forked from Github/frigate
Smarter Regions (#8194)
* Smarter Regions * Formatting * Cleanup * Fix motion region checking logic * Add database table and migration for regions * Update region grid on startup * Revert init delay change * Fix mypy * Move object related functions to util * Remove unused * Fix tests * Remove log * Update the region daily at 2 * Fix logic * Formatting * Initialize grid before starting processing frames * Move back to creating grid in main process * Formatting * Fixes * Formating * Fix region check * Accept all but true * Use regions grid for startup scan * Add clarifying comment * Fix new grid requests * Add tests * Delete stale region grids from DB
This commit is contained in:
@@ -14,6 +14,7 @@ import numpy as np
|
||||
import pytz
|
||||
import yaml
|
||||
from ruamel.yaml import YAML
|
||||
from tzlocal import get_localzone
|
||||
|
||||
from frigate.const import REGEX_HTTP_CAMERA_USER_PASS, REGEX_RTSP_CAMERA_USER_PASS
|
||||
|
||||
@@ -262,3 +263,10 @@ def find_by_key(dictionary, target_key):
|
||||
if result is not None:
|
||||
return result
|
||||
return None
|
||||
|
||||
|
||||
def get_tomorrow_at_2() -> datetime.datetime:
|
||||
tomorrow = datetime.datetime.now(get_localzone()) + datetime.timedelta(days=1)
|
||||
return tomorrow.replace(hour=2, minute=0, second=0).astimezone(
|
||||
datetime.timezone.utc
|
||||
)
|
||||
|
||||
481
frigate/util/object.py
Normal file
481
frigate/util/object.py
Normal file
@@ -0,0 +1,481 @@
|
||||
"""Utils for reading and writing object detection data."""
|
||||
|
||||
import datetime
|
||||
import logging
|
||||
import math
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from peewee import DoesNotExist
|
||||
|
||||
from frigate.config import DetectConfig, ModelConfig
|
||||
from frigate.detectors.detector_config import PixelFormatEnum
|
||||
from frigate.models import Event, Regions, Timeline
|
||||
from frigate.util.image import (
|
||||
area,
|
||||
calculate_region,
|
||||
intersection,
|
||||
intersection_over_union,
|
||||
yuv_region_2_bgr,
|
||||
yuv_region_2_rgb,
|
||||
yuv_region_2_yuv,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
GRID_SIZE = 8
|
||||
|
||||
|
||||
def get_camera_regions_grid(
|
||||
name: str, detect: DetectConfig
|
||||
) -> list[list[dict[str, any]]]:
|
||||
"""Build a grid of expected region sizes for a camera."""
|
||||
# get grid from db if available
|
||||
try:
|
||||
regions: Regions = Regions.select().where(Regions.camera == name).get()
|
||||
grid = regions.grid
|
||||
last_update = regions.last_update
|
||||
except DoesNotExist:
|
||||
grid = []
|
||||
for x in range(GRID_SIZE):
|
||||
row = []
|
||||
for y in range(GRID_SIZE):
|
||||
row.append({"sizes": []})
|
||||
grid.append(row)
|
||||
last_update = 0
|
||||
|
||||
# get events for timeline entries
|
||||
events = (
|
||||
Event.select(Event.id)
|
||||
.where(Event.camera == name)
|
||||
.where((Event.false_positive == None) | (Event.false_positive == False))
|
||||
.where(Event.start_time > last_update)
|
||||
)
|
||||
valid_event_ids = [e["id"] for e in events.dicts()]
|
||||
logger.debug(f"Found {len(valid_event_ids)} new events for {name}")
|
||||
|
||||
# no new events, return as is
|
||||
if not valid_event_ids:
|
||||
return grid
|
||||
|
||||
new_update = datetime.datetime.now().timestamp()
|
||||
timeline = (
|
||||
Timeline.select(
|
||||
*[
|
||||
Timeline.camera,
|
||||
Timeline.source,
|
||||
Timeline.data,
|
||||
]
|
||||
)
|
||||
.where(Timeline.source_id << valid_event_ids)
|
||||
.limit(10000)
|
||||
.dicts()
|
||||
)
|
||||
|
||||
logger.debug(f"Found {len(timeline)} new entries for {name}")
|
||||
|
||||
width = detect.width
|
||||
height = detect.height
|
||||
|
||||
for t in timeline:
|
||||
if t.get("source") != "tracked_object":
|
||||
continue
|
||||
|
||||
box = t["data"]["box"]
|
||||
|
||||
# calculate centroid position
|
||||
x = box[0] + (box[2] / 2)
|
||||
y = box[1] + (box[3] / 2)
|
||||
|
||||
x_pos = int(x * GRID_SIZE)
|
||||
y_pos = int(y * GRID_SIZE)
|
||||
|
||||
calculated_region = calculate_region(
|
||||
(height, width),
|
||||
box[0] * width,
|
||||
box[1] * height,
|
||||
(box[0] + box[2]) * width,
|
||||
(box[1] + box[3]) * height,
|
||||
320,
|
||||
1.35,
|
||||
)
|
||||
# save width of region to grid as relative
|
||||
grid[x_pos][y_pos]["sizes"].append(
|
||||
(calculated_region[2] - calculated_region[0]) / width
|
||||
)
|
||||
|
||||
for x in range(GRID_SIZE):
|
||||
for y in range(GRID_SIZE):
|
||||
cell = grid[x][y]
|
||||
|
||||
if len(cell["sizes"]) == 0:
|
||||
continue
|
||||
|
||||
std_dev = np.std(cell["sizes"])
|
||||
mean = np.mean(cell["sizes"])
|
||||
logger.debug(f"std dev: {std_dev} mean: {mean}")
|
||||
cell["x"] = x
|
||||
cell["y"] = y
|
||||
cell["std_dev"] = std_dev
|
||||
cell["mean"] = mean
|
||||
|
||||
# update db with new grid
|
||||
region = {
|
||||
Regions.camera: name,
|
||||
Regions.grid: grid,
|
||||
Regions.last_update: new_update,
|
||||
}
|
||||
(
|
||||
Regions.insert(region)
|
||||
.on_conflict(
|
||||
conflict_target=[Regions.camera],
|
||||
update=region,
|
||||
)
|
||||
.execute()
|
||||
)
|
||||
|
||||
return grid
|
||||
|
||||
|
||||
def get_cluster_region_from_grid(frame_shape, min_region, cluster, boxes, region_grid):
|
||||
min_x = frame_shape[1]
|
||||
min_y = frame_shape[0]
|
||||
max_x = 0
|
||||
max_y = 0
|
||||
for b in cluster:
|
||||
min_x = min(boxes[b][0], min_x)
|
||||
min_y = min(boxes[b][1], min_y)
|
||||
max_x = max(boxes[b][2], max_x)
|
||||
max_y = max(boxes[b][3], max_y)
|
||||
return get_region_from_grid(
|
||||
frame_shape, [min_x, min_y, max_x, max_y], min_region, region_grid
|
||||
)
|
||||
|
||||
|
||||
def get_region_from_grid(
|
||||
frame_shape: tuple[int],
|
||||
cluster: list[int],
|
||||
min_region: int,
|
||||
region_grid: list[list[dict[str, any]]],
|
||||
) -> list[int]:
|
||||
"""Get a region for a box based on the region grid."""
|
||||
box = calculate_region(
|
||||
frame_shape, cluster[0], cluster[1], cluster[2], cluster[3], min_region
|
||||
)
|
||||
centroid = (
|
||||
box[0] + (min(frame_shape[1], box[2]) - box[0]) / 2,
|
||||
box[1] + (min(frame_shape[0], box[3]) - box[1]) / 2,
|
||||
)
|
||||
grid_x = int(centroid[0] / frame_shape[1] * GRID_SIZE)
|
||||
grid_y = int(centroid[1] / frame_shape[0] * GRID_SIZE)
|
||||
|
||||
cell = region_grid[grid_x][grid_y]
|
||||
|
||||
# if there is no known data, get standard region for motion box
|
||||
if not cell or not cell["sizes"]:
|
||||
return calculate_region(frame_shape, box[0], box[1], box[2], box[3], min_region)
|
||||
|
||||
# convert the calculated region size to relative
|
||||
calc_size = (box[2] - box[0]) / frame_shape[1]
|
||||
|
||||
# if region is within expected size, don't resize
|
||||
if (
|
||||
(cell["mean"] - cell["std_dev"])
|
||||
<= calc_size
|
||||
<= (cell["mean"] + cell["std_dev"])
|
||||
):
|
||||
return box
|
||||
# TODO not sure how to handle case where cluster is larger than expected region
|
||||
elif calc_size > (cell["mean"] + cell["std_dev"]):
|
||||
return box
|
||||
|
||||
size = cell["mean"] * frame_shape[1]
|
||||
|
||||
# get region based on grid size
|
||||
return calculate_region(
|
||||
frame_shape,
|
||||
max(0, centroid[0] - size / 2),
|
||||
max(0, centroid[1] - size / 2),
|
||||
min(frame_shape[1], centroid[0] + size / 2),
|
||||
min(frame_shape[0], centroid[1] + size / 2),
|
||||
min_region,
|
||||
)
|
||||
|
||||
|
||||
def is_object_filtered(obj, objects_to_track, object_filters):
|
||||
object_name = obj[0]
|
||||
object_score = obj[1]
|
||||
object_box = obj[2]
|
||||
object_area = obj[3]
|
||||
object_ratio = obj[4]
|
||||
|
||||
if object_name not in objects_to_track:
|
||||
return True
|
||||
|
||||
if object_name in object_filters:
|
||||
obj_settings = object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.min_area > object_area:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.max_area < object_area:
|
||||
return True
|
||||
|
||||
# if the score is lower than the min_score, skip
|
||||
if obj_settings.min_score > object_score:
|
||||
return True
|
||||
|
||||
# if the object is not proportionally wide enough
|
||||
if obj_settings.min_ratio > object_ratio:
|
||||
return True
|
||||
|
||||
# if the object is proportionally too wide
|
||||
if obj_settings.max_ratio < object_ratio:
|
||||
return True
|
||||
|
||||
if obj_settings.mask is not None:
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isn't outside the bounds of the image (can happen from rounding)
|
||||
object_xmin = object_box[0]
|
||||
object_xmax = object_box[2]
|
||||
object_ymax = object_box[3]
|
||||
y_location = min(int(object_ymax), len(obj_settings.mask) - 1)
|
||||
x_location = min(
|
||||
int((object_xmax + object_xmin) / 2.0),
|
||||
len(obj_settings.mask[0]) - 1,
|
||||
)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if obj_settings.mask[y_location][x_location] == 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_min_region_size(model_config: ModelConfig) -> int:
|
||||
"""Get the min region size."""
|
||||
return max(model_config.height, model_config.width)
|
||||
|
||||
|
||||
def create_tensor_input(frame, model_config: ModelConfig, region):
|
||||
if model_config.input_pixel_format == PixelFormatEnum.rgb:
|
||||
cropped_frame = yuv_region_2_rgb(frame, region)
|
||||
elif model_config.input_pixel_format == PixelFormatEnum.bgr:
|
||||
cropped_frame = yuv_region_2_bgr(frame, region)
|
||||
else:
|
||||
cropped_frame = yuv_region_2_yuv(frame, region)
|
||||
|
||||
# Resize if needed
|
||||
if cropped_frame.shape != (model_config.height, model_config.width, 3):
|
||||
cropped_frame = cv2.resize(
|
||||
cropped_frame,
|
||||
dsize=(model_config.width, model_config.height),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
|
||||
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
|
||||
def box_overlaps(b1, b2):
|
||||
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def box_inside(b1, b2):
|
||||
# check if b2 is inside b1
|
||||
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def reduce_boxes(boxes, iou_threshold=0.0):
|
||||
clusters = []
|
||||
|
||||
for box in boxes:
|
||||
matched = 0
|
||||
for cluster in clusters:
|
||||
if intersection_over_union(box, cluster) > iou_threshold:
|
||||
matched = 1
|
||||
cluster[0] = min(cluster[0], box[0])
|
||||
cluster[1] = min(cluster[1], box[1])
|
||||
cluster[2] = max(cluster[2], box[2])
|
||||
cluster[3] = max(cluster[3], box[3])
|
||||
|
||||
if not matched:
|
||||
clusters.append(list(box))
|
||||
|
||||
return [tuple(c) for c in clusters]
|
||||
|
||||
|
||||
def intersects_any(box_a, boxes):
|
||||
for box in boxes:
|
||||
if box_overlaps(box_a, box):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def inside_any(box_a, boxes):
|
||||
for box in boxes:
|
||||
# check if box_a is inside of box
|
||||
if box_inside(box, box_a):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def get_cluster_boundary(box, min_region):
|
||||
# compute the max region size for the current box (box is 10% of region)
|
||||
box_width = box[2] - box[0]
|
||||
box_height = box[3] - box[1]
|
||||
max_region_area = abs(box_width * box_height) / 0.1
|
||||
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
|
||||
|
||||
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
|
||||
|
||||
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
|
||||
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
|
||||
|
||||
return [
|
||||
int(centroid[0] - max_x_dist),
|
||||
int(centroid[1] - max_y_dist),
|
||||
int(centroid[0] + max_x_dist),
|
||||
int(centroid[1] + max_y_dist),
|
||||
]
|
||||
|
||||
|
||||
def get_cluster_candidates(frame_shape, min_region, boxes):
|
||||
# and create a cluster of other boxes using it's max region size
|
||||
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
|
||||
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
|
||||
# determined by the max_region size minus half the box + 20%
|
||||
# TODO: see if we can do this with numpy
|
||||
cluster_candidates = []
|
||||
used_boxes = []
|
||||
# loop over each box
|
||||
for current_index, b in enumerate(boxes):
|
||||
if current_index in used_boxes:
|
||||
continue
|
||||
cluster = [current_index]
|
||||
used_boxes.append(current_index)
|
||||
cluster_boundary = get_cluster_boundary(b, min_region)
|
||||
# find all other boxes that fit inside the boundary
|
||||
for compare_index, compare_box in enumerate(boxes):
|
||||
if compare_index in used_boxes:
|
||||
continue
|
||||
|
||||
# if the box is not inside the potential cluster area, cluster them
|
||||
if not box_inside(cluster_boundary, compare_box):
|
||||
continue
|
||||
|
||||
# get the region if you were to add this box to the cluster
|
||||
potential_cluster = cluster + [compare_index]
|
||||
cluster_region = get_cluster_region(
|
||||
frame_shape, min_region, potential_cluster, boxes
|
||||
)
|
||||
# if region could be smaller and either box would be too small
|
||||
# for the resulting region, dont cluster
|
||||
should_cluster = True
|
||||
if (cluster_region[2] - cluster_region[0]) > min_region:
|
||||
for b in potential_cluster:
|
||||
box = boxes[b]
|
||||
# boxes should be more than 5% of the area of the region
|
||||
if area(box) / area(cluster_region) < 0.05:
|
||||
should_cluster = False
|
||||
break
|
||||
|
||||
if should_cluster:
|
||||
cluster.append(compare_index)
|
||||
used_boxes.append(compare_index)
|
||||
cluster_candidates.append(cluster)
|
||||
|
||||
# return the unique clusters only
|
||||
unique = {tuple(sorted(c)) for c in cluster_candidates}
|
||||
return [list(tup) for tup in unique]
|
||||
|
||||
|
||||
def get_cluster_region(frame_shape, min_region, cluster, boxes):
|
||||
min_x = frame_shape[1]
|
||||
min_y = frame_shape[0]
|
||||
max_x = 0
|
||||
max_y = 0
|
||||
for b in cluster:
|
||||
min_x = min(boxes[b][0], min_x)
|
||||
min_y = min(boxes[b][1], min_y)
|
||||
max_x = max(boxes[b][2], max_x)
|
||||
max_y = max(boxes[b][3], max_y)
|
||||
return calculate_region(
|
||||
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
|
||||
)
|
||||
|
||||
|
||||
def get_consolidated_object_detections(detected_object_groups):
|
||||
"""Drop detections that overlap too much"""
|
||||
consolidated_detections = []
|
||||
for group in detected_object_groups.values():
|
||||
# if the group only has 1 item, skip
|
||||
if len(group) == 1:
|
||||
consolidated_detections.append(group[0])
|
||||
continue
|
||||
|
||||
# sort smallest to largest by area
|
||||
sorted_by_area = sorted(group, key=lambda g: g[3])
|
||||
|
||||
for current_detection_idx in range(0, len(sorted_by_area)):
|
||||
current_detection = sorted_by_area[current_detection_idx][2]
|
||||
overlap = 0
|
||||
for to_check_idx in range(
|
||||
min(current_detection_idx + 1, len(sorted_by_area)),
|
||||
len(sorted_by_area),
|
||||
):
|
||||
to_check = sorted_by_area[to_check_idx][2]
|
||||
intersect_box = intersection(current_detection, to_check)
|
||||
# if 90% of smaller detection is inside of another detection, consolidate
|
||||
if (
|
||||
intersect_box is not None
|
||||
and area(intersect_box) / area(current_detection) > 0.9
|
||||
):
|
||||
overlap = 1
|
||||
break
|
||||
if overlap == 0:
|
||||
consolidated_detections.append(sorted_by_area[current_detection_idx])
|
||||
|
||||
return consolidated_detections
|
||||
|
||||
|
||||
def get_startup_regions(
|
||||
frame_shape: tuple[int],
|
||||
region_min_size: int,
|
||||
region_grid: list[list[dict[str, any]]],
|
||||
) -> list[list[int]]:
|
||||
"""Get a list of regions to run on startup."""
|
||||
# return 8 most popular regions for the camera
|
||||
all_cells = np.concatenate(region_grid).flat
|
||||
startup_cells = sorted(all_cells, key=lambda c: len(c["sizes"]), reverse=True)[0:8]
|
||||
regions = []
|
||||
|
||||
for cell in startup_cells:
|
||||
# rest of the cells are empty
|
||||
if not cell["sizes"]:
|
||||
break
|
||||
|
||||
x = frame_shape[1] / GRID_SIZE * (0.5 + cell["x"])
|
||||
y = frame_shape[0] / GRID_SIZE * (0.5 + cell["y"])
|
||||
size = cell["mean"] * frame_shape[1]
|
||||
regions.append(
|
||||
calculate_region(
|
||||
frame_shape,
|
||||
x - size / 2,
|
||||
y - size / 2,
|
||||
x + size / 2,
|
||||
y + size / 2,
|
||||
region_min_size,
|
||||
multiplier=1,
|
||||
)
|
||||
)
|
||||
|
||||
return regions
|
||||
Reference in New Issue
Block a user