Adds support for YOLO-NAS in OpenVino (#11645)

* update onnxruntime

* support for yolo-nas in openvino

* cleanup notebook

* update docs

* improve docs

* handle AUTO issue and update docs
This commit is contained in:
Blake Blackshear
2024-06-07 06:52:08 -05:00
committed by GitHub
parent 4e569ad644
commit 4313fd97aa
6 changed files with 279 additions and 46 deletions

View File

@@ -1,5 +1,6 @@
import logging
from abc import ABC, abstractmethod
from typing import List
import numpy as np
@@ -10,6 +11,7 @@ logger = logging.getLogger(__name__)
class DetectionApi(ABC):
type_key: str
supported_models: List[ModelTypeEnum]
@abstractmethod
def __init__(self, detector_config):

View File

@@ -20,6 +20,7 @@ class OvDetectorConfig(BaseDetectorConfig):
class OvDetector(DetectionApi):
type_key = DETECTOR_KEY
supported_models = [ModelTypeEnum.ssd, ModelTypeEnum.yolonas, ModelTypeEnum.yolox]
def __init__(self, detector_config: OvDetectorConfig):
self.ov_core = ov.Core()
@@ -28,12 +29,24 @@ class OvDetector(DetectionApi):
self.h = detector_config.model.height
self.w = detector_config.model.width
if detector_config.device == "AUTO":
logger.warning(
"OpenVINO AUTO device type is not currently supported. Attempting to use GPU instead."
)
detector_config.device = "GPU"
self.interpreter = self.ov_core.compile_model(
model=detector_config.model.path, device_name=detector_config.device
)
self.model_invalid = False
if self.ov_model_type not in self.supported_models:
logger.error(
f"OpenVino detector does not support {self.ov_model_type} models."
)
self.model_invalid = True
# Ensure the SSD model has the right input and output shapes
if self.ov_model_type == ModelTypeEnum.ssd:
model_inputs = self.interpreter.inputs
@@ -61,6 +74,34 @@ class OvDetector(DetectionApi):
logger.error(f"SSD model output doesn't match. Found {output_shape}.")
self.model_invalid = True
if self.ov_model_type == ModelTypeEnum.yolonas:
model_inputs = self.interpreter.inputs
model_outputs = self.interpreter.outputs
if len(model_inputs) != 1:
logger.error(
f"YoloNAS models must only have 1 input. Found {len(model_inputs)}."
)
self.model_invalid = True
if len(model_outputs) != 1:
logger.error(
f"YoloNAS models must be exported in flat format and only have 1 output. Found {len(model_outputs)}."
)
self.model_invalid = True
if model_inputs[0].get_shape() != ov.Shape([1, 3, self.w, self.h]):
logger.error(
f"YoloNAS model input doesn't match. Found {model_inputs[0].get_shape()}, but expected {[1, 3, self.w, self.h]}."
)
self.model_invalid = True
output_shape = model_outputs[0].partial_shape
if output_shape[-1] != 7:
logger.error(
f"YoloNAS models must be exported in flat format. Model output doesn't match. Found {output_shape}."
)
self.model_invalid = True
if self.ov_model_type == ModelTypeEnum.yolox:
self.output_indexes = 0
while True:
@@ -113,12 +154,12 @@ class OvDetector(DetectionApi):
input_tensor = ov.Tensor(array=tensor_input)
infer_request.infer(input_tensor)
detections = np.zeros((20, 6), np.float32)
if self.model_invalid:
return detections
if self.ov_model_type == ModelTypeEnum.ssd:
detections = np.zeros((20, 6), np.float32)
if self.model_invalid:
return detections
results = infer_request.get_output_tensor(0).data[0][0]
for i, (_, class_id, score, xmin, ymin, xmax, ymax) in enumerate(results):
@@ -134,6 +175,26 @@ class OvDetector(DetectionApi):
]
return detections
if self.ov_model_type == ModelTypeEnum.yolonas:
predictions = infer_request.get_output_tensor(0).data
for i, prediction in enumerate(predictions):
if i == 20:
break
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
# when running in GPU mode, empty predictions in the output have class_id of -1
if class_id < 0:
break
detections[i] = [
class_id,
confidence,
y_min / self.h,
x_min / self.w,
y_max / self.h,
x_max / self.w,
]
return detections
if self.ov_model_type == ModelTypeEnum.yolox:
out_tensor = infer_request.get_output_tensor()
# [x, y, h, w, box_score, class_no_1, ..., class_no_80],
@@ -155,8 +216,6 @@ class OvDetector(DetectionApi):
ordered = dets[dets[:, 5].argsort()[::-1]][:20]
detections = np.zeros((20, 6), np.float32)
for i, object_detected in enumerate(ordered):
detections[i] = self.process_yolo(
object_detected[6], object_detected[5], object_detected[:4]