forked from Github/frigate
Reimplement support for rknn detector (#11365)
* initial support for rknn detector * remove purge_model_cache option * update rknn * support rk3576 * fix post_process_yolonas call * add yolonas models * update config * exclude yolonas from image * remove code
This commit is contained in:
@@ -72,7 +72,7 @@ class DetectionApi(ABC):
|
||||
|
||||
def post_process(self, output):
|
||||
if self.detector_config.model.model_type == ModelTypeEnum.yolonas:
|
||||
return self.yolonas(output)
|
||||
return self.post_process_yolonas(output)
|
||||
else:
|
||||
raise ValueError(
|
||||
f'Model type "{self.detector_config.model.model_type}" is currently not supported.'
|
||||
|
||||
@@ -1,118 +1,157 @@
|
||||
import logging
|
||||
import os.path
|
||||
import re
|
||||
import urllib.request
|
||||
from typing import Literal
|
||||
|
||||
try:
|
||||
from hide_warnings import hide_warnings
|
||||
except: # noqa: E722
|
||||
|
||||
def hide_warnings(func):
|
||||
pass
|
||||
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "rknn"
|
||||
|
||||
supported_socs = ["rk3562", "rk3566", "rk3568", "rk3588"]
|
||||
supported_socs = ["rk3562", "rk3566", "rk3568", "rk3576", "rk3588"]
|
||||
|
||||
supported_models = {ModelTypeEnum.yolonas: "^deci-fp16-yolonas_[sml]$"}
|
||||
|
||||
model_chache_dir = "/config/model_cache/rknn_cache/"
|
||||
|
||||
|
||||
class RknnDetectorConfig(BaseDetectorConfig):
|
||||
type: Literal[DETECTOR_KEY]
|
||||
core_mask: int = Field(default=0, ge=0, le=7, title="Core mask for NPU.")
|
||||
num_cores: int = Field(default=0, ge=0, le=3, title="Number of NPU cores to use.")
|
||||
purge_model_cache: bool = Field(default=True)
|
||||
|
||||
|
||||
class Rknn(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
|
||||
def __init__(self, config: RknnDetectorConfig):
|
||||
# find out SoC
|
||||
try:
|
||||
with open("/proc/device-tree/compatible") as file:
|
||||
soc = file.read().split(",")[-1].strip("\x00")
|
||||
except FileNotFoundError:
|
||||
logger.error("Make sure to run docker in privileged mode.")
|
||||
raise Exception("Make sure to run docker in privileged mode.")
|
||||
|
||||
if soc not in supported_socs:
|
||||
logger.error(
|
||||
"Your SoC is not supported. Your SoC is: {}. Currently these SoCs are supported: {}.".format(
|
||||
soc, supported_socs
|
||||
)
|
||||
)
|
||||
raise Exception(
|
||||
"Your SoC is not supported. Your SoC is: {}. Currently these SoCs are supported: {}.".format(
|
||||
soc, supported_socs
|
||||
)
|
||||
)
|
||||
|
||||
if not os.path.isfile("/usr/lib/librknnrt.so"):
|
||||
if "rk356" in soc:
|
||||
os.rename("/usr/lib/librknnrt_rk356x.so", "/usr/lib/librknnrt.so")
|
||||
elif "rk3588" in soc:
|
||||
os.rename("/usr/lib/librknnrt_rk3588.so", "/usr/lib/librknnrt.so")
|
||||
|
||||
self.core_mask = config.core_mask
|
||||
super().__init__(config)
|
||||
self.height = config.model.height
|
||||
self.width = config.model.width
|
||||
core_mask = 2**config.num_cores - 1
|
||||
soc = self.get_soc()
|
||||
|
||||
if True:
|
||||
os.makedirs("/config/model_cache/rknn", exist_ok=True)
|
||||
model_props = self.parse_model_input(config.model.path, soc)
|
||||
|
||||
if (config.model.width != 320) or (config.model.height != 320):
|
||||
logger.error(
|
||||
"Make sure to set the model width and height to 320 in your config.yml."
|
||||
)
|
||||
raise Exception(
|
||||
"Make sure to set the model width and height to 320 in your config.yml."
|
||||
)
|
||||
if model_props["preset"]:
|
||||
config.model.model_type = model_props["model_type"]
|
||||
|
||||
if config.model.input_pixel_format != "bgr":
|
||||
logger.error(
|
||||
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
|
||||
)
|
||||
raise Exception(
|
||||
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
|
||||
)
|
||||
|
||||
if config.model.input_tensor != "nhwc":
|
||||
logger.error(
|
||||
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
|
||||
)
|
||||
raise Exception(
|
||||
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
|
||||
)
|
||||
if model_props["model_type"] == ModelTypeEnum.yolonas:
|
||||
logger.info("""
|
||||
You are using yolo-nas with weights from DeciAI.
|
||||
These weights are subject to their license and can't be used commercially.
|
||||
For more information, see: https://docs.deci.ai/super-gradients/latest/LICENSE.YOLONAS.html
|
||||
""")
|
||||
|
||||
from rknnlite.api import RKNNLite
|
||||
|
||||
self.rknn = RKNNLite(verbose=False)
|
||||
if self.rknn.load_rknn(self.model_path) != 0:
|
||||
if self.rknn.load_rknn(model_props["path"]) != 0:
|
||||
logger.error("Error initializing rknn model.")
|
||||
if self.rknn.init_runtime(core_mask=self.core_mask) != 0:
|
||||
if self.rknn.init_runtime(core_mask=core_mask) != 0:
|
||||
logger.error(
|
||||
"Error initializing rknn runtime. Do you run docker in privileged mode?"
|
||||
)
|
||||
|
||||
raise Exception(
|
||||
"RKNN does not currently support any models. Please see the docs for more info."
|
||||
)
|
||||
|
||||
def __del__(self):
|
||||
self.rknn.release()
|
||||
|
||||
@hide_warnings
|
||||
def inference(self, tensor_input):
|
||||
return self.rknn.inference(inputs=tensor_input)
|
||||
def get_soc(self):
|
||||
try:
|
||||
with open("/proc/device-tree/compatible") as file:
|
||||
soc = file.read().split(",")[-1].strip("\x00")
|
||||
except FileNotFoundError:
|
||||
raise Exception("Make sure to run docker in privileged mode.")
|
||||
|
||||
if soc not in supported_socs:
|
||||
raise Exception(
|
||||
f"Your SoC is not supported. Your SoC is: {soc}. Currently these SoCs are supported: {supported_socs}."
|
||||
)
|
||||
|
||||
return soc
|
||||
|
||||
def parse_model_input(self, model_path, soc):
|
||||
model_props = {}
|
||||
|
||||
# find out if user provides his own model
|
||||
# user provided models should be a path and contain a "/"
|
||||
if "/" in model_path:
|
||||
model_props["preset"] = False
|
||||
model_props["path"] = model_path
|
||||
else:
|
||||
model_props["preset"] = True
|
||||
|
||||
"""
|
||||
Filenames follow this pattern:
|
||||
origin-quant-basename-soc-tk_version-rev.rknn
|
||||
origin: From where comes the model? default: upstream repo; rknn: modifications from airockchip
|
||||
quant: i8 or fp16
|
||||
basename: e.g. yolonas_s
|
||||
soc: e.g. rk3588
|
||||
tk_version: e.g. v2.0.0
|
||||
rev: e.g. 1
|
||||
|
||||
Full name could be: default-fp16-yolonas_s-rk3588-v2.0.0-1.rknn
|
||||
"""
|
||||
|
||||
model_matched = False
|
||||
|
||||
for model_type, pattern in supported_models.items():
|
||||
if re.match(pattern, model_path):
|
||||
model_matched = True
|
||||
model_props["model_type"] = model_type
|
||||
|
||||
if model_matched:
|
||||
model_props["filename"] = model_path + f"-{soc}-v2.0.0-1.rknn"
|
||||
|
||||
model_props["path"] = model_chache_dir + model_props["filename"]
|
||||
|
||||
if not os.path.isfile(model_props["path"]):
|
||||
self.download_model(model_props["filename"])
|
||||
else:
|
||||
supported_models_str = ", ".join(
|
||||
model[1:-1] for model in supported_models
|
||||
)
|
||||
raise Exception(
|
||||
f"Model {model_path} is unsupported. Provide your own model or choose one of the following: {supported_models_str}"
|
||||
)
|
||||
|
||||
return model_props
|
||||
|
||||
def download_model(self, filename):
|
||||
if not os.path.isdir(model_chache_dir):
|
||||
os.mkdir(model_chache_dir)
|
||||
|
||||
urllib.request.urlretrieve(
|
||||
f"https://github.com/MarcA711/rknn-models/releases/download/v2.0.0/{filename}",
|
||||
model_chache_dir + filename,
|
||||
)
|
||||
|
||||
def check_config(self, config):
|
||||
if (config.model.width != 320) or (config.model.height != 320):
|
||||
raise Exception(
|
||||
"Make sure to set the model width and height to 320 in your config.yml."
|
||||
)
|
||||
|
||||
if config.model.input_pixel_format != "bgr":
|
||||
raise Exception(
|
||||
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
|
||||
)
|
||||
|
||||
if config.model.input_tensor != "nhwc":
|
||||
raise Exception(
|
||||
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
|
||||
)
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
output = self.inference(
|
||||
output = self.rknn.inference(
|
||||
[
|
||||
tensor_input,
|
||||
]
|
||||
)
|
||||
return self.postprocess(output[0])
|
||||
return self.post_process(output)
|
||||
|
||||
Reference in New Issue
Block a user