forked from Github/frigate
Improve motion detection and region selection (#6741)
* refactor existing motion detector * implement and use cnt bgsub * pass fps to motion detector * create a simplified motion detector * lightning detection * update default motion config * lint imports * use estimated boxes for regions * use improved motion detector * update test * use a different strategy for clustering motion and object boxes * increase alpha during calibration * simplify object consolidation * add some reasonable constraints to the estimated box * adjust cluster boundary to 10% * refactor * add disabled debug code * fix variable scope
This commit is contained in:
285
frigate/video.py
285
frigate/video.py
@@ -1,9 +1,9 @@
|
||||
import datetime
|
||||
import logging
|
||||
import math
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import queue
|
||||
import random
|
||||
import signal
|
||||
import subprocess as sp
|
||||
import threading
|
||||
@@ -18,6 +18,7 @@ from frigate.config import CameraConfig, DetectConfig, PixelFormatEnum
|
||||
from frigate.const import CACHE_DIR
|
||||
from frigate.log import LogPipe
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.motion.improved_motion import ImprovedMotionDetector
|
||||
from frigate.object_detection import RemoteObjectDetector
|
||||
from frigate.track import ObjectTracker
|
||||
from frigate.track.norfair_tracker import NorfairTracker
|
||||
@@ -27,7 +28,7 @@ from frigate.util import (
|
||||
SharedMemoryFrameManager,
|
||||
area,
|
||||
calculate_region,
|
||||
clipped,
|
||||
draw_box_with_label,
|
||||
intersection,
|
||||
intersection_over_union,
|
||||
listen,
|
||||
@@ -462,9 +463,10 @@ def track_camera(
|
||||
objects_to_track = config.objects.track
|
||||
object_filters = config.objects.filters
|
||||
|
||||
motion_detector = MotionDetector(
|
||||
motion_detector = ImprovedMotionDetector(
|
||||
frame_shape,
|
||||
config.motion,
|
||||
config.detect.fps,
|
||||
improve_contrast_enabled,
|
||||
motion_threshold,
|
||||
motion_contour_area,
|
||||
@@ -505,6 +507,13 @@ def box_overlaps(b1, b2):
|
||||
return True
|
||||
|
||||
|
||||
def box_inside(b1, b2):
|
||||
# check if b2 is inside b1
|
||||
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def reduce_boxes(boxes, iou_threshold=0.0):
|
||||
clusters = []
|
||||
|
||||
@@ -575,6 +584,91 @@ def detect(
|
||||
return detections
|
||||
|
||||
|
||||
def get_cluster_boundary(box, min_region):
|
||||
# compute the max region size for the current box (box is 10% of region)
|
||||
box_width = box[2] - box[0]
|
||||
box_height = box[3] - box[1]
|
||||
max_region_area = abs(box_width * box_height) / 0.1
|
||||
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
|
||||
|
||||
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
|
||||
|
||||
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
|
||||
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
|
||||
|
||||
return [
|
||||
int(centroid[0] - max_x_dist),
|
||||
int(centroid[1] - max_y_dist),
|
||||
int(centroid[0] + max_x_dist),
|
||||
int(centroid[1] + max_y_dist),
|
||||
]
|
||||
|
||||
|
||||
def get_cluster_candidates(frame_shape, min_region, boxes):
|
||||
# and create a cluster of other boxes using it's max region size
|
||||
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
|
||||
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
|
||||
# determined by the max_region size minus half the box + 20%
|
||||
# TODO: see if we can do this with numpy
|
||||
cluster_candidates = []
|
||||
used_boxes = []
|
||||
# loop over each box
|
||||
for current_index, b in enumerate(boxes):
|
||||
if current_index in used_boxes:
|
||||
continue
|
||||
cluster = [current_index]
|
||||
used_boxes.append(current_index)
|
||||
cluster_boundary = get_cluster_boundary(b, min_region)
|
||||
# find all other boxes that fit inside the boundary
|
||||
for compare_index, compare_box in enumerate(boxes):
|
||||
if compare_index in used_boxes:
|
||||
continue
|
||||
|
||||
# if the box is not inside the potential cluster area, cluster them
|
||||
if not box_inside(cluster_boundary, compare_box):
|
||||
continue
|
||||
|
||||
# get the region if you were to add this box to the cluster
|
||||
potential_cluster = cluster + [compare_index]
|
||||
cluster_region = get_cluster_region(
|
||||
frame_shape, min_region, potential_cluster, boxes
|
||||
)
|
||||
# if region could be smaller and either box would be too small
|
||||
# for the resulting region, dont cluster
|
||||
should_cluster = True
|
||||
if (cluster_region[2] - cluster_region[0]) > min_region:
|
||||
for b in potential_cluster:
|
||||
box = boxes[b]
|
||||
# boxes should be more than 5% of the area of the region
|
||||
if area(box) / area(cluster_region) < 0.05:
|
||||
should_cluster = False
|
||||
break
|
||||
|
||||
if should_cluster:
|
||||
cluster.append(compare_index)
|
||||
used_boxes.append(compare_index)
|
||||
cluster_candidates.append(cluster)
|
||||
|
||||
# return the unique clusters only
|
||||
unique = {tuple(sorted(c)) for c in cluster_candidates}
|
||||
return [list(tup) for tup in unique]
|
||||
|
||||
|
||||
def get_cluster_region(frame_shape, min_region, cluster, boxes):
|
||||
min_x = frame_shape[1]
|
||||
min_y = frame_shape[0]
|
||||
max_x = 0
|
||||
max_y = 0
|
||||
for b in cluster:
|
||||
min_x = min(boxes[b][0], min_x)
|
||||
min_y = min(boxes[b][1], min_y)
|
||||
max_x = max(boxes[b][2], max_x)
|
||||
max_y = max(boxes[b][3], max_y)
|
||||
return calculate_region(
|
||||
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
|
||||
)
|
||||
|
||||
|
||||
def process_frames(
|
||||
camera_name: str,
|
||||
frame_queue: mp.Queue,
|
||||
@@ -603,6 +697,8 @@ def process_frames(
|
||||
|
||||
startup_scan_counter = 0
|
||||
|
||||
region_min_size = int(max(model_config.height, model_config.width) / 2)
|
||||
|
||||
while not stop_event.is_set():
|
||||
if exit_on_empty and frame_queue.empty():
|
||||
logger.info("Exiting track_objects...")
|
||||
@@ -654,35 +750,22 @@ def process_frames(
|
||||
|
||||
# get tracked object boxes that aren't stationary
|
||||
tracked_object_boxes = [
|
||||
obj["box"]
|
||||
obj["estimate"]
|
||||
for obj in object_tracker.tracked_objects.values()
|
||||
if obj["id"] not in stationary_object_ids
|
||||
]
|
||||
|
||||
# combine motion boxes with known locations of existing objects
|
||||
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
|
||||
combined_boxes = motion_boxes + tracked_object_boxes
|
||||
|
||||
region_min_size = max(model_config.height, model_config.width)
|
||||
# compute regions
|
||||
regions = [
|
||||
calculate_region(
|
||||
frame_shape,
|
||||
a[0],
|
||||
a[1],
|
||||
a[2],
|
||||
a[3],
|
||||
region_min_size,
|
||||
multiplier=random.uniform(1.2, 1.5),
|
||||
)
|
||||
for a in combined_boxes
|
||||
]
|
||||
cluster_candidates = get_cluster_candidates(
|
||||
frame_shape, region_min_size, combined_boxes
|
||||
)
|
||||
|
||||
# consolidate regions with heavy overlap
|
||||
regions = [
|
||||
calculate_region(
|
||||
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0
|
||||
get_cluster_region(
|
||||
frame_shape, region_min_size, candidate, combined_boxes
|
||||
)
|
||||
for a in reduce_boxes(regions, 0.4)
|
||||
for candidate in cluster_candidates
|
||||
]
|
||||
|
||||
# if starting up, get the next startup scan region
|
||||
@@ -733,74 +816,38 @@ def process_frames(
|
||||
)
|
||||
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to 4 times
|
||||
# merge objects
|
||||
#########
|
||||
refining = len(regions) > 0
|
||||
refine_count = 0
|
||||
while refining and refine_count < 4:
|
||||
refining = False
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
# o[2] is the box of the object: xmin, ymin, xmax, ymax
|
||||
# apply max/min to ensure values do not exceed the known frame size
|
||||
boxes = [
|
||||
(
|
||||
o[2][0],
|
||||
o[2][1],
|
||||
o[2][2] - o[2][0],
|
||||
o[2][3] - o[2][1],
|
||||
)
|
||||
for o in group
|
||||
]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
# o[2] is the box of the object: xmin, ymin, xmax, ymax
|
||||
# apply max/min to ensure values do not exceed the known frame size
|
||||
boxes = [
|
||||
(
|
||||
o[2][0],
|
||||
o[2][1],
|
||||
o[2][2] - o[2][0],
|
||||
o[2][3] - o[2][1],
|
||||
)
|
||||
for o in group
|
||||
]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
# add objects
|
||||
for index in idxs:
|
||||
index = index if isinstance(index, np.int32) else index[0]
|
||||
obj = group[index]
|
||||
selected_objects.append(obj)
|
||||
|
||||
for index in idxs:
|
||||
index = index if isinstance(index, np.int32) else index[0]
|
||||
obj = group[index]
|
||||
if clipped(obj, frame_shape):
|
||||
box = obj[2]
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
region = calculate_region(
|
||||
frame_shape,
|
||||
box[0],
|
||||
box[1],
|
||||
box[2],
|
||||
box[3],
|
||||
region_min_size,
|
||||
)
|
||||
|
||||
regions.append(region)
|
||||
|
||||
selected_objects.extend(
|
||||
detect(
|
||||
detect_config,
|
||||
object_detector,
|
||||
frame,
|
||||
model_config,
|
||||
region,
|
||||
objects_to_track,
|
||||
object_filters,
|
||||
)
|
||||
)
|
||||
|
||||
refining = True
|
||||
else:
|
||||
selected_objects.append(obj)
|
||||
|
||||
# set the detections list to only include top, complete objects
|
||||
# and new detections
|
||||
detections = selected_objects
|
||||
|
||||
if refining:
|
||||
refine_count += 1
|
||||
# set the detections list to only include top objects
|
||||
detections = selected_objects
|
||||
|
||||
## drop detections that overlap too much
|
||||
consolidated_detections = []
|
||||
@@ -848,7 +895,7 @@ def process_frames(
|
||||
else:
|
||||
object_tracker.update_frame_times(frame_time)
|
||||
|
||||
# debug tracking by writing frames
|
||||
# debug object tracking
|
||||
if False:
|
||||
bgr_frame = cv2.cvtColor(
|
||||
frame,
|
||||
@@ -858,7 +905,67 @@ def process_frames(
|
||||
cv2.imwrite(
|
||||
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
|
||||
)
|
||||
# debug
|
||||
if False:
|
||||
bgr_frame = cv2.cvtColor(
|
||||
frame,
|
||||
cv2.COLOR_YUV2BGR_I420,
|
||||
)
|
||||
|
||||
for m_box in motion_boxes:
|
||||
cv2.rectangle(
|
||||
bgr_frame,
|
||||
(m_box[0], m_box[1]),
|
||||
(m_box[2], m_box[3]),
|
||||
(0, 0, 255),
|
||||
2,
|
||||
)
|
||||
|
||||
for b in tracked_object_boxes:
|
||||
cv2.rectangle(
|
||||
bgr_frame,
|
||||
(b[0], b[1]),
|
||||
(b[2], b[3]),
|
||||
(255, 0, 0),
|
||||
2,
|
||||
)
|
||||
|
||||
for obj in object_tracker.tracked_objects.values():
|
||||
if obj["frame_time"] == frame_time:
|
||||
thickness = 2
|
||||
color = model_config.colormap[obj["label"]]
|
||||
else:
|
||||
thickness = 1
|
||||
color = (255, 0, 0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj["box"]
|
||||
|
||||
draw_box_with_label(
|
||||
bgr_frame,
|
||||
box[0],
|
||||
box[1],
|
||||
box[2],
|
||||
box[3],
|
||||
obj["label"],
|
||||
obj["id"],
|
||||
thickness=thickness,
|
||||
color=color,
|
||||
)
|
||||
|
||||
for region in regions:
|
||||
cv2.rectangle(
|
||||
bgr_frame,
|
||||
(region[0], region[1]),
|
||||
(region[2], region[3]),
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
|
||||
cv2.imwrite(
|
||||
f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg",
|
||||
bgr_frame,
|
||||
)
|
||||
# add to the queue if not full
|
||||
if detected_objects_queue.full():
|
||||
frame_manager.delete(f"{camera_name}{frame_time}")
|
||||
|
||||
Reference in New Issue
Block a user