forked from Github/frigate
Add features to rknn detector (#8631)
* support for other yolov models and config checks * apply code formatting * Information about core mask and inference speed * update rknn postprocess and remove params * update model selection * Apply suggestions from code review Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
This commit is contained in:
@@ -1,8 +1,8 @@
|
||||
import logging
|
||||
import os.path
|
||||
import urllib.request
|
||||
from typing import Literal
|
||||
|
||||
import cv2
|
||||
import cv2.dnn
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
@@ -22,35 +22,83 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "rknn"
|
||||
|
||||
yolov8_rknn_models = {
|
||||
"default-yolov8n": "n",
|
||||
"default-yolov8s": "s",
|
||||
"default-yolov8m": "m",
|
||||
"default-yolov8l": "l",
|
||||
"default-yolov8x": "x",
|
||||
}
|
||||
|
||||
|
||||
class RknnDetectorConfig(BaseDetectorConfig):
|
||||
type: Literal[DETECTOR_KEY]
|
||||
score_thresh: float = Field(
|
||||
default=0.5, ge=0, le=1, title="Minimal confidence for detection."
|
||||
)
|
||||
nms_thresh: float = Field(
|
||||
default=0.45, ge=0, le=1, title="IoU threshold for non-maximum suppression."
|
||||
)
|
||||
core_mask: int = Field(default=0, ge=0, le=7, title="Core mask for NPU.")
|
||||
|
||||
|
||||
class Rknn(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
|
||||
def __init__(self, config: RknnDetectorConfig):
|
||||
self.model_path = config.model.path or "default-yolov8n"
|
||||
self.core_mask = config.core_mask
|
||||
self.height = config.model.height
|
||||
self.width = config.model.width
|
||||
self.score_thresh = config.score_thresh
|
||||
self.nms_thresh = config.nms_thresh
|
||||
|
||||
self.model_path = config.model.path or "/models/yolov8n-320x320.rknn"
|
||||
if self.model_path in yolov8_rknn_models:
|
||||
if self.model_path == "default-yolov8n":
|
||||
self.model_path = "/models/yolov8n-320x320.rknn"
|
||||
else:
|
||||
model_suffix = yolov8_rknn_models[self.model_path]
|
||||
self.model_path = (
|
||||
"/config/model_cache/rknn/yolov8{}-320x320.rknn".format(
|
||||
model_suffix
|
||||
)
|
||||
)
|
||||
|
||||
os.makedirs("/config/model_cache/rknn", exist_ok=True)
|
||||
if not os.path.isfile(self.model_path):
|
||||
logger.info("Downloading yolov8{} model.".format(model_suffix))
|
||||
urllib.request.urlretrieve(
|
||||
"https://github.com/MarcA711/rknn-models/releases/download/latest/yolov8{}-320x320.rknn".format(
|
||||
model_suffix
|
||||
),
|
||||
self.model_path,
|
||||
)
|
||||
|
||||
if (config.model.width != 320) or (config.model.height != 320):
|
||||
logger.error(
|
||||
"Make sure to set the model width and heigth to 320 in your config.yml."
|
||||
)
|
||||
raise Exception(
|
||||
"Make sure to set the model width and heigth to 320 in your config.yml."
|
||||
)
|
||||
|
||||
if config.model.input_pixel_format != "bgr":
|
||||
logger.error(
|
||||
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
|
||||
)
|
||||
raise Exception(
|
||||
'Make sure to set the model input_pixel_format to "bgr" in your config.yml.'
|
||||
)
|
||||
|
||||
if config.model.input_tensor != "nhwc":
|
||||
logger.error(
|
||||
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
|
||||
)
|
||||
raise Exception(
|
||||
'Make sure to set the model input_tensor to "nhwc" in your config.yml.'
|
||||
)
|
||||
|
||||
from rknnlite.api import RKNNLite
|
||||
|
||||
self.rknn = RKNNLite(verbose=False)
|
||||
if self.rknn.load_rknn(self.model_path) != 0:
|
||||
logger.error("Error initializing rknn model.")
|
||||
if self.rknn.init_runtime() != 0:
|
||||
logger.error("Error initializing rknn runtime.")
|
||||
if self.rknn.init_runtime(core_mask=self.core_mask) != 0:
|
||||
logger.error(
|
||||
"Error initializing rknn runtime. Do you run docker in privileged mode?"
|
||||
)
|
||||
|
||||
def __del__(self):
|
||||
self.rknn.release()
|
||||
@@ -67,45 +115,43 @@ class Rknn(DetectionApi):
|
||||
"""
|
||||
|
||||
results = np.transpose(results[0, :, :, 0]) # array shape (2100, 84)
|
||||
classes = np.argmax(
|
||||
results[:, 4:], axis=1
|
||||
) # array shape (2100,); index of class with max confidence of each row
|
||||
scores = np.max(
|
||||
results[:, 4:], axis=1
|
||||
) # array shape (2100,); max confidence of each row
|
||||
|
||||
# array shape (2100, 4); bounding box of each row
|
||||
# remove lines with score scores < 0.4
|
||||
filtered_arg = np.argwhere(scores > 0.4)
|
||||
results = results[filtered_arg[:, 0]]
|
||||
scores = scores[filtered_arg[:, 0]]
|
||||
|
||||
num_detections = len(scores)
|
||||
|
||||
if num_detections == 0:
|
||||
return np.zeros((20, 6), np.float32)
|
||||
|
||||
if num_detections > 20:
|
||||
top_arg = np.argpartition(scores, -20)[-20:]
|
||||
results = results[top_arg]
|
||||
scores = scores[top_arg]
|
||||
num_detections = 20
|
||||
|
||||
classes = np.argmax(results[:, 4:], axis=1)
|
||||
|
||||
boxes = np.transpose(
|
||||
np.vstack(
|
||||
(
|
||||
results[:, 0] - 0.5 * results[:, 2],
|
||||
results[:, 1] - 0.5 * results[:, 3],
|
||||
results[:, 2],
|
||||
results[:, 3],
|
||||
results[:, 0] - 0.5 * results[:, 2],
|
||||
results[:, 3] + 0.5 * results[:, 3],
|
||||
results[:, 2] + 0.5 * results[:, 2],
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
# indices of rows with confidence > SCORE_THRESH with Non-maximum Suppression (NMS)
|
||||
result_boxes = cv2.dnn.NMSBoxes(
|
||||
boxes, scores, self.score_thresh, self.nms_thresh, 0.5
|
||||
)
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
for i in range(len(result_boxes)):
|
||||
if i >= 20:
|
||||
break
|
||||
|
||||
index = result_boxes[i]
|
||||
detections[i] = [
|
||||
classes[index],
|
||||
scores[index],
|
||||
(boxes[index][1]) / self.height,
|
||||
(boxes[index][0]) / self.width,
|
||||
(boxes[index][1] + boxes[index][3]) / self.height,
|
||||
(boxes[index][0] + boxes[index][2]) / self.width,
|
||||
]
|
||||
detections[:num_detections, 0] = classes
|
||||
detections[:num_detections, 1] = scores
|
||||
detections[:num_detections, 2:] = boxes
|
||||
|
||||
return detections
|
||||
|
||||
|
||||
Reference in New Issue
Block a user