forked from Github/frigate
improve detection processing and restart when stuck
This commit is contained in:
@@ -1,8 +1,10 @@
|
||||
import os
|
||||
import datetime
|
||||
import hashlib
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
import SharedArray as sa
|
||||
import pyarrow.plasma as plasma
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
from frigate.util import EventsPerSecond
|
||||
@@ -60,77 +62,75 @@ class ObjectDetector():
|
||||
|
||||
return detections
|
||||
|
||||
def run_detector(detection_queue, avg_speed, start):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
plasma_client = plasma.connect("/tmp/plasma")
|
||||
object_detector = ObjectDetector()
|
||||
|
||||
while True:
|
||||
object_id_str = detection_queue.get()
|
||||
object_id_hash = hashlib.sha1(str.encode(object_id_str))
|
||||
object_id = plasma.ObjectID(object_id_hash.digest())
|
||||
input_frame = plasma_client.get(object_id, timeout_ms=0)
|
||||
|
||||
start.value = datetime.datetime.now().timestamp()
|
||||
|
||||
# detect and put the output in the plasma store
|
||||
object_id_out = hashlib.sha1(str.encode(f"out-{object_id_str}")).digest()
|
||||
plasma_client.put(object_detector.detect_raw(input_frame), plasma.ObjectID(object_id_out))
|
||||
|
||||
duration = datetime.datetime.now().timestamp()-start.value
|
||||
start.value = 0.0
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self):
|
||||
# TODO: see if we can use the plasma store with a queue and maintain the same speeds
|
||||
try:
|
||||
sa.delete("frame")
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
sa.delete("detections")
|
||||
except:
|
||||
pass
|
||||
|
||||
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
|
||||
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
|
||||
|
||||
self.detect_lock = mp.Lock()
|
||||
self.detect_ready = mp.Event()
|
||||
self.frame_ready = mp.Event()
|
||||
self.detection_queue = mp.Queue()
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
self.detection_start = mp.Value('d', 0.0)
|
||||
self.detect_process = None
|
||||
self.start_or_restart()
|
||||
|
||||
def run_detector(detect_ready, frame_ready, avg_speed):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
object_detector = ObjectDetector()
|
||||
input_frame = sa.attach("frame")
|
||||
detections = sa.attach("detections")
|
||||
|
||||
while True:
|
||||
# wait until a frame is ready
|
||||
frame_ready.wait()
|
||||
start = datetime.datetime.now().timestamp()
|
||||
# signal that the process is busy
|
||||
frame_ready.clear()
|
||||
detections[:] = object_detector.detect_raw(input_frame)
|
||||
# signal that the process is ready to detect
|
||||
detect_ready.set()
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
|
||||
def start_or_restart(self):
|
||||
self.detection_start.value = 0.0
|
||||
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||
self.detect_process.terminate()
|
||||
print("Waiting for detection process to exit gracefully...")
|
||||
self.detect_process.join(timeout=30)
|
||||
if self.detect_process.exitcode is None:
|
||||
print("Detection process didnt exit. Force killing...")
|
||||
self.detect_process.kill()
|
||||
self.detect_process.join()
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
class RemoteObjectDetector():
|
||||
def __init__(self, labels, detect_lock, detect_ready, frame_ready):
|
||||
def __init__(self, name, labels, detection_queue):
|
||||
self.labels = load_labels(labels)
|
||||
|
||||
self.input_frame = sa.attach("frame")
|
||||
self.detections = sa.attach("detections")
|
||||
|
||||
self.name = name
|
||||
self.fps = EventsPerSecond()
|
||||
|
||||
self.detect_lock = detect_lock
|
||||
self.detect_ready = detect_ready
|
||||
self.frame_ready = frame_ready
|
||||
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||
self.detection_queue = detection_queue
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
detections = []
|
||||
with self.detect_lock:
|
||||
self.input_frame[:] = tensor_input
|
||||
# unset detections and signal that a frame is ready
|
||||
self.detect_ready.clear()
|
||||
self.frame_ready.set()
|
||||
# wait until the detection process is finished,
|
||||
self.detect_ready.wait()
|
||||
for d in self.detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
|
||||
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
|
||||
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
|
||||
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
|
||||
self.plasma_client.put(tensor_input, object_id_frame)
|
||||
self.detection_queue.put(now)
|
||||
raw_detections = self.plasma_client.get(object_id_detections)
|
||||
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
self.plasma_client.delete([object_id_frame, object_id_detections])
|
||||
self.fps.update()
|
||||
return detections
|
||||
Reference in New Issue
Block a user