forked from Github/frigate
refactor and reduce false positives
This commit is contained in:
@@ -13,6 +13,8 @@ import pyarrow.plasma as plasma
|
||||
import matplotlib.pyplot as plt
|
||||
from frigate.util import draw_box_with_label, PlasmaFrameManager
|
||||
from frigate.edgetpu import load_labels
|
||||
from typing import Callable, Dict
|
||||
from statistics import mean, median
|
||||
|
||||
PATH_TO_LABELS = '/labelmap.txt'
|
||||
|
||||
@@ -23,11 +25,6 @@ COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
|
||||
def filter_false_positives(event):
|
||||
if len(event['history']) < 2:
|
||||
return True
|
||||
return False
|
||||
|
||||
def zone_filtered(obj, object_config):
|
||||
object_name = obj['label']
|
||||
object_filters = object_config.get('filters', {})
|
||||
@@ -46,11 +43,186 @@ def zone_filtered(obj, object_config):
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['score']:
|
||||
if obj_settings.get('threshold', 0) > obj['computed_score']:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
# Maintains the state of a camera
|
||||
class CameraState():
|
||||
def __init__(self, name, config, frame_manager):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.frame_manager = frame_manager
|
||||
|
||||
self.best_objects = {}
|
||||
self.object_status = defaultdict(lambda: 'OFF')
|
||||
self.tracked_objects = {}
|
||||
self.zone_objects = defaultdict(lambda: [])
|
||||
self.current_frame = np.zeros((720,1280,3), np.uint8)
|
||||
self.current_frame_time = 0.0
|
||||
self.previous_frame_id = None
|
||||
self.callbacks = defaultdict(lambda: [])
|
||||
|
||||
def false_positive(self, obj):
|
||||
threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
|
||||
if obj['computed_score'] < threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
def compute_score(self, obj):
|
||||
scores = obj['score_history'][:]
|
||||
# pad with zeros if you dont have at least 3 scores
|
||||
if len(scores) < 3:
|
||||
scores += [0.0]*(3 - len(scores))
|
||||
return median(scores)
|
||||
|
||||
def on(self, event_type: str, callback: Callable[[Dict], None]):
|
||||
self.callbacks[event_type].append(callback)
|
||||
|
||||
def update(self, frame_time, tracked_objects):
|
||||
self.current_frame_time = frame_time
|
||||
# get the new frame and delete the old frame
|
||||
frame_id = f"{self.name}{frame_time}"
|
||||
self.current_frame = self.frame_manager.get(frame_id)
|
||||
if not self.previous_frame_id is None:
|
||||
self.frame_manager.delete(self.previous_frame_id)
|
||||
self.previous_frame_id = frame_id
|
||||
|
||||
current_ids = tracked_objects.keys()
|
||||
previous_ids = self.tracked_objects.keys()
|
||||
removed_ids = list(set(previous_ids).difference(current_ids))
|
||||
new_ids = list(set(current_ids).difference(previous_ids))
|
||||
updated_ids = list(set(current_ids).intersection(previous_ids))
|
||||
|
||||
for id in new_ids:
|
||||
self.tracked_objects[id] = tracked_objects[id]
|
||||
self.tracked_objects[id]['zones'] = []
|
||||
|
||||
# start the score history
|
||||
self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
|
||||
|
||||
# calculate if this is a false positive
|
||||
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
|
||||
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
|
||||
|
||||
# call event handlers
|
||||
for c in self.callbacks['start']:
|
||||
c(self.name, tracked_objects[id])
|
||||
|
||||
for id in updated_ids:
|
||||
self.tracked_objects[id].update(tracked_objects[id])
|
||||
|
||||
# if the object is not in the current frame, add a 0.0 to the score history
|
||||
if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
|
||||
self.tracked_objects[id]['score_history'].append(0.0)
|
||||
else:
|
||||
self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
|
||||
# only keep the last 10 scores
|
||||
if len(self.tracked_objects[id]['score_history']) > 10:
|
||||
self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
|
||||
|
||||
# calculate if this is a false positive
|
||||
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
|
||||
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
|
||||
|
||||
# call event handlers
|
||||
for c in self.callbacks['update']:
|
||||
c(self.name, self.tracked_objects[id])
|
||||
|
||||
for id in removed_ids:
|
||||
# publish events to mqtt
|
||||
self.tracked_objects[id]['end_time'] = frame_time
|
||||
for c in self.callbacks['end']:
|
||||
c(self.name, self.tracked_objects[id])
|
||||
del self.tracked_objects[id]
|
||||
|
||||
# check to see if the objects are in any zones
|
||||
for obj in self.tracked_objects.values():
|
||||
current_zones = []
|
||||
bottom_center = (obj['centroid'][0], obj['box'][3])
|
||||
# check each zone
|
||||
for name, zone in self.config['zones'].items():
|
||||
contour = zone['contour']
|
||||
# check if the object is in the zone and not filtered
|
||||
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0
|
||||
and not zone_filtered(obj, zone.get('filters', {}))):
|
||||
current_zones.append(name)
|
||||
obj['zones'] = current_zones
|
||||
|
||||
# draw on the frame
|
||||
if not self.current_frame is None:
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in self.tracked_objects.values():
|
||||
thickness = 2
|
||||
color = COLOR_MAP[obj['label']]
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(self.current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
cv2.rectangle(self.current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
||||
|
||||
if self.config['snapshots']['show_timestamp']:
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(self.current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
if self.config['snapshots']['draw_zones']:
|
||||
for name, zone in self.config['zones'].items():
|
||||
thickness = 8 if any([name in obj['zones'] for obj in self.tracked_objects.values()]) else 2
|
||||
cv2.drawContours(self.current_frame, [zone['contour']], -1, zone['color'], thickness)
|
||||
|
||||
# maintain best objects
|
||||
for obj in self.tracked_objects.values():
|
||||
object_type = obj['label']
|
||||
# if the object wasn't seen on the current frame, skip it
|
||||
if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
|
||||
continue
|
||||
if object_type in self.best_objects:
|
||||
current_best = self.best_objects[object_type]
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is more than 1 minute old, use the new object
|
||||
if obj['score'] > current_best['score'] or (now - current_best['frame_time']) > 60:
|
||||
obj['frame'] = np.copy(self.current_frame)
|
||||
self.best_objects[object_type] = obj
|
||||
for c in self.callbacks['snapshot']:
|
||||
c(self.name, self.best_objects[object_type])
|
||||
else:
|
||||
obj['frame'] = np.copy(self.current_frame)
|
||||
self.best_objects[object_type] = obj
|
||||
for c in self.callbacks['snapshot']:
|
||||
c(self.name, self.best_objects[object_type])
|
||||
|
||||
# update overall camera state for each object type
|
||||
obj_counter = Counter()
|
||||
for obj in self.tracked_objects.values():
|
||||
if not obj['false_positive']:
|
||||
obj_counter[obj['label']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != self.object_status[obj_name]:
|
||||
self.object_status[obj_name] = new_status
|
||||
for c in self.callbacks['object_status']:
|
||||
c(self.name, obj_name, new_status)
|
||||
|
||||
# expire any objects that are ON and no longer detected
|
||||
expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
self.object_status[obj_name] = 'OFF'
|
||||
for c in self.callbacks['object_status']:
|
||||
c(self.name, obj_name, 'OFF')
|
||||
for c in self.callbacks['snapshot']:
|
||||
c(self.name, self.best_objects[object_type])
|
||||
|
||||
|
||||
class TrackedObjectProcessor(threading.Thread):
|
||||
def __init__(self, camera_config, zone_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
@@ -61,6 +233,40 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.event_queue = event_queue
|
||||
self.stop_event = stop_event
|
||||
self.camera_states: Dict[str, CameraState] = {}
|
||||
self.plasma_client = PlasmaFrameManager(self.stop_event)
|
||||
|
||||
def start(camera, obj):
|
||||
# publish events to mqtt
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps({x: obj[x] for x in obj if x not in ['frame']}), retain=False)
|
||||
self.event_queue.put(('start', camera, obj))
|
||||
|
||||
def update(camera, obj):
|
||||
pass
|
||||
|
||||
def end(camera, obj):
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps({x: obj[x] for x in obj if x not in ['frame']}), retain=False)
|
||||
self.event_queue.put(('end', camera, obj))
|
||||
|
||||
def snapshot(camera, obj):
|
||||
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
|
||||
|
||||
def object_status(camera, object_name, status):
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
|
||||
|
||||
for camera in self.camera_config.keys():
|
||||
camera_state = CameraState(camera, self.camera_config[camera], self.plasma_client)
|
||||
camera_state.on('start', start)
|
||||
camera_state.on('update', update)
|
||||
camera_state.on('end', end)
|
||||
camera_state.on('snapshot', snapshot)
|
||||
camera_state.on('object_status', object_status)
|
||||
self.camera_states[camera] = camera_state
|
||||
|
||||
self.camera_data = defaultdict(lambda: {
|
||||
'best_objects': {},
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
@@ -69,38 +275,43 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
'current_frame_time': 0.0,
|
||||
'object_id': None
|
||||
})
|
||||
self.zone_data = defaultdict(lambda: {
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
'contours': {}
|
||||
})
|
||||
# {
|
||||
# 'zone_name': {
|
||||
# 'person': ['camera_1', 'camera_2']
|
||||
# }
|
||||
# }
|
||||
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
|
||||
|
||||
# set colors for zones
|
||||
zone_colors = {}
|
||||
colors = plt.cm.get_cmap('tab10', len(self.zone_config.keys()))
|
||||
for i, zone in enumerate(self.zone_config.keys()):
|
||||
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
|
||||
|
||||
# create zone contours
|
||||
for name, config in zone_config.items():
|
||||
for zone_name, config in zone_config.items():
|
||||
for camera, camera_zone_config in config.items():
|
||||
camera_zone = {}
|
||||
camera_zone['color'] = zone_colors[zone_name]
|
||||
coordinates = camera_zone_config['coordinates']
|
||||
if isinstance(coordinates, list):
|
||||
self.zone_data[name]['contours'][camera] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
|
||||
camera_zone['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
|
||||
elif isinstance(coordinates, str):
|
||||
points = coordinates.split(',')
|
||||
self.zone_data[name]['contours'][camera] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
camera_zone['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
else:
|
||||
print(f"Unable to parse zone coordinates for {name} - {camera}")
|
||||
|
||||
# set colors for zones
|
||||
colors = plt.cm.get_cmap('tab10', len(self.zone_data.keys()))
|
||||
for i, zone in enumerate(self.zone_data.values()):
|
||||
zone['color'] = tuple(int(round(255 * c)) for c in colors(i)[:3])
|
||||
|
||||
self.plasma_client = PlasmaFrameManager(self.stop_event)
|
||||
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
|
||||
self.camera_config[camera]['zones'][zone_name] = camera_zone
|
||||
|
||||
def get_best(self, camera, label):
|
||||
if label in self.camera_data[camera]['best_objects']:
|
||||
return self.camera_data[camera]['best_objects'][label]['frame']
|
||||
best_objects = self.camera_states[camera].best_objects
|
||||
if label in best_objects:
|
||||
return best_objects[label]['frame']
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_current_frame(self, camera):
|
||||
return self.camera_data[camera]['current_frame']
|
||||
return self.camera_states[camera].current_frame
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
@@ -113,165 +324,27 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
camera_config = self.camera_config[camera]
|
||||
best_objects = self.camera_data[camera]['best_objects']
|
||||
current_object_status = self.camera_data[camera]['object_status']
|
||||
tracked_objects = self.camera_data[camera]['tracked_objects']
|
||||
camera_state = self.camera_states[camera]
|
||||
|
||||
current_ids = current_tracked_objects.keys()
|
||||
previous_ids = tracked_objects.keys()
|
||||
removed_ids = list(set(previous_ids).difference(current_ids))
|
||||
new_ids = list(set(current_ids).difference(previous_ids))
|
||||
updated_ids = list(set(current_ids).intersection(previous_ids))
|
||||
camera_state.update(frame_time, current_tracked_objects)
|
||||
|
||||
for id in new_ids:
|
||||
# only register the object here if we are sure it isnt a false positive
|
||||
if not filter_false_positives(current_tracked_objects[id]):
|
||||
tracked_objects[id] = current_tracked_objects[id]
|
||||
# publish events to mqtt
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(tracked_objects[id]), retain=False)
|
||||
self.event_queue.put(('start', camera, tracked_objects[id]))
|
||||
|
||||
for id in updated_ids:
|
||||
tracked_objects[id] = current_tracked_objects[id]
|
||||
|
||||
for id in removed_ids:
|
||||
# publish events to mqtt
|
||||
tracked_objects[id]['end_time'] = frame_time
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(tracked_objects[id]), retain=False)
|
||||
self.event_queue.put(('end', camera, tracked_objects[id]))
|
||||
del tracked_objects[id]
|
||||
|
||||
self.camera_data[camera]['current_frame_time'] = frame_time
|
||||
|
||||
# build a dict of objects in each zone for current camera
|
||||
current_objects_in_zones = defaultdict(lambda: [])
|
||||
for obj in tracked_objects.values():
|
||||
bottom_center = (obj['centroid'][0], obj['box'][3])
|
||||
# check each zone
|
||||
for name, zone in self.zone_data.items():
|
||||
current_contour = zone['contours'].get(camera, None)
|
||||
# if the current camera does not have a contour for this zone, skip
|
||||
if current_contour is None:
|
||||
continue
|
||||
# check if the object is in the zone and not filtered
|
||||
if (cv2.pointPolygonTest(current_contour, bottom_center, False) >= 0
|
||||
and not zone_filtered(obj, self.zone_config[name][camera])):
|
||||
current_objects_in_zones[name].append(obj['label'])
|
||||
|
||||
###
|
||||
# Draw tracked objects on the frame
|
||||
###
|
||||
current_frame = self.plasma_client.get(f"{camera}{frame_time}")
|
||||
|
||||
if not current_frame is plasma.ObjectNotAvailable:
|
||||
# draw the bounding boxes on the frame
|
||||
for obj in tracked_objects.values():
|
||||
thickness = 2
|
||||
color = COLOR_MAP[obj['label']]
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj['box']
|
||||
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
# draw the regions on the frame
|
||||
region = obj['region']
|
||||
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
||||
|
||||
if camera_config['snapshots']['show_timestamp']:
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
if camera_config['snapshots']['draw_zones']:
|
||||
for name, zone in self.zone_data.items():
|
||||
thickness = 2 if len(current_objects_in_zones[name]) == 0 else 8
|
||||
if camera in zone['contours']:
|
||||
cv2.drawContours(current_frame, [zone['contours'][camera]], -1, zone['color'], thickness)
|
||||
|
||||
###
|
||||
# Set the current frame
|
||||
###
|
||||
self.camera_data[camera]['current_frame'] = current_frame
|
||||
|
||||
# delete the previous frame from the plasma store and update the object id
|
||||
if not self.camera_data[camera]['object_id'] is None:
|
||||
self.plasma_client.delete(self.camera_data[camera]['object_id'])
|
||||
self.camera_data[camera]['object_id'] = f"{camera}{frame_time}"
|
||||
|
||||
###
|
||||
# Maintain the highest scoring recent object and frame for each label
|
||||
###
|
||||
for obj in tracked_objects.values():
|
||||
# if the object wasn't seen on the current frame, skip it
|
||||
if obj['frame_time'] != frame_time:
|
||||
continue
|
||||
if obj['label'] in best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is more than 1 minute old, use the new object
|
||||
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
|
||||
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
||||
best_objects[obj['label']] = obj
|
||||
# send updated snapshot over mqtt
|
||||
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
|
||||
else:
|
||||
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
||||
best_objects[obj['label']] = obj
|
||||
|
||||
###
|
||||
# Report over MQTT
|
||||
###
|
||||
|
||||
# get the zones that are relevant for this camera
|
||||
relevant_zones = [zone for zone, config in self.zone_config.items() if camera in config]
|
||||
for zone in relevant_zones:
|
||||
# create the set of labels in the current frame and previously reported
|
||||
labels_for_zone = set(current_objects_in_zones[zone] + list(self.zone_data[zone]['object_status'][camera].keys()))
|
||||
# for each label
|
||||
for label in labels_for_zone:
|
||||
# compute the current 'ON' vs 'OFF' status by checking if any camera sees the object in the zone
|
||||
previous_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()])
|
||||
self.zone_data[zone]['object_status'][camera][label] = 'ON' if label in current_objects_in_zones[zone] else 'OFF'
|
||||
new_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()])
|
||||
# update zone status for each label
|
||||
for zone in camera_state.config['zones'].keys():
|
||||
# get labels for current camera and all labels in current zone
|
||||
labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones']])
|
||||
labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
|
||||
# for each label in zone
|
||||
for label in labels_to_check:
|
||||
camera_list = self.zone_data[zone][label]
|
||||
# remove or add the camera to the list for the current label
|
||||
previous_state = len(camera_list) > 0
|
||||
if label in labels_for_camera:
|
||||
camera_list.add(camera_state.name)
|
||||
elif camera_state.name in camera_list:
|
||||
camera_list.remove(camera_state.name)
|
||||
new_state = len(camera_list) > 0
|
||||
# if the value is changing, send over MQTT
|
||||
if previous_state == False and new_state == True:
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
|
||||
elif previous_state == True and new_state == False:
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
|
||||
|
||||
# count by type
|
||||
obj_counter = Counter()
|
||||
for obj in tracked_objects.values():
|
||||
obj_counter[obj['label']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != current_object_status[obj_name]:
|
||||
current_object_status[obj_name] = new_status
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
|
||||
# send the best snapshot over mqtt
|
||||
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
||||
|
||||
# expire any objects that are ON and no longer detected
|
||||
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
current_object_status[obj_name] = 'OFF'
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
|
||||
# send updated snapshot over mqtt
|
||||
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
||||
|
||||
@@ -24,7 +24,6 @@ class ObjectTracker():
|
||||
obj['id'] = id
|
||||
obj['start_time'] = obj['frame_time']
|
||||
obj['top_score'] = obj['score']
|
||||
self.add_history(obj)
|
||||
self.tracked_objects[id] = obj
|
||||
self.disappeared[id] = 0
|
||||
|
||||
@@ -35,25 +34,8 @@ class ObjectTracker():
|
||||
def update(self, id, new_obj):
|
||||
self.disappeared[id] = 0
|
||||
self.tracked_objects[id].update(new_obj)
|
||||
self.add_history(self.tracked_objects[id])
|
||||
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
||||
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
|
||||
|
||||
def add_history(self, obj):
|
||||
entry = {
|
||||
'score': obj['score'],
|
||||
'box': obj['box'],
|
||||
'region': obj['region'],
|
||||
'centroid': obj['centroid'],
|
||||
'frame_time': obj['frame_time']
|
||||
}
|
||||
if 'history' in obj:
|
||||
obj['history'].append(entry)
|
||||
# only maintain the last 20 in history
|
||||
if len(obj['history']) > 20:
|
||||
obj['history'] = obj['history'][-20:]
|
||||
else:
|
||||
obj['history'] = [entry]
|
||||
|
||||
def match_and_update(self, frame_time, new_objects):
|
||||
# group by name
|
||||
|
||||
@@ -44,6 +44,9 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
|
||||
# dont go any smaller than 300
|
||||
if size < 300:
|
||||
size = 300
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
@@ -73,8 +73,8 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
|
||||
if obj_settings.get('max_area', 24000000) < obj[3]:
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj[1]:
|
||||
# if the score is lower than the min_score, skip
|
||||
if obj_settings.get('min_score', 0) > obj[1]:
|
||||
return True
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
@@ -83,10 +83,10 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
|
||||
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if mask != None and mask[y_location][x_location] == [0]:
|
||||
if (not mask is None) and (mask[y_location][x_location][0] == 0):
|
||||
return True
|
||||
|
||||
return False
|
||||
return False
|
||||
|
||||
def create_tensor_input(frame, region):
|
||||
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
|
||||
@@ -118,7 +118,7 @@ def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
|
||||
|
||||
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
|
||||
frame_queue, take_frame: int, fps:EventsPerSecond, skipped_fps: EventsPerSecond,
|
||||
stop_event: mp.Event, detection_frame: mp.Value):
|
||||
stop_event: mp.Event, detection_frame: mp.Value, current_frame: mp.Value):
|
||||
|
||||
frame_num = 0
|
||||
last_frame = 0
|
||||
@@ -130,7 +130,7 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
|
||||
break
|
||||
|
||||
frame_bytes = ffmpeg_process.stdout.read(frame_size)
|
||||
current_frame = datetime.datetime.now().timestamp()
|
||||
current_frame.value = datetime.datetime.now().timestamp()
|
||||
|
||||
if len(frame_bytes) == 0:
|
||||
print(f"{camera_name}: ffmpeg didnt return a frame. something is wrong.")
|
||||
@@ -154,14 +154,14 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
|
||||
continue
|
||||
|
||||
# put the frame in the frame manager
|
||||
frame_manager.put(f"{camera_name}{current_frame}",
|
||||
frame_manager.put(f"{camera_name}{current_frame.value}",
|
||||
np
|
||||
.frombuffer(frame_bytes, np.uint8)
|
||||
.reshape(frame_shape)
|
||||
)
|
||||
# add to the queue
|
||||
frame_queue.put(current_frame)
|
||||
last_frame = current_frame
|
||||
frame_queue.put(current_frame.value)
|
||||
last_frame = current_frame.value
|
||||
|
||||
class CameraCapture(threading.Thread):
|
||||
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, detection_frame, stop_event):
|
||||
@@ -175,7 +175,7 @@ class CameraCapture(threading.Thread):
|
||||
self.skipped_fps = EventsPerSecond()
|
||||
self.plasma_client = PlasmaFrameManager(stop_event)
|
||||
self.ffmpeg_process = ffmpeg_process
|
||||
self.current_frame = 0
|
||||
self.current_frame = mp.Value('d', 0.0)
|
||||
self.last_frame = 0
|
||||
self.detection_frame = detection_frame
|
||||
self.stop_event = stop_event
|
||||
@@ -183,25 +183,18 @@ class CameraCapture(threading.Thread):
|
||||
def run(self):
|
||||
self.skipped_fps.start()
|
||||
capture_frames(self.ffmpeg_process, self.name, self.frame_shape, self.plasma_client, self.frame_queue, self.take_frame,
|
||||
self.fps, self.skipped_fps, self.stop_event, self.detection_frame)
|
||||
self.fps, self.skipped_fps, self.stop_event, self.detection_frame, self.current_frame)
|
||||
|
||||
def track_camera(name, config, global_objects_config, frame_queue, frame_shape, detection_queue, detected_objects_queue, fps, detection_fps, read_start, detection_frame, stop_event):
|
||||
def track_camera(name, config, frame_queue, frame_shape, detection_queue, detected_objects_queue, fps, detection_fps, read_start, detection_frame, stop_event):
|
||||
print(f"Starting process for {name}: {os.getpid()}")
|
||||
listen()
|
||||
|
||||
detection_frame.value = 0.0
|
||||
|
||||
# Merge the tracked object config with the global config
|
||||
camera_objects_config = config.get('objects', {})
|
||||
# combine tracked objects lists
|
||||
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
||||
# merge object filters
|
||||
global_object_filters = global_objects_config.get('filters', {})
|
||||
camera_object_filters = camera_objects_config.get('filters', {})
|
||||
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
||||
object_filters = {}
|
||||
for obj in objects_with_config:
|
||||
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
||||
camera_objects_config = config.get('objects', {})
|
||||
objects_to_track = camera_objects_config.get('track', [])
|
||||
object_filters = camera_objects_config.get('filters', {})
|
||||
|
||||
# load in the mask for object detection
|
||||
if 'mask' in config:
|
||||
|
||||
Reference in New Issue
Block a user