forked from Github/frigate
improve watchdog and coral fps tracking
This commit is contained in:
@@ -78,16 +78,13 @@ class EdgeTPUProcess():
|
||||
self.detect_lock = mp.Lock()
|
||||
self.detect_ready = mp.Event()
|
||||
self.frame_ready = mp.Event()
|
||||
self.fps = mp.Value('d', 0.0)
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
|
||||
def run_detector(detect_ready, frame_ready, fps, avg_speed):
|
||||
def run_detector(detect_ready, frame_ready, avg_speed):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
object_detector = ObjectDetector()
|
||||
input_frame = sa.attach("frame")
|
||||
detections = sa.attach("detections")
|
||||
fps_tracker = EventsPerSecond()
|
||||
fps_tracker.start()
|
||||
|
||||
while True:
|
||||
# wait until a frame is ready
|
||||
@@ -98,12 +95,10 @@ class EdgeTPUProcess():
|
||||
detections[:] = object_detector.detect_raw(input_frame)
|
||||
# signal that the process is ready to detect
|
||||
detect_ready.set()
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.fps, self.avg_inference_speed))
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
@@ -114,6 +109,8 @@ class RemoteObjectDetector():
|
||||
self.input_frame = sa.attach("frame")
|
||||
self.detections = sa.attach("detections")
|
||||
|
||||
self.fps = EventsPerSecond()
|
||||
|
||||
self.detect_lock = detect_lock
|
||||
self.detect_ready = detect_ready
|
||||
self.frame_ready = frame_ready
|
||||
@@ -135,4 +132,5 @@ class RemoteObjectDetector():
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
self.fps.update()
|
||||
return detections
|
||||
@@ -33,7 +33,8 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
self.camera_data = defaultdict(lambda: {
|
||||
'best_objects': {},
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
'tracked_objects': {}
|
||||
'tracked_objects': {},
|
||||
'current_frame_time': datetime.datetime.now().timestamp()
|
||||
})
|
||||
|
||||
def get_best(self, camera, label):
|
||||
@@ -44,6 +45,9 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
|
||||
def get_current_frame(self, camera):
|
||||
return self.camera_data[camera]['current_frame']
|
||||
|
||||
def get_current_frame_time(self, camera):
|
||||
return self.camera_data[camera]['current_frame_time']
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
@@ -86,6 +90,7 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
# Set the current frame as ready
|
||||
###
|
||||
self.camera_data[camera]['current_frame'] = current_frame
|
||||
self.camera_data[camera]['current_frame_time'] = frame_time
|
||||
|
||||
###
|
||||
# Maintain the highest scoring recent object and frame for each label
|
||||
|
||||
@@ -99,7 +99,7 @@ def create_tensor_input(frame, region):
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps):
|
||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps):
|
||||
print(f"Starting process for {name}: {os.getpid()}")
|
||||
|
||||
# Merge the ffmpeg config with the global config
|
||||
@@ -168,6 +168,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
||||
skipped_fps_tracker = EventsPerSecond()
|
||||
fps_tracker.start()
|
||||
skipped_fps_tracker.start()
|
||||
object_detector.fps.start()
|
||||
while True:
|
||||
frame_bytes = ffmpeg_process.stdout.read(frame_size)
|
||||
|
||||
@@ -181,6 +182,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
||||
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
|
||||
frame_time = datetime.datetime.now().timestamp()
|
||||
|
||||
@@ -193,6 +195,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
||||
motion_boxes = motion_detector.detect(frame)
|
||||
|
||||
# skip object detection if we are below the min_fps
|
||||
# TODO: its about more than just the FPS. also look at avg wait or min wait
|
||||
if frame_num > 100 and fps.value < expected_fps-1:
|
||||
skipped_fps_tracker.update()
|
||||
skipped_fps.value = skipped_fps_tracker.eps()
|
||||
|
||||
Reference in New Issue
Block a user