Work through most of the cspell warnings in python (#13794)

This commit is contained in:
gtsiam
2024-09-17 18:41:46 +03:00
committed by GitHub
parent 350abda21a
commit edababa88e
20 changed files with 208 additions and 66 deletions

View File

@@ -55,13 +55,13 @@ class FrigateMotionDetector(MotionDetector):
# Improve contrast
if self.improve_contrast.value:
minval = np.percentile(resized_frame, 4)
maxval = np.percentile(resized_frame, 96)
min_value = np.percentile(resized_frame, 4)
max_value = np.percentile(resized_frame, 96)
# don't adjust if the image is a single color
if minval < maxval:
resized_frame = np.clip(resized_frame, minval, maxval)
if min_value < max_value:
resized_frame = np.clip(resized_frame, min_value, max_value)
resized_frame = (
((resized_frame - minval) / (maxval - minval)) * 255
((resized_frame - min_value) / (max_value - min_value)) * 255
).astype(np.uint8)
# mask frame
@@ -100,13 +100,13 @@ class FrigateMotionDetector(MotionDetector):
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh_dilated = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(
contours = cv2.findContours(
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cnts = imutils.grab_contours(cnts)
contours = imutils.grab_contours(contours)
# loop over the contours
for c in cnts:
for c in contours:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > self.contour_area.value:
@@ -124,7 +124,7 @@ class FrigateMotionDetector(MotionDetector):
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
# print("--------")
# print(self.frame_counter)
for c in cnts:
for c in contours:
contour_area = cv2.contourArea(c)
if contour_area > self.contour_area.value:
x, y, w, h = cv2.boundingRect(c)

View File

@@ -79,12 +79,15 @@ class ImprovedMotionDetector(MotionDetector):
# Improve contrast
if self.config.improve_contrast:
# TODO tracking moving average of min/max to avoid sudden contrast changes
minval = np.percentile(resized_frame, 4).astype(np.uint8)
maxval = np.percentile(resized_frame, 96).astype(np.uint8)
min_value = np.percentile(resized_frame, 4).astype(np.uint8)
max_value = np.percentile(resized_frame, 96).astype(np.uint8)
# skip contrast calcs if the image is a single color
if minval < maxval:
if min_value < max_value:
# keep track of the last 50 contrast values
self.contrast_values[self.contrast_values_index] = [minval, maxval]
self.contrast_values[self.contrast_values_index] = [
min_value,
max_value,
]
self.contrast_values_index += 1
if self.contrast_values_index == len(self.contrast_values):
self.contrast_values_index = 0
@@ -122,14 +125,14 @@ class ImprovedMotionDetector(MotionDetector):
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh_dilated = cv2.dilate(thresh, None, iterations=1)
cnts = cv2.findContours(
contours = cv2.findContours(
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cnts = imutils.grab_contours(cnts)
contours = imutils.grab_contours(contours)
# loop over the contours
total_contour_area = 0
for c in cnts:
for c in contours:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
total_contour_area += contour_area