Embedding gpu (#14253)

This commit is contained in:
Nicolas Mowen
2024-10-09 19:46:31 -06:00
committed by GitHub
parent 9fda259c0c
commit bc3a06178b
7 changed files with 34 additions and 33 deletions

View File

@@ -118,7 +118,7 @@ class Embeddings:
},
embedding_function=jina_text_embedding_function,
model_type="text",
preferred_providers=["CPUExecutionProvider"],
force_cpu=True,
)
self.vision_embedding = GenericONNXEmbedding(
@@ -130,7 +130,6 @@ class Embeddings:
},
embedding_function=jina_vision_embedding_function,
model_type="vision",
preferred_providers=["CPUExecutionProvider"],
)
def _create_tables(self):

View File

@@ -18,6 +18,7 @@ from transformers.utils.logging import disable_progress_bar
from frigate.const import MODEL_CACHE_DIR, UPDATE_MODEL_STATE
from frigate.types import ModelStatusTypesEnum
from frigate.util.downloader import ModelDownloader
from frigate.util.model import get_ort_providers
warnings.filterwarnings(
"ignore",
@@ -40,8 +41,8 @@ class GenericONNXEmbedding:
download_urls: Dict[str, str],
embedding_function: Callable[[List[np.ndarray]], np.ndarray],
model_type: str,
preferred_providers: List[str] = ["CPUExecutionProvider"],
tokenizer_file: Optional[str] = None,
force_cpu: bool = False,
):
self.model_name = model_name
self.model_file = model_file
@@ -49,7 +50,9 @@ class GenericONNXEmbedding:
self.download_urls = download_urls
self.embedding_function = embedding_function
self.model_type = model_type # 'text' or 'vision'
self.preferred_providers = preferred_providers
self.providers, self.provider_options = get_ort_providers(
force_cpu=force_cpu, requires_fp16=True
)
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
self.tokenizer = None
@@ -105,8 +108,7 @@ class GenericONNXEmbedding:
else:
self.feature_extractor = self._load_feature_extractor()
self.session = self._load_model(
os.path.join(self.download_path, self.model_file),
self.preferred_providers,
os.path.join(self.download_path, self.model_file)
)
def _load_tokenizer(self):
@@ -123,9 +125,11 @@ class GenericONNXEmbedding:
f"{MODEL_CACHE_DIR}/{self.model_name}",
)
def _load_model(self, path: str, providers: List[str]):
def _load_model(self, path: str):
if os.path.exists(path):
return ort.InferenceSession(path, providers=providers)
return ort.InferenceSession(
path, providers=self.providers, provider_options=self.provider_options
)
else:
logger.warning(f"{self.model_name} model file {path} not found.")
return None

View File

@@ -6,7 +6,7 @@ import onnxruntime as ort
def get_ort_providers(
force_cpu: bool = False, openvino_device: str = "AUTO"
force_cpu: bool = False, openvino_device: str = "AUTO", requires_fp16: bool = False
) -> tuple[list[str], list[dict[str, any]]]:
if force_cpu:
return (["CPUExecutionProvider"], [{}])
@@ -17,14 +17,19 @@ def get_ort_providers(
for provider in providers:
if provider == "TensorrtExecutionProvider":
os.makedirs("/config/model_cache/tensorrt/ort/trt-engines", exist_ok=True)
options.append(
{
"trt_timing_cache_enable": True,
"trt_engine_cache_enable": True,
"trt_timing_cache_path": "/config/model_cache/tensorrt/ort",
"trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines",
}
)
if not requires_fp16 or os.environ.get("USE_FP_16", "True") != "False":
options.append(
{
"trt_fp16_enable": requires_fp16,
"trt_timing_cache_enable": True,
"trt_engine_cache_enable": True,
"trt_timing_cache_path": "/config/model_cache/tensorrt/ort",
"trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines",
}
)
else:
options.append({})
elif provider == "OpenVINOExecutionProvider":
os.makedirs("/config/model_cache/openvino/ort", exist_ok=True)
options.append(