refactor and reduce false positives

This commit is contained in:
Blake Blackshear
2020-09-07 12:17:42 -05:00
parent ea4ecae27c
commit acb75fa02d
10 changed files with 539 additions and 230 deletions

View File

@@ -13,6 +13,8 @@ import pyarrow.plasma as plasma
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label, PlasmaFrameManager
from frigate.edgetpu import load_labels
from typing import Callable, Dict
from statistics import mean, median
PATH_TO_LABELS = '/labelmap.txt'
@@ -23,11 +25,6 @@ COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
def filter_false_positives(event):
if len(event['history']) < 2:
return True
return False
def zone_filtered(obj, object_config):
object_name = obj['label']
object_filters = object_config.get('filters', {})
@@ -46,11 +43,186 @@ def zone_filtered(obj, object_config):
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
if obj_settings.get('threshold', 0) > obj['computed_score']:
return True
return False
# Maintains the state of a camera
class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.frame_manager = frame_manager
self.best_objects = {}
self.object_status = defaultdict(lambda: 'OFF')
self.tracked_objects = {}
self.zone_objects = defaultdict(lambda: [])
self.current_frame = np.zeros((720,1280,3), np.uint8)
self.current_frame_time = 0.0
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
def false_positive(self, obj):
threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
if obj['computed_score'] < threshold:
return True
return False
def compute_score(self, obj):
scores = obj['score_history'][:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def on(self, event_type: str, callback: Callable[[Dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, tracked_objects):
self.current_frame_time = frame_time
# get the new frame and delete the old frame
frame_id = f"{self.name}{frame_time}"
self.current_frame = self.frame_manager.get(frame_id)
if not self.previous_frame_id is None:
self.frame_manager.delete(self.previous_frame_id)
self.previous_frame_id = frame_id
current_ids = tracked_objects.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
self.tracked_objects[id] = tracked_objects[id]
self.tracked_objects[id]['zones'] = []
# start the score history
self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['start']:
c(self.name, tracked_objects[id])
for id in updated_ids:
self.tracked_objects[id].update(tracked_objects[id])
# if the object is not in the current frame, add a 0.0 to the score history
if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
self.tracked_objects[id]['score_history'].append(0.0)
else:
self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
# only keep the last 10 scores
if len(self.tracked_objects[id]['score_history']) > 10:
self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['update']:
c(self.name, self.tracked_objects[id])
for id in removed_ids:
# publish events to mqtt
self.tracked_objects[id]['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, self.tracked_objects[id])
del self.tracked_objects[id]
# check to see if the objects are in any zones
for obj in self.tracked_objects.values():
current_zones = []
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.config['zones'].items():
contour = zone['contour']
# check if the object is in the zone and not filtered
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0
and not zone_filtered(obj, zone.get('filters', {}))):
current_zones.append(name)
obj['zones'] = current_zones
# draw on the frame
if not self.current_frame is None:
# draw the bounding boxes on the frame
for obj in self.tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(self.current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(self.current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if self.config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(self.current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if self.config['snapshots']['draw_zones']:
for name, zone in self.config['zones'].items():
thickness = 8 if any([name in obj['zones'] for obj in self.tracked_objects.values()]) else 2
cv2.drawContours(self.current_frame, [zone['contour']], -1, zone['color'], thickness)
# maintain best objects
for obj in self.tracked_objects.values():
object_type = obj['label']
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
continue
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > current_best['score'] or (now - current_best['frame_time']) > 60:
obj['frame'] = np.copy(self.current_frame)
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
else:
obj['frame'] = np.copy(self.current_frame)
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj['false_positive']:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != self.object_status[obj_name]:
self.object_status[obj_name] = new_status
for c in self.callbacks['object_status']:
c(self.name, obj_name, new_status)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_status[obj_name] = 'OFF'
for c in self.callbacks['object_status']:
c(self.name, obj_name, 'OFF')
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
class TrackedObjectProcessor(threading.Thread):
def __init__(self, camera_config, zone_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
threading.Thread.__init__(self)
@@ -61,6 +233,40 @@ class TrackedObjectProcessor(threading.Thread):
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.stop_event = stop_event
self.camera_states: Dict[str, CameraState] = {}
self.plasma_client = PlasmaFrameManager(self.stop_event)
def start(camera, obj):
# publish events to mqtt
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps({x: obj[x] for x in obj if x not in ['frame']}), retain=False)
self.event_queue.put(('start', camera, obj))
def update(camera, obj):
pass
def end(camera, obj):
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps({x: obj[x] for x in obj if x not in ['frame']}), retain=False)
self.event_queue.put(('end', camera, obj))
def snapshot(camera, obj):
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.camera_config.keys():
camera_state = CameraState(camera, self.camera_config[camera], self.plasma_client)
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
camera_state.on('snapshot', snapshot)
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
@@ -69,38 +275,43 @@ class TrackedObjectProcessor(threading.Thread):
'current_frame_time': 0.0,
'object_id': None
})
self.zone_data = defaultdict(lambda: {
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'contours': {}
})
# {
# 'zone_name': {
# 'person': ['camera_1', 'camera_2']
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
# set colors for zones
zone_colors = {}
colors = plt.cm.get_cmap('tab10', len(self.zone_config.keys()))
for i, zone in enumerate(self.zone_config.keys()):
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
# create zone contours
for name, config in zone_config.items():
for zone_name, config in zone_config.items():
for camera, camera_zone_config in config.items():
camera_zone = {}
camera_zone['color'] = zone_colors[zone_name]
coordinates = camera_zone_config['coordinates']
if isinstance(coordinates, list):
self.zone_data[name]['contours'][camera] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
camera_zone['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
elif isinstance(coordinates, str):
points = coordinates.split(',')
self.zone_data[name]['contours'][camera] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
camera_zone['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
else:
print(f"Unable to parse zone coordinates for {name} - {camera}")
# set colors for zones
colors = plt.cm.get_cmap('tab10', len(self.zone_data.keys()))
for i, zone in enumerate(self.zone_data.values()):
zone['color'] = tuple(int(round(255 * c)) for c in colors(i)[:3])
self.plasma_client = PlasmaFrameManager(self.stop_event)
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
self.camera_config[camera]['zones'][zone_name] = camera_zone
def get_best(self, camera, label):
if label in self.camera_data[camera]['best_objects']:
return self.camera_data[camera]['best_objects'][label]['frame']
best_objects = self.camera_states[camera].best_objects
if label in best_objects:
return best_objects[label]['frame']
else:
return None
def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame']
return self.camera_states[camera].current_frame
def run(self):
while True:
@@ -113,165 +324,27 @@ class TrackedObjectProcessor(threading.Thread):
except queue.Empty:
continue
camera_config = self.camera_config[camera]
best_objects = self.camera_data[camera]['best_objects']
current_object_status = self.camera_data[camera]['object_status']
tracked_objects = self.camera_data[camera]['tracked_objects']
camera_state = self.camera_states[camera]
current_ids = current_tracked_objects.keys()
previous_ids = tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
camera_state.update(frame_time, current_tracked_objects)
for id in new_ids:
# only register the object here if we are sure it isnt a false positive
if not filter_false_positives(current_tracked_objects[id]):
tracked_objects[id] = current_tracked_objects[id]
# publish events to mqtt
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(tracked_objects[id]), retain=False)
self.event_queue.put(('start', camera, tracked_objects[id]))
for id in updated_ids:
tracked_objects[id] = current_tracked_objects[id]
for id in removed_ids:
# publish events to mqtt
tracked_objects[id]['end_time'] = frame_time
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(tracked_objects[id]), retain=False)
self.event_queue.put(('end', camera, tracked_objects[id]))
del tracked_objects[id]
self.camera_data[camera]['current_frame_time'] = frame_time
# build a dict of objects in each zone for current camera
current_objects_in_zones = defaultdict(lambda: [])
for obj in tracked_objects.values():
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.zone_data.items():
current_contour = zone['contours'].get(camera, None)
# if the current camera does not have a contour for this zone, skip
if current_contour is None:
continue
# check if the object is in the zone and not filtered
if (cv2.pointPolygonTest(current_contour, bottom_center, False) >= 0
and not zone_filtered(obj, self.zone_config[name][camera])):
current_objects_in_zones[name].append(obj['label'])
###
# Draw tracked objects on the frame
###
current_frame = self.plasma_client.get(f"{camera}{frame_time}")
if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if camera_config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if camera_config['snapshots']['draw_zones']:
for name, zone in self.zone_data.items():
thickness = 2 if len(current_objects_in_zones[name]) == 0 else 8
if camera in zone['contours']:
cv2.drawContours(current_frame, [zone['contours'][camera]], -1, zone['color'], thickness)
###
# Set the current frame
###
self.camera_data[camera]['current_frame'] = current_frame
# delete the previous frame from the plasma store and update the object id
if not self.camera_data[camera]['object_id'] is None:
self.plasma_client.delete(self.camera_data[camera]['object_id'])
self.camera_data[camera]['object_id'] = f"{camera}{frame_time}"
###
# Maintain the highest scoring recent object and frame for each label
###
for obj in tracked_objects.values():
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != frame_time:
continue
if obj['label'] in best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
###
# Report over MQTT
###
# get the zones that are relevant for this camera
relevant_zones = [zone for zone, config in self.zone_config.items() if camera in config]
for zone in relevant_zones:
# create the set of labels in the current frame and previously reported
labels_for_zone = set(current_objects_in_zones[zone] + list(self.zone_data[zone]['object_status'][camera].keys()))
# for each label
for label in labels_for_zone:
# compute the current 'ON' vs 'OFF' status by checking if any camera sees the object in the zone
previous_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()])
self.zone_data[zone]['object_status'][camera][label] = 'ON' if label in current_objects_in_zones[zone] else 'OFF'
new_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()])
# update zone status for each label
for zone in camera_state.config['zones'].keys():
# get labels for current camera and all labels in current zone
labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones']])
labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
# for each label in zone
for label in labels_to_check:
camera_list = self.zone_data[zone][label]
# remove or add the camera to the list for the current label
previous_state = len(camera_list) > 0
if label in labels_for_camera:
camera_list.add(camera_state.name)
elif camera_state.name in camera_list:
camera_list.remove(camera_state.name)
new_state = len(camera_list) > 0
# if the value is changing, send over MQTT
if previous_state == False and new_state == True:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
elif previous_state == True and new_state == False:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
# count by type
obj_counter = Counter()
for obj in tracked_objects.values():
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
# send the best snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)