forked from Github/frigate
upgrade to python3.8 and switch from plasma store to shared_memory
This commit is contained in:
@@ -2,12 +2,14 @@ import os
|
||||
import datetime
|
||||
import hashlib
|
||||
import multiprocessing as mp
|
||||
import queue
|
||||
from multiprocessing.connection import Connection
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict
|
||||
import numpy as np
|
||||
import pyarrow.plasma as plasma
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
from frigate.util import EventsPerSecond, listen
|
||||
from frigate.util import EventsPerSecond, listen, SharedMemoryFrameManager
|
||||
|
||||
def load_labels(path, encoding='utf-8'):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
@@ -100,73 +102,77 @@ class LocalObjectDetector(ObjectDetector):
|
||||
|
||||
return detections
|
||||
|
||||
def run_detector(detection_queue, avg_speed, start, tf_device):
|
||||
def run_detector(detection_queue, result_connections: Dict[str, Connection], avg_speed, start, tf_device):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
listen()
|
||||
plasma_client = plasma.connect("/tmp/plasma")
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
object_detector = LocalObjectDetector(tf_device=tf_device)
|
||||
|
||||
while True:
|
||||
object_id_str = detection_queue.get()
|
||||
object_id_hash = hashlib.sha1(str.encode(object_id_str))
|
||||
object_id = plasma.ObjectID(object_id_hash.digest())
|
||||
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
|
||||
input_frame = plasma_client.get(object_id, timeout_ms=0)
|
||||
connection_id = detection_queue.get()
|
||||
input_frame = frame_manager.get(connection_id, (1,300,300,3))
|
||||
|
||||
if input_frame is plasma.ObjectNotAvailable:
|
||||
if input_frame is None:
|
||||
continue
|
||||
|
||||
# detect and put the output in the plasma store
|
||||
start.value = datetime.datetime.now().timestamp()
|
||||
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
|
||||
# TODO: what is the overhead for pickling this result vs writing back to shared memory?
|
||||
# I could try using an Event() and waiting in the other process before looking in memory...
|
||||
detections = object_detector.detect_raw(input_frame)
|
||||
result_connections[connection_id].send(detections)
|
||||
duration = datetime.datetime.now().timestamp()-start.value
|
||||
start.value = 0.0
|
||||
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self, tf_device=None):
|
||||
def __init__(self, result_connections, tf_device=None):
|
||||
self.result_connections = result_connections
|
||||
self.detection_queue = mp.Queue()
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
self.detection_start = mp.Value('d', 0.0)
|
||||
self.detect_process = None
|
||||
self.tf_device = tf_device
|
||||
self.start_or_restart()
|
||||
|
||||
def stop(self):
|
||||
self.detect_process.terminate()
|
||||
print("Waiting for detection process to exit gracefully...")
|
||||
self.detect_process.join(timeout=30)
|
||||
if self.detect_process.exitcode is None:
|
||||
print("Detection process didnt exit. Force killing...")
|
||||
self.detect_process.kill()
|
||||
self.detect_process.join()
|
||||
|
||||
def start_or_restart(self):
|
||||
self.detection_start.value = 0.0
|
||||
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||
self.detect_process.terminate()
|
||||
print("Waiting for detection process to exit gracefully...")
|
||||
self.detect_process.join(timeout=30)
|
||||
if self.detect_process.exitcode is None:
|
||||
print("Detection process didnt exit. Force killing...")
|
||||
self.detect_process.kill()
|
||||
self.detect_process.join()
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start, self.tf_device))
|
||||
self.stop()
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.result_connections, self.avg_inference_speed, self.detection_start, self.tf_device))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
class RemoteObjectDetector():
|
||||
def __init__(self, name, labels, detection_queue):
|
||||
def __init__(self, name, labels, detection_queue, result_connection: Connection):
|
||||
self.labels = load_labels(labels)
|
||||
self.name = name
|
||||
self.fps = EventsPerSecond()
|
||||
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||
self.detection_queue = detection_queue
|
||||
self.result_connection = result_connection
|
||||
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=True, size=300*300*3)
|
||||
self.np_shm = np.ndarray((1,300,300,3), dtype=np.uint8, buffer=self.shm.buf)
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
detections = []
|
||||
|
||||
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
|
||||
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
|
||||
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
|
||||
self.plasma_client.put(tensor_input, object_id_frame)
|
||||
self.detection_queue.put(now)
|
||||
raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
|
||||
|
||||
if raw_detections is plasma.ObjectNotAvailable:
|
||||
self.plasma_client.delete([object_id_frame])
|
||||
# copy input to shared memory
|
||||
# TODO: what if I just write it there in the first place?
|
||||
self.np_shm[:] = tensor_input[:]
|
||||
self.detection_queue.put(self.name)
|
||||
if self.result_connection.poll(10):
|
||||
raw_detections = self.result_connection.recv()
|
||||
else:
|
||||
return detections
|
||||
|
||||
for d in raw_detections:
|
||||
@@ -177,6 +183,5 @@ class RemoteObjectDetector():
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
self.plasma_client.delete([object_id_frame, object_id_detections])
|
||||
self.fps.update()
|
||||
return detections
|
||||
|
||||
Reference in New Issue
Block a user