPENCV_FFMPEG_LOGLEVEL=8
ENV PATH="/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}" ENV PATH="/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}"
ENV LIBAVFORMAT_VERSION_MAJOR=60 ENV LIBAVFORMAT_VERSION_MAJOR=60
@@ -212,8 +219,8 @@ RUN --mount=type=bind,source=docker/main/install_deps.sh,target=/deps/install_de
/deps/install_deps.sh /deps/install_deps.sh
RUN --mount=type=bind,from=wheels,source=/wheels,target=/deps/wheels \ RUN --mount=type=bind,from=wheels,source=/wheels,target=/deps/wheels \
python3 -m pip install --upgrade pip --break-system-packages && \ python3 -m pip install --upgrade pip && \
pip3 install -U /deps/wheels/*.whl --break-system-packages pip3 install -U /deps/wheels/*.whl
COPY --from=deps-rootfs / / COPY --from=deps-rootfs / /
@@ -260,7 +267,7 @@ RUN apt-get update \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
RUN --mount=type=bind,source=./docker/main/requirements-dev.txt,target=/workspace/frigate/requirements-dev.txt \ RUN --mount=type=bind,source=./docker/main/requirements-dev.txt,target=/workspace/frigate/requirements-dev.txt \
pip3 install -r requirements-dev.txt --break-system-packages pip3 install -r requirements-dev.txt
HEALTHCHECK NONE HEALTHCHECK NONE

View File

@@ -8,7 +8,8 @@ SECURE_TOKEN_MODULE_VERSION="1.5"
SET_MISC_MODULE_VERSION="v0.33" SET_MISC_MODULE_VERSION="v0.33"
NGX_DEVEL_KIT_VERSION="v0.3.3" NGX_DEVEL_KIT_VERSION="v0.3.3"
sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
apt-get update apt-get update
apt-get -yqq build-dep nginx apt-get -yqq build-dep nginx

View File

@@ -4,7 +4,7 @@ from openvino.tools import mo
ov_model = mo.convert_model( ov_model = mo.convert_model(
"/models/ssdlite_mobilenet_v2_coco_2018_05_09/frozen_inference_graph.pb", "/models/ssdlite_mobilenet_v2_coco_2018_05_09/frozen_inference_graph.pb",
compress_to_fp16=True, compress_to_fp16=True,
transformations_config="/usr/local/lib/python3.11/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json", transformations_config="/usr/local/lib/python3.9/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json",
tensorflow_object_detection_api_pipeline_config="/models/ssdlite_mobilenet_v2_coco_2018_05_09/pipeline.config", tensorflow_object_detection_api_pipeline_config="/models/ssdlite_mobilenet_v2_coco_2018_05_09/pipeline.config",
reverse_input_channels=True, reverse_input_channels=True,
) )

View File

@@ -4,7 +4,8 @@ set -euxo pipefail
SQLITE_VEC_VERSION="0.1.3" SQLITE_VEC_VERSION="0.1.3"
sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
apt-get update apt-get update
apt-get -yqq build-dep sqlite3 gettext git apt-get -yqq build-dep sqlite3 gettext git

View File

@@ -11,34 +11,33 @@ apt-get -qq install --no-install-recommends -y \
lbzip2 \ lbzip2 \
procps vainfo \ procps vainfo \
unzip locales tzdata libxml2 xz-utils \ unzip locales tzdata libxml2 xz-utils \
python3 \ python3.9 \
python3-pip \ python3-pip \
curl \ curl \
lsof \ lsof \
jq \ jq \
nethogs \ nethogs
libgl1 \
libglib2.0-0 \ # ensure python3 defaults to python3.9
libusb-1.0.0 update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
mkdir -p -m 600 /root/.gnupg mkdir -p -m 600 /root/.gnupg
# install coral runtime # add coral repo
wget -q -O /tmp/libedgetpu1-max.deb "https://github.com/feranick/libedgetpu/releases/download/16.0TF2.17.0-1/libedgetpu1-max_16.0tf2.17.0-1.bookworm_${TARGETARCH}.deb" curl -fsSLo - https://packages.cloud.google.com/apt/doc/apt-key.gpg | \
unset DEBIAN_FRONTEND gpg --dearmor -o /etc/apt/trusted.gpg.d/google-cloud-packages-archive-keyring.gpg
yes | dpkg -i /tmp/libedgetpu1-max.deb && export DEBIAN_FRONTEND=noninteractive echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | tee /etc/apt/sources.list.d/coral-edgetpu.list
rm /tmp/libedgetpu1-max.deb echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections
# install python3 & tflite runtime # enable non-free repo in Debian
if [[ "${TARGETARCH}" == "amd64" ]]; then if grep -q "Debian" /etc/issue; then
pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_x86_64.whl sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list
pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_x86_64.whl
fi fi
if [[ "${TARGETARCH}" == "arm64" ]]; then # coral drivers
pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_aarch64.whl apt-get -qq update
pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_aarch64.whl apt-get -qq install --no-install-recommends --no-install-suggests -y \
fi libedgetpu1-max python3-tflite-runtime python3-pycoral
# btbn-ffmpeg -> amd64 # btbn-ffmpeg -> amd64
if [[ "${TARGETARCH}" == "amd64" ]]; then if [[ "${TARGETARCH}" == "amd64" ]]; then
@@ -66,22 +65,30 @@ fi
# arch specific packages # arch specific packages
if [[ "${TARGETARCH}" == "amd64" ]]; then if [[ "${TARGETARCH}" == "amd64" ]]; then
# install amd / intel-i965 driver packages # use debian bookworm for amd / intel-i965 driver packages
echo 'deb https://deb.debian.org/debian bookworm main contrib non-free' >/etc/apt/sources.list.d/debian-bookworm.list
apt-get -qq update
apt-get -qq install --no-install-recommends --no-install-suggests -y \ apt-get -qq install --no-install-recommends --no-install-suggests -y \
i965-va-driver intel-gpu-tools onevpl-tools \ i965-va-driver intel-gpu-tools onevpl-tools \
libva-drm2 \ libva-drm2 \
mesa-va-drivers radeontop mesa-va-drivers radeontop
# something about this dependency requires it to be installed in a separate call rather than in the line above
apt-get -qq install --no-install-recommends --no-install-suggests -y \
i965-va-driver-shaders
# intel packages use zst compression so we need to update dpkg # intel packages use zst compression so we need to update dpkg
apt-get install -y dpkg apt-get install -y dpkg
rm -f /etc/apt/sources.list.d/debian-bookworm.list
# use intel apt intel packages # use intel apt intel packages
wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list
apt-get -qq update apt-get -qq update
apt-get -qq install --no-install-recommends --no-install-suggests -y \ apt-get -qq install --no-install-recommends --no-install-suggests -y \
intel-opencl-icd=24.35.30872.31-996~22.04 intel-level-zero-gpu=1.3.29735.27-914~22.04 intel-media-va-driver-non-free=24.3.3-996~22.04 \ intel-opencl-icd intel-level-zero-gpu intel-media-va-driver-non-free \
libmfx1=23.2.2-880~22.04 libmfxgen1=24.2.4-914~22.04 libvpl2=1:2.13.0.0-996~22.04 libmfx1 libmfxgen1 libvpl2
rm -f /usr/share/keyrings/intel-graphics.gpg rm -f /usr/share/keyrings/intel-graphics.gpg
rm -f /etc/apt/sources.list.d/intel-gpu-jammy.list rm -f /etc/apt/sources.list.d/intel-gpu-jammy.list

View File

@@ -1,45 +1,39 @@
click == 8.1.* click == 8.1.*
# FastAPI # FastAPI
aiohttp == 3.11.2
starlette == 0.41.2
starlette-context == 0.3.6 starlette-context == 0.3.6
fastapi == 0.115.* fastapi == 0.115.0
uvicorn == 0.30.* uvicorn == 0.30.*
slowapi == 0.1.* slowapi == 0.1.9
imutils == 0.5.* imutils == 0.5.*
joserfc == 1.0.* joserfc == 1.0.*
pathvalidate == 3.2.* pathvalidate == 3.2.*
markupsafe == 2.1.* markupsafe == 2.1.*
python-multipart == 0.0.12
# General
mypy == 1.6.1 mypy == 1.6.1
onvif-zeep-async == 3.1.* numpy == 1.26.*
onvif_zeep == 0.2.12
opencv-python-headless == 4.9.0.*
paho-mqtt == 2.1.* paho-mqtt == 2.1.*
pandas == 2.2.* pandas == 2.2.*
peewee == 3.17.* peewee == 3.17.*
peewee_migrate == 1.13.* peewee_migrate == 1.13.*
psutil == 6.1.* psutil == 5.9.*
pydantic == 2.8.* pydantic == 2.8.*
git+https://github.com/fbcotter/py3nvml#egg=py3nvml git+https://github.com/fbcotter/py3nvml#egg=py3nvml
pytz == 2024.* pytz == 2024.1
pyzmq == 26.2.* pyzmq == 26.2.*
ruamel.yaml == 0.18.* ruamel.yaml == 0.18.*
tzlocal == 5.2 tzlocal == 5.2
requests == 2.32.* requests == 2.32.*
types-requests == 2.32.* types-requests == 2.32.*
scipy == 1.13.*
norfair == 2.2.* norfair == 2.2.*
setproctitle == 1.3.* setproctitle == 1.3.*
ws4py == 0.5.* ws4py == 0.5.*
unidecode == 1.3.* unidecode == 1.3.*
# Image Manipulation
numpy == 1.26.*
opencv-python-headless == 4.10.0.*
opencv-contrib-python == 4.9.0.*
scipy == 1.14.*
# OpenVino & ONNX # OpenVino & ONNX
openvino == 2024.4.* openvino == 2024.3.*
onnxruntime-openvino == 1.20.* ; platform_machine == 'x86_64' onnxruntime-openvino == 1.19.* ; platform_machine == 'x86_64'
onnxruntime == 1.20.* ; platform_machine == 'aarch64' onnxruntime == 1.19.* ; platform_machine == 'aarch64'
# Embeddings # Embeddings
transformers == 4.45.* transformers == 4.45.*
# Generative AI # Generative AI
@@ -49,6 +43,3 @@ openai == 1.51.*
# push notifications # push notifications
py-vapid == 1.9.* py-vapid == 1.9.*
pywebpush == 2.0.* pywebpush == 2.0.*
# alpr
pyclipper == 1.3.*
shapely == 2.0.*

View File

@@ -1,2 +1,2 @@
scikit-build == 0.18.* scikit-build == 0.17.*
nvidia-pyindex nvidia-pyindex

View File

@@ -165,7 +165,7 @@ if config.get("birdseye", {}).get("restream", False):
birdseye: dict[str, any] = config.get("birdseye") birdseye: dict[str, any] = config.get("birdseye")
input = f"-f rawvideo -pix_fmt yuv420p -video_size {birdseye.get('width', 1280)}x{birdseye.get('height', 720)} -r 10 -i {BIRDSEYE_PIPE}" input = f"-f rawvideo -pix_fmt yuv420p -video_size {birdseye.get('width', 1280)}x{birdseye.get('height', 720)} -r 10 -i {BIRDSEYE_PIPE}"
ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(ffmpeg_path, config.get('ffmpeg', {}).get('hwaccel_args', ''), input, '-rtsp_transport tcp -f rtsp {output}')}" ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(ffmpeg_path, config.get('ffmpeg', {}).get('hwaccel_args'), input, '-rtsp_transport tcp -f rtsp {output}')}"
if go2rtc_config.get("streams"): if go2rtc_config.get("streams"):
go2rtc_config["streams"]["birdseye"] = ffmpeg_cmd go2rtc_config["streams"]["birdseye"] = ffmpeg_cmd

View File

@@ -81,9 +81,6 @@ http {
open_file_cache_errors on; open_file_cache_errors on;
aio on; aio on;
# file upload size
client_max_body_size 10M;
# https://github.com/kaltura/nginx-vod-module#vod_open_file_thread_pool # https://github.com/kaltura/nginx-vod-module#vod_open_file_thread_pool
vod_open_file_thread_pool default; vod_open_file_thread_pool default;

View File

@@ -1,20 +0,0 @@
./subset/000000005001.jpg
./subset/000000038829.jpg
./subset/000000052891.jpg
./subset/000000075612.jpg
./subset/000000098261.jpg
./subset/000000181542.jpg
./subset/000000215245.jpg
./subset/000000277005.jpg
./subset/000000288685.jpg
./subset/000000301421.jpg
./subset/000000334371.jpg
./subset/000000348481.jpg
./subset/000000373353.jpg
./subset/000000397681.jpg
./subset/000000414673.jpg
./subset/000000419312.jpg
./subset/000000465822.jpg
./subset/000000475732.jpg
./subset/000000559707.jpg
./subset/000000574315.jpg

Binary file not shown.

Before

Width:  |  Height:  |  Size: 207 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 209 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 150 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 201 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 233 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 242 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 230 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 136 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 281 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 272 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 109 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 103 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 203 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 110 KiB

View File

@@ -7,26 +7,21 @@ FROM wheels as rk-wheels
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt
RUN sed -i "/https:\/\//d" /requirements-wheels.txt RUN sed -i "/https:\/\//d" /requirements-wheels.txt
RUN sed -i "/onnxruntime/d" /requirements-wheels.txt
RUN python3 -m pip config set global.break-system-packages true
RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt
RUN rm -rf /rk-wheels/opencv_python-*
FROM deps AS rk-frigate FROM deps AS rk-frigate
ARG TARGETARCH ARG TARGETARCH
RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \ RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \
pip3 install --no-deps -U /deps/rk-wheels/*.whl --break-system-packages pip3 install -U /deps/rk-wheels/*.whl
WORKDIR /opt/frigate/ WORKDIR /opt/frigate/
COPY --from=rootfs / / COPY --from=rootfs / /
COPY docker/rockchip/COCO /COCO
COPY docker/rockchip/conv2rknn.py /opt/conv2rknn.py
ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.0/librknnrt.so /usr/lib/ ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.0.0/librknnrt.so /usr/lib/
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffmpeg RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffmpeg
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffprobe RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffprobe
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-6/ffmpeg /usr/lib/ffmpeg/6.0/bin/ ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-5/ffmpeg /usr/lib/ffmpeg/6.0/bin/
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-6/ffprobe /usr/lib/ffmpeg/6.0/bin/ ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-5/ffprobe /usr/lib/ffmpeg/6.0/bin/
ENV PATH="/usr/lib/ffmpeg/6.0/bin/:${PATH}" ENV PATH="/usr/lib/ffmpeg/6.0/bin/:${PATH}"

View File

@@ -1,82 +0,0 @@
import os
import rknn
import yaml
from rknn.api import RKNN
try:
with open(rknn.__path__[0] + "/VERSION") as file:
tk_version = file.read().strip()
except FileNotFoundError:
pass
try:
with open("/config/conv2rknn.yaml", "r") as config_file:
configuration = yaml.safe_load(config_file)
except FileNotFoundError:
raise Exception("Please place a config.yaml file in /config/conv2rknn.yaml")
if configuration["config"] != None:
rknn_config = configuration["config"]
else:
rknn_config = {}
if not os.path.isdir("/config/model_cache/rknn_cache/onnx"):
raise Exception(
"Place the onnx models you want to convert to rknn format in /config/model_cache/rknn_cache/onnx"
)
if "soc" not in configuration:
try:
with open("/proc/device-tree/compatible") as file:
soc = file.read().split(",")[-1].strip("\x00")
except FileNotFoundError:
raise Exception("Make sure to run docker in privileged mode.")
configuration["soc"] = [
soc,
]
if "quantization" not in configuration:
configuration["quantization"] = False
if "output_name" not in configuration:
configuration["output_name"] = "{{input_basename}}"
for input_filename in os.listdir("/config/model_cache/rknn_cache/onnx"):
for soc in configuration["soc"]:
quant = "i8" if configuration["quantization"] else "fp16"
input_path = "/config/model_cache/rknn_cache/onnx/" + input_filename
input_basename = input_filename[: input_filename.rfind(".")]
output_filename = (
configuration["output_name"].format(
quant=quant,
input_basename=input_basename,
soc=soc,
tk_version=tk_version,
)
+ ".rknn"
)
output_path = "/config/model_cache/rknn_cache/" + output_filename
rknn_config["target_platform"] = soc
rknn = RKNN(verbose=True)
rknn.config(**rknn_config)
if rknn.load_onnx(model=input_path) != 0:
raise Exception("Error loading model.")
if (
rknn.build(
do_quantization=configuration["quantization"],
dataset="/COCO/coco_subset_20.txt",
)
!= 0
):
raise Exception("Error building model.")
if rknn.export_rknn(output_path) != 0:
raise Exception("Error exporting rknn model.")

View File

@@ -1,2 +1 @@
rknn-toolkit2 == 2.3.0 rknn-toolkit-lite2 @ https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.0.0/rknn_toolkit_lite2-2.0.0b0-cp39-cp39-linux_aarch64.whl
rknn-toolkit-lite2 == 2.3.0

View File

@@ -34,7 +34,7 @@ RUN mkdir -p /opt/rocm-dist/etc/ld.so.conf.d/
RUN echo /opt/rocm/lib|tee /opt/rocm-dist/etc/ld.so.conf.d/rocm.conf RUN echo /opt/rocm/lib|tee /opt/rocm-dist/etc/ld.so.conf.d/rocm.conf
####################################################################### #######################################################################
FROM --platform=linux/amd64 debian:12 as debian-base FROM --platform=linux/amd64 debian:11 as debian-base
RUN apt-get update && apt-get -y upgrade RUN apt-get update && apt-get -y upgrade
RUN apt-get -y install --no-install-recommends libelf1 libdrm2 libdrm-amdgpu1 libnuma1 kmod RUN apt-get -y install --no-install-recommends libelf1 libdrm2 libdrm-amdgpu1 libnuma1 kmod
@@ -51,7 +51,7 @@ COPY --from=rocm /opt/rocm-$ROCM /opt/rocm-$ROCM
RUN ln -s /opt/rocm-$ROCM /opt/rocm RUN ln -s /opt/rocm-$ROCM /opt/rocm
RUN apt-get -y install g++ cmake RUN apt-get -y install g++ cmake
RUN apt-get -y install python3-pybind11 python3-distutils python3-dev RUN apt-get -y install python3-pybind11 python3.9-distutils python3-dev
WORKDIR /opt/build WORKDIR /opt/build
@@ -70,11 +70,10 @@ RUN apt-get -y install libnuma1
WORKDIR /opt/frigate/ WORKDIR /opt/frigate/
COPY --from=rootfs / / COPY --from=rootfs / /
# Temporarily disabled to see if a new wheel can be built to support py3.11 COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt
#COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt RUN python3 -m pip install --upgrade pip \
#RUN python3 -m pip install --upgrade pip \ && pip3 uninstall -y onnxruntime-openvino \
# && pip3 uninstall -y onnxruntime-openvino \ && pip3 install -r /requirements.txt
# && pip3 install -r /requirements.txt
####################################################################### #######################################################################
FROM scratch AS rocm-dist FROM scratch AS rocm-dist
@@ -87,12 +86,12 @@ COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*$AMDGPU* /opt/rocm-$ROCM/share
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx908* /opt/rocm-$ROCM/share/miopen/db/ COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx908* /opt/rocm-$ROCM/share/miopen/db/
COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*$AMDGPU* /opt/rocm-$ROCM/lib/rocblas/library/ COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*$AMDGPU* /opt/rocm-$ROCM/lib/rocblas/library/
COPY --from=rocm /opt/rocm-dist/ / COPY --from=rocm /opt/rocm-dist/ /
COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-311-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/ COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-39-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/
####################################################################### #######################################################################
FROM deps-prelim AS rocm-prelim-hsa-override0 FROM deps-prelim AS rocm-prelim-hsa-override0
\
ENV HSA_ENABLE_SDMA=0 ENV HSA_ENABLE_SDMA=0
COPY --from=rocm-dist / / COPY --from=rocm-dist / /

View File

@@ -24,7 +24,7 @@ sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list
if [[ "${TARGETARCH}" == "arm64" ]]; then if [[ "${TARGETARCH}" == "arm64" ]]; then
# add raspberry pi repo # add raspberry pi repo
gpg --no-default-keyring --keyring /usr/share/keyrings/raspbian.gpg --keyserver keyserver.ubuntu.com --recv-keys 82B129927FA3303E gpg --no-default-keyring --keyring /usr/share/keyrings/raspbian.gpg --keyserver keyserver.ubuntu.com --recv-keys 82B129927FA3303E
echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bookworm main" | tee /etc/apt/sources.list.d/raspi.list echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bullseye main" | tee /etc/apt/sources.list.d/raspi.list
apt-get -qq update apt-get -qq update
apt-get -qq install --no-install-recommends --no-install-suggests -y ffmpeg apt-get -qq install --no-install-recommends --no-install-suggests -y ffmpeg
fi fi

View File

@@ -7,19 +7,33 @@ ARG DEBIAN_FRONTEND=noninteractive
FROM wheels as trt-wheels FROM wheels as trt-wheels
ARG DEBIAN_FRONTEND ARG DEBIAN_FRONTEND
ARG TARGETARCH ARG TARGETARCH
RUN python3 -m pip config set global.break-system-packages true
# Add TensorRT wheels to another folder # Add TensorRT wheels to another folder
COPY docker/tensorrt/requirements-amd64.txt /requirements-tensorrt.txt COPY docker/tensorrt/requirements-amd64.txt /requirements-tensorrt.txt
RUN mkdir -p /trt-wheels && pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt RUN mkdir -p /trt-wheels && pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
FROM tensorrt-base AS frigate-tensorrt # Build CuDNN
ENV TRT_VER=8.6.1 FROM wget AS cudnn-deps
RUN python3 -m pip config set global.break-system-packages true
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
pip3 install -U /deps/trt-wheels/*.whl --break-system-packages && \
ldconfig
ARG COMPUTE_LEVEL
RUN apt-get update \
&& apt-get install -y git build-essential
RUN wget https://developer.download.nvidia.com/compute/cuda/repos/debian11/x86_64/cuda-keyring_1.1-1_all.deb \
&& dpkg -i cuda-keyring_1.1-1_all.deb \
&& apt-get update \
&& apt-get -y install cuda-toolkit \
&& rm -rf /var/lib/apt/lists/*
FROM tensorrt-base AS frigate-tensorrt
ENV TRT_VER=8.5.3
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
pip3 install -U /deps/trt-wheels/*.whl && \
ldconfig
COPY --from=cudnn-deps /usr/local/cuda-12.6 /usr/local/cuda
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.9/dist-packages/tensorrt:/usr/local/cuda/lib64:/usr/local/lib/python3.9/dist-packages/nvidia/cufft/lib
WORKDIR /opt/frigate/ WORKDIR /opt/frigate/
COPY --from=rootfs / / COPY --from=rootfs / /
@@ -28,8 +42,8 @@ FROM devcontainer AS devcontainer-trt
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
COPY --from=trt-deps /usr/local/cuda-12.1 /usr/local/cuda COPY --from=cudnn-deps /usr/local/cuda-12.6 /usr/local/cuda
COPY docker/tensorrt/detector/rootfs/ / COPY docker/tensorrt/detector/rootfs/ /
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \ RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
pip3 install -U /deps/trt-wheels/*.whl --break-system-packages pip3 install -U /deps/trt-wheels/*.whl

View File

@@ -10,8 +10,8 @@ ARG DEBIAN_FRONTEND
# Use a separate container to build wheels to prevent build dependencies in final image # Use a separate container to build wheels to prevent build dependencies in final image
RUN apt-get -qq update \ RUN apt-get -qq update \
&& apt-get -qq install -y --no-install-recommends \ && apt-get -qq install -y --no-install-recommends \
python3.9 python3.9-dev \ python3.9 python3.9-dev \
wget build-essential cmake git \ wget build-essential cmake git \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# Ensure python3 defaults to python3.9 # Ensure python3 defaults to python3.9
@@ -41,11 +41,7 @@ RUN --mount=type=bind,source=docker/tensorrt/detector/build_python_tensorrt.sh,t
&& TENSORRT_VER=$(cat /etc/TENSORRT_VER) /deps/build_python_tensorrt.sh && TENSORRT_VER=$(cat /etc/TENSORRT_VER) /deps/build_python_tensorrt.sh
COPY docker/tensorrt/requirements-arm64.txt /requirements-tensorrt.txt COPY docker/tensorrt/requirements-arm64.txt /requirements-tensorrt.txt
ADD https://nvidia.box.com/shared/static/psl23iw3bh7hlgku0mjo1xekxpego3e3.whl /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl RUN pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
RUN pip3 uninstall -y onnxruntime-openvino \
&& pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt \
&& pip3 install --no-deps /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl
FROM build-wheels AS trt-model-wheels FROM build-wheels AS trt-model-wheels
ARG DEBIAN_FRONTEND ARG DEBIAN_FRONTEND

View File

@@ -3,7 +3,7 @@
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable # https://askubuntu.com/questions/972516/debian-frontend-environment-variable
ARG DEBIAN_FRONTEND=noninteractive ARG DEBIAN_FRONTEND=noninteractive
ARG TRT_BASE=nvcr.io/nvidia/tensorrt:23.12-py3 ARG TRT_BASE=nvcr.io/nvidia/tensorrt:23.03-py3
# Build TensorRT-specific library # Build TensorRT-specific library
FROM ${TRT_BASE} AS trt-deps FROM ${TRT_BASE} AS trt-deps
@@ -24,9 +24,8 @@ ENV S6_CMD_WAIT_FOR_SERVICES_MAXTIME=0
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
COPY --from=trt-deps /usr/local/cuda-12.* /usr/local/cuda
COPY docker/tensorrt/detector/rootfs/ / COPY docker/tensorrt/detector/rootfs/ /
ENV YOLO_MODELS="" ENV YOLO_MODELS="yolov7-320"
HEALTHCHECK --start-period=600s --start-interval=5s --interval=15s --timeout=5s --retries=3 \ HEALTHCHECK --start-period=600s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1 CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1

View File

@@ -1,8 +1,6 @@
/usr/local/lib /usr/local/lib
/usr/local/cuda/lib64 /usr/local/lib/python3.9/dist-packages/nvidia/cudnn/lib
/usr/local/lib/python3.11/dist-packages/nvidia/cudnn/lib /usr/local/lib/python3.9/dist-packages/nvidia/cuda_runtime/lib
/usr/local/lib/python3.11/dist-packages/nvidia/cuda_runtime/lib /usr/local/lib/python3.9/dist-packages/nvidia/cublas/lib
/usr/local/lib/python3.11/dist-packages/nvidia/cublas/lib /usr/local/lib/python3.9/dist-packages/nvidia/cuda_nvrtc/lib
/usr/local/lib/python3.11/dist-packages/nvidia/cuda_nvrtc/lib /usr/local/lib/python3.9/dist-packages/tensorrt
/usr/local/lib/python3.11/dist-packages/tensorrt
/usr/local/lib/python3.11/dist-packages/nvidia/cufft/lib

View File

@@ -11,7 +11,6 @@ set -o errexit -o nounset -o pipefail
MODEL_CACHE_DIR=${MODEL_CACHE_DIR:-"/config/model_cache/tensorrt"} MODEL_CACHE_DIR=${MODEL_CACHE_DIR:-"/config/model_cache/tensorrt"}
TRT_VER=${TRT_VER:-$(cat /etc/TENSORRT_VER)} TRT_VER=${TRT_VER:-$(cat /etc/TENSORRT_VER)}
OUTPUT_FOLDER="${MODEL_CACHE_DIR}/${TRT_VER}" OUTPUT_FOLDER="${MODEL_CACHE_DIR}/${TRT_VER}"
YOLO_MODELS=${YOLO_MODELS:-""}
# Create output folder # Create output folder
mkdir -p ${OUTPUT_FOLDER} mkdir -p ${OUTPUT_FOLDER}
@@ -20,11 +19,6 @@ FIRST_MODEL=true
MODEL_DOWNLOAD="" MODEL_DOWNLOAD=""
MODEL_CONVERT="" MODEL_CONVERT=""
if [ -z "$YOLO_MODELS"]; then
echo "tensorrt model preparation disabled"
exit 0
fi
for model in ${YOLO_MODELS//,/ } for model in ${YOLO_MODELS//,/ }
do do
# Remove old link in case path/version changed # Remove old link in case path/version changed

View File

@@ -1,14 +1,14 @@
# NVidia TensorRT Support (amd64 only) # NVidia TensorRT Support (amd64 only)
--extra-index-url 'https://pypi.nvidia.com' --extra-index-url 'https://pypi.nvidia.com'
numpy < 1.24; platform_machine == 'x86_64' numpy < 1.24; platform_machine == 'x86_64'
tensorrt == 8.6.1.*; platform_machine == 'x86_64' tensorrt == 8.5.3.*; platform_machine == 'x86_64'
cuda-python == 11.8.*; platform_machine == 'x86_64' cuda-python == 11.8; platform_machine == 'x86_64'
cython == 3.0.*; platform_machine == 'x86_64' cython == 0.29.*; platform_machine == 'x86_64'
nvidia-cuda-runtime-cu12 == 12.1.*; platform_machine == 'x86_64' nvidia-cuda-runtime-cu12 == 12.1.*; platform_machine == 'x86_64'
nvidia-cuda-runtime-cu11 == 11.8.*; platform_machine == 'x86_64' nvidia-cuda-runtime-cu11 == 11.8.*; platform_machine == 'x86_64'
nvidia-cublas-cu11 == 11.11.3.6; platform_machine == 'x86_64' nvidia-cublas-cu11 == 11.11.3.6; platform_machine == 'x86_64'
nvidia-cudnn-cu11 == 8.6.0.*; platform_machine == 'x86_64' nvidia-cudnn-cu11 == 8.6.0.*; platform_machine == 'x86_64'
nvidia-cufft-cu11==10.*; platform_machine == 'x86_64' nvidia-cufft-cu11==10.*; platform_machine == 'x86_64'
onnx==1.16.*; platform_machine == 'x86_64' onnx==1.14.0; platform_machine == 'x86_64'
onnxruntime-gpu==1.18.*; platform_machine == 'x86_64' onnxruntime-gpu==1.17.*; platform_machine == 'x86_64'
protobuf==3.20.3; platform_machine == 'x86_64' protobuf==3.20.3; platform_machine == 'x86_64'

View File

@@ -174,7 +174,7 @@ NOTE: The folder that is set for the config needs to be the folder that contains
### Custom go2rtc version ### Custom go2rtc version
Frigate currently includes go2rtc v1.9.2, there may be certain cases where you want to run a different version of go2rtc. Frigate currently includes go2rtc v1.9.4, there may be certain cases where you want to run a different version of go2rtc.
To do this: To do this:

View File

@@ -41,7 +41,6 @@ cameras:
... ...
onvif: onvif:
# Required: host of the camera being connected to. # Required: host of the camera being connected to.
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
host: 0.0.0.0 host: 0.0.0.0
# Optional: ONVIF port for device (default: shown below). # Optional: ONVIF port for device (default: shown below).
port: 8000 port: 8000
@@ -50,8 +49,6 @@ cameras:
user: admin user: admin
# Optional: password for login. # Optional: password for login.
password: admin password: admin
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
tls_insecure: False
# Optional: PTZ camera object autotracking. Keeps a moving object in # Optional: PTZ camera object autotracking. Keeps a moving object in
# the center of the frame by automatically moving the PTZ camera. # the center of the frame by automatically moving the PTZ camera.
autotracking: autotracking:

View File

@@ -67,15 +67,14 @@ ffmpeg:
### Annke C800 ### Annke C800
This camera is H.265 only. To be able to play clips on some devices (like MacOs or iPhone) the H.265 stream has to be adjusted using the `apple_compatibility` config. This camera is H.265 only. To be able to play clips on some devices (like MacOs or iPhone) the H.265 stream has to be repackaged and the audio stream has to be converted to aac. Unfortunately direct playback of in the browser is not working (yet), but the downloaded clip can be played locally.
```yaml ```yaml
cameras: cameras:
annkec800: # <------ Name the camera annkec800: # <------ Name the camera
ffmpeg: ffmpeg:
apple_compatibility: true # <- Adds compatibility with MacOS and iPhone
output_args: output_args:
record: preset-record-generic-audio-aac record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c:v copy -tag:v hvc1 -bsf:v hevc_mp4toannexb -c:a aac
inputs: inputs:
- path: rtsp://user:password@camera-ip:554/H264/ch1/main/av_stream # <----- Update for your camera - path: rtsp://user:password@camera-ip:554/H264/ch1/main/av_stream # <----- Update for your camera
@@ -157,9 +156,7 @@ cameras:
#### Reolink Doorbell #### Reolink Doorbell
The reolink doorbell supports two way audio via go2rtc and other applications. It is important that the http-flv stream is still used for stability, a secondary rtsp stream can be added that will be using for the two way audio only. The reolink doorbell supports 2-way audio via go2rtc and other applications. It is important that the http-flv stream is still used for stability, a secondary rtsp stream can be added that will be using for the two way audio only.
Ensure HTTP is enabled in the camera's advanced network settings. To use two way talk with Frigate, see the [Live view documentation](/configuration/live#two-way-talk).
```yaml ```yaml
go2rtc: go2rtc:
@@ -184,7 +181,7 @@ go2rtc:
- rtspx://192.168.1.1:7441/abcdefghijk - rtspx://192.168.1.1:7441/abcdefghijk
``` ```
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-rtsp) [See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-rtsp)
In the Unifi 2.0 update Unifi Protect Cameras had a change in audio sample rate which causes issues for ffmpeg. The input rate needs to be set for record if used directly with unifi protect. In the Unifi 2.0 update Unifi Protect Cameras had a change in audio sample rate which causes issues for ffmpeg. The input rate needs to be set for record if used directly with unifi protect.

View File

@@ -109,7 +109,7 @@ This list of working and non-working PTZ cameras is based on user feedback.
| Reolink E1 Zoom | ✅ | ❌ | | | Reolink E1 Zoom | ✅ | ❌ | |
| Reolink RLC-823A 16x | ✅ | ❌ | | | Reolink RLC-823A 16x | ✅ | ❌ | |
| Speco O8P32X | ✅ | ❌ | | | Speco O8P32X | ✅ | ❌ | |
| Sunba 405-D20X | ✅ | ❌ | Incomplete ONVIF support reported on original, and 4k models. All models are suspected incompatable. | | Sunba 405-D20X | ✅ | ❌ | |
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 | | Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands | | Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
| Uniview IPC6612SR-X33-VG | ✅ | ✅ | Leave `calibrate_on_startup` as `False`. A user has reported that zooming with `absolute` is working. | | Uniview IPC6612SR-X33-VG | ✅ | ✅ | Leave `calibrate_on_startup` as `False`. A user has reported that zooming with `absolute` is working. |

View File

@@ -1,35 +0,0 @@
---
id: face_recognition
title: Face Recognition
---
Face recognition allows people to be assigned names and when their face is recognized Frigate will assign the person's name as a sub label. This information is included in the UI, filters, as well as in notifications.
Frigate has support for FaceNet to create face embeddings, which runs locally. Embeddings are then saved to Frigate's database.
## Minimum System Requirements
Face recognition works by running a large AI model locally on your system. Systems without a GPU will not run Face Recognition reliably or at all.
## Configuration
Face recognition is disabled by default and requires semantic search to be enabled, face recognition must be enabled in your config file before it can be used. Semantic Search and face recognition are global configuration settings.
```yaml
face_recognition:
enabled: true
```
## Dataset
The number of images needed for a sufficient training set for face recognition varies depending on several factors:
- Complexity of the task: A simple task like recognizing faces of known individuals may require fewer images than a complex task like identifying unknown individuals in a large crowd.
- Diversity of the dataset: A dataset with diverse images, including variations in lighting, pose, and facial expressions, will require fewer images per person than a less diverse dataset.
- Desired accuracy: The higher the desired accuracy, the more images are typically needed.
However, here are some general guidelines:
- Minimum: For basic face recognition tasks, a minimum of 10-20 images per person is often recommended.
- Recommended: For more robust and accurate systems, 30-50 images per person is a good starting point.
- Ideal: For optimal performance, especially in challenging conditions, 100 or more images per person can be beneficial.

View File

@@ -3,15 +3,9 @@ id: genai
title: Generative AI title: Generative AI
--- ---
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail. Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects.
Requests for a description are sent off automatically to your AI provider at the end of the tracked object's lifecycle. Descriptions can also be regenerated manually via the Frigate UI. Semantic Search must be enabled to use Generative AI. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
:::info
Semantic Search must be enabled to use Generative AI.
:::
## Configuration ## Configuration
@@ -35,21 +29,15 @@ cameras:
## Ollama ## Ollama
:::warning [Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance. CPU inference is not recommended.
Using Ollama on CPU is not recommended, high inference times make using Generative AI impractical. Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [docker container](https://hub.docker.com/r/ollama/ollama) available.
::: Parallel requests also come with some caveats. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
### Supported Models ### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`. Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull llava:7b` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag. You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`. Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first.
:::note :::note
@@ -64,7 +52,7 @@ genai:
enabled: True enabled: True
provider: ollama provider: ollama
base_url: http://localhost:11434 base_url: http://localhost:11434
model: llava:7b model: llava
``` ```
## Google Gemini ## Google Gemini
@@ -144,10 +132,6 @@ Frigate's thumbnail search excels at identifying specific details about tracked
While generating simple descriptions of detected objects is useful, understanding intent provides a deeper layer of insight. Instead of just recognizing "what" is in a scene, Frigates default prompts aim to infer "why" it might be there or "what" it could do next. Descriptions tell you whats happening, but intent gives context. For instance, a person walking toward a door might seem like a visitor, but if theyre moving quickly after hours, you can infer a potential break-in attempt. Detecting a person loitering near a door at night can trigger an alert sooner than simply noting "a person standing by the door," helping you respond based on the situations context. While generating simple descriptions of detected objects is useful, understanding intent provides a deeper layer of insight. Instead of just recognizing "what" is in a scene, Frigates default prompts aim to infer "why" it might be there or "what" it could do next. Descriptions tell you whats happening, but intent gives context. For instance, a person walking toward a door might seem like a visitor, but if theyre moving quickly after hours, you can infer a potential break-in attempt. Detecting a person loitering near a door at night can trigger an alert sooner than simply noting "a person standing by the door," helping you respond based on the situations context.
### Using GenAI for notifications
Frigate provides an [MQTT topic](/integrations/mqtt), `frigate/tracked_object_update`, that is updated with a JSON payload containing `event_id` and `description` when your AI provider returns a description for a tracked object. This description could be used directly in notifications, such as sending alerts to your phone or making audio announcements. If additional details from the tracked object are needed, you can query the [HTTP API](/integrations/api/event-events-event-id-get) using the `event_id`, eg: `http://frigate_ip:5000/api/events/<event_id>`.
## Custom Prompts ## Custom Prompts
Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows: Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows:
@@ -178,7 +162,7 @@ genai:
Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire. By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones. Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire. By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones.
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction. Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the thumbnails collected over the object's lifetime to the model. Using a snapshot provides the AI with a higher-resolution image (typically downscaled by the AI itself), but the trade-off is that only a single image is used, which might limit the model's ability to determine object movement or direction.
```yaml ```yaml
cameras: cameras:

View File

@@ -175,16 +175,6 @@ For more information on the various values across different distributions, see h
Depending on your OS and kernel configuration, you may need to change the `/proc/sys/kernel/perf_event_paranoid` kernel tunable. You can test the change by running `sudo sh -c 'echo 2 >/proc/sys/kernel/perf_event_paranoid'` which will persist until a reboot. Make it permanent by running `sudo sh -c 'echo kernel.perf_event_paranoid=2 >> /etc/sysctl.d/local.conf'` Depending on your OS and kernel configuration, you may need to change the `/proc/sys/kernel/perf_event_paranoid` kernel tunable. You can test the change by running `sudo sh -c 'echo 2 >/proc/sys/kernel/perf_event_paranoid'` which will persist until a reboot. Make it permanent by running `sudo sh -c 'echo kernel.perf_event_paranoid=2 >> /etc/sysctl.d/local.conf'`
#### Stats for SR-IOV devices
When using virtualized GPUs via SR-IOV, additional args are needed for GPU stats to function. This can be enabled with the following config:
```yaml
telemetry:
stats:
sriov: True
```
## AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver ## AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver
VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams. VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams.
@@ -241,11 +231,28 @@ docker run -d \
### Setup Decoder ### Setup Decoder
Using `preset-nvidia` ffmpeg will automatically select the necessary profile for the incoming video, and will log an error if the profile is not supported by your GPU. The decoder you need to pass in the `hwaccel_args` will depend on the input video.
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get the ones your card supports)
```
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
```
For example, for H264 video, you'll select `preset-nvidia-h264`.
```yaml ```yaml
ffmpeg: ffmpeg:
hwaccel_args: preset-nvidia hwaccel_args: preset-nvidia-h264
``` ```
If everything is working correctly, you should see a significant improvement in performance. If everything is working correctly, you should see a significant improvement in performance.

View File

@@ -203,13 +203,14 @@ detectors:
ov: ov:
type: openvino type: openvino
device: AUTO device: AUTO
model:
path: /openvino-model/ssdlite_mobilenet_v2.xml
model: model:
width: 300 width: 300
height: 300 height: 300
input_tensor: nhwc input_tensor: nhwc
input_pixel_format: bgr input_pixel_format: bgr
path: /openvino-model/ssdlite_mobilenet_v2.xml
labelmap_path: /openvino-model/coco_91cl_bkgr.txt labelmap_path: /openvino-model/coco_91cl_bkgr.txt
record: record:

View File

@@ -1,45 +0,0 @@
---
id: license_plate_recognition
title: License Plate Recognition (LPR)
---
Frigate can recognize license plates on vehicles and automatically add the detected characters as a `sub_label` to objects that are of type `car`. A common use case may be to read the license plates of cars pulling into a driveway or cars passing by on a street with a dedicated LPR camera.
Users running a Frigate+ model should ensure that `license_plate` is added to the [list of objects to track](https://docs.frigate.video/plus/#available-label-types) either globally or for a specific camera. This will improve the accuracy and performance of the LPR model.
LPR is most effective when the vehicles license plate is fully visible to the camera. For moving vehicles, Frigate will attempt to read the plate continuously, refining its detection and keeping the most confident result. LPR will not run on stationary vehicles.
## Minimum System Requirements
License plate recognition works by running AI models locally on your system. The models are relatively lightweight and run on your CPU. At least 4GB of RAM is required.
## Configuration
License plate recognition is disabled by default. Enable it in your config file:
```yaml
lpr:
enabled: true
```
## Advanced Configuration
Several options are available to fine-tune the LPR feature. For example, you can adjust the `min_area` setting, which defines the minimum size in pixels a license plate must be before LPR runs. The default is 500 pixels.
Additionally, you can define `known_plates` as strings or regular expressions, allowing Frigate to label tracked vehicles with custom sub_labels when a recognized plate is detected. This information is then accessible in the UI, filters, and notifications.
```yaml
lpr:
enabled: true
min_area: 500
known_plates:
Wife's Car:
- "ABC-1234"
- "ABC-I234"
Johnny:
- "J*N-*234" # Using wildcards for H/M and 1/I
Sally:
- "[S5]LL-1234" # Matches SLL-1234 and 5LL-1234
```
In this example, "Wife's Car" will appear as the label for any vehicle matching the plate "ABC-1234." The model might occasionally interpret the digit 1 as a capital I (e.g., "ABC-I234"), so both variations are listed. Similarly, multiple possible variations are specified for Johnny and Sally.

View File

@@ -23,13 +23,13 @@ If you are using go2rtc, you should adjust the following settings in your camera
- Video codec: **H.264** - provides the most compatible video codec with all Live view technologies and browsers. Avoid any kind of "smart codec" or "+" codec like _H.264+_ or _H.265+_. as these non-standard codecs remove keyframes (see below). - Video codec: **H.264** - provides the most compatible video codec with all Live view technologies and browsers. Avoid any kind of "smart codec" or "+" codec like _H.264+_ or _H.265+_. as these non-standard codecs remove keyframes (see below).
- Audio codec: **AAC** - provides the most compatible audio codec with all Live view technologies and browsers that support audio. - Audio codec: **AAC** - provides the most compatible audio codec with all Live view technologies and browsers that support audio.
- I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes. For many users this may not be an issue, but it should be noted that that a 1x i-frame interval will cause more storage utilization if you are using the stream for the `record` role as well. - I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes.
The default video and audio codec on your camera may not always be compatible with your browser, which is why setting them to H.264 and AAC is recommended. See the [go2rtc docs](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#codecs-madness) for codec support information. The default video and audio codec on your camera may not always be compatible with your browser, which is why setting them to H.264 and AAC is recommended. See the [go2rtc docs](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#codecs-madness) for codec support information.
### Audio Support ### Audio Support
MSE Requires PCMA/PCMU or AAC audio, WebRTC requires PCMA/PCMU or opus audio. If you want to support both MSE and WebRTC then your restream config needs to make sure both are enabled. MSE Requires AAC audio, WebRTC requires PCMU/PCMA, or opus audio. If you want to support both MSE and WebRTC then your restream config needs to make sure both are enabled.
```yaml ```yaml
go2rtc: go2rtc:
@@ -138,13 +138,3 @@ services:
::: :::
See [go2rtc WebRTC docs](https://github.com/AlexxIT/go2rtc/tree/v1.8.3#module-webrtc) for more information about this. See [go2rtc WebRTC docs](https://github.com/AlexxIT/go2rtc/tree/v1.8.3#module-webrtc) for more information about this.
### Two way talk
For devices that support two way talk, Frigate can be configured to use the feature from the camera's Live view in the Web UI. You should:
- Set up go2rtc with [WebRTC](#webrtc-extra-configuration).
- Ensure you access Frigate via https (may require [opening port 8971](/frigate/installation/#ports)).
- For the Home Assistant Frigate card, [follow the docs](https://github.com/dermotduffy/frigate-hass-card?tab=readme-ov-file#using-2-way-audio) for the correct source.
To use the Reolink Doorbell with two way talk, you should use the [recommended Reolink configuration](/configuration/camera_specific#reolink-doorbell)

View File

@@ -92,16 +92,10 @@ motion:
lightning_threshold: 0.8 lightning_threshold: 0.8
``` ```
:::warning :::tip
Some cameras like doorbell cameras may have missed detections when someone walks directly in front of the camera and the lightning_threshold causes motion detection to be re-calibrated. In this case, it may be desirable to increase the `lightning_threshold` to ensure these objects are not missed. Some cameras like doorbell cameras may have missed detections when someone walks directly in front of the camera and the lightning_threshold causes motion detection to be re-calibrated. In this case, it may be desirable to increase the `lightning_threshold` to ensure these objects are not missed.
::: :::
:::note
Lightning threshold does not stop motion based recordings from being saved.
:::
Large changes in motion like PTZ moves and camera switches between Color and IR mode should result in no motion detection. This is done via the `lightning_threshold` configuration. It is defined as the percentage of the image used to detect lightning or other substantial changes where motion detection needs to recalibrate. Increasing this value will make motion detection more likely to consider lightning or IR mode changes as valid motion. Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching a doorbell camera. Large changes in motion like PTZ moves and camera switches between Color and IR mode should result in no motion detection. This is done via the `lightning_threshold` configuration. It is defined as the percentage of the image used to detect lightning or other substantial changes where motion detection needs to recalibrate. Increasing this value will make motion detection more likely to consider lightning or IR mode changes as valid motion. Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching a doorbell camera.

View File

@@ -22,8 +22,8 @@ Frigate supports multiple different detectors that work on different types of ha
- [ONNX](#onnx): OpenVINO will automatically be detected and used as a detector in the default Frigate image when a supported ONNX model is configured. - [ONNX](#onnx): OpenVINO will automatically be detected and used as a detector in the default Frigate image when a supported ONNX model is configured.
**Nvidia** **Nvidia**
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs and Jetson devices, using one of many default models. - [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs, using one of many default models.
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` or `-tensorrt-jp(4/5)` Frigate images when a supported ONNX model is configured. - [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` Frigate image when a supported ONNX model is configured.
**Rockchip** **Rockchip**
- [RKNN](#rockchip-platform): RKNN models can run on Rockchip devices with included NPUs. - [RKNN](#rockchip-platform): RKNN models can run on Rockchip devices with included NPUs.
@@ -144,9 +144,7 @@ detectors:
#### SSDLite MobileNet v2 #### SSDLite MobileNet v2
An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model. An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model. Use the model configuration shown below when using the OpenVINO detector with the default model.
Use the model configuration shown below when using the OpenVINO detector with the default OpenVINO model:
```yaml ```yaml
detectors: detectors:
@@ -225,7 +223,7 @@ The model used for TensorRT must be preprocessed on the same hardware platform t
The Frigate image will generate model files during startup if the specified model is not found. Processed models are stored in the `/config/model_cache` folder. Typically the `/config` path is mapped to a directory on the host already and the `model_cache` does not need to be mapped separately unless the user wants to store it in a different location on the host. The Frigate image will generate model files during startup if the specified model is not found. Processed models are stored in the `/config/model_cache` folder. Typically the `/config` path is mapped to a directory on the host already and the `model_cache` does not need to be mapped separately unless the user wants to store it in a different location on the host.
By default, no models will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder. By default, the `yolov7-320` model will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. To select no model generation, set the variable to an empty string, `YOLO_MODELS=""`. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder.
If you have a Jetson device with DLAs (Xavier or Orin), you can generate a model that will run on the DLA by appending `-dla` to your model name, e.g. specify `YOLO_MODELS=yolov7-320-dla`. The model will run on DLA0 (Frigate does not currently support DLA1). DLA-incompatible layers will fall back to running on the GPU. If you have a Jetson device with DLAs (Xavier or Orin), you can generate a model that will run on the DLA by appending `-dla` to your model name, e.g. specify `YOLO_MODELS=yolov7-320-dla`. The model will run on DLA0 (Frigate does not currently support DLA1). DLA-incompatible layers will fall back to running on the GPU.
@@ -256,7 +254,6 @@ yolov4x-mish-640
yolov7-tiny-288 yolov7-tiny-288
yolov7-tiny-416 yolov7-tiny-416
yolov7-640 yolov7-640
yolov7-416
yolov7-320 yolov7-320
yolov7x-640 yolov7x-640
yolov7x-320 yolov7x-320
@@ -267,7 +264,7 @@ An example `docker-compose.yml` fragment that converts the `yolov4-608` and `yol
```yml ```yml
frigate: frigate:
environment: environment:
- YOLO_MODELS=yolov7-320,yolov7x-640 - YOLO_MODELS=yolov4-608,yolov7x-640
- USE_FP16=false - USE_FP16=false
``` ```
@@ -285,8 +282,6 @@ The TensorRT detector can be selected by specifying `tensorrt` as the model type
The TensorRT detector uses `.trt` model files that are located in `/config/model_cache/tensorrt` by default. These model path and dimensions used will depend on which model you have generated. The TensorRT detector uses `.trt` model files that are located in `/config/model_cache/tensorrt` by default. These model path and dimensions used will depend on which model you have generated.
Use the config below to work with generated TRT models:
```yaml ```yaml
detectors: detectors:
tensorrt: tensorrt:
@@ -420,24 +415,6 @@ Note that the labelmap uses a subset of the complete COCO label set that has onl
ONNX is an open format for building machine learning models, Frigate supports running ONNX models on CPU, OpenVINO, and TensorRT. On startup Frigate will automatically try to use a GPU if one is available. ONNX is an open format for building machine learning models, Frigate supports running ONNX models on CPU, OpenVINO, and TensorRT. On startup Frigate will automatically try to use a GPU if one is available.
:::info
If the correct build is used for your GPU then the GPU will be detected and used automatically.
- **AMD**
- ROCm will automatically be detected and used with the ONNX detector in the `-rocm` Frigate image.
- **Intel**
- OpenVINO will automatically be detected and used with the ONNX detector in the default Frigate image.
- **Nvidia**
- Nvidia GPUs will automatically be detected and used with the ONNX detector in the `-tensorrt` Frigate image.
- Jetson devices will automatically be detected and used with the ONNX detector in the `-tensorrt-jp(4/5)` Frigate image.
:::
:::tip :::tip
When using many cameras one detector may not be enough to keep up. Multiple detectors can be defined assuming GPU resources are available. An example configuration would be: When using many cameras one detector may not be enough to keep up. Multiple detectors can be defined assuming GPU resources are available. An example configuration would be:
@@ -480,7 +457,6 @@ model:
width: 320 # <--- should match whatever was set in notebook width: 320 # <--- should match whatever was set in notebook
height: 320 # <--- should match whatever was set in notebook height: 320 # <--- should match whatever was set in notebook
input_pixel_format: bgr input_pixel_format: bgr
input_tensor: nchw
path: /config/yolo_nas_s.onnx path: /config/yolo_nas_s.onnx
labelmap_path: /labelmap/coco-80.txt labelmap_path: /labelmap/coco-80.txt
``` ```
@@ -506,12 +482,11 @@ detectors:
cpu1: cpu1:
type: cpu type: cpu
num_threads: 3 num_threads: 3
model:
path: "/custom_model.tflite"
cpu2: cpu2:
type: cpu type: cpu
num_threads: 3 num_threads: 3
model:
path: "/custom_model.tflite"
``` ```
When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance. When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.
@@ -550,7 +525,7 @@ Hardware accelerated object detection is supported on the following SoCs:
- RK3576 - RK3576
- RK3588 - RK3588
This implementation uses the [Rockchip's RKNN-Toolkit2](https://github.com/airockchip/rknn-toolkit2/), version v2.3.0. Currently, only [Yolo-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) is supported as object detection model. This implementation uses the [Rockchip's RKNN-Toolkit2](https://github.com/airockchip/rknn-toolkit2/), version v2.0.0.beta0. Currently, only [Yolo-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) is supported as object detection model.
### Prerequisites ### Prerequisites
@@ -623,41 +598,7 @@ $ cat /sys/kernel/debug/rknpu/load
::: :::
- All models are automatically downloaded and stored in the folder `config/model_cache/rknn_cache`. After upgrading Frigate, you should remove older models to free up space. - All models are automatically downloaded and stored in the folder `config/model_cache/rknn_cache`. After upgrading Frigate, you should remove older models to free up space.
- You can also provide your own `.rknn` model. You should not save your own models in the `rknn_cache` folder, store them directly in the `model_cache` folder or another subfolder. To convert a model to `.rknn` format see the `rknn-toolkit2`. Note, that there is only post-processing for the supported models. - You can also provide your own `.rknn` model. You should not save your own models in the `rknn_cache` folder, store them directly in the `model_cache` folder or another subfolder. To convert a model to `.rknn` format see the `rknn-toolkit2` (requires a x86 machine). Note, that there is only post-processing for the supported models.
### Converting your own onnx model to rknn format
To convert a onnx model to the rknn format using the [rknn-toolkit2](https://github.com/airockchip/rknn-toolkit2/) you have to:
- Place one ore more models in onnx format in the directory `config/model_cache/rknn_cache/onnx` on your docker host (this might require `sudo` privileges).
- Save the configuration file under `config/conv2rknn.yaml` (see below for details).
- Run `docker exec <frigate_container_id> python3 /opt/conv2rknn.py`. If the conversion was successful, the rknn models will be placed in `config/model_cache/rknn_cache`.
This is an example configuration file that you need to adjust to your specific onnx model:
```yaml
soc: ["rk3562","rk3566", "rk3568", "rk3576", "rk3588"]
quantization: false
output_name: "{input_basename}"
config:
mean_values: [[0, 0, 0]]
std_values: [[255, 255, 255]]
quant_img_rgb2bgr: true
```
Explanation of the paramters:
- `soc`: A list of all SoCs you want to build the rknn model for. If you don't specify this parameter, the script tries to find out your SoC and builds the rknn model for this one.
- `quantization`: true: 8 bit integer (i8) quantization, false: 16 bit float (fp16). Default: false.
- `output_name`: The output name of the model. The following variables are available:
- `quant`: "i8" or "fp16" depending on the config
- `input_basename`: the basename of the input model (e.g. "my_model" if the input model is calles "my_model.onnx")
- `soc`: the SoC this model was build for (e.g. "rk3588")
- `tk_version`: Version of `rknn-toolkit2` (e.g. "2.3.0")
- **example**: Specifying `output_name = "frigate-{quant}-{input_basename}-{soc}-v{tk_version}"` could result in a model called `frigate-i8-my_model-rk3588-v2.3.0.rknn`.
- `config`: Configuration passed to `rknn-toolkit2` for model conversion. For an explanation of all available parameters have a look at section "2.2. Model configuration" of [this manual](https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.0/03_Rockchip_RKNPU_API_Reference_RKNN_Toolkit2_V2.3.0_EN.pdf).
## Hailo-8l ## Hailo-8l
@@ -672,6 +613,8 @@ detectors:
hailo8l: hailo8l:
type: hailo8l type: hailo8l
device: PCIe device: PCIe
model:
path: /config/model_cache/h8l_cache/ssd_mobilenet_v1.hef
model: model:
width: 300 width: 300
@@ -679,5 +622,4 @@ model:
input_tensor: nhwc input_tensor: nhwc
input_pixel_format: bgr input_pixel_format: bgr
model_type: ssd model_type: ssd
path: /config/model_cache/h8l_cache/ssd_mobilenet_v1.hef
``` ```

View File

@@ -5,7 +5,7 @@ title: Available Objects
import labels from "../../../labelmap.txt"; import labels from "../../../labelmap.txt";
Frigate includes the object labels listed below from the Google Coral test data. Frigate includes the object models listed below from the Google Coral test data.
Please note: Please note:

View File

@@ -52,7 +52,7 @@ detectors:
# Required: name of the detector # Required: name of the detector
detector_name: detector_name:
# Required: type of the detector # Required: type of the detector
# Frigate provides many types, see https://docs.frigate.video/configuration/object_detectors for more details (default: shown below) # Frigate provided types include 'cpu', 'edgetpu', 'openvino' and 'tensorrt' (default: shown below)
# Additional detector types can also be plugged in. # Additional detector types can also be plugged in.
# Detectors may require additional configuration. # Detectors may require additional configuration.
# Refer to the Detectors configuration page for more information. # Refer to the Detectors configuration page for more information.
@@ -117,27 +117,25 @@ auth:
hash_iterations: 600000 hash_iterations: 600000
# Optional: model modifications # Optional: model modifications
# NOTE: The default values are for the EdgeTPU detector.
# Other detectors will require the model config to be set.
model: model:
# Required: path to the model (default: automatic based on detector) # Optional: path to the model (default: automatic based on detector)
path: /edgetpu_model.tflite path: /edgetpu_model.tflite
# Required: path to the labelmap (default: shown below) # Optional: path to the labelmap (default: shown below)
labelmap_path: /labelmap.txt labelmap_path: /labelmap.txt
# Required: Object detection model input width (default: shown below) # Required: Object detection model input width (default: shown below)
width: 320 width: 320
# Required: Object detection model input height (default: shown below) # Required: Object detection model input height (default: shown below)
height: 320 height: 320
# Required: Object detection model input colorspace # Optional: Object detection model input colorspace
# Valid values are rgb, bgr, or yuv. (default: shown below) # Valid values are rgb, bgr, or yuv. (default: shown below)
input_pixel_format: rgb input_pixel_format: rgb
# Required: Object detection model input tensor format # Optional: Object detection model input tensor format
# Valid values are nhwc or nchw (default: shown below) # Valid values are nhwc or nchw (default: shown below)
input_tensor: nhwc input_tensor: nhwc
# Required: Object detection model type, currently only used with the OpenVINO detector # Optional: Object detection model type, currently only used with the OpenVINO detector
# Valid values are ssd, yolox, yolonas (default: shown below) # Valid values are ssd, yolox, yolonas (default: shown below)
model_type: ssd model_type: ssd
# Required: Label name modifications. These are merged into the standard labelmap. # Optional: Label name modifications. These are merged into the standard labelmap.
labelmap: labelmap:
2: vehicle 2: vehicle
# Optional: Map of object labels to their attribute labels (default: depends on model) # Optional: Map of object labels to their attribute labels (default: depends on model)
@@ -244,8 +242,6 @@ ffmpeg:
# If set too high, then if a ffmpeg crash or camera stream timeout occurs, you could potentially lose up to a maximum of retry_interval second(s) of footage # If set too high, then if a ffmpeg crash or camera stream timeout occurs, you could potentially lose up to a maximum of retry_interval second(s) of footage
# NOTE: this can be a useful setting for Wireless / Battery cameras to reduce how much footage is potentially lost during a connection timeout. # NOTE: this can be a useful setting for Wireless / Battery cameras to reduce how much footage is potentially lost during a connection timeout.
retry_interval: 10 retry_interval: 10
# Optional: Set tag on HEVC (H.265) recording stream to improve compatibility with Apple players. (default: shown below)
apple_compatibility: false
# Optional: Detect configuration # Optional: Detect configuration
# NOTE: Can be overridden at the camera level # NOTE: Can be overridden at the camera level
@@ -526,14 +522,6 @@ semantic_search:
# NOTE: small model runs on CPU and large model runs on GPU # NOTE: small model runs on CPU and large model runs on GPU
model_size: "small" model_size: "small"
# Optional: Configuration for face recognition capability
face_recognition:
# Optional: Enable semantic search (default: shown below)
enabled: False
# Optional: Set the model size used for embeddings. (default: shown below)
# NOTE: small model runs on CPU and large model runs on GPU
model_size: "small"
# Optional: Configuration for AI generated tracked object descriptions # Optional: Configuration for AI generated tracked object descriptions
# NOTE: Semantic Search must be enabled for this to do anything. # NOTE: Semantic Search must be enabled for this to do anything.
# WARNING: Depending on the provider, this will send thumbnails over the internet # WARNING: Depending on the provider, this will send thumbnails over the internet
@@ -560,12 +548,10 @@ genai:
# Uses https://github.com/AlexxIT/go2rtc (v1.9.2) # Uses https://github.com/AlexxIT/go2rtc (v1.9.2)
go2rtc: go2rtc:
# Optional: Live stream configuration for WebUI. # Optional: jsmpeg stream configuration for WebUI
# NOTE: Can be overridden at the camera level
live: live:
# Optional: Set the name of the stream configured in go2rtc # Optional: Set the name of the stream that should be used for live view
# that should be used for live view in frigate WebUI. (default: name of camera) # in frigate WebUI. (default: name of camera)
# NOTE: In most cases this should be set at the camera level only.
stream_name: camera_name stream_name: camera_name
# Optional: Set the height of the jsmpeg stream. (default: 720) # Optional: Set the height of the jsmpeg stream. (default: 720)
# This must be less than or equal to the height of the detect stream. Lower resolutions # This must be less than or equal to the height of the detect stream. Lower resolutions
@@ -698,7 +684,6 @@ cameras:
# to enable PTZ controls. # to enable PTZ controls.
onvif: onvif:
# Required: host of the camera being connected to. # Required: host of the camera being connected to.
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
host: 0.0.0.0 host: 0.0.0.0
# Optional: ONVIF port for device (default: shown below). # Optional: ONVIF port for device (default: shown below).
port: 8000 port: 8000
@@ -707,8 +692,6 @@ cameras:
user: admin user: admin
# Optional: password for login. # Optional: password for login.
password: admin password: admin
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
tls_insecure: False
# Optional: Ignores time synchronization mismatches between the camera and the server during authentication. # Optional: Ignores time synchronization mismatches between the camera and the server during authentication.
# Using NTP on both ends is recommended and this should only be set to True in a "safe" environment due to the security risk it represents. # Using NTP on both ends is recommended and this should only be set to True in a "safe" environment due to the security risk it represents.
ignore_time_mismatch: False ignore_time_mismatch: False
@@ -772,8 +755,6 @@ cameras:
- cat - cat
# Optional: Restrict generation to objects that entered any of the listed zones (default: none, all zones qualify) # Optional: Restrict generation to objects that entered any of the listed zones (default: none, all zones qualify)
required_zones: [] required_zones: []
# Optional: Save thumbnails sent to generative AI for review/debugging purposes (default: shown below)
debug_save_thumbnails: False
# Optional # Optional
ui: ui:
@@ -815,13 +796,11 @@ telemetry:
- lo - lo
# Optional: Configure system stats # Optional: Configure system stats
stats: stats:
# Optional: Enable AMD GPU stats (default: shown below) # Enable AMD GPU stats (default: shown below)
amd_gpu_stats: True amd_gpu_stats: True
# Optional: Enable Intel GPU stats (default: shown below) # Enable Intel GPU stats (default: shown below)
intel_gpu_stats: True intel_gpu_stats: True
# Optional: Treat GPU as SR-IOV to fix GPU stats (default: shown below) # Enable network bandwidth stats monitoring for camera ffmpeg processes, go2rtc, and object detectors. (default: shown below)
sriov: False
# Optional: Enable network bandwidth stats monitoring for camera ffmpeg processes, go2rtc, and object detectors. (default: shown below)
# NOTE: The container must either be privileged or have cap_net_admin, cap_net_raw capabilities enabled. # NOTE: The container must either be privileged or have cap_net_admin, cap_net_raw capabilities enabled.
network_bandwidth: False network_bandwidth: False
# Optional: Enable the latest version outbound check (default: shown below) # Optional: Enable the latest version outbound check (default: shown below)

View File

@@ -7,7 +7,7 @@ title: Restream
Frigate can restream your video feed as an RTSP feed for other applications such as Home Assistant to utilize it at `rtsp://<frigate_host>:8554/<camera_name>`. Port 8554 must be open. [This allows you to use a video feed for detection in Frigate and Home Assistant live view at the same time without having to make two separate connections to the camera](#reduce-connections-to-camera). The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate. Frigate can restream your video feed as an RTSP feed for other applications such as Home Assistant to utilize it at `rtsp://<frigate_host>:8554/<camera_name>`. Port 8554 must be open. [This allows you to use a video feed for detection in Frigate and Home Assistant live view at the same time without having to make two separate connections to the camera](#reduce-connections-to-camera). The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.2) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#configuration) for more advanced configurations and features. Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.4) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#configuration) for more advanced configurations and features.
:::note :::note
@@ -132,31 +132,9 @@ cameras:
- detect - detect
``` ```
## Handling Complex Passwords
go2rtc expects URL-encoded passwords in the config, [urlencoder.org](https://urlencoder.org) can be used for this purpose.
For example:
```yaml
go2rtc:
streams:
my_camera: rtsp://username:$@foo%@192.168.1.100
```
becomes
```yaml
go2rtc:
streams:
my_camera: rtsp://username:$%40foo%25@192.168.1.100
```
See [this comment(https://github.com/AlexxIT/go2rtc/issues/1217#issuecomment-2242296489) for more information.
## Advanced Restream Configurations ## Advanced Restream Configurations
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below: The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
NOTE: The output will need to be passed with two curly braces `{{output}}` NOTE: The output will need to be passed with two curly braces `{{output}}`

View File

@@ -5,7 +5,7 @@ title: Using Semantic Search
Semantic Search in Frigate allows you to find tracked objects within your review items using either the image itself, a user-defined text description, or an automatically generated one. This feature works by creating _embeddings_ — numerical vector representations — for both the images and text descriptions of your tracked objects. By comparing these embeddings, Frigate assesses their similarities to deliver relevant search results. Semantic Search in Frigate allows you to find tracked objects within your review items using either the image itself, a user-defined text description, or an automatically generated one. This feature works by creating _embeddings_ — numerical vector representations — for both the images and text descriptions of your tracked objects. By comparing these embeddings, Frigate assesses their similarities to deliver relevant search results.
Frigate uses [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create and save embeddings to Frigate's database. All of this runs locally. Frigate has support for [Jina AI's CLIP model](https://huggingface.co/jinaai/jina-clip-v1) to create embeddings, which runs locally. Embeddings are then saved to Frigate's database.
Semantic Search is accessed via the _Explore_ view in the Frigate UI. Semantic Search is accessed via the _Explore_ view in the Frigate UI.
@@ -19,7 +19,7 @@ For best performance, 16GB or more of RAM and a dedicated GPU are recommended.
## Configuration ## Configuration
Semantic Search is disabled by default, and must be enabled in your config file or in the UI's Settings page before it can be used. Semantic Search is a global configuration setting. Semantic search is disabled by default, and must be enabled in your config file before it can be used. Semantic Search is a global configuration setting.
```yaml ```yaml
semantic_search: semantic_search:
@@ -29,9 +29,9 @@ semantic_search:
:::tip :::tip
The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration or by toggling the switch on the Search Settings page in the UI and restarting Frigate. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to turn the UI's switch off or set the config back to `False` before restarting Frigate again. The embeddings database can be re-indexed from the existing tracked objects in your database by adding `reindex: True` to your `semantic_search` configuration. Depending on the number of tracked objects you have, it can take a long while to complete and may max out your CPU while indexing. Make sure to set the config back to `False` before restarting Frigate again.
If you are enabling Semantic Search for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that. If you are enabling the Search feature for the first time, be advised that Frigate does not automatically index older tracked objects. You will need to enable the `reindex` feature in order to do that.
::: :::
@@ -39,9 +39,15 @@ If you are enabling Semantic Search for the first time, be advised that Frigate
The vision model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails. The vision model is able to embed both images and text into the same vector space, which allows `image -> image` and `text -> image` similarity searches. Frigate uses this model on tracked objects to encode the thumbnail image and store it in the database. When searching for tracked objects via text in the search box, Frigate will perform a `text -> image` similarity search against this embedding. When clicking "Find Similar" in the tracked object detail pane, Frigate will perform an `image -> image` similarity search to retrieve the closest matching thumbnails.
The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Explore page when clicking on thumbnail of a tracked object. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions. The text model is used to embed tracked object descriptions and perform searches against them. Descriptions can be created, viewed, and modified on the Search page when clicking on the gray tracked object chip at the top left of each review item. See [the Generative AI docs](/configuration/genai.md) for more information on how to automatically generate tracked object descriptions.
Differently weighted versions of the Jina model are available and can be selected by setting the `model_size` config option as `small` or `large`: Differently weighted CLIP models are available and can be selected by setting the `model_size` config option:
:::tip
The CLIP models are downloaded in ONNX format, which means they will be accelerated using GPU hardware when available. This depends on the Docker build that is used. See [the object detector docs](../configuration/object_detectors.md) for more information.
:::
```yaml ```yaml
semantic_search: semantic_search:
@@ -50,41 +56,11 @@ semantic_search:
``` ```
- Configuring the `large` model employs the full Jina model and will automatically run on the GPU if applicable. - Configuring the `large` model employs the full Jina model and will automatically run on the GPU if applicable.
- Configuring the `small` model employs a quantized version of the Jina model that uses less RAM and runs on CPU with a very negligible difference in embedding quality. - Configuring the `small` model employs a quantized version of the model that uses much less RAM and runs faster on CPU with a very negligible difference in embedding quality.
### GPU Acceleration
The CLIP models are downloaded in ONNX format, and the `large` model can be accelerated using GPU hardware, when available. This depends on the Docker build that is used.
```yaml
semantic_search:
enabled: True
model_size: large
```
:::info
If the correct build is used for your GPU and the `large` model is configured, then the GPU will be detected and used automatically.
**NOTE:** Object detection and Semantic Search are independent features. If you want to use your GPU with Semantic Search, you must choose the appropriate Frigate Docker image for your GPU.
- **AMD**
- ROCm will automatically be detected and used for Semantic Search in the `-rocm` Frigate image.
- **Intel**
- OpenVINO will automatically be detected and used for Semantic Search in the default Frigate image.
- **Nvidia**
- Nvidia GPUs will automatically be detected and used for Semantic Search in the `-tensorrt` Frigate image.
- Jetson devices will automatically be detected and used for Semantic Search in the `-tensorrt-jp(4/5)` Frigate image.
:::
## Usage and Best Practices ## Usage and Best Practices
1. Semantic Search is used in conjunction with the other filters available on the Explore page. Use a combination of traditional filtering and Semantic Search for the best results. 1. Semantic search is used in conjunction with the other filters available on the Search page. Use a combination of traditional filtering and semantic search for the best results.
2. Use the thumbnail search type when searching for particular objects in the scene. Use the description search type when attempting to discern the intent of your object. 2. Use the thumbnail search type when searching for particular objects in the scene. Use the description search type when attempting to discern the intent of your object.
3. Because of how the AI models Frigate uses have been trained, the comparison between text and image embedding distances generally means that with multi-modal (`thumbnail` and `description`) searches, results matching `description` will appear first, even if a `thumbnail` embedding may be a better match. Play with the "Search Type" setting to help find what you are looking for. Note that if you are generating descriptions for specific objects or zones only, this may cause search results to prioritize the objects with descriptions even if the the ones without them are more relevant. 3. Because of how the AI models Frigate uses have been trained, the comparison between text and image embedding distances generally means that with multi-modal (`thumbnail` and `description`) searches, results matching `description` will appear first, even if a `thumbnail` embedding may be a better match. Play with the "Search Type" setting to help find what you are looking for. Note that if you are generating descriptions for specific objects or zones only, this may cause search results to prioritize the objects with descriptions even if the the ones without them are more relevant.
4. Make your search language and tone closely match exactly what you're looking for. If you are using thumbnail search, **phrase your query as an image caption**. Searching for "red car" may not work as well as "red sedan driving down a residential street on a sunny day". 4. Make your search language and tone closely match exactly what you're looking for. If you are using thumbnail search, **phrase your query as an image caption**. Searching for "red car" may not work as well as "red sedan driving down a residential street on a sunny day".

View File

@@ -28,7 +28,7 @@ For the Dahua/Loryta 5442 camera, I use the following settings:
- Encode Mode: H.264 - Encode Mode: H.264
- Resolution: 2688\*1520 - Resolution: 2688\*1520
- Frame Rate(FPS): 15 - Frame Rate(FPS): 15
- I Frame Interval: 30 (15 can also be used to prioritize streaming performance - see the [camera settings recommendations](../configuration/live) for more info) - I Frame Interval: 30
**Sub Stream (Detection)** **Sub Stream (Detection)**

View File

@@ -81,15 +81,15 @@ You can calculate the **minimum** shm size for each camera with the following fo
```console ```console
# Replace <width> and <height> # Replace <width> and <height>
$ python -c 'print("{:.2f}MB".format((<width> * <height> * 1.5 * 20 + 270480) / 1048576))' $ python -c 'print("{:.2f}MB".format((<width> * <height> * 1.5 * 10 + 270480) / 1048576))'
# Example for 1280x720, including logs # Example for 1280x720
$ python -c 'print("{:.2f}MB".format((1280 * 720 * 1.5 * 20 + 270480) / 1048576)) + 40' $ python -c 'print("{:.2f}MB".format((1280 * 720 * 1.5 * 10 + 270480) / 1048576))'
46.63MB 13.44MB
# Example for eight cameras detecting at 1280x720, including logs # Example for eight cameras detecting at 1280x720, including logs
$ python -c 'print("{:.2f}MB".format(((1280 * 720 * 1.5 * 20 + 270480) / 1048576) * 8 + 40))' $ python -c 'print("{:.2f}MB".format(((1280 * 720 * 1.5 * 10 + 270480) / 1048576) * 8 + 40))'
253MB 136.99MB
``` ```
The shm size cannot be set per container for Home Assistant add-ons. However, this is probably not required since by default Home Assistant Supervisor allocates `/dev/shm` with half the size of your total memory. If your machine has 8GB of memory, chances are that Frigate will have access to up to 4GB without any additional configuration. The shm size cannot be set per container for Home Assistant add-ons. However, this is probably not required since by default Home Assistant Supervisor allocates `/dev/shm` with half the size of your total memory. If your machine has 8GB of memory, chances are that Frigate will have access to up to 4GB without any additional configuration.
@@ -193,9 +193,8 @@ services:
container_name: frigate container_name: frigate
privileged: true # this may not be necessary for all setups privileged: true # this may not be necessary for all setups
restart: unless-stopped restart: unless-stopped
stop_grace_period: 30s # allow enough time to shut down the various services
image: ghcr.io/blakeblackshear/frigate:stable image: ghcr.io/blakeblackshear/frigate:stable
shm_size: "512mb" # update for your cameras based on calculation above shm_size: "64mb" # update for your cameras based on calculation above
devices: devices:
- /dev/bus/usb:/dev/bus/usb # Passes the USB Coral, needs to be modified for other versions - /dev/bus/usb:/dev/bus/usb # Passes the USB Coral, needs to be modified for other versions
- /dev/apex_0:/dev/apex_0 # Passes a PCIe Coral, follow driver instructions here https://coral.ai/docs/m2/get-started/#2a-on-linux - /dev/apex_0:/dev/apex_0 # Passes a PCIe Coral, follow driver instructions here https://coral.ai/docs/m2/get-started/#2a-on-linux
@@ -225,7 +224,6 @@ If you can't use docker compose, you can run the container with something simila
docker run -d \ docker run -d \
--name frigate \ --name frigate \
--restart=unless-stopped \ --restart=unless-stopped \
--stop-timeout 30 \
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \ --mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
--device /dev/bus/usb:/dev/bus/usb \ --device /dev/bus/usb:/dev/bus/usb \
--device /dev/dri/renderD128 \ --device /dev/dri/renderD128 \
@@ -305,15 +303,8 @@ To install make sure you have the [community app plugin here](https://forums.unr
## Proxmox ## Proxmox
[According to Proxmox documentation](https://pve.proxmox.com/pve-docs/pve-admin-guide.html#chapter_pct) it is recommended that you run application containers like Frigate inside a Proxmox QEMU VM. This will give you all the advantages of application containerization, while also providing the benefits that VMs offer, such as strong isolation from the host and the ability to live-migrate, which otherwise isnt possible with containers. It is recommended to run Frigate in LXC, rather than in a VM, for maximum performance. The setup can be complex so be prepared to read the Proxmox and LXC documentation. Suggestions include:
:::warning
If you choose to run Frigate via LXC in Proxmox the setup can be complex so be prepared to read the Proxmox and LXC documentation, Frigate does not officially support running inside of an LXC.
:::
Suggestions include:
- For Intel-based hardware acceleration, to allow access to the `/dev/dri/renderD128` device with major number 226 and minor number 128, add the following lines to the `/etc/pve/lxc/<id>.conf` LXC configuration: - For Intel-based hardware acceleration, to allow access to the `/dev/dri/renderD128` device with major number 226 and minor number 128, add the following lines to the `/etc/pve/lxc/<id>.conf` LXC configuration:
- `lxc.cgroup2.devices.allow: c 226:128 rwm` - `lxc.cgroup2.devices.allow: c 226:128 rwm`
- `lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file` - `lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file`

View File

@@ -13,15 +13,7 @@ Use of the bundled go2rtc is optional. You can still configure FFmpeg to connect
# Setup a go2rtc stream # Setup a go2rtc stream
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#module-streams), not just rtsp. First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. For the best experience, you should set the stream name under go2rtc to match the name of your camera so that Frigate will automatically map it and be able to use better live view options for the camera. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#module-streams), not just rtsp.
:::tip
For the best experience, you should set the stream name under `go2rtc` to match the name of your camera so that Frigate will automatically map it and be able to use better live view options for the camera.
See [the live view docs](../configuration/live.md#setting-stream-for-live-ui) for more information.
:::
```yaml ```yaml
go2rtc: go2rtc:
@@ -47,8 +39,8 @@ After adding this to the config, restart Frigate and try to watch the live strea
- Check Video Codec: - Check Video Codec:
- If the camera stream works in go2rtc but not in your browser, the video codec might be unsupported. - If the camera stream works in go2rtc but not in your browser, the video codec might be unsupported.
- If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#codecs-madness) in go2rtc documentation. - If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#codecs-madness) in go2rtc documentation.
- If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view. - If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view.
```yaml ```yaml
go2rtc: go2rtc:
streams: streams:

View File

@@ -115,7 +115,6 @@ services:
frigate: frigate:
container_name: frigate container_name: frigate
restart: unless-stopped restart: unless-stopped
stop_grace_period: 30s
image: ghcr.io/blakeblackshear/frigate:stable image: ghcr.io/blakeblackshear/frigate:stable
volumes: volumes:
- ./config:/config - ./config:/config
@@ -307,9 +306,7 @@ By default, Frigate will retain video of all tracked objects for 10 days. The fu
### Step 7: Complete config ### Step 7: Complete config
At this point you have a complete config with basic functionality. At this point you have a complete config with basic functionality. You can see the [full config reference](../configuration/reference.md) for a complete list of configuration options.
- View [common configuration examples](../configuration/index.md#common-configuration-examples) for a list of common configuration examples.
- View [full config reference](../configuration/reference.md) for a complete list of configuration options.
### Follow up ### Follow up

View File

@@ -94,18 +94,6 @@ Message published for each changed tracked object. The first message is publishe
} }
``` ```
### `frigate/tracked_object_update`
Message published for updates to tracked object metadata, for example when GenAI runs and returns a tracked object description.
```json
{
"type": "description",
"id": "1607123955.475377-mxklsc",
"description": "The car is a red sedan moving away from the camera."
}
```
### `frigate/reviews` ### `frigate/reviews`
Message published for each changed review item. The first message is published when the `detection` or `alert` is initiated. When additional objects are detected or when a zone change occurs, it will publish a, `update` message with the same id. When the review activity has ended a final `end` message is published. Message published for each changed review item. The first message is published when the `detection` or `alert` is initiated. When additional objects are detected or when a zone change occurs, it will publish a, `update` message with the same id. When the review activity has ended a final `end` message is published.

View File

@@ -5,7 +5,7 @@ title: Requesting your first model
## Step 1: Upload and annotate your images ## Step 1: Upload and annotate your images
Before requesting your first model, you will need to upload and verify at least 1 image to Frigate+. The more images you upload, annotate, and verify the better your results will be. Most users start to see very good results once they have at least 100 verified images per camera. Keep in mind that varying conditions should be included. You will want images from cloudy days, sunny days, dawn, dusk, and night. Refer to the [integration docs](../integrations/plus.md#generate-an-api-key) for instructions on how to easily submit images to Frigate+ directly from Frigate. Before requesting your first model, you will need to upload at least 10 images to Frigate+. But for the best results, you should provide at least 100 verified images per camera. Keep in mind that varying conditions should be included. You will want images from cloudy days, sunny days, dawn, dusk, and night. Refer to the [integration docs](../integrations/plus.md#generate-an-api-key) for instructions on how to easily submit images to Frigate+ directly from Frigate.
It is recommended to submit **both** true positives and false positives. This will help the model differentiate between what is and isn't correct. You should aim for a target of 80% true positive submissions and 20% false positives across all of your images. If you are experiencing false positives in a specific area, submitting true positives for any object type near that area in similar lighting conditions will help teach the model what that area looks like when no objects are present. It is recommended to submit **both** true positives and false positives. This will help the model differentiate between what is and isn't correct. You should aim for a target of 80% true positive submissions and 20% false positives across all of your images. If you are experiencing false positives in a specific area, submitting true positives for any object type near that area in similar lighting conditions will help teach the model what that area looks like when no objects are present.
@@ -13,7 +13,7 @@ For more detailed recommendations, you can refer to the docs on [improving your
## Step 2: Submit a model request ## Step 2: Submit a model request
Once you have an initial set of verified images, you can request a model on the Models page. For guidance on choosing a model type, refer to [this part of the documentation](./index.md#available-model-types). Each model request requires 1 of the 12 trainings that you receive with your annual subscription. This model will support all [label types available](./index.md#available-label-types) even if you do not submit any examples for those labels. Model creation can take up to 36 hours. Once you have an initial set of verified images, you can request a model on the Models page. Each model request requires 1 of the 12 trainings that you receive with your annual subscription. This model will support all [label types available](./index.md#available-label-types) even if you do not submit any examples for those labels. Model creation can take up to 36 hours.
![Plus Models Page](/img/plus/plus-models.jpg) ![Plus Models Page](/img/plus/plus-models.jpg)
## Step 3: Set your model id in the config ## Step 3: Set your model id in the config

View File

@@ -3,7 +3,7 @@ id: improving_model
title: Improving your model title: Improving your model
--- ---
You may find that Frigate+ models result in more false positives initially, but by submitting true and false positives, the model will improve. With all the new images now being submitted by subscribers, future base models will improve as more and more examples are incorporated. Note that only images with at least one verified label will be used when training your model. Submitting an image from Frigate as a true or false positive will not verify the image. You still must verify the image in Frigate+ in order for it to be used in training. You may find that Frigate+ models result in more false positives initially, but by submitting true and false positives, the model will improve. Because a limited number of users submitted images to Frigate+ prior to this launch, you may need to submit several hundred images per camera to see good results. With all the new images now being submitted, future base models will improve as more and more users (including you) submit examples to Frigate+. Note that only verified images will be used when training your model. Submitting an image from Frigate as a true or false positive will not verify the image. You still must verify the image in Frigate+ in order for it to be used in training.
- **Submit both true positives and false positives**. This will help the model differentiate between what is and isn't correct. You should aim for a target of 80% true positive submissions and 20% false positives across all of your images. If you are experiencing false positives in a specific area, submitting true positives for any object type near that area in similar lighting conditions will help teach the model what that area looks like when no objects are present. - **Submit both true positives and false positives**. This will help the model differentiate between what is and isn't correct. You should aim for a target of 80% true positive submissions and 20% false positives across all of your images. If you are experiencing false positives in a specific area, submitting true positives for any object type near that area in similar lighting conditions will help teach the model what that area looks like when no objects are present.
- **Lower your thresholds a little in order to generate more false/true positives near the threshold value**. For example, if you have some false positives that are scoring at 68% and some true positives scoring at 72%, you can try lowering your threshold to 65% and submitting both true and false positives within that range. This will help the model learn and widen the gap between true and false positive scores. - **Lower your thresholds a little in order to generate more false/true positives near the threshold value**. For example, if you have some false positives that are scoring at 68% and some true positives scoring at 72%, you can try lowering your threshold to 65% and submitting both true and false positives within that range. This will help the model learn and widen the gap between true and false positive scores.
@@ -36,17 +36,18 @@ Misidentified objects should have a correct label added. For example, if a perso
## Shortcuts for a faster workflow ## Shortcuts for a faster workflow
| Shortcut Key | Description | |Shortcut Key|Description|
| ----------------- | ----------------------------- | |-----|--------|
| `?` | Show all keyboard shortcuts | |`?`|Show all keyboard shortcuts|
| `w` | Add box | |`w`|Add box|
| `d` | Toggle difficult | |`d`|Toggle difficult|
| `s` | Switch to the next label | |`s`|Switch to the next label|
| `tab` | Select next largest box | |`tab`|Select next largest box|
| `del` | Delete current box | |`del`|Delete current box|
| `esc` | Deselect/Cancel | |`esc`|Deselect/Cancel|
| `← ↑ → ↓` | Move box | |`← ↑ → ↓`|Move box|
| `Shift + ← ↑ → ↓` | Resize box | |`Shift + ← ↑ → ↓`|Resize box|
| `scrollwheel` | Zoom in/out | |`-`|Zoom out|
| `f` | Hide/show all but current box | |`=`|Zoom in|
| `spacebar` | Verify and save | |`f`|Hide/show all but current box|
|`spacebar`|Verify and save|

View File

@@ -15,36 +15,17 @@ With a subscription, 12 model trainings per year are included. If you cancel you
Information on how to integrate Frigate+ with Frigate can be found in the [integration docs](../integrations/plus.md). Information on how to integrate Frigate+ with Frigate can be found in the [integration docs](../integrations/plus.md).
## Available model types
There are two model types offered in Frigate+: `mobiledet` and `yolonas`. Both of these models are object detection models and are trained to detect the same set of labels [listed below](#available-label-types).
Not all model types are supported by all detectors, so it's important to choose a model type to match your detector as shown in the table under [supported detector types](#supported-detector-types).
| Model Type | Description |
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------- |
| `mobiledet` | Based on the same architecture as the default model included with Frigate. Runs on Google Coral devices and CPUs. |
| `yolonas` | A newer architecture that offers slightly higher accuracy and improved detection of small objects. Runs on Intel, NVidia GPUs, and AMD GPUs. |
## Supported detector types ## Supported detector types
Currently, Frigate+ models support CPU (`cpu`), Google Coral (`edgetpu`), OpenVino (`openvino`), ONNX (`onnx`), and ROCm (`rocm`) detectors.
:::warning :::warning
Using Frigate+ models with `onnx` and `rocm` is only available with Frigate 0.15, which is still under development. Frigate+ models are not supported for TensorRT or OpenVino yet.
::: :::
| Hardware | Recommended Detector Type | Recommended Model Type | Currently, Frigate+ models only support CPU (`cpu`) and Coral (`edgetpu`) models. OpenVino is next in line to gain support.
| ---------------------------------------------------------------------------------------------------------------------------- | ------------------------- | ---------------------- |
| [CPU](/configuration/object_detectors.md#cpu-detector-not-recommended) | `cpu` | `mobiledet` |
| [Coral (all form factors)](/configuration/object_detectors.md#edge-tpu-detector) | `edgetpu` | `mobiledet` |
| [Intel](/configuration/object_detectors.md#openvino-detector) | `openvino` | `yolonas` |
| [NVidia GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#onnx)\* | `onnx` | `yolonas` |
| [AMD ROCm GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#amdrocm-gpu-detector)\* | `rocm` | `yolonas` |
_\* Requires Frigate 0.15_ The models are created using the same MobileDet architecture as the default model. Additional architectures will be added in future releases as needed.
## Available label types ## Available label types

View File

@@ -49,10 +49,7 @@ The USB Coral can become stuck and need to be restarted, this can happen for a n
## PCIe Coral Not Detected ## PCIe Coral Not Detected
The most common reason for the PCIe Coral not being detected is that the driver has not been installed. This process varies based on what OS and kernel that is being run. The most common reason for the PCIe coral not being detected is that the driver has not been installed. See [the coral docs](https://coral.ai/docs/m2/get-started/#2-install-the-pcie-driver-and-edge-tpu-runtime) for how to install the driver for the PCIe based coral.
- In most cases [the Coral docs](https://coral.ai/docs/m2/get-started/#2-install-the-pcie-driver-and-edge-tpu-runtime) show how to install the driver for the PCIe based Coral.
- For Ubuntu 22.04+ https://github.com/jnicolson/gasket-builder can be used to build and install the latest version of the driver.
## Only One PCIe Coral Is Detected With Coral Dual EdgeTPU ## Only One PCIe Coral Is Detected With Coral Dual EdgeTPU

View File

@@ -98,11 +98,3 @@ docker run -d \
-p 8555:8555/udp \ -p 8555:8555/udp \
ghcr.io/blakeblackshear/frigate:stable ghcr.io/blakeblackshear/frigate:stable
``` ```
### My RTSP stream works fine in VLC, but it does not work when I put the same URL in my Frigate config. Is this a bug?
No. Frigate uses the TCP protocol to connect to your camera's RTSP URL. VLC automatically switches between UDP and TCP depending on network conditions and stream availability. So a stream that works in VLC but not in Frigate is likely due to VLC selecting UDP as the transfer protocol.
TCP ensures that all data packets arrive in the correct order. This is crucial for video recording, decoding, and stream processing, which is why Frigate enforces a TCP connection. UDP is faster but less reliable, as it does not guarantee packet delivery or order, and VLC does not have the same requirements as Frigate.
You can still configure Frigate to use UDP by using ffmpeg input args or the preset `preset-rtsp-udp`. See the [ffmpeg presets](/configuration/ffmpeg_presets) documentation.

View File

@@ -3,15 +3,7 @@ id: recordings
title: Troubleshooting Recordings title: Troubleshooting Recordings
--- ---
## I have Frigate configured for motion recording only, but it still seems to be recording even with no motion. Why? ### WARNING : Unable to keep up with recording segments in cache for camera. Keeping the 5 most recent segments out of 6 and discarding the rest...
You'll want to:
- Make sure your camera's timestamp is masked out with a motion mask. Even if there is no motion occurring in your scene, your motion settings may be sensitive enough to count your timestamp as motion.
- If you have audio detection enabled, keep in mind that audio that is heard above `min_volume` is considered motion.
- [Tune your motion detection settings](/configuration/motion_detection) either by editing your config file or by using the UI's Motion Tuner.
## I see the message: WARNING : Unable to keep up with recording segments in cache for camera. Keeping the 5 most recent segments out of 6 and discarding the rest...
This error can be caused by a number of different issues. The first step in troubleshooting is to enable debug logging for recording. This will enable logging showing how long it takes for recordings to be moved from RAM cache to the disk. This error can be caused by a number of different issues. The first step in troubleshooting is to enable debug logging for recording. This will enable logging showing how long it takes for recordings to be moved from RAM cache to the disk.
@@ -48,7 +40,6 @@ On linux, some helpful tools/commands in diagnosing would be:
On modern linux kernels, the system will utilize some swap if enabled. Setting vm.swappiness=1 no longer means that the kernel will only swap in order to avoid OOM. To prevent any swapping inside a container, set allocations memory and memory+swap to be the same and disable swapping by setting the following docker/podman run parameters: On modern linux kernels, the system will utilize some swap if enabled. Setting vm.swappiness=1 no longer means that the kernel will only swap in order to avoid OOM. To prevent any swapping inside a container, set allocations memory and memory+swap to be the same and disable swapping by setting the following docker/podman run parameters:
**Compose example** **Compose example**
```yaml ```yaml
version: "3.9" version: "3.9"
services: services:
@@ -63,7 +54,6 @@ services:
``` ```
**Run command example** **Run command example**
``` ```
--memory=<MAXRAM> --memory-swap=<MAXSWAP> --memory-swappiness=0 --memory=<MAXRAM> --memory-swap=<MAXSWAP> --memory-swappiness=0
``` ```

7061
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -17,15 +17,15 @@
"write-heading-ids": "docusaurus write-heading-ids" "write-heading-ids": "docusaurus write-heading-ids"
}, },
"dependencies": { "dependencies": {
"@docusaurus/core": "^3.6.3", "@docusaurus/core": "^3.5.2",
"@docusaurus/preset-classic": "^3.6.3", "@docusaurus/preset-classic": "^3.5.2",
"@docusaurus/theme-mermaid": "^3.6.3", "@docusaurus/theme-mermaid": "^3.5.2",
"@docusaurus/plugin-content-docs": "^3.6.3", "@docusaurus/plugin-content-docs": "^3.5.2",
"@mdx-js/react": "^3.1.0", "@mdx-js/react": "^3.0.1",
"clsx": "^2.1.1", "clsx": "^2.1.1",
"docusaurus-plugin-openapi-docs": "^4.3.1", "docusaurus-plugin-openapi-docs": "^4.1.0",
"docusaurus-theme-openapi-docs": "^4.3.1", "docusaurus-theme-openapi-docs": "^4.1.0",
"prism-react-renderer": "^2.4.1", "prism-react-renderer": "^2.4.0",
"raw-loader": "^4.0.2", "raw-loader": "^4.0.2",
"react": "^18.3.1", "react": "^18.3.1",
"react-dom": "^18.3.1" "react-dom": "^18.3.1"

View File

@@ -26,7 +26,7 @@ const sidebars: SidebarsConfig = {
{ {
type: 'link', type: 'link',
label: 'Go2RTC Configuration Reference', label: 'Go2RTC Configuration Reference',
href: 'https://github.com/AlexxIT/go2rtc/tree/v1.9.2#configuration', href: 'https://github.com/AlexxIT/go2rtc/tree/v1.9.4#configuration',
} as PropSidebarItemLink, } as PropSidebarItemLink,
], ],
Detectors: [ Detectors: [
@@ -36,8 +36,6 @@ const sidebars: SidebarsConfig = {
'Semantic Search': [ 'Semantic Search': [
'configuration/semantic_search', 'configuration/semantic_search',
'configuration/genai', 'configuration/genai',
'configuration/face_recognition',
'configuration/license_plate_recognition',
], ],
Cameras: [ Cameras: [
'configuration/cameras', 'configuration/cameras',

File diff suppressed because it is too large Load Diff

View File

@@ -3,15 +3,12 @@ import faulthandler
import signal import signal
import sys import sys
import threading import threading
from typing import Union
import ruamel.yaml
from pydantic import ValidationError from pydantic import ValidationError
from frigate.app import FrigateApp from frigate.app import FrigateApp
from frigate.config import FrigateConfig from frigate.config import FrigateConfig
from frigate.log import setup_logging from frigate.log import setup_logging
from frigate.util.config import find_config_file
def main() -> None: def main() -> None:
@@ -45,51 +42,10 @@ def main() -> None:
print("*************************************************************") print("*************************************************************")
print("*************************************************************") print("*************************************************************")
print("*** Config Validation Errors ***") print("*** Config Validation Errors ***")
print("*************************************************************\n") print("*************************************************************")
# Attempt to get the original config file for line number tracking
config_path = find_config_file()
with open(config_path, "r") as f:
yaml_config = ruamel.yaml.YAML()
yaml_config.preserve_quotes = True
full_config = yaml_config.load(f)
for error in e.errors(): for error in e.errors():
error_path = error["loc"] location = ".".join(str(item) for item in error["loc"])
print(f"{location}: {error['msg']}")
current = full_config
line_number = "Unknown"
last_line_number = "Unknown"
try:
for i, part in enumerate(error_path):
key: Union[int, str] = (
int(part) if isinstance(part, str) and part.isdigit() else part
)
if isinstance(current, ruamel.yaml.comments.CommentedMap):
current = current[key]
elif isinstance(current, list):
if isinstance(key, int):
current = current[key]
if hasattr(current, "lc"):
last_line_number = current.lc.line
if i == len(error_path) - 1:
if hasattr(current, "lc"):
line_number = current.lc.line
else:
line_number = last_line_number
except Exception as traverse_error:
print(f"Could not determine exact line number: {traverse_error}")
if current != full_config:
print(f"Line # : {line_number}")
print(f"Key : {' -> '.join(map(str, error_path))}")
print(f"Value : {error.get('input', '-')}")
print(f"Message : {error.get('msg', error.get('type', 'Unknown'))}\n")
print("*************************************************************") print("*************************************************************")
print("*** End Config Validation Errors ***") print("*** End Config Validation Errors ***")
print("*************************************************************") print("*************************************************************")

View File

@@ -7,30 +7,27 @@ import os
import traceback import traceback
from datetime import datetime, timedelta from datetime import datetime, timedelta
from functools import reduce from functools import reduce
from io import StringIO
from typing import Any, Optional from typing import Any, Optional
import requests import requests
import ruamel.yaml
from fastapi import APIRouter, Body, Path, Request, Response from fastapi import APIRouter, Body, Path, Request, Response
from fastapi.encoders import jsonable_encoder from fastapi.encoders import jsonable_encoder
from fastapi.params import Depends from fastapi.params import Depends
from fastapi.responses import JSONResponse, PlainTextResponse from fastapi.responses import JSONResponse, PlainTextResponse
from markupsafe import escape from markupsafe import escape
from peewee import operator from peewee import operator
from pydantic import ValidationError
from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryParameters from frigate.api.defs.app_body import AppConfigSetBody
from frigate.api.defs.request.app_body import AppConfigSetBody from frigate.api.defs.app_query_parameters import AppTimelineHourlyQueryParameters
from frigate.api.defs.tags import Tags from frigate.api.defs.tags import Tags
from frigate.config import FrigateConfig from frigate.config import FrigateConfig
from frigate.const import CONFIG_DIR
from frigate.models import Event, Timeline from frigate.models import Event, Timeline
from frigate.util.builtin import ( from frigate.util.builtin import (
clean_camera_user_pass, clean_camera_user_pass,
get_tz_modifiers, get_tz_modifiers,
update_yaml_from_url, update_yaml_from_url,
) )
from frigate.util.config import find_config_file
from frigate.util.services import ( from frigate.util.services import (
ffprobe_stream, ffprobe_stream,
get_nvidia_driver_info, get_nvidia_driver_info,
@@ -137,27 +134,9 @@ def config(request: Request):
for zone_name, zone in config_obj.cameras[camera_name].zones.items(): for zone_name, zone in config_obj.cameras[camera_name].zones.items():
camera_dict["zones"][zone_name]["color"] = zone.color camera_dict["zones"][zone_name]["color"] = zone.color
# remove go2rtc stream passwords
go2rtc: dict[str, any] = config_obj.go2rtc.model_dump(
mode="json", warnings="none", exclude_none=True
)
for stream_name, stream in go2rtc.get("streams", {}).items():
if stream is None:
continue
if isinstance(stream, str):
cleaned = clean_camera_user_pass(stream)
else:
cleaned = []
for item in stream:
cleaned.append(clean_camera_user_pass(item))
config["go2rtc"]["streams"][stream_name] = cleaned
config["plus"] = {"enabled": request.app.frigate_config.plus_api.is_active()} config["plus"] = {"enabled": request.app.frigate_config.plus_api.is_active()}
config["model"]["colormap"] = config_obj.model.colormap config["model"]["colormap"] = config_obj.model.colormap
# use merged labelamp
for detector_config in config["detectors"].values(): for detector_config in config["detectors"].values():
detector_config["model"]["labelmap"] = ( detector_config["model"]["labelmap"] = (
request.app.frigate_config.model.merged_labelmap request.app.frigate_config.model.merged_labelmap
@@ -168,7 +147,13 @@ def config(request: Request):
@router.get("/config/raw") @router.get("/config/raw")
def config_raw(): def config_raw():
config_file = find_config_file() config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
if not os.path.isfile(config_file): if not os.path.isfile(config_file):
return JSONResponse( return JSONResponse(
@@ -188,6 +173,7 @@ def config_raw():
@router.post("/config/save") @router.post("/config/save")
def config_save(save_option: str, body: Any = Body(media_type="text/plain")): def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
new_config = body.decode() new_config = body.decode()
if not new_config: if not new_config:
return JSONResponse( return JSONResponse(
content=( content=(
@@ -198,64 +184,13 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
# Validate the config schema # Validate the config schema
try: try:
# Use ruamel to parse and preserve line numbers
yaml_config = ruamel.yaml.YAML()
yaml_config.preserve_quotes = True
full_config = yaml_config.load(StringIO(new_config))
FrigateConfig.parse_yaml(new_config) FrigateConfig.parse_yaml(new_config)
except ValidationError as e:
error_message = []
for error in e.errors():
error_path = error["loc"]
current = full_config
line_number = "Unknown"
last_line_number = "Unknown"
try:
for i, part in enumerate(error_path):
key = int(part) if part.isdigit() else part
if isinstance(current, ruamel.yaml.comments.CommentedMap):
current = current[key]
elif isinstance(current, list):
current = current[key]
if hasattr(current, "lc"):
last_line_number = current.lc.line
if i == len(error_path) - 1:
if hasattr(current, "lc"):
line_number = current.lc.line
else:
line_number = last_line_number
except Exception:
line_number = "Unable to determine"
error_message.append(
f"Line {line_number}: {' -> '.join(map(str, error_path))} - {error.get('msg', error.get('type', 'Unknown'))}"
)
return JSONResponse(
content=(
{
"success": False,
"message": "Your configuration is invalid.\nSee the official documentation at docs.frigate.video.\n\n"
+ "\n".join(error_message),
}
),
status_code=400,
)
except Exception: except Exception:
return JSONResponse( return JSONResponse(
content=( content=(
{ {
"success": False, "success": False,
"message": f"\nYour configuration is invalid.\nSee the official documentation at docs.frigate.video.\n\n{escape(str(traceback.format_exc()))}", "message": f"\nConfig Error:\n\n{escape(str(traceback.format_exc()))}",
} }
), ),
status_code=400, status_code=400,
@@ -263,7 +198,13 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
# Save the config to file # Save the config to file
try: try:
config_file = find_config_file() config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
with open(config_file, "w") as f: with open(config_file, "w") as f:
f.write(new_config) f.write(new_config)
@@ -312,7 +253,13 @@ def config_save(save_option: str, body: Any = Body(media_type="text/plain")):
@router.put("/config/set") @router.put("/config/set")
def config_set(request: Request, body: AppConfigSetBody): def config_set(request: Request, body: AppConfigSetBody):
config_file = find_config_file() config_file = os.environ.get("CONFIG_FILE", f"{CONFIG_DIR}/config.yml")
# Check if we can use .yaml instead of .yml
config_file_yaml = config_file.replace(".yml", ".yaml")
if os.path.isfile(config_file_yaml):
config_file = config_file_yaml
with open(config_file, "r") as f: with open(config_file, "r") as f:
old_raw_config = f.read() old_raw_config = f.read()

View File

@@ -18,7 +18,7 @@ from joserfc import jwt
from peewee import DoesNotExist from peewee import DoesNotExist
from slowapi import Limiter from slowapi import Limiter
from frigate.api.defs.request.app_body import ( from frigate.api.defs.app_body import (
AppPostLoginBody, AppPostLoginBody,
AppPostUsersBody, AppPostUsersBody,
AppPutPasswordBody, AppPutPasswordBody,
@@ -85,12 +85,7 @@ def get_remote_addr(request: Request):
return str(ip) return str(ip)
# if there wasn't anything in the route, just return the default # if there wasn't anything in the route, just return the default
remote_addr = None return request.remote_addr or "127.0.0.1"
if hasattr(request, "remote_addr"):
remote_addr = request.remote_addr
return remote_addr or "127.0.0.1"
def get_jwt_secret() -> str: def get_jwt_secret() -> str:
@@ -329,7 +324,7 @@ def login(request: Request, body: AppPostLoginBody):
try: try:
db_user: User = User.get_by_id(user) db_user: User = User.get_by_id(user)
except DoesNotExist: except DoesNotExist:
return JSONResponse(content={"message": "Login failed"}, status_code=401) return JSONResponse(content={"message": "Login failed"}, status_code=400)
password_hash = db_user.password_hash password_hash = db_user.password_hash
if verify_password(password, password_hash): if verify_password(password, password_hash):
@@ -340,7 +335,7 @@ def login(request: Request, body: AppPostLoginBody):
response, JWT_COOKIE_NAME, encoded_jwt, expiration, JWT_COOKIE_SECURE response, JWT_COOKIE_NAME, encoded_jwt, expiration, JWT_COOKIE_SECURE
) )
return response return response
return JSONResponse(content={"message": "Login failed"}, status_code=401) return JSONResponse(content={"message": "Login failed"}, status_code=400)
@router.get("/users") @router.get("/users")

View File

@@ -1,127 +0,0 @@
"""Object classification APIs."""
import logging
import os
import random
import shutil
import string
from fastapi import APIRouter, Request, UploadFile
from fastapi.responses import JSONResponse
from pathvalidate import sanitize_filename
from frigate.api.defs.tags import Tags
from frigate.const import FACE_DIR
from frigate.embeddings import EmbeddingsContext
logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.events])
@router.get("/faces")
def get_faces():
face_dict: dict[str, list[str]] = {}
for name in os.listdir(FACE_DIR):
face_dir = os.path.join(FACE_DIR, name)
if not os.path.isdir(face_dir):
continue
face_dict[name] = []
for file in sorted(
os.listdir(face_dir),
key=lambda f: os.path.getctime(os.path.join(face_dir, f)),
reverse=True,
):
face_dict[name].append(file)
return JSONResponse(status_code=200, content=face_dict)
@router.post("/faces/{name}")
async def register_face(request: Request, name: str, file: UploadFile):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
context: EmbeddingsContext = request.app.embeddings
result = context.register_face(name, await file.read())
return JSONResponse(
status_code=200 if result.get("success", True) else 400,
content=result,
)
@router.post("/faces/train/{name}/classify")
def train_face(request: Request, name: str, body: dict = None):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
json: dict[str, any] = body or {}
training_file = os.path.join(
FACE_DIR, f"train/{sanitize_filename(json.get('training_file', ''))}"
)
if not training_file or not os.path.isfile(training_file):
return JSONResponse(
content=(
{
"success": False,
"message": f"Invalid filename or no file exists: {training_file}",
}
),
status_code=404,
)
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
new_name = f"{name}-{rand_id}.webp"
new_file = os.path.join(FACE_DIR, f"{name}/{new_name}")
shutil.move(training_file, new_file)
context: EmbeddingsContext = request.app.embeddings
context.clear_face_classifier()
return JSONResponse(
content=(
{
"success": True,
"message": f"Successfully saved {training_file} as {new_name}.",
}
),
status_code=200,
)
@router.post("/faces/{name}/delete")
def deregister_faces(request: Request, name: str, body: dict = None):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
json: dict[str, any] = body or {}
list_of_ids = json.get("ids", "")
if not list_of_ids or len(list_of_ids) == 0:
return JSONResponse(
content=({"success": False, "message": "Not a valid list of ids"}),
status_code=404,
)
context: EmbeddingsContext = request.app.embeddings
context.delete_face_ids(
name, map(lambda file: sanitize_filename(file), list_of_ids)
)
return JSONResponse(
content=({"success": True, "message": "Successfully deleted faces."}),
status_code=200,
)

View File

@@ -1,4 +1,4 @@
from typing import List, Optional, Union from typing import Optional, Union
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
@@ -8,9 +8,6 @@ class EventsSubLabelBody(BaseModel):
subLabelScore: Optional[float] = Field( subLabelScore: Optional[float] = Field(
title="Score for sub label", default=None, gt=0.0, le=1.0 title="Score for sub label", default=None, gt=0.0, le=1.0
) )
camera: Optional[str] = Field(
title="Camera this object is detected on.", default=None
)
class EventsDescriptionBody(BaseModel): class EventsDescriptionBody(BaseModel):
@@ -20,18 +17,14 @@ class EventsDescriptionBody(BaseModel):
class EventsCreateBody(BaseModel): class EventsCreateBody(BaseModel):
source_type: Optional[str] = "api" source_type: Optional[str] = "api"
sub_label: Optional[str] = None sub_label: Optional[str] = None
score: Optional[float] = 0 score: Optional[int] = 0
duration: Optional[int] = 30 duration: Optional[int] = 30
include_recording: Optional[bool] = True include_recording: Optional[bool] = True
draw: Optional[dict] = {} draw: Optional[dict] = {}
class EventsEndBody(BaseModel): class EventsEndBody(BaseModel):
end_time: Optional[float] = None end_time: Optional[int] = None
class EventsDeleteBody(BaseModel):
event_ids: List[str] = Field(title="The event IDs to delete")
class SubmitPlusBody(BaseModel): class SubmitPlusBody(BaseModel):

View File

@@ -28,7 +28,6 @@ class EventsQueryParams(BaseModel):
is_submitted: Optional[int] = None is_submitted: Optional[int] = None
min_length: Optional[float] = None min_length: Optional[float] = None
max_length: Optional[float] = None max_length: Optional[float] = None
event_id: Optional[str] = None
sort: Optional[str] = None sort: Optional[str] = None
timezone: Optional[str] = "utc" timezone: Optional[str] = "utc"
@@ -47,7 +46,6 @@ class EventsSearchQueryParams(BaseModel):
time_range: Optional[str] = DEFAULT_TIME_RANGE time_range: Optional[str] = DEFAULT_TIME_RANGE
has_clip: Optional[bool] = None has_clip: Optional[bool] = None
has_snapshot: Optional[bool] = None has_snapshot: Optional[bool] = None
is_submitted: Optional[bool] = None
timezone: Optional[str] = "utc" timezone: Optional[str] = "utc"
min_score: Optional[float] = None min_score: Optional[float] = None
max_score: Optional[float] = None max_score: Optional[float] = None

View File

@@ -20,7 +20,6 @@ class MediaLatestFrameQueryParams(BaseModel):
regions: Optional[int] = None regions: Optional[int] = None
quality: Optional[int] = 70 quality: Optional[int] = 70
height: Optional[int] = None height: Optional[int] = None
store: Optional[int] = None
class MediaEventsSnapshotQueryParams(BaseModel): class MediaEventsSnapshotQueryParams(BaseModel):

Some files were not shown because too many files have changed in this diff Show More