improve watchdog and coral fps tracking

This commit is contained in:
Blake Blackshear
2020-02-21 20:44:53 -06:00
parent 2fc389c3ad
commit 6f6d202c99
4 changed files with 47 additions and 22 deletions

View File

@@ -78,16 +78,13 @@ class EdgeTPUProcess():
self.detect_lock = mp.Lock()
self.detect_ready = mp.Event()
self.frame_ready = mp.Event()
self.fps = mp.Value('d', 0.0)
self.avg_inference_speed = mp.Value('d', 0.01)
def run_detector(detect_ready, frame_ready, fps, avg_speed):
def run_detector(detect_ready, frame_ready, avg_speed):
print(f"Starting detection process: {os.getpid()}")
object_detector = ObjectDetector()
input_frame = sa.attach("frame")
detections = sa.attach("detections")
fps_tracker = EventsPerSecond()
fps_tracker.start()
while True:
# wait until a frame is ready
@@ -98,12 +95,10 @@ class EdgeTPUProcess():
detections[:] = object_detector.detect_raw(input_frame)
# signal that the process is ready to detect
detect_ready.set()
fps_tracker.update()
fps.value = fps_tracker.eps()
duration = datetime.datetime.now().timestamp()-start
avg_speed.value = (avg_speed.value*9 + duration)/10
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.fps, self.avg_inference_speed))
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
self.detect_process.daemon = True
self.detect_process.start()
@@ -114,6 +109,8 @@ class RemoteObjectDetector():
self.input_frame = sa.attach("frame")
self.detections = sa.attach("detections")
self.fps = EventsPerSecond()
self.detect_lock = detect_lock
self.detect_ready = detect_ready
self.frame_ready = frame_ready
@@ -135,4 +132,5 @@ class RemoteObjectDetector():
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections

View File

@@ -33,7 +33,8 @@ class TrackedObjectProcessor(threading.Thread):
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {}
'tracked_objects': {},
'current_frame_time': datetime.datetime.now().timestamp()
})
def get_best(self, camera, label):
@@ -44,6 +45,9 @@ class TrackedObjectProcessor(threading.Thread):
def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame']
def get_current_frame_time(self, camera):
return self.camera_data[camera]['current_frame_time']
def run(self):
while True:
@@ -86,6 +90,7 @@ class TrackedObjectProcessor(threading.Thread):
# Set the current frame as ready
###
self.camera_data[camera]['current_frame'] = current_frame
self.camera_data[camera]['current_frame_time'] = frame_time
###
# Maintain the highest scoring recent object and frame for each label

View File

@@ -99,7 +99,7 @@ def create_tensor_input(frame, region):
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps):
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps):
print(f"Starting process for {name}: {os.getpid()}")
# Merge the ffmpeg config with the global config
@@ -168,6 +168,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
skipped_fps_tracker = EventsPerSecond()
fps_tracker.start()
skipped_fps_tracker.start()
object_detector.fps.start()
while True:
frame_bytes = ffmpeg_process.stdout.read(frame_size)
@@ -181,6 +182,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
fps_tracker.update()
fps.value = fps_tracker.eps()
detection_fps.value = object_detector.fps.eps()
frame_time = datetime.datetime.now().timestamp()
@@ -193,6 +195,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
motion_boxes = motion_detector.detect(frame)
# skip object detection if we are below the min_fps
# TODO: its about more than just the FPS. also look at avg wait or min wait
if frame_num > 100 and fps.value < expected_fps-1:
skipped_fps_tracker.update()
skipped_fps.value = skipped_fps_tracker.eps()