improve detection processing and restart when stuck

This commit is contained in:
Blake Blackshear
2020-03-01 07:16:49 -06:00
parent d8aa73d26e
commit a5bef89123
4 changed files with 77 additions and 76 deletions

View File

@@ -1,8 +1,10 @@
import os
import datetime
import hashlib
import multiprocessing as mp
import numpy as np
import SharedArray as sa
import pyarrow.plasma as plasma
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond
@@ -60,77 +62,75 @@ class ObjectDetector():
return detections
def run_detector(detection_queue, avg_speed, start):
print(f"Starting detection process: {os.getpid()}")
plasma_client = plasma.connect("/tmp/plasma")
object_detector = ObjectDetector()
while True:
object_id_str = detection_queue.get()
object_id_hash = hashlib.sha1(str.encode(object_id_str))
object_id = plasma.ObjectID(object_id_hash.digest())
input_frame = plasma_client.get(object_id, timeout_ms=0)
start.value = datetime.datetime.now().timestamp()
# detect and put the output in the plasma store
object_id_out = hashlib.sha1(str.encode(f"out-{object_id_str}")).digest()
plasma_client.put(object_detector.detect_raw(input_frame), plasma.ObjectID(object_id_out))
duration = datetime.datetime.now().timestamp()-start.value
start.value = 0.0
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self):
# TODO: see if we can use the plasma store with a queue and maintain the same speeds
try:
sa.delete("frame")
except:
pass
try:
sa.delete("detections")
except:
pass
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
self.detect_lock = mp.Lock()
self.detect_ready = mp.Event()
self.frame_ready = mp.Event()
self.detection_queue = mp.Queue()
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.start_or_restart()
def run_detector(detect_ready, frame_ready, avg_speed):
print(f"Starting detection process: {os.getpid()}")
object_detector = ObjectDetector()
input_frame = sa.attach("frame")
detections = sa.attach("detections")
while True:
# wait until a frame is ready
frame_ready.wait()
start = datetime.datetime.now().timestamp()
# signal that the process is busy
frame_ready.clear()
detections[:] = object_detector.detect_raw(input_frame)
# signal that the process is ready to detect
detect_ready.set()
duration = datetime.datetime.now().timestamp()-start
avg_speed.value = (avg_speed.value*9 + duration)/10
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, labels, detect_lock, detect_ready, frame_ready):
def __init__(self, name, labels, detection_queue):
self.labels = load_labels(labels)
self.input_frame = sa.attach("frame")
self.detections = sa.attach("detections")
self.name = name
self.fps = EventsPerSecond()
self.detect_lock = detect_lock
self.detect_ready = detect_ready
self.frame_ready = frame_ready
self.plasma_client = plasma.connect("/tmp/plasma")
self.detection_queue = detection_queue
def detect(self, tensor_input, threshold=.4):
detections = []
with self.detect_lock:
self.input_frame[:] = tensor_input
# unset detections and signal that a frame is ready
self.detect_ready.clear()
self.frame_ready.set()
# wait until the detection process is finished,
self.detect_ready.wait()
for d in self.detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
self.plasma_client.put(tensor_input, object_id_frame)
self.detection_queue.put(now)
raw_detections = self.plasma_client.get(object_id_detections)
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.plasma_client.delete([object_id_frame, object_id_detections])
self.fps.update()
return detections