forked from Github/frigate
label threads and implements stats endpoint
This commit is contained in:
@@ -2,12 +2,13 @@ import datetime
|
||||
import time
|
||||
import cv2
|
||||
import threading
|
||||
import prctl
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
from . util import tonumpyarray, LABELS, PATH_TO_CKPT
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, cameras, prepped_frame_queue):
|
||||
def __init__(self, cameras, prepped_frame_queue, fps, queue_full):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.cameras = cameras
|
||||
@@ -16,89 +17,33 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
self.labels = LABELS
|
||||
self.fps = fps
|
||||
self.queue_full = queue_full
|
||||
self.avg_inference_speed = 10
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("PreppedQueueProcessor")
|
||||
# process queue...
|
||||
while True:
|
||||
if self.prepped_frame_queue.full():
|
||||
self.queue_full.update()
|
||||
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
|
||||
# print(self.engine.get_inference_time())
|
||||
frame['detected_objects'] = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
|
||||
self.fps.update()
|
||||
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
|
||||
|
||||
# parse and pass detected objects back to the camera
|
||||
# TODO: just send this back with all the same info you received and objects as a new property
|
||||
parsed_objects = []
|
||||
for obj in objects:
|
||||
parsed_objects.append({
|
||||
'region_id': frame['region_id'],
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'box': obj.bounding_box.flatten().tolist()
|
||||
})
|
||||
self.cameras[frame['camera_name']].add_objects(parsed_objects)
|
||||
|
||||
|
||||
# should this be a region class?
|
||||
class FramePrepper(threading.Thread):
|
||||
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
||||
frame_lock,
|
||||
region_size, region_x_offset, region_y_offset, region_id,
|
||||
prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_name = camera_name
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.region_size = region_size
|
||||
self.region_x_offset = region_x_offset
|
||||
self.region_y_offset = region_y_offset
|
||||
self.region_id = region_id
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
with self.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# make a copy of the cropped frame
|
||||
with self.frame_lock:
|
||||
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
if not self.prepped_frame_queue.full():
|
||||
self.prepped_frame_queue.put({
|
||||
'camera_name': self.camera_name,
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
'region_id': self.region_id,
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
else:
|
||||
print("queue full. moving on")
|
||||
self.cameras[frame['camera_name']].add_objects(frame)
|
||||
|
||||
class RegionRequester(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("RegionRequester")
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
@@ -110,27 +55,27 @@ class RegionRequester(threading.Thread):
|
||||
|
||||
# make a copy of the frame_time
|
||||
frame_time = self.camera.frame_time.value
|
||||
|
||||
|
||||
for index, region in enumerate(self.camera.config['regions']):
|
||||
# queue with priority 1
|
||||
self.camera.resize_queue.put((1, {
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': index,
|
||||
'size': region['size'],
|
||||
'x_offset': region['x_offset'],
|
||||
'y_offset': region['y_offset']
|
||||
}))
|
||||
})
|
||||
|
||||
class RegionPrepper(threading.Thread):
|
||||
def __init__(self, frame_cache, resize_request_queue, prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.frame_cache = frame_cache
|
||||
self.resize_request_queue = resize_request_queue
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("RegionPrepper")
|
||||
while True:
|
||||
|
||||
resize_request = self.resize_request_queue.get()
|
||||
@@ -153,7 +98,4 @@ class RegionPrepper(threading.Thread):
|
||||
# add the frame to the queue
|
||||
if not self.prepped_frame_queue.full():
|
||||
resize_request['frame'] = frame_expanded.flatten().copy()
|
||||
# add to queue with priority 1
|
||||
self.prepped_frame_queue.put((1, resize_request))
|
||||
else:
|
||||
print("queue full. moving on")
|
||||
self.prepped_frame_queue.put(resize_request)
|
||||
Reference in New Issue
Block a user