forked from Github/frigate
Add OpenVino Detector (#3768)
* Initial work for adding OpenVino detector. Not functional * Load model and submit for inference. Sucessfully load model and initialize OpenVino engine with either CPU or GPU as device. Does not parse results for objects. * Detection working with ssdlite_mobilenetv2 FP16 model * Add OpenVIno support and model to docker image * Add documentation for OpenVino detector configuration * Adds support for ARM32/ARM64 and the Myriad X hardware - Use custom-built openvino wheel for all platforms - Add libusb build without udev for NCS2 support * Add documentation around Intel CPU requirements and NCS2 setup * Print all available output tensors * Update documentation for config parameters
This commit is contained in:
54
frigate/detectors/openvino.py
Normal file
54
frigate/detectors/openvino.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import logging
|
||||
import numpy as np
|
||||
import openvino.runtime as ov
|
||||
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OvDetector(DetectionApi):
|
||||
def __init__(self, det_device=None, model_config=None, num_threads=1):
|
||||
self.ov_core = ov.Core()
|
||||
self.ov_model = self.ov_core.read_model(model_config.path)
|
||||
|
||||
self.interpreter = self.ov_core.compile_model(
|
||||
model=self.ov_model, device_name=det_device
|
||||
)
|
||||
logger.info(f"Model Input Shape: {self.interpreter.input(0).shape}")
|
||||
self.output_indexes = 0
|
||||
while True:
|
||||
try:
|
||||
tensor_shape = self.interpreter.output(self.output_indexes).shape
|
||||
logger.info(f"Model Output-{self.output_indexes} Shape: {tensor_shape}")
|
||||
self.output_indexes += 1
|
||||
except:
|
||||
logger.info(f"Model has {self.output_indexes} Output Tensors")
|
||||
break
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
|
||||
infer_request = self.interpreter.create_infer_request()
|
||||
infer_request.infer([tensor_input])
|
||||
|
||||
results = infer_request.get_output_tensor()
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
i = 0
|
||||
for object_detected in results.data[0, 0, :]:
|
||||
if object_detected[0] != -1:
|
||||
logger.debug(object_detected)
|
||||
if object_detected[2] < 0.1 or i == 20:
|
||||
break
|
||||
detections[i] = [
|
||||
object_detected[1], # Label ID
|
||||
float(object_detected[2]), # Confidence
|
||||
object_detected[4], # y_min
|
||||
object_detected[3], # x_min
|
||||
object_detected[6], # y_max
|
||||
object_detected[5], # x_max
|
||||
]
|
||||
i += 1
|
||||
|
||||
return detections
|
||||
Reference in New Issue
Block a user