Rocm yolonas (#13816)

* Implement ROCm detectors

* Cleanup tensor input

* Fixup image creation

* Add support for yolonas in onnx

* Get build working with onnx

* Update docs and simplify config

* Remove unused imports
This commit is contained in:
Nicolas Mowen
2024-09-18 18:34:07 -06:00
committed by GitHub
parent efd1194307
commit 4515eb4637
14 changed files with 194 additions and 154 deletions

View File

@@ -24,7 +24,6 @@ from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from frigate.detectors.util import preprocess # Assuming this function is available
# Set up logging
logger = logging.getLogger(__name__)
@@ -146,17 +145,9 @@ class HailoDetector(DetectionApi):
f"[detect_raw] Converted tensor_input to numpy array: shape {tensor_input.shape}"
)
# Preprocess the tensor input using Frigate's preprocess function
processed_tensor = preprocess(
tensor_input, (1, self.h8l_model_height, self.h8l_model_width, 3), np.uint8
)
input_data = tensor_input
logger.debug(
f"[detect_raw] Tensor data and shape after preprocessing: {processed_tensor} {processed_tensor.shape}"
)
input_data = processed_tensor
logger.debug(
f"[detect_raw] Input data for inference shape: {processed_tensor.shape}, dtype: {processed_tensor.dtype}"
f"[detect_raw] Input data for inference shape: {tensor_input.shape}, dtype: {tensor_input.dtype}"
)
try:

View File

@@ -1,7 +1,6 @@
import logging
import os
import cv2
import numpy as np
from typing_extensions import Literal
@@ -9,7 +8,6 @@ from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import (
BaseDetectorConfig,
ModelTypeEnum,
PixelFormatEnum,
)
logger = logging.getLogger(__name__)
@@ -73,24 +71,13 @@ class ONNXDetector(DetectionApi):
self.w = detector_config.model.width
self.onnx_model_type = detector_config.model.model_type
self.onnx_model_px = detector_config.model.input_pixel_format
self.onnx_model_shape = detector_config.model.input_tensor
path = detector_config.model.path
logger.info(f"ONNX: {path} loaded")
def detect_raw(self, tensor_input):
model_input_name = self.model.get_inputs()[0].name
model_input_shape = self.model.get_inputs()[0].shape
# adjust input shape
if self.onnx_model_type == ModelTypeEnum.yolonas:
tensor_input = cv2.dnn.blobFromImage(
tensor_input[0],
1.0,
(model_input_shape[3], model_input_shape[2]),
None,
swapRB=self.onnx_model_px == PixelFormatEnum.bgr,
).astype(np.uint8)
tensor_output = self.model.run(None, {model_input_name: tensor_input})
if self.onnx_model_type == ModelTypeEnum.yolonas:

View File

@@ -9,8 +9,10 @@ from pydantic import Field
from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from frigate.detectors.util import preprocess
from frigate.detectors.detector_config import (
BaseDetectorConfig,
ModelTypeEnum,
)
logger = logging.getLogger(__name__)
@@ -74,7 +76,16 @@ class ROCmDetector(DetectionApi):
logger.error("AMD/ROCm: module loading failed, missing ROCm environment?")
raise
if detector_config.conserve_cpu:
logger.info("AMD/ROCm: switching HIP to blocking mode to conserve CPU")
ctypes.CDLL("/opt/rocm/lib/libamdhip64.so").hipSetDeviceFlags(4)
self.h = detector_config.model.height
self.w = detector_config.model.width
self.rocm_model_type = detector_config.model.model_type
self.rocm_model_px = detector_config.model.input_pixel_format
path = detector_config.model.path
mxr_path = os.path.splitext(path)[0] + ".mxr"
if path.endswith(".mxr"):
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
@@ -84,6 +95,7 @@ class ROCmDetector(DetectionApi):
self.model = migraphx.load(mxr_path)
else:
logger.info(f"AMD/ROCm: loading model from {path}")
if path.endswith(".onnx"):
self.model = migraphx.parse_onnx(path)
elif (
@@ -95,30 +107,51 @@ class ROCmDetector(DetectionApi):
self.model = migraphx.parse_tf(path)
else:
raise Exception(f"AMD/ROCm: unknown model format {path}")
logger.info("AMD/ROCm: compiling the model")
self.model.compile(
migraphx.get_target("gpu"), offload_copy=True, fast_math=True
)
logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}")
os.makedirs("/config/model_cache/rocm", exist_ok=True)
migraphx.save(self.model, mxr_path)
logger.info("AMD/ROCm: model loaded")
def detect_raw(self, tensor_input):
model_input_name = self.model.get_parameter_names()[0]
model_input_shape = tuple(
self.model.get_parameter_shapes()[model_input_name].lens()
)
tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
detector_result = self.model.run({model_input_name: tensor_input})[0]
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
# ruff: noqa: F841
tensor_output = np.ctypeslib.as_array(
addr, shape=detector_result.get_shape().lens()
)
raise Exception(
"No models are currently supported for rocm. See the docs for more info."
)
if self.rocm_model_type == ModelTypeEnum.yolonas:
predictions = tensor_output
detections = np.zeros((20, 6), np.float32)
for i, prediction in enumerate(predictions):
if i == 20:
break
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
# when running in GPU mode, empty predictions in the output have class_id of -1
if class_id < 0:
break
detections[i] = [
class_id,
confidence,
y_min / self.h,
x_min / self.w,
y_max / self.h,
x_max / self.w,
]
return detections
else:
raise Exception(
f"{self.rocm_model_type} is currently not supported for rocm. See the docs for more info on supported models."
)

View File

@@ -1,36 +0,0 @@
import logging
import cv2
import numpy as np
logger = logging.getLogger(__name__)
def preprocess(tensor_input, model_input_shape, model_input_element_type):
model_input_shape = tuple(model_input_shape)
assert tensor_input.dtype == np.uint8, f"tensor_input.dtype: {tensor_input.dtype}"
if len(tensor_input.shape) == 3:
tensor_input = tensor_input[np.newaxis, :]
if model_input_element_type == np.uint8:
# nothing to do for uint8 model input
assert (
model_input_shape == tensor_input.shape
), f"model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}"
return tensor_input
assert (
model_input_element_type == np.float32
), f"model_input_element_type: {model_input_element_type}"
# tensor_input must be nhwc
assert tensor_input.shape[3] == 3, f"tensor_input.shape: {tensor_input.shape}"
if tensor_input.shape[1:3] != model_input_shape[2:4]:
logger.warn(
f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!"
)
# cv2.dnn.blobFromImage is faster than running it through numpy
return cv2.dnn.blobFromImage(
tensor_input[0],
1.0 / 255,
(model_input_shape[3], model_input_shape[2]),
None,
swapRB=False,
)