Improve face recognition (#15205)

* Validate faces using cosine distance and SVC

* Formatting

* Use opencv instead of face embedding

* Update docs for training data

* Adjust to score system

* Set bounds

* remove face embeddings

* Update writing images

* Add face library page

* Add ability to select file

* Install opencv deps

* Cleanup

* Use different deps

* Move deps

* Cleanup

* Only show face library for desktop

* Implement deleting

* Add ability to upload image

* Add support for uploading images
This commit is contained in:
Nicolas Mowen
2024-11-26 13:41:49 -07:00
parent 9d54beab76
commit 5cf018ca72
15 changed files with 397 additions and 137 deletions

View File

@@ -18,4 +18,18 @@ Face recognition is disabled by default and requires semantic search to be enabl
```yaml
face_recognition:
enabled: true
```
```
## Dataset
The number of images needed for a sufficient training set for face recognition varies depending on several factors:
- Complexity of the task: A simple task like recognizing faces of known individuals may require fewer images than a complex task like identifying unknown individuals in a large crowd.
- Diversity of the dataset: A dataset with diverse images, including variations in lighting, pose, and facial expressions, will require fewer images per person than a less diverse dataset.
- Desired accuracy: The higher the desired accuracy, the more images are typically needed.
However, here are some general guidelines:
- Minimum: For basic face recognition tasks, a minimum of 10-20 images per person is often recommended.
- Recommended: For more robust and accurate systems, 30-50 images per person is a good starting point.
- Ideal: For optimal performance, especially in challenging conditions, 100 or more images per person can be beneficial.