forked from Github/frigate
refactor some classes into new files
This commit is contained in:
124
frigate/edgetpu.py
Normal file
124
frigate/edgetpu.py
Normal file
@@ -0,0 +1,124 @@
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
import SharedArray as sa
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
|
||||
def load_labels(path, encoding='utf-8'):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
Args:
|
||||
path: path to label file.
|
||||
encoding: label file encoding.
|
||||
Returns:
|
||||
Dictionary mapping indices to labels.
|
||||
"""
|
||||
with open(path, 'r', encoding=encoding) as f:
|
||||
lines = f.readlines()
|
||||
if not lines:
|
||||
return {}
|
||||
|
||||
if lines[0].split(' ', maxsplit=1)[0].isdigit():
|
||||
pairs = [line.split(' ', maxsplit=1) for line in lines]
|
||||
return {int(index): label.strip() for index, label in pairs}
|
||||
else:
|
||||
return {index: line.strip() for index, line in enumerate(lines)}
|
||||
|
||||
class ObjectDetector():
|
||||
def __init__(self, model_file):
|
||||
edge_tpu_delegate = None
|
||||
try:
|
||||
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
|
||||
except ValueError:
|
||||
print("No EdgeTPU detected. Falling back to CPU.")
|
||||
|
||||
if edge_tpu_delegate is None:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path=model_file)
|
||||
else:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path=model_file,
|
||||
experimental_delegates=[edge_tpu_delegate])
|
||||
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
|
||||
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
|
||||
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
|
||||
|
||||
detections = np.zeros((20,6), np.float32)
|
||||
for i, score in enumerate(scores):
|
||||
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
|
||||
|
||||
return detections
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self, model):
|
||||
try:
|
||||
sa.delete("frame")
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
sa.delete("detections")
|
||||
except:
|
||||
pass
|
||||
|
||||
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
|
||||
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
|
||||
|
||||
self.detect_lock = mp.Lock()
|
||||
self.detect_ready = mp.Event()
|
||||
self.frame_ready = mp.Event()
|
||||
|
||||
def run_detector(model, detect_ready, frame_ready):
|
||||
object_detector = ObjectDetector(model)
|
||||
input_frame = sa.attach("frame")
|
||||
detections = sa.attach("detections")
|
||||
|
||||
while True:
|
||||
# wait until a frame is ready
|
||||
frame_ready.wait()
|
||||
# signal that the process is busy
|
||||
frame_ready.clear()
|
||||
detections[:] = object_detector.detect_raw(input_frame)
|
||||
# signal that the process is ready to detect
|
||||
detect_ready.set()
|
||||
|
||||
self.detect_process = mp.Process(target=run_detector, args=(model, self.detect_ready, self.frame_ready))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
class RemoteObjectDetector():
|
||||
def __init__(self, labels, detect_lock, detect_ready, frame_ready):
|
||||
self.labels = load_labels(labels)
|
||||
|
||||
self.input_frame = sa.attach("frame")
|
||||
self.detections = sa.attach("detections")
|
||||
|
||||
self.detect_lock = detect_lock
|
||||
self.detect_ready = detect_ready
|
||||
self.frame_ready = frame_ready
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
detections = []
|
||||
with self.detect_lock:
|
||||
self.input_frame[:] = tensor_input
|
||||
# unset detections and signal that a frame is ready
|
||||
self.detect_ready.clear()
|
||||
self.frame_ready.set()
|
||||
# wait until the detection process is finished,
|
||||
self.detect_ready.wait()
|
||||
for d in self.detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
return detections
|
||||
Reference in New Issue
Block a user