Adjustments and fixes (#10346)

* Increase duration of alerts and detections

* Add key

* Fix cancel button

* Fix motion review when switching days

* Add reset buttons and make calendar apply immediately

* Adjust apis for motion and audio activity

* Write review thumbs as webp and reduce size
This commit is contained in:
Nicolas Mowen
2024-03-09 07:08:06 -07:00
committed by GitHub
parent eeb2187b97
commit 62d13024f6
7 changed files with 111 additions and 50 deletions

View File

@@ -353,8 +353,8 @@ def delete_reviews(ids: str):
return make_response(jsonify({"success": True, "message": "Delete reviews"}), 200)
@ReviewBp.route("/review/activity")
def review_activity():
@ReviewBp.route("/review/activity/motion")
def motion_activity():
"""Get motion and audio activity."""
cameras = request.args.get("cameras", "all")
before = request.args.get("before", type=float, default=datetime.now().timestamp())
@@ -374,6 +374,68 @@ def review_activity():
Recordings.duration,
Recordings.objects,
Recordings.motion,
)
.where(reduce(operator.and_, clauses))
.order_by(Recordings.start_time.asc())
.iterator()
)
# format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] }
# periods where active objects / audio was detected will cause motion to be scaled down
data: list[dict[str, float]] = []
for rec in all_recordings:
data.append(
{
"start_time": rec.start_time,
"motion": rec.motion if rec.objects == 0 else 0,
}
)
# get scale in seconds
scale = request.args.get("scale", type=int, default=30)
# resample data using pandas to get activity on scaled basis
df = pd.DataFrame(data, columns=["start_time", "motion"])
# set date as datetime index
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
df.set_index(["start_time"], inplace=True)
# normalize data
df = df.resample(f"{scale}S").sum().fillna(0.0)
df["motion"] = (
(df["motion"] - df["motion"].min())
/ (df["motion"].max() - df["motion"].min())
* 100
)
# change types for output
df.index = df.index.astype(int) // (10**9)
normalized = df.reset_index().to_dict("records")
return jsonify(normalized)
@ReviewBp.route("/review/activity/audio")
def audio_activity():
"""Get motion and audio activity."""
cameras = request.args.get("cameras", "all")
before = request.args.get("before", type=float, default=datetime.now().timestamp())
after = request.args.get(
"after", type=float, default=(datetime.now() - timedelta(hours=1)).timestamp()
)
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((Recordings.camera << camera_list))
all_recordings: list[Recordings] = (
Recordings.select(
Recordings.start_time,
Recordings.duration,
Recordings.objects,
Recordings.dBFS,
)
.where(reduce(operator.and_, clauses))
@@ -382,14 +444,13 @@ def review_activity():
)
# format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] }
# periods where active objects / audio was detected will cause motion / audio to be scaled down
# periods where active objects / audio was detected will cause audio to be scaled down
data: list[dict[str, float]] = []
for rec in all_recordings:
data.append(
{
"start_time": rec.start_time,
"motion": rec.motion if rec.objects == 0 else 0,
"audio": rec.dBFS if rec.objects == 0 else 0,
}
)
@@ -398,7 +459,7 @@ def review_activity():
scale = request.args.get("scale", type=int, default=30)
# resample data using pandas to get activity on scaled basis
df = pd.DataFrame(data, columns=["start_time", "motion", "audio"])
df = pd.DataFrame(data, columns=["start_time", "audio"])
# set date as datetime index
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
@@ -406,11 +467,6 @@ def review_activity():
# normalize data
df = df.resample(f"{scale}S").mean().fillna(0.0)
df["motion"] = (
(df["motion"] - df["motion"].min())
/ (df["motion"].max() - df["motion"].min())
* 100
)
df["audio"] = (
(df["audio"] - df["audio"].max())
/ (df["audio"].min() - df["audio"].max())

View File

@@ -28,6 +28,10 @@ logger = logging.getLogger(__name__)
THUMB_HEIGHT = 180
THUMB_WIDTH = 320
THRESHOLD_ALERT_ACTIVITY = 120
THRESHOLD_DETECTION_ACTIVITY = 30
THRESHOLD_MOTION_ACTIVITY = 30
class SeverityEnum(str, Enum):
alert = "alert"
@@ -100,7 +104,7 @@ class PendingReviewSegment:
path = os.path.join(CLIPS_DIR, f"thumb-{self.camera}-{self.id}.jpg")
if self.frame is not None:
cv2.imwrite(path, self.frame)
cv2.imwrite(path, self.frame, [int(cv2.IMWRITE_WEBP_QUALITY), 60])
return {
ReviewSegment.id: self.id,
@@ -195,15 +199,16 @@ class ReviewSegmentMaintainer(threading.Thread):
if len(object["current_zones"]) > 0:
segment.zones.update(object["current_zones"])
elif (
segment.severity == SeverityEnum.signification_motion and len(motion) >= 20
segment.severity == SeverityEnum.signification_motion
and len(motion) >= THRESHOLD_MOTION_ACTIVITY
):
segment.last_update = frame_time
else:
if segment.severity == SeverityEnum.alert and frame_time > (
segment.last_update + 60
segment.last_update + THRESHOLD_ALERT_ACTIVITY
):
self.end_segment(segment)
elif frame_time > (segment.last_update + 10):
elif frame_time > (segment.last_update + THRESHOLD_DETECTION_ACTIVITY):
self.end_segment(segment)
def check_if_new_segment(