forked from Github/frigate
Embeddings normalization fixes (#14284)
* Use cosine distance metric for vec tables * Only apply normalization to multi modal searches * Catch possible edge case in stddev calc * Use sigmoid function for normalization for multi modal searches only * Ensure we get model state on initial page load * Only save stats for multi modal searches and only use cosine similarity for image -> image search
This commit is contained in:
@@ -187,13 +187,19 @@ export default function SearchView({
|
||||
}
|
||||
}, [searchResults, searchDetail]);
|
||||
|
||||
// confidence score - probably needs tweaking
|
||||
// confidence score
|
||||
|
||||
const zScoreToConfidence = (score: number) => {
|
||||
// Sigmoid function: 1 / (1 + e^x)
|
||||
const confidence = 1 / (1 + Math.exp(score));
|
||||
// Normalizing is not needed for similarity searches
|
||||
// Sigmoid function for normalized: 1 / (1 + e^x)
|
||||
// Cosine for similarity
|
||||
if (searchFilter) {
|
||||
const notNormalized = searchFilter?.search_type?.includes("similarity");
|
||||
|
||||
return Math.round(confidence * 100);
|
||||
const confidence = notNormalized ? 1 - score : 1 / (1 + Math.exp(score));
|
||||
|
||||
return Math.round(confidence * 100);
|
||||
}
|
||||
};
|
||||
|
||||
const hasExistingSearch = useMemo(
|
||||
|
||||
Reference in New Issue
Block a user